linux_dsm_epyc7002/net/mpls/internal.h

128 lines
3.3 KiB
C
Raw Normal View History

mpls: Basic routing support This change adds a new Kconfig option MPLS_ROUTING. The core of this change is the code to look at an mpls packet received from another machine. Look that packet up in a routing table and forward the packet on. Support of MPLS over ATM is not considered or attempted here. This implemntation follows RFC3032 and implements the MPLS shim header that can pass over essentially any network. What RFC3021 refers to as the as the Incoming Label Map (ILM) I call net->mpls.platform_label[]. What RFC3031 refers to as the Next Label Hop Forwarding Entry (NHLFE) I call mpls_route. Though calling it the label fordwarding information base (lfib) might also be valid. Further the implemntation forwards packets as described in RFC3032. There is no need and given the original motivation for MPLS a strong discincentive to have a flexible label forwarding path. In essence the logic is the topmost label is read, looked up, removed, and replaced by 0 or more new lables and the sent out the specified interface to it's next hop. Quite a few optional features are not implemented here. Among them are generation of ICMP errors when the TTL is exceeded or the packet is larger than the next hop MTU (those conditions are detected and the packets are dropped instead of generating an icmp error). The traffic class field is always set to 0. The implementation focuses on IP over MPLS and does not handle egress of other kinds of protocols. Instead of implementing coordination with the neighbour table and sorting out how to input next hops in a different address family (for which there is value). I was lazy and implemented a next hop mac address instead. The code is simpler and there are flavor of MPLS such as MPLS-TP where neither an IPv4 nor an IPv6 next hop is appropriate so a next hop by mac address would need to be implemented at some point. Two new definitions AF_MPLS and PF_MPLS are exposed to userspace. Decoding the mpls header must be done by first byeswapping a 32bit bit endian word into the local cpu endian and then bit shifting to extract the pieces. There is no C bit-field that can represent a wire format mpls header on a little endian machine as the low bits of the 20bit label wind up in the wrong half of third byte. Therefore internally everything is deal with in cpu native byte order except when writing to and reading from a packet. For management simplicity if a label is configured to forward out an interface that is down the packet is dropped early. Similarly if an network interface is removed rt_dev is updated to NULL (so no reference is preserved) and any packets for that label are dropped. Keeping the label entries in the kernel allows the kernel label table to function as the definitive source of which labels are allocated and which are not. Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-03-04 08:10:47 +07:00
#ifndef MPLS_INTERNAL_H
#define MPLS_INTERNAL_H
#include <net/mpls.h>
mpls: Basic routing support This change adds a new Kconfig option MPLS_ROUTING. The core of this change is the code to look at an mpls packet received from another machine. Look that packet up in a routing table and forward the packet on. Support of MPLS over ATM is not considered or attempted here. This implemntation follows RFC3032 and implements the MPLS shim header that can pass over essentially any network. What RFC3021 refers to as the as the Incoming Label Map (ILM) I call net->mpls.platform_label[]. What RFC3031 refers to as the Next Label Hop Forwarding Entry (NHLFE) I call mpls_route. Though calling it the label fordwarding information base (lfib) might also be valid. Further the implemntation forwards packets as described in RFC3032. There is no need and given the original motivation for MPLS a strong discincentive to have a flexible label forwarding path. In essence the logic is the topmost label is read, looked up, removed, and replaced by 0 or more new lables and the sent out the specified interface to it's next hop. Quite a few optional features are not implemented here. Among them are