linux_dsm_epyc7002/drivers/media/dvb-frontends/s5h1409.c

1012 lines
23 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-or-later
/*
Samsung S5H1409 VSB/QAM demodulator driver
Copyright (C) 2006 Steven Toth <stoth@linuxtv.org>
*/
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/string.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <media/dvb_frontend.h>
#include "s5h1409.h"
struct s5h1409_state {
struct i2c_adapter *i2c;
/* configuration settings */
const struct s5h1409_config *config;
struct dvb_frontend frontend;
/* previous uncorrected block counter */
enum fe_modulation current_modulation;
u32 current_frequency;
int if_freq;
u32 is_qam_locked;
/* QAM tuning state goes through the following state transitions */
#define QAM_STATE_UNTUNED 0
#define QAM_STATE_TUNING_STARTED 1
#define QAM_STATE_INTERLEAVE_SET 2
#define QAM_STATE_QAM_OPTIMIZED_L1 3
#define QAM_STATE_QAM_OPTIMIZED_L2 4
#define QAM_STATE_QAM_OPTIMIZED_L3 5
u8 qam_state;
};
static int debug;
module_param(debug, int, 0644);
MODULE_PARM_DESC(debug, "Enable verbose debug messages");
#define dprintk if (debug) printk
/* Register values to initialise the demod, this will set VSB by default */
static struct init_tab {
u8 reg;
u16 data;
} init_tab[] = {
{ 0x00, 0x0071, },
{ 0x01, 0x3213, },
{ 0x09, 0x0025, },
{ 0x1c, 0x001d, },
{ 0x1f, 0x002d, },
{ 0x20, 0x001d, },
{ 0x22, 0x0022, },
{ 0x23, 0x0020, },
{ 0x29, 0x110f, },
{ 0x2a, 0x10b4, },
{ 0x2b, 0x10ae, },
{ 0x2c, 0x0031, },
{ 0x31, 0x010d, },
{ 0x32, 0x0100, },
{ 0x44, 0x0510, },
{ 0x54, 0x0104, },
{ 0x58, 0x2222, },
{ 0x59, 0x1162, },
{ 0x5a, 0x3211, },
{ 0x5d, 0x0370, },
{ 0x5e, 0x0296, },
{ 0x61, 0x0010, },
{ 0x63, 0x4a00, },
{ 0x65, 0x0800, },
{ 0x71, 0x0003, },
{ 0x72, 0x0470, },
{ 0x81, 0x0002, },
{ 0x82, 0x0600, },
{ 0x86, 0x0002, },
{ 0x8a, 0x2c38, },
{ 0x8b, 0x2a37, },
{ 0x92, 0x302f, },
{ 0x93, 0x3332, },
{ 0x96, 0x000c, },
{ 0x99, 0x0101, },
{ 0x9c, 0x2e37, },
{ 0x9d, 0x2c37, },
{ 0x9e, 0x2c37, },
{ 0xab, 0x0100, },
{ 0xac, 0x1003, },
{ 0xad, 0x103f, },
{ 0xe2, 0x0100, },
{ 0xe3, 0x1000, },
{ 0x28, 0x1010, },
{ 0xb1, 0x000e, },
};
/* VSB SNR lookup table */
static struct vsb_snr_tab {
u16 val;
u16 data;
} vsb_snr_tab[] = {
{ 924, 300, },
{ 923, 300, },
{ 918, 295, },
{ 915, 290, },
{ 911, 285, },
{ 906, 280, },
{ 901, 275, },
{ 896, 270, },
{ 891, 265, },
{ 885, 260, },
{ 879, 255, },
{ 873, 250, },
{ 864, 245, },
{ 858, 240, },
{ 850, 235, },
{ 841, 230, },
{ 832, 225, },
{ 823, 220, },
{ 812, 215, },
{ 802, 210, },
{ 788, 205, },
{ 778, 200, },
{ 767, 195, },
{ 753, 190, },
{ 740, 185, },
{ 725, 180, },
{ 707, 175, },
{ 689, 170, },
{ 671, 165, },
{ 656, 160, },
{ 637, 155, },
{ 616, 150, },
{ 542, 145, },
{ 519, 140, },
{ 507, 135, },
{ 497, 130, },
{ 492, 125, },
