linux_dsm_epyc7002/arch/x86/boot/compressed/misc.c

432 lines
11 KiB
C
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 21:07:57 +07:00
// SPDX-License-Identifier: GPL-2.0
/*
* misc.c
*
* This is a collection of several routines used to extract the kernel
* which includes KASLR relocation, decompression, ELF parsing, and
* relocation processing. Additionally included are the screen and serial
* output functions and related debugging support functions.
*
* malloc by Hannu Savolainen 1993 and Matthias Urlichs 1994
* puts by Nick Holloway 1993, better puts by Martin Mares 1995
* High loaded stuff by Hans Lermen & Werner Almesberger, Feb. 1996
*/
#include "misc.h"
#include "error.h"
x86/boot/compressed/64: Find a place for 32-bit trampoline If a bootloader enables 64-bit mode with 4-level paging, we might need to switch over to 5-level paging. The switching requires the disabling of paging, which works fine if kernel itself is loaded below 4G. But if the bootloader puts the kernel above 4G (not sure if anybody does this), we would lose control as soon as paging is disabled, because the code becomes unreachable to the CPU. To handle the situation, we need a trampoline in lower memory that would take care of switching on 5-level paging. This patch finds a spot in low memory for a trampoline. The heuristic is based on code in reserve_bios_regions(). We find the end of low memory based on BIOS and EBDA start addresses. The trampoline is put just before end of low memory. It's mimic approach taken to allocate memory for realtime trampoline. Tested-by: Borislav Petkov <bp@suse.de> Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Andy Shevchenko <andy.shevchenko@gmail.com> Cc: Cyrill Gorcunov <gorcunov@openvz.org> Cc: Eric Biederman <ebiederm@xmission.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Juergen Gross <jgross@suse.com> Cc: Kees Cook <keescook@chromium.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Matthew Wilcox <willy@infradead.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-mm@kvack.org Link: http://lkml.kernel.org/r/20180226180451.86788-3-kirill.shutemov@linux.intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-02-27 01:04:48 +07:00
#include "pgtable.h"
#include "../string.h"
x86/boot: Fix "run_size" calculation Currently, the "run_size" variable holds the total kernel size (size of code plus brk and bss) and is calculated via the shell script arch/x86/tools/calc_run_size.sh. It gets the file offset and mem size of the .bss and .brk sections from the vmlinux, and adds them as follows: run_size = $(( $offsetA + $sizeA + $sizeB )) However, this is not correct (it is too large). To illustrate, here's a walk-through of the script's calculation, compared to the correct way to find it. First, offsetA is found as the starting address of the first .bss or .brk section seen in the ELF file. The sizeA and sizeB values are the respective section sizes. [bhe@x1 linux]$ objdump -h vmlinux vmlinux: file format elf64-x86-64 Sections: Idx Name Size VMA LMA File off Algn 27 .bss 00170000 ffffffff81ec8000 0000000001ec8000 012c8000 2**12 ALLOC 28 .brk 00027000 ffffffff82038000 0000000002038000 012c8000 2**0 ALLOC Here, offsetA is 0x012c8000, with sizeA at 0x00170000 and sizeB at 0x00027000. The resulting run_size is 0x145f000: 0x012c8000 + 0x00170000 + 0x00027000 = 0x145f000 However, if we instead examine the ELF LOAD program headers, we see a different picture. [bhe@x1 linux]$ readelf -l vmlinux Elf file type is EXEC (Executable file) Entry point 0x1000000 There are 5 program headers, starting at offset 64 Program Headers: Type Offset VirtAddr PhysAddr FileSiz MemSiz Flags Align LOAD 0x0000000000200000 0xffffffff81000000 0x0000000001000000 0x0000000000b5e000 0x0000000000b5e000 R E 200000 LOAD 0x0000000000e00000 0xffffffff81c00000 0x0000000001c00000 0x0000000000145000 0x0000000000145000 RW 200000 LOAD 0x0000000001000000 0x0000000000000000 0x0000000001d45000 0x0000000000018158 0x0000000000018158 RW 200000 LOAD 0x000000000115e000 0xffffffff81d5e000 0x0000000001d5e000 0x000000000016a000 0x0000000000301000 RWE 200000 NOTE 0x000000000099bcac 0xffffffff8179bcac 0x000000000179bcac 0x00000000000001bc 0x00000000000001bc 4 Section to Segment mapping: Segment Sections... 