generation of ICMP errors when the TTL is exceeded or the packet is larger than the next hop MTU (those conditions are detected and the packets are dropped instead of generating an icmp error). The traffic class field is always set to 0. The implementation focuses on IP over MPLS and does not handle egress of other kinds of protocols. Instead of implementing coordination with the neighbour table and sorting out how to input next hops in a different address family (for which there is value). I was lazy and implemented a next hop mac address instead. The code is simpler and there are flavor of MPLS such as MPLS-TP where neither an IPv4 nor an IPv6 next hop is appropriate so a next hop by mac address would need to be implemented at some point. Two new definitions AF_MPLS and PF_MPLS are exposed to userspace. Decoding the mpls header must be done by first byeswapping a 32bit bit endian word into the local cpu endian and then bit shifting to extract the pieces. There is no C bit-field that can represent a wire format mpls header on a little endian machine as the low bits of the 20bit label wind up in the wrong half of third byte. Therefore internally everything is deal with in cpu native byte order except when writing to and reading from a packet. For management simplicity if a label is configured to forward out an interface that is down the packet is dropped early. Similarly if an network interface is removed rt_dev is updated to NULL (so no reference is preserved) and any packets for that label are dropped. Keeping the label entries in the kernel allows the kernel label table to function as the definitive source of which labels are allocated and which are not. Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-03-04 08:10:47 +07:00
struct mpls_entry_decoded {
u32 label;
u8 ttl;
u8 tc;
u8 bos;
};
struct mpls_dev {
int input_enabled;
struct ctl_table_header *sysctl;
struct rcu_head rcu;
};
mpls: Basic routing support This change adds a new Kconfig option MPLS_ROUTING. The core of this change is the code to look at an mpls packet received from another machine. Look that packet up in a routing table and forward the packet on. Support of MPLS over ATM is not considered or attempted here. This implemntation follows RFC3032 and implements the MPLS shim header that can pass over essentially any network. What RFC3021 refers to as the as the Incoming Label Map (ILM) I call net->mpls.platform_label[]. What RFC3031 refers to as the Next Label Hop Forwarding Entry (NHLFE) I call mpls_route. Though calling it the label fordwarding information base (lfib) might also be valid. Further the implemntation forwards packets as described in RFC3032. There is no need and given the original motivation for MPLS a strong discincentive to have a flexible label forwarding path. In essence the logic is the topmost label is read, looked up, removed, and replaced by 0 or more new lables and the sent out the specified interface to it's next hop. Quite a few optional features are not implemented here. Among them are generation of ICMP errors when the TTL is exceeded or the packet is larger than the next hop MTU (those conditions are detected and the packets are dropped instead of generating an icmp error). The traffic class field is always set to 0. The implementation focuses on IP over MPLS and does not handle egress of other kinds of protocols. Instead of implementing coordination with the neighbour table and sorting out how to input next hops in a different address family (for which there is value). I was lazy and implemented a next hop mac address instead. The code is simpler and there are flavor of MPLS such as MPLS-TP where neither an IPv4 nor an IPv6 next hop is appropriate so a next hop by mac address would need to be implemented at some point. Two new definitions AF_MPLS and PF_MPLS are exposed to userspace. Decoding the mpls header must be done by first byeswapping a 32bit bit endian word into the local cpu endian and then bit shifting to extract the pieces. There is no C bit-field that can represent a wire format mpls header on a little endian machine as the low bits of the 20bit label wind up in the wrong half of third byte. Therefore internally everything is deal with in cpu native byte order except when writing to and reading from a packet. For management simplicity if a label is configured to forward out an interface that is down the packet is dropped early. Similarly if an network interface is removed rt_dev is updated to NULL (so no reference is preserved) and any packets for that label are dropped. Keeping the label entries in the kernel allows the kernel label table to function as the definitive source of which labels are allocated and which are not. Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-03-04 08:10:47 +07:00
struct sk_buff;
mpls: multipath route support This patch adds support for MPLS multipath routes. Includes following changes to support multipath: - splits struct mpls_route into 'struct mpls_route + struct mpls_nh' - 'struct mpls_nh' represents a mpls nexthop label forwarding entry - moves mpls route and nexthop structures into internal.h - A mpls_route can point to multiple mpls_nh structs - the nexthops are maintained as a array (similar to ipv4 fib) - In the process of restructuring, this patch also consistently changes all labels to u8 - Adds support to parse/fill RTA_MULTIPATH netlink attribute for multipath routes similar to ipv4/v6 fib - In this patch, the multipath route nexthop selection algorithm simply returns the first nexthop. It is replaced by a hash based algorithm from Robert Shearman in the next patch - mpls_route_update cleanup: remove 'dev' handling in mpls_route_update. mpls_route_update though implemented to update based on dev, it was never used that way. And the dev handling gets tricky with multiple nexthops. Cannot match against any single nexthops dev. So, this patch removes the unused 'dev' handling in mpls_route_update. - dead route/path handling will be implemented in a subsequent patch Example: $ip -f mpls route add 100 nexthop as 200 via inet 10.1.1.2 dev swp1 \ nexthop as 700 via inet 10.1.1.6 dev swp2 \ nexthop as 800 via inet 40.1.1.2 dev swp3 $ip -f mpls route show 100 nexthop as to 200 via inet 10.1.1.2 dev swp1 nexthop as to 700 via inet 10.1.1.6 dev swp2 nexthop as to 800 via inet 40.1.1.2 dev swp3 Signed-off-by: Roopa Prabhu <roopa@cumulusnetworks.com> Acked-by: Robert Shearman <rshearma@brocade.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-10-23 20:03:27 +07:00
#define LABEL_NOT_SPECIFIED (1 << 20)
#define MAX_NEW_LABELS 2
/* This maximum ha length copied from the definition of struct neighbour */
#define VIA_ALEN_ALIGN sizeof(unsigned long)
#define MAX_VIA_ALEN (ALIGN(MAX_ADDR_LEN, VIA_ALEN_ALIGN))
mpls: multipath route support This patch adds support for MPLS multipath routes. Includes following changes to support multipath: - splits struct mpls_route into 'struct mpls_route + struct mpls_nh' - 'struct mpls_nh' represents a mpls nexthop label forwarding entry - moves mpls route and nexthop structures into internal.h - A mpls_route can point to multiple mpls_nh structs - the nexthops are maintained as a array (similar to ipv4 fib) - In the process of restructuring, this patch also consistently changes all labels to u8 - Adds support to parse/fill RTA_MULTIPATH netlink attribute for multipath routes similar to ipv4/v6 fib - In this patch, the multipath route nexthop selection algorithm simply returns the first nexthop. It is replaced by a hash based algorithm from Robert Shearman in the next patch - mpls_route_update cleanup: remove 'dev' handling in mpls_route_update. mpls_route_update though implemented to update based on dev, it was never used that way. And the dev handling gets tricky with multiple nexthops. Cannot match against any single nexthops dev. So, this patch removes the unused 'dev' handling in mpls_route_update. - dead route/path handling will be implemented in a subsequent patch Example: $ip -f mpls route add 100 nexthop as 200 via inet 10.1.1.2 dev swp1 \ nexthop as 700 via inet 10.1.1.6 dev swp2 \ nexthop as 800 via inet 40.1.1.2 dev swp3 $ip -f mpls route show 100 nexthop as to 200 via inet 10.1.1.2 dev swp1 nexthop as to 700 via inet 10.1.1.6 dev swp2 nexthop as to 800 via inet 40.1.1.2 dev swp3 Signed-off-by: Roopa Prabhu <roopa@cumulusnetworks.com> Acked-by: Robert Shearman <rshearma@brocade.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-10-23 20:03:27 +07:00