{ 474, 120, },
{ 300, 111, },
{ 0, 0, },
};
/* QAM64 SNR lookup table */
static struct qam64_snr_tab {
u16 val;
u16 data;
} qam64_snr_tab[] = {
{ 1, 0, },
{ 12, 300, },
{ 15, 290, },
{ 18, 280, },
{ 22, 270, },
{ 23, 268, },
{ 24, 266, },
{ 25, 264, },
{ 27, 262, },
{ 28, 260, },
{ 29, 258, },
{ 30, 256, },
{ 32, 254, },
{ 33, 252, },
{ 34, 250, },
{ 35, 249, },
{ 36, 248, },
{ 37, 247, },
{ 38, 246, },
{ 39, 245, },
{ 40, 244, },
{ 41, 243, },
{ 42, 241, },
{ 43, 240, },
{ 44, 239, },
{ 45, 238, },
{ 46, 237, },
{ 47, 236, },
{ 48, 235, },
{ 49, 234, },
{ 50, 233, },
{ 51, 232, },
{ 52, 231, },
{ 53, 230, },
{ 55, 229, },
{ 56, 228, },
{ 57, 227, },
{ 58, 226, },
{ 59, 225, },
{ 60, 224, },
{ 62, 223, },
{ 63, 222, },
{ 65, 221, },
{ 66, 220, },
{ 68, 219, },
{ 69, 218, },
{ 70, 217, },
{ 72, 216, },
{ 73, 215, },
{ 75, 214, },
{ 76, 213, },
{ 78, 212, },
{ 80, 211, },
{ 81, 210, },
{ 83, 209, },
{ 84, 208, },
{ 85, 207, },
{ 87, 206, },
{ 89, 205, },
{ 91, 204, },
{ 93, 203, },
{ 95, 202, },
{ 96, 201, },
{ 104, 200, },
{ 255, 0, },
};
/* QAM256 SNR lookup table */
static struct qam256_snr_tab {
u16 val;
u16 data;
} qam256_snr_tab[] = {
{ 1, 0, },
{ 12, 400, },
{ 13, 390, },
{ 15, 380, },
{ 17, 360, },
{ 19, 350, },
{ 22, 348, },
{ 23, 346, },
{ 24, 344, },
{ 25, 342, },
{ 26, 340, },
{ 27, 336, },
{ 28, 334, },
{ 29, 332, },
{ 30, 330, },
{ 31, 328, },
{ 32, 326, },
{ 33, 325, },
{ 34, 322, },
{ 35, 320, },
{ 37, 318, },
{ 39, 316, },
{ 40, 314, },
{ 41, 312, },
{ 42, 310, },
{ 43, 308, },
{ 46, 306, },
{ 47, 304, },
{ 49, 302, },
{ 51, 300, },
{ 53, 298, },
{ 54, 297, },
{ 55, 296, },
{ 56, 295, },
{ 57, 294, },
{ 59, 293, },
{ 60, 292, },
{ 61, 291, },
{ 63, 290, },
{ 64, 289, },
{ 65, 288, },
{ 66, 287, },
{ 68, 286, },
{ 69, 285, },
{ 71, 284, },
{ 72, 283, },
{ 74, 282, },
{ 75, 281, },
{ 76, 280, },
{ 77, 279, },
{ 78, 278, },
{ 81, 277, },
{ 83, 276, },
{ 84, 275, },
{ 86, 274, },
{ 87, 273, },
{ 89, 272, },
{ 90, 271, },
{ 92, 270, },
{ 93, 269, },
{ 95, 268, },
{ 96, 267, },
{ 98, 266, },
{ 100, 265, },
{ 102, 264, },
{ 104, 263, },
{ 105, 262, },
{ 106, 261, },
{ 110, 260, },
{ 255, 0, },
};
/* 8 bit registers, 16 bit values */
static int s5h1409_writereg(struct s5h1409_state *state, u8 reg, u16 data)
{
int ret;
u8 buf[] = { reg, data >> 8, data & 0xff };
struct i2c_msg msg = { .addr = state->config->demod_address,
.flags = 0, .buf = buf, .len = 3 };
ret = i2c_transfer(state->i2c, &msg, 1);
if (ret != 1)
printk(KERN_ERR "%s: error (reg == 0x%02x, val == 0x%04x, ret == %i)\n",
__func__, reg, data, ret);
return (ret != 1) ? -1 : 0;
}
static u16 s5h1409_readreg(struct s5h1409_state *state, u8 reg)
{
int ret;
u8 b0[] = { reg };
u8 b1[] = { 0, 0 };
struct i2c_msg msg[] = {
