linux_dsm_epyc7002/drivers/media/rc/rc-ir-raw.c

720 lines
19 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0
// rc-ir-raw.c - handle IR pulse/space events
//
// Copyright (C) 2010 by Mauro Carvalho Chehab
#include <linux/export.h>
#include <linux/kthread.h>
#include <linux/mutex.h>
#include <linux/kmod.h>
#include <linux/sched.h>
#include "rc-core-priv.h"
/* Used to keep track of IR raw clients, protected by ir_raw_handler_lock */
static LIST_HEAD(ir_raw_client_list);
/* Used to handle IR raw handler extensions */
DEFINE_MUTEX(ir_raw_handler_lock);
static LIST_HEAD(ir_raw_handler_list);
static atomic64_t available_protocols = ATOMIC64_INIT(0);
static int ir_raw_event_thread(void *data)
{
struct ir_raw_event ev;
struct ir_raw_handler *handler;
struct ir_raw_event_ctrl *raw = data;
struct rc_dev *dev = raw->dev;
while (1) {
mutex_lock(&ir_raw_handler_lock);
while (kfifo_out(&raw->kfifo, &ev, 1)) {
if (is_timing_event(ev)) {
if (ev.duration == 0)
dev_warn_once(&dev->dev, "nonsensical timing event of duration 0");
if (is_timing_event(raw->prev_ev) &&
!is_transition(&ev, &raw->prev_ev))
dev_warn_once(&dev->dev, "two consecutive events of type %s",
TO_STR(ev.pulse));
if (raw->prev_ev.reset && ev.pulse == 0)
dev_warn_once(&dev->dev, "timing event after reset should be pulse");
}
list_for_each_entry(handler, &ir_raw_handler_list, list)
if (dev->enabled_protocols &
handler->protocols || !handler->protocols)
handler->decode(dev, ev);
ir_lirc_raw_event(dev, ev);
raw->prev_ev = ev;
}
mutex_unlock(&ir_raw_handler_lock);
set_current_state(TASK_INTERRUPTIBLE);
if (kthread_should_stop()) {
__set_current_state(TASK_RUNNING);
break;
} else if (!kfifo_is_empty(&raw->kfifo))
set_current_state(TASK_RUNNING);
schedule();
}
return 0;
}
/**
* ir_raw_event_store() - pass a pulse/space duration to the raw ir decoders
* @dev: the struct rc_dev device descriptor
* @ev: the struct ir_raw_event descriptor of the pulse/space
*
* This routine (which may be called from an interrupt context) stores a
* pulse/space duration for the raw ir decoding state machines. Pulses are
* signalled as positive values and spaces as negative values. A zero value
* will reset the decoding state machines.
*/
int ir_raw_event_store(struct rc_dev *dev, struct ir_raw_event *ev)
{
if (!dev->raw)
return -EINVAL;
dev_dbg(&dev->dev, "sample: (%05dus %s)\n",
TO_US(ev->duration), TO_STR(ev->pulse));
if (!kfifo_put(&dev->raw->kfifo, *ev)) {
dev_err(&dev->dev, "IR event FIFO is full!\n");
return -ENOSPC;
}
return 0;
}
EXPORT_SYMBOL_GPL(ir_raw_event_store);
/**
* ir_raw_event_store_edge() - notify raw ir decoders of the start of a pulse/space
* @dev: the struct rc_dev device descriptor
* @pulse: true for pulse, false for space
*
* This routine (which may be called from an interrupt context) is used to
* store the beginning of an ir pulse or space (or the start/end of ir
* reception) for the raw ir decoding state machines. This is used by
* hardware which does not provide durations directly but only interrupts
* (or similar events) on state change.
*/
int ir_raw_event_store_edge(struct rc_dev *dev, bool pulse)
{
ktime_t now;
struct ir_raw_event ev = {};
if (!dev->raw)
return -EINVAL;
now = ktime_get();
ev.duration = ktime_to_ns(ktime_sub(now, dev->raw->last_event));
ev.pulse = !pulse;
return ir_raw_event_store_with_timeout(dev, &ev);
}
EXPORT_SYMBOL_GPL(ir_raw_event_store_edge);
/*
* ir_raw_event_store_with_timeout() - pass a pulse/space duration to the raw
* ir decoders, schedule decoding and
* timeout
* @dev: the struct rc_dev device descriptor
* @ev: the struct ir_raw_event descriptor of the pulse/space
*
* This routine (which may be called from an interrupt context) stores a
* pulse/space duration for the raw ir decoding state machines, schedules
* decoding and generates a timeout.