enum mpls_payload_type {
MPT_UNSPEC, /* IPv4 or IPv6 */
MPT_IPV4 = 4,
MPT_IPV6 = 6,
/* Other types not implemented:
* - Pseudo-wire with or without control word (RFC4385)
* - GAL (RFC5586)
*/
};
struct mpls_nh { /* next hop label forwarding entry */
struct net_device __rcu *nh_dev;
mpls: support for dead routes Adds support for RTNH_F_DEAD and RTNH_F_LINKDOWN flags on mpls routes due to link events. Also adds code to ignore dead routes during route selection. Unlike ip routes, mpls routes are not deleted when the route goes dead. This is current mpls behaviour and this patch does not change that. With this patch however, routes will be marked dead. dead routes are not notified to userspace (this is consistent with ipv4 routes). dead routes: ----------- $ip -f mpls route show 100 nexthop as to 200 via inet 10.1.1.2 dev swp1 nexthop as to 700 via inet 10.1.1.6 dev swp2 $ip link set dev swp1 down $ip link show dev swp1 4: swp1: <BROADCAST,MULTICAST> mtu 1500 qdisc pfifo_fast state DOWN mode DEFAULT group default qlen 1000 link/ether 00:02:00:00:00:01 brd ff:ff:ff:ff:ff:ff $ip -f mpls route show 100 nexthop as to 200 via inet 10.1.1.2 dev swp1 dead linkdown nexthop as to 700 via inet 10.1.1.6 dev swp2 linkdown routes: ---------------- $ip -f mpls route show 100 nexthop as to 200 via inet 10.1.1.2 dev swp1 nexthop as to 700 via inet 10.1.1.6 dev swp2 $ip link show dev swp1 4: swp1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP mode DEFAULT group default qlen 1000 link/ether 00:02:00:00:00:01 brd ff:ff:ff:ff:ff:ff /* carrier goes down */ $ip link show dev swp1 4: swp1: <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu 1500 qdisc pfifo_fast state DOWN mode DEFAULT group default qlen 1000 link/ether 00:02:00:00:00:01 brd ff:ff:ff:ff:ff:ff $ip -f mpls route show 100 nexthop as to 200 via inet 10.1.1.2 dev swp1 linkdown nexthop as to 700 via inet 10.1.1.6 dev swp2 Signed-off-by: Roopa Prabhu <roopa@cumulusnetworks.com> Acked-by: Robert Shearman <rshearma@brocade.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-12-02 13:18:11 +07:00
unsigned int nh_flags;
mpls: multipath route support This patch adds support for MPLS multipath routes. Includes following changes to support multipath: - splits struct mpls_route into 'struct mpls_route + struct mpls_nh' - 'struct mpls_nh' represents a mpls nexthop label forwarding entry - moves mpls route and nexthop structures into internal.h - A mpls_route can point to multiple mpls_nh structs - the nexthops are maintained as a array (similar to ipv4 fib) - In the process of restructuring, this patch also consistently changes all labels to u8 - Adds support to parse/fill RTA_MULTIPATH netlink attribute for multipath routes similar to ipv4/v6 fib - In this patch, the multipath route nexthop selection algorithm simply returns the first nexthop. It is replaced by a hash based algorithm from Robert Shearman in the next patch - mpls_route_update cleanup: remove 'dev' handling in mpls_route_update. mpls_route_update though implemented to update based on dev, it was never used that way. And the dev handling gets tricky with multiple nexthops. Cannot match against any single nexthops dev. So, this patch removes the unused 'dev' handling in mpls_route_update. - dead route/path handling will be implemented in a subsequent patch Example: $ip -f mpls route add 100 nexthop as 200 via inet 10.1.1.2 dev swp1 \ nexthop as 700 via inet 10.1.1.6 dev swp2 \ nexthop as 800 via inet 40.1.1.2 dev swp3 $ip -f mpls route show 100 nexthop as to 200 via inet 10.1.1.2 dev swp1 nexthop as to 700 via inet 10.1.1.6 dev swp2 nexthop as to 800 via inet 40.1.1.2 dev swp3 Signed-off-by: Roopa Prabhu <roopa@cumulusnetworks.com> Acked-by: Robert Shearman <rshearma@brocade.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-10-23 20:03:27 +07:00
u32 nh_label[MAX_NEW_LABELS];
u8 nh_labels;
u8 nh_via_alen;
u8 nh_via_table;
};
/* The route, nexthops and vias are stored together in the same memory