{ .addr = state->config->demod_address, .flags = 0,
.buf = b0, .len = 1 },
{ .addr = state->config->demod_address, .flags = I2C_M_RD,
.buf = b1, .len = 2 } };
ret = i2c_transfer(state->i2c, msg, 2);
if (ret != 2)
printk("%s: readreg error (ret == %i)\n", __func__, ret);
return (b1[0] << 8) | b1[1];
}
static int s5h1409_softreset(struct dvb_frontend *fe)
{
struct s5h1409_state *state = fe->demodulator_priv;
dprintk("%s()\n", __func__);
s5h1409_writereg(state, 0xf5, 0);
s5h1409_writereg(state, 0xf5, 1);
state->is_qam_locked = 0;
state->qam_state = QAM_STATE_UNTUNED;
return 0;
}
#define S5H1409_VSB_IF_FREQ 5380
#define S5H1409_QAM_IF_FREQ (state->config->qam_if)
static int s5h1409_set_if_freq(struct dvb_frontend *fe, int KHz)
{
struct s5h1409_state *state = fe->demodulator_priv;
dprintk("%s(%d KHz)\n", __func__, KHz);
switch (KHz) {
case 4000:
s5h1409_writereg(state, 0x87, 0x014b);
s5h1409_writereg(state, 0x88, 0x0cb5);
s5h1409_writereg(state, 0x89, 0x03e2);
break;
case 5380:
case 44000:
default:
s5h1409_writereg(state, 0x87, 0x01be);
s5h1409_writereg(state, 0x88, 0x0436);
s5h1409_writereg(state, 0x89, 0x054d);
break;
}
state->if_freq = KHz;
return 0;
}
static int s5h1409_set_spectralinversion(struct dvb_frontend *fe, int inverted)
{
struct s5h1409_state *state = fe->demodulator_priv;
dprintk("%s(%d)\n", __func__, inverted);
if (inverted == 1)
return s5h1409_writereg(state, 0x1b, 0x1101); /* Inverted */
else
return s5h1409_writereg(state, 0x1b, 0x0110); /* Normal */
}
static int s5h1409_enable_modulation(struct dvb_frontend *fe,
enum fe_modulation m)
{
struct s5h1409_state *state = fe->demodulator_priv;
dprintk("%s(0x%08x)\n", __func__, m);
switch (m) {
case VSB_8:
dprintk("%s() VSB_8\n", __func__);
if (state->if_freq != S5H1409_VSB_IF_FREQ)
s5h1409_set_if_freq(fe, S5H1409_VSB_IF_FREQ);
s5h1409_writereg(state, 0xf4, 0);
break;
case QAM_64:
case QAM_256:
case QAM_AUTO:
dprintk("%s() QAM_AUTO (64/256)\n", __func__);
if (state->if_freq != S5H1409_QAM_IF_FREQ)
s5h1409_set_if_freq(fe, S5H1409_QAM_IF_FREQ);
s5h1409_writereg(state, 0xf4, 1);
s5h1409_writereg(state, 0x85, 0x110);
break;
default:
dprintk("%s() Invalid modulation\n", __func__);
return -EINVAL;
}
state->current_modulation = m;
s5h1409_softreset(fe);
return 0;
}
static int s5h1409_i2c_gate_ctrl(struct dvb_frontend *fe, int enable)
{
struct s5h1409_state *state = fe->demodulator_priv;
dprintk("%s(%d)\n", __func__, enable);
if (enable)
return s5h1409_writereg(state, 0xf3, 1);
else
return s5h1409_writereg(state, 0xf3, 0);
}
static int s5h1409_set_gpio(struct dvb_frontend *fe, int enable)
{
struct s5h1409_state *state = fe->demodulator_priv;
dprintk("%s(%d)\n", __func__, enable);
if (enable)
return s5h1409_writereg(state, 0xe3,
s5h1409_readreg(state, 0xe3) | 0x1100);