00 .text .notes __ex_table .rodata __bug_table .pci_fixup .tracedata __ksymtab __ksymtab_gpl __ksymtab_strings __init_rodata __param __modver 01 .data .vvar 02 .data..percpu 03 .init.text .init.data .x86_cpu_dev.init .parainstructions .altinstructions .altinstr_replacement .iommu_table .apicdrivers .exit.text .smp_locks .bss .brk 04 .notes As mentioned, run_size needs to be the size of the running kernel including .bss and .brk. We can see from the Section/Segment mapping above that .bss and .brk are included in segment 03 (which corresponds to the final LOAD program header). To find the run_size, we calculate the end of the LOAD segment from its PhysAddr start (0x0000000001d5e000) and its MemSiz (0x0000000000301000), minus the physical load address of the kernel (the first LOAD segment's PhysAddr: 0x0000000001000000). The resulting run_size is 0x105f000: 0x0000000001d5e000 + 0x0000000000301000 - 0x0000000001000000 = 0x105f000 So, from this we can see that the existing run_size calculation is 0x400000 too high. And, as it turns out, the correct run_size is actually equal to VO_end - VO_text, which is certainly easier to calculate. _end: 0xffffffff8205f000 _text:0xffffffff81000000 0xffffffff8205f000 - 0xffffffff81000000 = 0x105f000 As a result, run_size is a simple constant, so we don't need to pass it around; we already have voffset.h for such things. We can share voffset.h between misc.c and header.S instead of getting run_size in other ways. This patch moves voffset.h creation code to boot/compressed/Makefile, and switches misc.c to use the VO_end - VO_text calculation for run_size. Dependence before: boot/header.S ==> boot/voffset.h ==> vmlinux boot/header.S ==> compressed/vmlinux ==> compressed/misc.c Dependence after: boot/header.S ==> compressed/vmlinux ==> compressed/misc.c ==> boot/voffset.h ==> vmlinux Signed-off-by: Yinghai Lu <yinghai@kernel.org> Signed-off-by: Baoquan He <bhe@redhat.com> [ Rewrote the changelog. ] Signed-off-by: Kees Cook <keescook@chromium.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Dave Young <dyoung@redhat.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Josh Triplett <josh@joshtriplett.org> Cc: Junjie Mao <eternal.n08@gmail.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vivek Goyal <vgoyal@redhat.com> Cc: lasse.collin@tukaani.org Fixes: e6023367d779 ("x86, kaslr: Prevent .bss from overlaping initrd") Link: http://lkml.kernel.org/r/1461888548-32439-5-git-send-email-keescook@chromium.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-04-29 07:09:06 +07:00
#include "../voffset.h"
/*
x86/KASLR: Update description for decompressor worst case size The comment that describes the analysis for the size of the decompressor code only took gzip into account (there are currently 6 other decompressors that could be used). The actual z_extract_offset calculation in code was already handling the correct maximum size, but this documentation hadn't been updated. This updates the documentation, fixes several typos, moves the comment to header.S, updates references, and adds a note at the end of the decompressor include list to remind us about updating the comment in the future. (Instead of moving the comment to mkpiggy.c, where the calculation is currently happening, it is being moved to header.S because the calculations in mkpiggy.c will be removed in favor of header.S calculations in a following patch, and it seemed like overkill to move the giant comment twice, especially when there's already reference to z_extract_offset in header.S.) Signed-off-by: Baoquan He <bhe@redhat.com> [ Rewrote changelog, cleaned up comment style, moved comments around. ] Signed-off-by: Kees Cook <keescook@chromium.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Borislav Petkov <bp@suse.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: H.J. Lu <hjl.tools@gmail.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Yinghai Lu <yinghai@kernel.org> Link: http://lkml.kernel.org/r/1461185746-8017-2-git-send-email-keescook@chromium.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-04-21 03:55:42 +07:00
* WARNING!!
* This code is compiled with -fPIC and it is relocated dynamically at
* run time, but no relocation processing is performed. This means that
* it is not safe to place pointers in static structures.
*/
/* Macros used by the included decompressor code below. */
#define STATIC static
/*
* Use normal definitions of mem*() from string.c. There are already
* included header files which expect a definition of memset() and by
* the time we define memset macro, it is too late.