*/
int ir_raw_event_store_with_timeout(struct rc_dev *dev, struct ir_raw_event *ev)
{
ktime_t now;
int rc = 0;
if (!dev->raw)
return -EINVAL;
now = ktime_get();
spin_lock(&dev->raw->edge_spinlock);
rc = ir_raw_event_store(dev, ev);
dev->raw->last_event = now;
/* timer could be set to timeout (125ms by default) */
if (!timer_pending(&dev->raw->edge_handle) ||
time_after(dev->raw->edge_handle.expires,
jiffies + msecs_to_jiffies(15))) {
mod_timer(&dev->raw->edge_handle,
jiffies + msecs_to_jiffies(15));
}
spin_unlock(&dev->raw->edge_spinlock);
return rc;
}
EXPORT_SYMBOL_GPL(ir_raw_event_store_with_timeout);
/**
* ir_raw_event_store_with_filter() - pass next pulse/space to decoders with some processing
* @dev: the struct rc_dev device descriptor
* @ev: the event that has occurred
*
* This routine (which may be called from an interrupt context) works
* in similar manner to ir_raw_event_store_edge.
* This routine is intended for devices with limited internal buffer
* It automerges samples of same type, and handles timeouts. Returns non-zero
* if the event was added, and zero if the event was ignored due to idle
* processing.
*/
int ir_raw_event_store_with_filter(struct rc_dev *dev, struct ir_raw_event *ev)
{
if (!dev->raw)
return -EINVAL;
/* Ignore spaces in idle mode */
if (dev->idle && !ev->pulse)
return 0;
else if (dev->idle)
ir_raw_event_set_idle(dev, false);
if (!dev->raw->this_ev.duration)
dev->raw->this_ev = *ev;
else if (ev->pulse == dev->raw->this_ev.pulse)
dev->raw->this_ev.duration += ev->duration;
else {
ir_raw_event_store(dev, &dev->raw->this_ev);
dev->raw->this_ev = *ev;
}
/* Enter idle mode if nessesary */
if (!ev->pulse && dev->timeout &&
dev->raw->this_ev.duration >= dev->timeout)
ir_raw_event_set_idle(dev, true);
return 1;
}
EXPORT_SYMBOL_GPL(ir_raw_event_store_with_filter);
/**
* ir_raw_event_set_idle() - provide hint to rc-core when the device is idle or not
* @dev: the struct rc_dev device descriptor
* @idle: whether the device is idle or not
*/
void ir_raw_event_set_idle(struct rc_dev *dev, bool idle)
{
if (!dev->raw)
return;
dev_dbg(&dev->dev, "%s idle mode\n", idle ? "enter" : "leave");
if (idle) {
dev->raw->this_ev.timeout = true;
ir_raw_event_store(dev, &dev->raw->this_ev);
dev->raw->this_ev = (struct ir_raw_event) {};
}
if (dev->s_idle)
dev->s_idle(dev, idle);
dev->idle = idle;
}
EXPORT_SYMBOL_GPL(ir_raw_event_set_idle);
/**
* ir_raw_event_handle() - schedules the decoding of stored ir data
* @dev: the struct rc_dev device descriptor
*
* This routine will tell rc-core to start decoding stored ir data.
*/
void ir_raw_event_handle(struct rc_dev *dev)
{
if (!dev->raw || !dev->raw->thread)
return;
wake_up_process(dev->raw->thread);
}
EXPORT_SYMBOL_GPL(ir_raw_event_handle);
/* used internally by the sysfs interface */
u64
ir_raw_get_allowed_protocols(void)
{
return atomic64_read(&available_protocols);
}
static int change_protocol(struct rc_dev *dev, u64 *rc_proto)
{
struct ir_raw_handler *handler;
u32 timeout = 0;
mutex_lock(&ir_raw_handler_lock);
list_for_each_entry(handler, &ir_raw_handler_list, list) {
if (!(dev->enabled_protocols & handler->protocols) &&
(*rc_proto & handler->protocols) && handler->raw_register)
handler->raw_register(dev);
if ((dev->enabled_protocols & handler->protocols) &&
!(*rc_proto & handler->protocols) &&
handler->raw_unregister)
handler->raw_unregister(dev);
}
mutex_unlock(&ir_raw_handler_lock);
if (!dev->max_timeout)
return 0;
mutex_lock(&ir_raw_handler_lock);
list_for_each_entry(handler, &ir_raw_handler_list, list) {
if (handler->protocols & *rc_proto) {
if (timeout < handler->min_timeout)
timeout = handler->min_timeout;
}
}
mutex_unlock(&ir_raw_handler_lock);
if (timeout == 0)
timeout = IR_DEFAULT_TIMEOUT;
else
timeout += MS_TO_NS(10);
if (timeout < dev->min_timeout)
timeout = dev->min_timeout;
else if (timeout > dev->max_timeout)
timeout = dev->max_timeout;
if (dev->s_timeout)
dev->s_timeout(dev, timeout);
else
dev->timeout = timeout;
return 0;
}
static void ir_raw_disable_protocols(struct rc_dev *dev, u64 protocols)
{
mutex_lock(&dev->lock);
dev->enabled_protocols &= ~protocols;
mutex_unlock(&dev->lock);
}
/**
* ir_raw_gen_manchester() - Encode data with Manchester (bi-phase) modulation.