* block:
*
* +----------------------+
* | mpls_route |
* +----------------------+
* | mpls_nh 0 |
* +----------------------+
* | ... |
* +----------------------+
* | mpls_nh n-1 |
* +----------------------+
* | alignment padding |
* +----------------------+
* | via[rt_max_alen] 0 |
* +----------------------+
* | ... |
* +----------------------+
* | via[rt_max_alen] n-1 |
* +----------------------+
*/
mpls: multipath route support This patch adds support for MPLS multipath routes. Includes following changes to support multipath: - splits struct mpls_route into 'struct mpls_route + struct mpls_nh' - 'struct mpls_nh' represents a mpls nexthop label forwarding entry - moves mpls route and nexthop structures into internal.h - A mpls_route can point to multiple mpls_nh structs - the nexthops are maintained as a array (similar to ipv4 fib) - In the process of restructuring, this patch also consistently changes all labels to u8 - Adds support to parse/fill RTA_MULTIPATH netlink attribute for multipath routes similar to ipv4/v6 fib - In this patch, the multipath route nexthop selection algorithm simply returns the first nexthop. It is replaced by a hash based algorithm from Robert Shearman in the next patch - mpls_route_update cleanup: remove 'dev' handling in mpls_route_update. mpls_route_update though implemented to update based on dev, it was never used that way. And the dev handling gets tricky with multiple nexthops. Cannot match against any single nexthops dev. So, this patch removes the unused 'dev' handling in mpls_route_update. - dead route/path handling will be implemented in a subsequent patch Example: $ip -f mpls route add 100 nexthop as 200 via inet 10.1.1.2 dev swp1 \ nexthop as 700 via inet 10.1.1.6 dev swp2 \ nexthop as 800 via inet 40.1.1.2 dev swp3 $ip -f mpls route show 100 nexthop as to 200 via inet 10.1.1.2 dev swp1 nexthop as to 700 via inet 10.1.1.6 dev swp2 nexthop as to 800 via inet 40.1.1.2 dev swp3 Signed-off-by: Roopa Prabhu <roopa@cumulusnetworks.com> Acked-by: Robert Shearman <rshearma@brocade.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-10-23 20:03:27 +07:00
struct mpls_route { /* next hop label forwarding entry */
struct rcu_head rt_rcu;
u8 rt_protocol;
u8 rt_payload_type;
u8 rt_max_alen;
unsigned int rt_nhn;
mpls: support for dead routes Adds support for RTNH_F_DEAD and RTNH_F_LINKDOWN flags on mpls routes due to link events. Also adds code to ignore dead routes during route selection. Unlike ip routes, mpls routes are not deleted when the route goes dead. This is current mpls behaviour and this patch does not change that. With this patch however, routes will be marked dead. dead routes are not notified to userspace (this is consistent with ipv4 routes). dead routes: ----------- $ip -f mpls route show 100 nexthop as to 200 via inet 10.1.1.2 dev swp1 nexthop as to 700 via inet 10.1.1.6 dev swp2 $ip link set dev swp1 down $ip link show dev swp1 4: swp1: <BROADCAST,MULTICAST> mtu 1500 qdisc pfifo_fast state DOWN mode DEFAULT group default qlen 1000 link/ether 00:02:00:00:00:01 brd ff:ff:ff:ff:ff:ff $ip -f mpls route show 100 nexthop as to 200 via inet 10.1.1.2 dev swp1 dead linkdown nexthop as to 700 via inet 10.1.1.6 dev swp2 linkdown routes: ---------------- $ip -f mpls route show 100 nexthop as to 200 via inet 10.1.1.2 dev swp1 nexthop as to 700 via inet 10.1.1.6 dev swp2 $ip link show dev swp1 4: swp1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP mode DEFAULT group default qlen 1000 link/ether 00:02:00:00:00:01 brd ff:ff:ff:ff:ff:ff /* carrier goes down */ $ip link show dev swp1 4: swp1: <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu 1500 qdisc pfifo_fast state DOWN mode DEFAULT group default qlen 1000 link/ether 00:02:00:00:00:01 brd ff:ff:ff:ff:ff:ff $ip -f mpls route show 100 nexthop as to 200 via inet 10.1.1.2 dev swp1 linkdown nexthop as to 700 via inet 10.1.1.6 dev swp2 Signed-off-by: Roopa Prabhu <roopa@cumulusnetworks.com> Acked-by: Robert Shearman <rshearma@brocade.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-12-02 13:18:11 +07:00
unsigned int rt_nhn_alive;