else
return s5h1409_writereg(state, 0xe3,
s5h1409_readreg(state, 0xe3) & 0xfeff);
}
static int s5h1409_sleep(struct dvb_frontend *fe, int enable)
{
struct s5h1409_state *state = fe->demodulator_priv;
dprintk("%s(%d)\n", __func__, enable);
return s5h1409_writereg(state, 0xf2, enable);
}
static int s5h1409_register_reset(struct dvb_frontend *fe)
{
struct s5h1409_state *state = fe->demodulator_priv;
dprintk("%s()\n", __func__);
return s5h1409_writereg(state, 0xfa, 0);
}
static void s5h1409_set_qam_amhum_mode(struct dvb_frontend *fe)
{
struct s5h1409_state *state = fe->demodulator_priv;
u16 reg;
if (state->qam_state < QAM_STATE_INTERLEAVE_SET) {
/* We should not perform amhum optimization until
the interleave mode has been configured */
return;
}
if (state->qam_state == QAM_STATE_QAM_OPTIMIZED_L3) {
/* We've already reached the maximum optimization level, so
don't bother banging on the status registers */
return;
}
/* QAM EQ lock check */
reg = s5h1409_readreg(state, 0xf0);
if ((reg >> 13) & 0x1) {
reg &= 0xff;
s5h1409_writereg(state, 0x96, 0x000c);
if (reg < 0x68) {
if (state->qam_state < QAM_STATE_QAM_OPTIMIZED_L3) {
dprintk("%s() setting QAM state to OPT_L3\n",
__func__);
s5h1409_writereg(state, 0x93, 0x3130);
s5h1409_writereg(state, 0x9e, 0x2836);
state->qam_state = QAM_STATE_QAM_OPTIMIZED_L3;
}
} else {
if (state->qam_state < QAM_STATE_QAM_OPTIMIZED_L2) {
dprintk("%s() setting QAM state to OPT_L2\n",
__func__);
s5h1409_writereg(state, 0x93, 0x3332);
s5h1409_writereg(state, 0x9e, 0x2c37);
state->qam_state = QAM_STATE_QAM_OPTIMIZED_L2;
}
}
} else {
if (state->qam_state < QAM_STATE_QAM_OPTIMIZED_L1) {
dprintk("%s() setting QAM state to OPT_L1\n", __func__);
s5h1409_writereg(state, 0x96, 0x0008);
s5h1409_writereg(state, 0x93, 0x3332);
s5h1409_writereg(state, 0x9e, 0x2c37);
state->qam_state = QAM_STATE_QAM_OPTIMIZED_L1;
}
}
}
static void s5h1409_set_qam_amhum_mode_legacy(struct dvb_frontend *fe)
{
struct s5h1409_state *state = fe->demodulator_priv;
u16 reg;
if (state->is_qam_locked)
return;
/* QAM EQ lock check */
reg = s5h1409_readreg(state, 0xf0);
if ((reg >> 13) & 0x1) {
state->is_qam_locked = 1;
reg &= 0xff;
s5h1409_writereg(state, 0x96, 0x00c);
if ((reg < 0x38) || (reg > 0x68)) {
s5h1409_writereg(state, 0x93, 0x3332);
s5h1409_writereg(state, 0x9e, 0x2c37);
} else {
s5h1409_writereg(state, 0x93, 0x3130);
s5h1409_writereg(state, 0x9e, 0x2836);
}
} else {
s5h1409_writereg(state, 0x96, 0x0008);
s5h1409_writereg(state, 0x93, 0x3332);
s5h1409_writereg(state, 0x9e, 0x2c37);
}
}
static void s5h1409_set_qam_interleave_mode(struct dvb_frontend *fe)
{
struct s5h1409_state *state = fe->demodulator_priv;
u16 reg, reg1, reg2;
if (state->qam_state >= QAM_STATE_INTERLEAVE_SET) {
/* We've done the optimization already */