*/
#undef memcpy
#undef memset
#define memzero(s, n) memset((s), 0, (n))
#define memmove memmove
/* Functions used by the included decompressor code below. */
void *memmove(void *dest, const void *src, size_t n);
/*
* This is set up by the setup-routine at boot-time
*/
struct boot_params *boot_params;
memptr free_mem_ptr;
memptr free_mem_end_ptr;
static char *vidmem;
static int vidport;
static int lines, cols;
#ifdef CONFIG_KERNEL_GZIP
#include "../../../../lib/decompress_inflate.c"
#endif
#ifdef CONFIG_KERNEL_BZIP2
#include "../../../../lib/decompress_bunzip2.c"
#endif
#ifdef CONFIG_KERNEL_LZMA
#include "../../../../lib/decompress_unlzma.c"
#endif
#ifdef CONFIG_KERNEL_XZ
#include "../../../../lib/decompress_unxz.c"
#endif
#ifdef CONFIG_KERNEL_LZO
#include "../../../../lib/decompress_unlzo.c"
#endif
#ifdef CONFIG_KERNEL_LZ4
#include "../../../../lib/decompress_unlz4.c"
#endif
x86/KASLR: Update description for decompressor worst case size The comment that describes the analysis for the size of the decompressor code only took gzip into account (there are currently 6 other decompressors that could be used). The actual z_extract_offset calculation in code was already handling the correct maximum size, but this documentation hadn't been updated. This updates the documentation, fixes several typos, moves the comment to header.S, updates references, and adds a note at the end of the decompressor include list to remind us about updating the comment in the future. (Instead of moving the comment to mkpiggy.c, where the calculation is currently happening, it is being moved to header.S because the calculations in mkpiggy.c will be removed in favor of header.S calculations in a following patch, and it seemed like overkill to move the giant comment twice, especially when there's already reference to z_extract_offset in header.S.) Signed-off-by: Baoquan He <bhe@redhat.com> [ Rewrote changelog, cleaned up comment style, moved comments around. ] Signed-off-by: Kees Cook <keescook@chromium.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Borislav Petkov <bp@suse.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: H.J. Lu <hjl.tools@gmail.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Yinghai Lu <yinghai@kernel.org> Link: http://lkml.kernel.org/r/1461185746-8017-2-git-send-email-keescook@chromium.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-04-21 03:55:42 +07:00
/*
* NOTE: When adding a new decompressor, please update the analysis in
* ../header.S.
*/
static void scroll(void)
{
int i;
memmove(vidmem, vidmem + cols * 2, (lines - 1) * cols * 2);
for (i = (lines - 1) * cols * 2; i < lines * cols * 2; i += 2)
vidmem[i] = ' ';
}
#define XMTRDY 0x20
#define TXR 0 /* Transmit register (WRITE) */
#define LSR 5 /* Line Status */
static void serial_putchar(int ch)
{
unsigned timeout = 0xffff;
while ((inb(early_serial_base + LSR) & XMTRDY) == 0 && --timeout)
cpu_relax();
outb(ch, early_serial_base + TXR);
}
void __putstr(const char *s)
{
int x, y, pos;
char c;
if (early_serial_base) {
const char *str = s;
while (*str) {
if (*str == '\n')
serial_putchar('\r');
serial_putchar(*str++);
}
}
if (lines == 0 || cols == 0)
return;
x = boot_params->screen_info.orig_x;
y = boot_params->screen_info.orig_y;
while ((c = *s++) != '\0') {
if (c == '\n') {
x = 0;
if (++y >= lines) {
scroll();
y--;
}
} else {
vidmem[(x + cols * y) * 2] = c;
if (++x >= cols) {
x = 0;
if (++y >= lines) {
scroll();
y--;
}
}
}
}
boot_params->screen_info.orig_x = x;
boot_params->screen_info.orig_y = y;
pos = (x + cols * y) * 2; /* Update cursor position */
x86: provide a DMI based port 0x80 I/O delay override. x86: provide a DMI based port 0x80 I/O delay override. Certain (HP) laptops experience trouble from our port 0x80 I/O delay writes. This patch provides for a DMI based switch to the "alternate diagnostic port" 0xed (as used by some BIOSes as well) for these. David P. Reed confirmed that port 0xed works for him and provides a proper delay. The symptoms of _not_ working are a hanging machine, with "hwclock" use being a direct trigger. Earlier versions of this attempted to simply use udelay(2), with the 2 being a value tested to be a nicely conservative upper-bound with help from many on the linux-kernel mailinglist but that approach has two problems. First, pre-loops_per_jiffy calibration (which is post PIT init while some implementations of the PIT are actually one of the historically problematic devices