mpls: multipath route support This patch adds support for MPLS multipath routes. Includes following changes to support multipath: - splits struct mpls_route into 'struct mpls_route + struct mpls_nh' - 'struct mpls_nh' represents a mpls nexthop label forwarding entry - moves mpls route and nexthop structures into internal.h - A mpls_route can point to multiple mpls_nh structs - the nexthops are maintained as a array (similar to ipv4 fib) - In the process of restructuring, this patch also consistently changes all labels to u8 - Adds support to parse/fill RTA_MULTIPATH netlink attribute for multipath routes similar to ipv4/v6 fib - In this patch, the multipath route nexthop selection algorithm simply returns the first nexthop. It is replaced by a hash based algorithm from Robert Shearman in the next patch - mpls_route_update cleanup: remove 'dev' handling in mpls_route_update. mpls_route_update though implemented to update based on dev, it was never used that way. And the dev handling gets tricky with multiple nexthops. Cannot match against any single nexthops dev. So, this patch removes the unused 'dev' handling in mpls_route_update. - dead route/path handling will be implemented in a subsequent patch Example: $ip -f mpls route add 100 nexthop as 200 via inet 10.1.1.2 dev swp1 \ nexthop as 700 via inet 10.1.1.6 dev swp2 \ nexthop as 800 via inet 40.1.1.2 dev swp3 $ip -f mpls route show 100 nexthop as to 200 via inet 10.1.1.2 dev swp1 nexthop as to 700 via inet 10.1.1.6 dev swp2 nexthop as to 800 via inet 40.1.1.2 dev swp3 Signed-off-by: Roopa Prabhu <roopa@cumulusnetworks.com> Acked-by: Robert Shearman <rshearma@brocade.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-10-23 20:03:27 +07:00
struct mpls_nh rt_nh[0];
};
#define for_nexthops(rt) { \
int nhsel; struct mpls_nh *nh; \
for (nhsel = 0, nh = (rt)->rt_nh; \
nhsel < (rt)->rt_nhn; \
nh++, nhsel++)
#define change_nexthops(rt) { \
int nhsel; struct mpls_nh *nh; \
for (nhsel = 0, nh = (struct mpls_nh *)((rt)->rt_nh); \
nhsel < (rt)->rt_nhn; \
nh++, nhsel++)
#define endfor_nexthops(rt) }
mpls: Basic routing support This change adds a new Kconfig option MPLS_ROUTING. The core of this change is the code to look at an mpls packet received from another machine. Look that packet up in a routing table and forward the packet on. Support of MPLS over ATM is not considered or attempted here. This implemntation follows RFC3032 and implements the MPLS shim header that can pass over essentially any network. What RFC3021 refers to as the as the Incoming Label Map (ILM) I call net->mpls.platform_label[]. What RFC3031 refers to as the Next Label Hop Forwarding Entry (NHLFE) I call mpls_route. Though calling it the label fordwarding information base (lfib) might also be valid. Further the implemntation forwards packets as described in RFC3032. There is no need and given the original motivation for MPLS a strong discincentive to have a flexible label forwarding path. In essence the logic is the topmost label is read, looked up, removed, and replaced by 0 or more new lables and the sent out the specified interface to it's next hop. Quite a few optional features are not implemented here. Among them are generation of ICMP errors when the TTL is exceeded or the packet is larger than the next hop MTU (those conditions are detected and the packets are dropped instead of generating an icmp error). The traffic class field is always set to 0. The implementation focuses on IP over MPLS and does not handle egress of other kinds of protocols. Instead of implementing coordination with the neighbour table and sorting out how to input next hops in a different address family (for which there is value). I was lazy and implemented a next hop mac address instead. The code is simpler and there are flavor of MPLS such as MPLS-TP where neither an IPv4 nor an IPv6 next hop is appropriate so a next hop by mac address would need to be implemented at some point. Two new definitions AF_MPLS and PF_MPLS are exposed to userspace. Decoding the mpls header must be done by first byeswapping a 32bit bit endian word into the local cpu endian and then bit shifting to extract the pieces. There is no C bit-field that can