return;
}
reg = s5h1409_readreg(state, 0xf1);
/* Master lock */
if ((reg >> 15) & 0x1) {
if (state->qam_state == QAM_STATE_UNTUNED ||
state->qam_state == QAM_STATE_TUNING_STARTED) {
dprintk("%s() setting QAM state to INTERLEAVE_SET\n",
__func__);
reg1 = s5h1409_readreg(state, 0xb2);
reg2 = s5h1409_readreg(state, 0xad);
s5h1409_writereg(state, 0x96, 0x0020);
s5h1409_writereg(state, 0xad,
(((reg1 & 0xf000) >> 4) | (reg2 & 0xf0ff)));
state->qam_state = QAM_STATE_INTERLEAVE_SET;
}
} else {
if (state->qam_state == QAM_STATE_UNTUNED) {
dprintk("%s() setting QAM state to TUNING_STARTED\n",
__func__);
s5h1409_writereg(state, 0x96, 0x08);
s5h1409_writereg(state, 0xab,
s5h1409_readreg(state, 0xab) | 0x1001);
state->qam_state = QAM_STATE_TUNING_STARTED;
}
}
}
static void s5h1409_set_qam_interleave_mode_legacy(struct dvb_frontend *fe)
{
struct s5h1409_state *state = fe->demodulator_priv;
u16 reg, reg1, reg2;
reg = s5h1409_readreg(state, 0xf1);
/* Master lock */
if ((reg >> 15) & 0x1) {
if (state->qam_state != 2) {
state->qam_state = 2;
reg1 = s5h1409_readreg(state, 0xb2);
reg2 = s5h1409_readreg(state, 0xad);
s5h1409_writereg(state, 0x96, 0x20);
s5h1409_writereg(state, 0xad,
(((reg1 & 0xf000) >> 4) | (reg2 & 0xf0ff)));
s5h1409_writereg(state, 0xab,
s5h1409_readreg(state, 0xab) & 0xeffe);
}
} else {
if (state->qam_state != 1) {
state->qam_state = 1;
s5h1409_writereg(state, 0x96, 0x08);
s5h1409_writereg(state, 0xab,
s5h1409_readreg(state, 0xab) | 0x1001);
}
}
}
/* Talk to the demod, set the FEC, GUARD, QAM settings etc */
static int s5h1409_set_frontend(struct dvb_frontend *fe)
{
struct dtv_frontend_properties *p = &fe->dtv_property_cache;
struct s5h1409_state *state = fe->demodulator_priv;
dprintk("%s(frequency=%d)\n", __func__, p->frequency);
s5h1409_softreset(fe);
state->current_frequency = p->frequency;
s5h1409_enable_modulation(fe, p->modulation);
if (fe->ops.tuner_ops.set_params) {
if (fe->ops.i2c_gate_ctrl)
fe->ops.i2c_gate_ctrl(fe, 1);
fe->ops.tuner_ops.set_params(fe);
if (fe->ops.i2c_gate_ctrl)
fe->ops.i2c_gate_ctrl(fe, 0);
}
/* Issue a reset to the demod so it knows to resync against the
newly tuned frequency */
s5h1409_softreset(fe);
/* Optimize the demod for QAM */
if (state->current_modulation != VSB_8) {
/* This almost certainly applies to all boards, but for now
only do it for the HVR-1600. Once the other boards are
tested, the "legacy" versions can just go away */
if (state->config->hvr1600_opt == S5H1409_HVR1600_OPTIMIZE) {
s5h1409_set_qam_interleave_mode(fe);
s5h1409_set_qam_amhum_mode(fe);
} else {
s5h1409_set_qam_amhum_mode_legacy(fe);
s5h1409_set_qam_interleave_mode_legacy(fe);
}
}
return 0;
}
static int s5h1409_set_mpeg_timing(struct dvb_frontend *fe, int mode)
{