* @ev: Pointer to pointer to next free event. *@ev is incremented for
* each raw event filled.
* @max: Maximum number of raw events to fill.
* @timings: Manchester modulation timings.
* @n: Number of bits of data.
* @data: Data bits to encode.
*
* Encodes the @n least significant bits of @data using Manchester (bi-phase)
* modulation with the timing characteristics described by @timings, writing up
* to @max raw IR events using the *@ev pointer.
*
* Returns: 0 on success.
* -ENOBUFS if there isn't enough space in the array to fit the
* full encoded data. In this case all @max events will have been
* written.
*/
int ir_raw_gen_manchester(struct ir_raw_event **ev, unsigned int max,
const struct ir_raw_timings_manchester *timings,
unsigned int n, u64 data)
{
bool need_pulse;
u64 i;
int ret = -ENOBUFS;
i = BIT_ULL(n - 1);
if (timings->leader_pulse) {
if (!max--)
return ret;
init_ir_raw_event_duration((*ev), 1, timings->leader_pulse);
if (timings->leader_space) {
if (!max--)
return ret;
init_ir_raw_event_duration(++(*ev), 0,
timings->leader_space);
}
} else {
/* continue existing signal */
--(*ev);
}
/* from here on *ev will point to the last event rather than the next */
while (n && i > 0) {
need_pulse = !(data & i);
if (timings->invert)
need_pulse = !need_pulse;
if (need_pulse == !!(*ev)->pulse) {
(*ev)->duration += timings->clock;
} else {
if (!max--)
goto nobufs;
init_ir_raw_event_duration(++(*ev), need_pulse,
timings->clock);
}
if (!max--)
goto nobufs;
init_ir_raw_event_duration(++(*ev), !need_pulse,
timings->clock);
i >>= 1;
}
if (timings->trailer_space) {
if (!(*ev)->pulse)
(*ev)->duration += timings->trailer_space;
else if (!max--)
goto nobufs;
else
init_ir_raw_event_duration(++(*ev), 0,
timings->trailer_space);
}
ret = 0;
nobufs:
/* point to the next event rather than last event before returning */
++(*ev);
return ret;
}
EXPORT_SYMBOL(ir_raw_gen_manchester);
/**
* ir_raw_gen_pd() - Encode data to raw events with pulse-distance modulation.
* @ev: Pointer to pointer to next free event. *@ev is incremented for
* each raw event filled.
* @max: Maximum number of raw events to fill.
* @timings: Pulse distance modulation timings.
* @n: Number of bits of data.
* @data: Data bits to encode.
*
* Encodes the @n least significant bits of @data using pulse-distance
* modulation with the timing characteristics described by @timings, writing up
* to @max raw IR events using the *@ev pointer.
*
* Returns: 0 on success.
* -ENOBUFS if there isn't enough space in the array to fit the
* full encoded data. In this case all @max events will have been
* written.
*/
int ir_raw_gen_pd(struct ir_raw_event **ev, unsigned int max,
const struct ir_raw_timings_pd *timings,
unsigned int n, u64 data)
{
int i;
int ret;
unsigned int space;
if (timings->header_pulse) {
ret = ir_raw_gen_pulse_space(ev, &max, timings->header_pulse,
timings->header_space);
if (ret)
return ret;
}
if (timings->msb_first) {
for (i = n - 1; i >= 0; --i) {
space = timings->bit_space[(data >> i) & 1];
ret = ir_raw_gen_pulse_space(ev, &max,
timings->bit_pulse,
space);
if (ret)
return ret;
}
} else {
for (i = 0; i < n; ++i, data >>= 1) {
space = timings->bit_space[data & 1];
ret = ir_raw_gen_pulse_space(ev, &max,
timings->bit_pulse,
space);
if (ret)
return ret;
}
}
ret = ir_raw_gen_pulse_space(ev, &max, timings->trailer_pulse,
timings->trailer_space);
return ret;
}
EXPORT_SYMBOL(ir_raw_gen_pd);
/**
* ir_raw_gen_pl() - Encode data to raw events with pulse-length modulation.