represent a wire format mpls header on a little endian machine as the low bits of the 20bit label wind up in the wrong half of third byte. Therefore internally everything is deal with in cpu native byte order except when writing to and reading from a packet. For management simplicity if a label is configured to forward out an interface that is down the packet is dropped early. Similarly if an network interface is removed rt_dev is updated to NULL (so no reference is preserved) and any packets for that label are dropped. Keeping the label entries in the kernel allows the kernel label table to function as the definitive source of which labels are allocated and which are not. Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-03-04 08:10:47 +07:00
static inline struct mpls_shim_hdr mpls_entry_encode(u32 label, unsigned ttl, unsigned tc, bool bos)
{
struct mpls_shim_hdr result;
result.label_stack_entry =
cpu_to_be32((label << MPLS_LS_LABEL_SHIFT) |
(tc << MPLS_LS_TC_SHIFT) |
(bos ? (1 << MPLS_LS_S_SHIFT) : 0) |
(ttl << MPLS_LS_TTL_SHIFT));
return result;
}
static inline struct mpls_entry_decoded mpls_entry_decode(struct mpls_shim_hdr *hdr)
{
struct mpls_entry_decoded result;
unsigned entry = be32_to_cpu(hdr->label_stack_entry);
result.label = (entry & MPLS_LS_LABEL_MASK) >> MPLS_LS_LABEL_SHIFT;
result.ttl = (entry & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT;
result.tc = (entry & MPLS_LS_TC_MASK) >> MPLS_LS_TC_SHIFT;
result.bos = (entry & MPLS_LS_S_MASK) >> MPLS_LS_S_SHIFT;
return result;
}
int nla_put_labels(struct sk_buff *skb, int attrtype, u8 labels,
const u32 label[]);
mpls: multipath route support This patch adds support for MPLS multipath routes. Includes following changes to support multipath: - splits struct mpls_route into 'struct mpls_route + struct mpls_nh' - 'struct mpls_nh' represents a mpls nexthop label forwarding entry - moves mpls route and nexthop structures into internal.h - A mpls_route can point to multiple mpls_nh structs - the nexthops are maintained as a array (similar to ipv4 fib) - In the process of restructuring, this patch also consistently changes all labels to u8 - Adds support to parse/fill RTA_MULTIPATH netlink attribute for multipath routes similar to ipv4/v6 fib - In this patch, the multipath route nexthop selection algorithm simply returns the first nexthop. It is replaced by a hash based algorithm from Robert Shearman in the next patch - mpls_route_update cleanup: remove 'dev' handling in mpls_route_update. mpls_route_update though implemented to update based on dev, it was never used that way. And the dev handling gets tricky with multiple nexthops. Cannot match against any single nexthops dev. So, this patch removes the unused 'dev' handling in mpls_route_update. - dead route/path handling will be implemented in a subsequent patch Example: $ip -f mpls route add 100 nexthop as 200 via inet 10.1.1.2 dev swp1 \ nexthop as 700 via inet 10.1.1.6 dev swp2 \ nexthop as 800 via inet 40.1.1.2 dev swp3 $ip -f mpls route show 100 nexthop as to 200 via inet 10.1.1.2 dev swp1 nexthop as to 700 via inet 10.1.1.6 dev swp2 nexthop as to 800 via inet 40.1.1.2 dev swp3 Signed-off-by: Roopa Prabhu <roopa@cumulusnetworks.com> Acked-by: Robert Shearman <rshearma@brocade.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-10-23 20:03:27 +07:00
int nla_get_labels(const struct nlattr *nla, u32 max_labels, u8 *labels,
u32 label[]);
mpls: multipath route support This patch adds support for MPLS multipath routes. Includes following changes to support multipath: - splits struct mpls_route into 'struct mpls_route + struct mpls_nh' - 'struct mpls_nh' represents a mpls nexthop label forwarding entry - moves mpls route and nexthop structures into internal.h - A mpls_route can point to multiple mpls_nh structs - the nexthops are maintained as a array (similar to ipv4 fib) - In the process of restructuring, this patch also consistently changes all labels to u8 - Adds support to parse/fill RTA_MULTIPATH netlink attribute for multipath routes similar to ipv4/v6 fib - In this patch, the multipath route nexthop selection algorithm simply returns the first nexthop. It