struct s5h1409_state *state = fe->demodulator_priv;
u16 val;
dprintk("%s(%d)\n", __func__, mode);
val = s5h1409_readreg(state, 0xac) & 0xcfff;
switch (mode) {
case S5H1409_MPEGTIMING_CONTINUOUS_INVERTING_CLOCK:
val |= 0x0000;
break;
case S5H1409_MPEGTIMING_CONTINUOUS_NONINVERTING_CLOCK:
dprintk("%s(%d) Mode1 or Defaulting\n", __func__, mode);
val |= 0x1000;
break;
case S5H1409_MPEGTIMING_NONCONTINUOUS_INVERTING_CLOCK:
val |= 0x2000;
break;
case S5H1409_MPEGTIMING_NONCONTINUOUS_NONINVERTING_CLOCK:
val |= 0x3000;
break;
default:
return -EINVAL;
}
/* Configure MPEG Signal Timing charactistics */
return s5h1409_writereg(state, 0xac, val);
}
/* Reset the demod hardware and reset all of the configuration registers
to a default state. */
static int s5h1409_init(struct dvb_frontend *fe)
{
int i;
struct s5h1409_state *state = fe->demodulator_priv;
dprintk("%s()\n", __func__);
s5h1409_sleep(fe, 0);
s5h1409_register_reset(fe);
for (i = 0; i < ARRAY_SIZE(init_tab); i++)
s5h1409_writereg(state, init_tab[i].reg, init_tab[i].data);
/* The datasheet says that after initialisation, VSB is default */
state->current_modulation = VSB_8;
/* Optimize for the HVR-1600 if appropriate. Note that some of these
may get folded into the generic case after testing with other
devices */
if (state->config->hvr1600_opt == S5H1409_HVR1600_OPTIMIZE) {
/* VSB AGC REF */
s5h1409_writereg(state, 0x09, 0x0050);
/* Unknown but Windows driver does it... */
s5h1409_writereg(state, 0x21, 0x0001);
s5h1409_writereg(state, 0x50, 0x030e);
/* QAM AGC REF */
s5h1409_writereg(state, 0x82, 0x0800);
}
if (state->config->output_mode == S5H1409_SERIAL_OUTPUT)
s5h1409_writereg(state, 0xab,
s5h1409_readreg(state, 0xab) | 0x100); /* Serial */
else
s5h1409_writereg(state, 0xab,
s5h1409_readreg(state, 0xab) & 0xfeff); /* Parallel */
s5h1409_set_spectralinversion(fe, state->config->inversion);
s5h1409_set_if_freq(fe, state->if_freq);
s5h1409_set_gpio(fe, state->config->gpio);
s5h1409_set_mpeg_timing(fe, state->config->mpeg_timing);
s5h1409_softreset(fe);
/* Note: Leaving the I2C gate closed. */
s5h1409_i2c_gate_ctrl(fe, 0);
return 0;
}
static int s5h1409_read_status(struct dvb_frontend *fe, enum fe_status *status)
{
struct s5h1409_state *state = fe->demodulator_priv;
u16 reg;
u32 tuner_status = 0;
*status = 0;
/* Optimize the demod for QAM */
if (state->current_modulation != VSB_8) {
/* This almost certainly applies to all boards, but for now
only do it for the HVR-1600. Once the other boards are
tested, the "legacy" versions can just go away */
if (state->config->hvr1600_opt == S5H1409_HVR1600_OPTIMIZE) {
s5h1409_set_qam_interleave_mode(fe);
s5h1409_set_qam_amhum_mode(fe);
}
}
/* Get the demodulator status */
reg = s5h1409_readreg(state, 0xf1);
if (reg & 0x1000)