* @ev: Pointer to pointer to next free event. *@ev is incremented for
* each raw event filled.
* @max: Maximum number of raw events to fill.
* @timings: Pulse distance modulation timings.
* @n: Number of bits of data.
* @data: Data bits to encode.
*
* Encodes the @n least significant bits of @data using space-distance
* modulation with the timing characteristics described by @timings, writing up
* to @max raw IR events using the *@ev pointer.
*
* Returns: 0 on success.
* -ENOBUFS if there isn't enough space in the array to fit the
* full encoded data. In this case all @max events will have been
* written.
*/
int ir_raw_gen_pl(struct ir_raw_event **ev, unsigned int max,
const struct ir_raw_timings_pl *timings,
unsigned int n, u64 data)
{
int i;
int ret = -ENOBUFS;
unsigned int pulse;
if (!max--)
return ret;
init_ir_raw_event_duration((*ev)++, 1, timings->header_pulse);
if (timings->msb_first) {
for (i = n - 1; i >= 0; --i) {
if (!max--)
return ret;
init_ir_raw_event_duration((*ev)++, 0,
timings->bit_space);
if (!max--)
return ret;
pulse = timings->bit_pulse[(data >> i) & 1];
init_ir_raw_event_duration((*ev)++, 1, pulse);
}
} else {
for (i = 0; i < n; ++i, data >>= 1) {
if (!max--)
return ret;
init_ir_raw_event_duration((*ev)++, 0,
timings->bit_space);
if (!max--)
return ret;
pulse = timings->bit_pulse[data & 1];
init_ir_raw_event_duration((*ev)++, 1, pulse);
}
}
if (!max--)
return ret;
init_ir_raw_event_duration((*ev)++, 0, timings->trailer_space);
return 0;
}
EXPORT_SYMBOL(ir_raw_gen_pl);
/**
* ir_raw_encode_scancode() - Encode a scancode as raw events
*
* @protocol: protocol
* @scancode: scancode filter describing a single scancode
* @events: array of raw events to write into
* @max: max number of raw events
*
* Attempts to encode the scancode as raw events.
*
* Returns: The number of events written.
* -ENOBUFS if there isn't enough space in the array to fit the
* encoding. In this case all @max events will have been written.
* -EINVAL if the scancode is ambiguous or invalid, or if no
* compatible encoder was found.
*/
int ir_raw_encode_scancode(enum rc_proto protocol, u32 scancode,
struct ir_raw_event *events, unsigned int max)
{
struct ir_raw_handler *handler;
int ret = -EINVAL;
u64 mask = 1ULL << protocol;
ir_raw_load_modules(&mask);
mutex_lock(&ir_raw_handler_lock);
list_for_each_entry(handler, &ir_raw_handler_list, list) {
if (handler->protocols & mask && handler->encode) {
ret = handler->encode(protocol, scancode, events, max);
if (ret >= 0 || ret == -ENOBUFS)
break;
}
}
mutex_unlock(&ir_raw_handler_lock);
return ret;
}
EXPORT_SYMBOL(ir_raw_encode_scancode);
/**
* ir_raw_edge_handle() - Handle ir_raw_event_store_edge() processing
*
* @t: timer_list
*
* This callback is armed by ir_raw_event_store_edge(). It does two things:
* first of all, rather than calling ir_raw_event_handle() for each
* edge and waking up the rc thread, 15 ms after the first edge
* ir_raw_event_handle() is called. Secondly, generate a timeout event
* no more IR is received after the rc_dev timeout.