is replaced by a hash based algorithm from Robert Shearman in the next patch - mpls_route_update cleanup: remove 'dev' handling in mpls_route_update. mpls_route_update though implemented to update based on dev, it was never used that way. And the dev handling gets tricky with multiple nexthops. Cannot match against any single nexthops dev. So, this patch removes the unused 'dev' handling in mpls_route_update. - dead route/path handling will be implemented in a subsequent patch Example: $ip -f mpls route add 100 nexthop as 200 via inet 10.1.1.2 dev swp1 \ nexthop as 700 via inet 10.1.1.6 dev swp2 \ nexthop as 800 via inet 40.1.1.2 dev swp3 $ip -f mpls route show 100 nexthop as to 200 via inet 10.1.1.2 dev swp1 nexthop as to 700 via inet 10.1.1.6 dev swp2 nexthop as to 800 via inet 40.1.1.2 dev swp3 Signed-off-by: Roopa Prabhu <roopa@cumulusnetworks.com> Acked-by: Robert Shearman <rshearma@brocade.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-10-23 20:03:27 +07:00
int nla_get_via(const struct nlattr *nla, u8 *via_alen, u8 *via_table,
u8 via[]);
bool mpls_output_possible(const struct net_device *dev);
unsigned int mpls_dev_mtu(const struct net_device *dev);
bool mpls_pkt_too_big(const struct sk_buff *skb, unsigned int mtu);
mpls: Basic routing support This change adds a new Kconfig option MPLS_ROUTING. The core of this change is the code to look at an mpls packet received from another machine. Look that packet up in a routing table and forward the packet on. Support of MPLS over ATM is not considered or attempted here. This implemntation follows RFC3032 and implements the MPLS shim header that can pass over essentially any network. What RFC3021 refers to as the as the Incoming Label Map (ILM) I call net->mpls.platform_label[]. What RFC3031 refers to as the Next Label Hop Forwarding Entry (NHLFE) I call mpls_route. Though calling it the label fordwarding information base (lfib) might also be valid. Further the implemntation forwards packets as described in RFC3032. There is no need and given the original motivation for MPLS a strong discincentive to have a flexible label forwarding path. In essence the logic is the topmost label is read, looked up, removed, and replaced by 0 or more new lables and the sent out the specified interface to it's next hop. Quite a few optional features are not implemented here. Among them are generation of ICMP errors when the TTL is exceeded or the packet is larger than the next hop MTU (those conditions are detected and the packets are dropped instead of generating an icmp error). The traffic class field is always set to 0. The implementation focuses on IP over MPLS and does not handle egress of other kinds of protocols. Instead of implementing coordination with the neighbour table and sorting out how to input next hops in a different address family (for which there is value). I was lazy and implemented a next hop mac address instead. The code is simpler and there are flavor of MPLS such as MPLS-TP where neither an IPv4 nor an IPv6 next hop is appropriate so a next hop by mac address would need to be implemented at some point. Two new definitions AF_MPLS and PF_MPLS are exposed to userspace. Decoding the mpls header must be done by first byeswapping a 32bit bit endian word into the local cpu endian and then bit shifting to extract the pieces. There is no C bit-field that can represent a wire format mpls header on a little endian machine as the low bits of the 20bit label wind up in the wrong half of third byte. Therefore internally everything is deal with in cpu native byte order except when writing to and reading from a packet. For management simplicity if a label is configured to forward out an interface that is down the packet is dropped early. Similarly if an network interface is removed rt_dev is updated to NULL (so no reference is preserved) and any packets for that label are dropped. Keeping the label entries in the kernel allows the kernel label table to function as the definitive source of which labels are allocated and which are not. Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-03-04 08:10:47 +07:00
#endif /* MPLS_INTERNAL_H */