*status |= FE_HAS_VITERBI;
if (reg & 0x8000)
*status |= FE_HAS_LOCK | FE_HAS_SYNC;
switch (state->config->status_mode) {
case S5H1409_DEMODLOCKING:
if (*status & FE_HAS_VITERBI)
*status |= FE_HAS_CARRIER | FE_HAS_SIGNAL;
break;
case S5H1409_TUNERLOCKING:
/* Get the tuner status */
if (fe->ops.tuner_ops.get_status) {
if (fe->ops.i2c_gate_ctrl)
fe->ops.i2c_gate_ctrl(fe, 1);
fe->ops.tuner_ops.get_status(fe, &tuner_status);
if (fe->ops.i2c_gate_ctrl)
fe->ops.i2c_gate_ctrl(fe, 0);
}
if (tuner_status)
*status |= FE_HAS_CARRIER | FE_HAS_SIGNAL;
break;
}
dprintk("%s() status 0x%08x\n", __func__, *status);
return 0;
}
static int s5h1409_qam256_lookup_snr(struct dvb_frontend *fe, u16 *snr, u16 v)
{
int i, ret = -EINVAL;
dprintk("%s()\n", __func__);
for (i = 0; i < ARRAY_SIZE(qam256_snr_tab); i++) {
if (v < qam256_snr_tab[i].val) {
*snr = qam256_snr_tab[i].data;
ret = 0;
break;
}
}
return ret;
}
static int s5h1409_qam64_lookup_snr(struct dvb_frontend *fe, u16 *snr, u16 v)
{
int i, ret = -EINVAL;
dprintk("%s()\n", __func__);
for (i = 0; i < ARRAY_SIZE(qam64_snr_tab); i++) {
if (v < qam64_snr_tab[i].val) {
*snr = qam64_snr_tab[i].data;
ret = 0;
break;
}
}
return ret;
}
static int s5h1409_vsb_lookup_snr(struct dvb_frontend *fe, u16 *snr, u16 v)
{
int i, ret = -EINVAL;
dprintk("%s()\n", __func__);
for (i = 0; i < ARRAY_SIZE(vsb_snr_tab); i++) {
if (v > vsb_snr_tab[i].val) {
*snr = vsb_snr_tab[i].data;
ret = 0;
break;
}
}
dprintk("%s() snr=%d\n", __func__, *snr);
return ret;
}
static int s5h1409_read_snr(struct dvb_frontend *fe, u16 *snr)
{
struct s5h1409_state *state = fe->demodulator_priv;
u16 reg;
dprintk("%s()\n", __func__);
switch (state->current_modulation) {
case QAM_64:
reg = s5h1409_readreg(state, 0xf0) & 0xff;
return s5h1409_qam64_lookup_snr(fe, snr, reg);
case QAM_256:
reg = s5h1409_readreg(state, 0xf0) & 0xff;
return s5h1409_qam256_lookup_snr(fe, snr, reg);
case VSB_8:
reg = s5h1409_readreg(state, 0xf1) & 0x3ff;
return s5h1409_vsb_lookup_snr(fe, snr, reg);
default:
break;
}
return -EINVAL;
}
static int s5h1409_read_signal_strength(struct dvb_frontend *fe,
u16 *signal_strength)
{
/* borrowed from lgdt330x.c
*
* Calculate strength from SNR up to 35dB
* Even though the SNR can go higher than 35dB,
* there is some comfort factor in having a range of
* strong signals that can show at 100%
*/
u16 snr;
u32 tmp;
int ret = s5h1409_read_snr(fe, &snr);
*signal_strength = 0;
if (0 == ret) {
/* The following calculation method was chosen
* purely for the sake of code re-use from the
* other demod drivers that use this method */
/* Convert from SNR in dB * 10 to 8.24 fixed-point */
tmp = (snr * ((1 << 24) / 10));
/* Convert from 8.24 fixed-point to
* scale the range 0 - 35*2^24 into 0 - 65535*/
if (tmp >= 8960 * 0x10000)