*/
static void ir_raw_edge_handle(struct timer_list *t)
{
struct ir_raw_event_ctrl *raw = from_timer(raw, t, edge_handle);
struct rc_dev *dev = raw->dev;
unsigned long flags;
ktime_t interval;
spin_lock_irqsave(&dev->raw->edge_spinlock, flags);
interval = ktime_sub(ktime_get(), dev->raw->last_event);
if (ktime_to_ns(interval) >= dev->timeout) {
struct ir_raw_event ev = {
.timeout = true,
.duration = ktime_to_ns(interval)
};
ir_raw_event_store(dev, &ev);
} else {
mod_timer(&dev->raw->edge_handle,
jiffies + nsecs_to_jiffies(dev->timeout -
ktime_to_ns(interval)));
}
spin_unlock_irqrestore(&dev->raw->edge_spinlock, flags);
ir_raw_event_handle(dev);
}
/**
* ir_raw_encode_carrier() - Get carrier used for protocol
*
* @protocol: protocol
*
* Attempts to find the carrier for the specified protocol
*
* Returns: The carrier in Hz
* -EINVAL if the protocol is invalid, or if no
* compatible encoder was found.
*/
int ir_raw_encode_carrier(enum rc_proto protocol)
{
struct ir_raw_handler *handler;
int ret = -EINVAL;
u64 mask = BIT_ULL(protocol);
mutex_lock(&ir_raw_handler_lock);
list_for_each_entry(handler, &ir_raw_handler_list, list) {
if (handler->protocols & mask && handler->encode) {
ret = handler->carrier;
break;
}
}
mutex_unlock(&ir_raw_handler_lock);
return ret;
}
EXPORT_SYMBOL(ir_raw_encode_carrier);
/*
* Used to (un)register raw event clients
*/
int ir_raw_event_prepare(struct rc_dev *dev)
{
if (!dev)
return -EINVAL;
dev->raw = kzalloc(sizeof(*dev->raw), GFP_KERNEL);
if (!dev->raw)
return -ENOMEM;
dev->raw->dev = dev;
dev->change_protocol = change_protocol;
dev->idle = true;
spin_lock_init(&dev->raw->edge_spinlock);
timer_setup(&dev->raw->edge_handle, ir_raw_edge_handle, 0);
INIT_KFIFO(dev->raw->kfifo);
return 0;
}
int ir_raw_event_register(struct rc_dev *dev)
{
struct task_struct *thread;
thread = kthread_run(ir_raw_event_thread, dev->raw, "rc%u", dev->minor);
if (IS_ERR(thread))
return PTR_ERR(thread);
dev->raw->thread = thread;
mutex_lock(&ir_raw_handler_lock);
list_add_tail(&dev->raw->list, &ir_raw_client_list);
mutex_unlock(&ir_raw_handler_lock);
return 0;
}
void ir_raw_event_free(struct rc_dev *dev)
{
if (!dev)
return;
kfree(dev->raw);
dev->raw = NULL;
}
void ir_raw_event_unregister(struct rc_dev *dev)
{
struct ir_raw_handler *handler;
if (!dev || !dev->raw)
return;
kthread_stop(dev->raw->thread);
del_timer_sync(&dev->raw->edge_handle);
mutex_lock(&ir_raw_handler_lock);
list_del(&dev->raw->list);
list_for_each_entry(handler, &ir_raw_handler_list, list)
if (handler->raw_unregister &&
(handler->protocols & dev->enabled_protocols))
handler->raw_unregister(dev);
lirc_bpf_free(dev);
ir_raw_event_free(dev);
/*
* A user can be calling bpf(BPF_PROG_{QUERY|ATTACH|DETACH}), so
* ensure that the raw member is null on unlock; this is how
* "device gone" is checked.
*/
mutex_unlock(&ir_raw_handler_lock);
}
/*
* Extension interface - used to register the IR decoders
*/
int ir_raw_handler_register(struct ir_raw_handler *ir_raw_handler)
{
mutex_lock(&ir_raw_handler_lock);
list_add_tail(&ir_raw_handler->list, &ir_raw_handler_list);
atomic64_or(ir_raw_handler->protocols, &available_protocols);
mutex_unlock(&ir_raw_handler_lock);
return 0;
}
EXPORT_SYMBOL(ir_raw_handler_register);
void ir_raw_handler_unregister(struct ir_raw_handler *ir_raw_handler)
{
struct ir_raw_event_ctrl *raw;
u64 protocols = ir_raw_handler->protocols;
mutex_lock(&ir_raw_handler_lock);
list_del(&ir_raw_handler->list);
list_for_each_entry(raw, &ir_raw_client_list, list) {
if (ir_raw_handler->raw_unregister &&
(raw->dev->enabled_protocols & protocols))
ir_raw_handler->raw_unregister(raw->dev);
ir_raw_disable_protocols(raw->dev, protocols);
}
atomic64_andnot(protocols, &available_protocols);
mutex_unlock(&ir_raw_handler_lock);
}
EXPORT_SYMBOL(ir_raw_handler_unregister);