*signal_strength = 0xffff;
else
*signal_strength = tmp / 8960;
}
return ret;
}
static int s5h1409_read_ucblocks(struct dvb_frontend *fe, u32 *ucblocks)
{
struct s5h1409_state *state = fe->demodulator_priv;
*ucblocks = s5h1409_readreg(state, 0xb5);
return 0;
}
static int s5h1409_read_ber(struct dvb_frontend *fe, u32 *ber)
{
return s5h1409_read_ucblocks(fe, ber);
}
static int s5h1409_get_frontend(struct dvb_frontend *fe,
struct dtv_frontend_properties *p)
{
struct s5h1409_state *state = fe->demodulator_priv;
p->frequency = state->current_frequency;
p->modulation = state->current_modulation;
return 0;
}
static int s5h1409_get_tune_settings(struct dvb_frontend *fe,
struct dvb_frontend_tune_settings *tune)
{
tune->min_delay_ms = 1000;
return 0;
}
static void s5h1409_release(struct dvb_frontend *fe)
{
struct s5h1409_state *state = fe->demodulator_priv;
kfree(state);
}
static const struct dvb_frontend_ops s5h1409_ops;
struct dvb_frontend *s5h1409_attach(const struct s5h1409_config *config,
struct i2c_adapter *i2c)
{
struct s5h1409_state *state = NULL;
u16 reg;
/* allocate memory for the internal state */
state = kzalloc(sizeof(struct s5h1409_state), GFP_KERNEL);
if (state == NULL)
goto error;
/* setup the state */
state->config = config;
state->i2c = i2c;
state->current_modulation = 0;
state->if_freq = S5H1409_VSB_IF_FREQ;
/* check if the demod exists */
reg = s5h1409_readreg(state, 0x04);
if ((reg != 0x0066) && (reg != 0x007f))
goto error;
/* create dvb_frontend */
memcpy(&state->frontend.ops, &s5h1409_ops,
sizeof(struct dvb_frontend_ops));
state->frontend.demodulator_priv = state;
if (s5h1409_init(&state->frontend) != 0) {
printk(KERN_ERR "%s: Failed to initialize correctly\n",
__func__);
goto error;
}
/* Note: Leaving the I2C gate open here. */
s5h1409_i2c_gate_ctrl(&state->frontend, 1);
return &state->frontend;
error:
kfree(state);
return NULL;
}
EXPORT_SYMBOL(s5h1409_attach);
static const struct dvb_frontend_ops s5h1409_ops = {
.delsys = { SYS_ATSC, SYS_DVBC_ANNEX_B },
.info = {
.name = "Samsung S5H1409 QAM/8VSB Frontend",
.frequency_min_hz = 54 * MHz,
.frequency_max_hz = 858 * MHz,
.frequency_stepsize_hz = 62500,
.caps = FE_CAN_QAM_64 | FE_CAN_QAM_256 | FE_CAN_8VSB
},
.init = s5h1409_init,
.i2c_gate_ctrl = s5h1409_i2c_gate_ctrl,
.set_frontend = s5h1409_set_frontend,
.get_frontend = s5h1409_get_frontend,
.get_tune_settings = s5h1409_get_tune_settings,
.read_status = s5h1409_read_status,
.read_ber = s5h1409_read_ber,
.read_signal_strength = s5h1409_read_signal_strength,
.read_snr = s5h1409_read_snr,
.read_ucblocks = s5h1409_read_ucblocks,
.release = s5h1409_release,
};
MODULE_DESCRIPTION("Samsung S5H1409 QAM-B/ATSC Demodulator driver");
MODULE_AUTHOR("Steven Toth");
MODULE_LICENSE("GPL");