that need the delay) udelay() isn't particularly well-defined. We could initialise loops_per_jiffy conservatively (and based on CPU family so as to not unduly delay old machines) which would sort of work, but... Second, delaying isn't the only effect that a write to port 0x80 has. It's also a PCI posting barrier which some devices may be explicitly or implicitly relying on. Alan Cox did a survey and found evidence that additionally some drivers may be racy on SMP without the bus locking outb. Switching to an inb() makes the timing too unpredictable and as such, this DMI based switch should be the safest approach for now. Any more invasive changes should get more rigid testing first. It's moreover only very few machines with the problem and a DMI based hack seems to fit that situation. This also introduces a command-line parameter "io_delay" to override the DMI based choice again: io_delay=<standard|alternate> where "standard" means using the standard port 0x80 and "alternate" port 0xed. This retains the udelay method as a config (CONFIG_UDELAY_IO_DELAY) and command-line ("io_delay=udelay") choice for testing purposes as well. This does not change the io_delay() in the boot code which is using the same port 0x80 I/O delay but those do not appear to be a problem as David P. Reed reported the problem was already gone after using the udelay version. He moreover reported that booting with "acpi=off" also fixed things and seeing as how ACPI isn't touched until after this DMI based I/O port switch I believe it's safe to leave the ones in the boot code be. The DMI strings from David's HP Pavilion dv9000z are in there already and we need to get/verify the DMI info from other machines with the problem, notably the HP Pavilion dv6000z. This patch is partly based on earlier patches from Pavel Machek and David P. Reed. Signed-off-by: Rene Herman <rene.herman@gmail.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-01-30 19:30:05 +07:00
outb(14, vidport);
outb(0xff & (pos >> 9), vidport+1);
outb(15, vidport);
outb(0xff & (pos >> 1), vidport+1);
}
void __puthex(unsigned long value)
{
char alpha[2] = "0";
int bits;
for (bits = sizeof(value) * 8 - 4; bits >= 0; bits -= 4) {
unsigned long digit = (value >> bits) & 0xf;
if (digit < 0xA)
alpha[0] = '0' + digit;
else
alpha[0] = 'a' + (digit - 0xA);
__putstr(alpha);
}
}
#if CONFIG_X86_NEED_RELOCS
x86/KASLR: Randomize virtual address separately The current KASLR implementation randomizes the physical and virtual addresses of the kernel together (both are offset by the same amount). It calculates the delta of the physical address where vmlinux was linked to load and where it is finally loaded. If the delta is not equal to 0 (i.e. the kernel was relocated), relocation handling needs be done. On 64-bit, this patch randomizes both the physical address where kernel is decompressed and the virtual address where kernel text is mapped and will execute from. We now have two values being chosen, so the function arguments are reorganized to pass by pointer so they can be directly updated. Since relocation handling only depends on the virtual address, we must check the virtual delta, not the physical delta for processing kernel relocations. This also populates the page table for the new virtual address range. 32-bit does not support a separate virtual address, so it continues to use the physical offset for its virtual offset. Additionally updates the sanity checks done on the resulting kernel addresses since they are potentially separate now. [kees: rewrote changelog, limited virtual split to 64-bit only, update checks] [kees: fix CONFIG_RANDOMIZE_BASE=n boot failure] Signed-off-by: Baoquan He <bhe@redhat.com> Signed-off-by: Kees Cook <keescook@chromium.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: H.J. Lu <hjl.tools@gmail.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Yinghai Lu <yinghai@kernel.org> Link: http://lkml.kernel.org/r/1464216334-17200-4-git-send-email-keescook@chromium.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-05-26 05:45:32 +07:00
static void handle_relocations(void *output, unsigned long output_len,
unsigned long virt_addr)
{
int *reloc;
unsigned long delta, map, ptr;
unsigned long min_addr = (unsigned long)output;
unsigned long max_addr = min_addr + (VO___bss_start - VO__text);
/*
* Calculate the delta between where vmlinux was linked to load
* and where it was actually loaded.
*/
delta = min_addr - LOAD_PHYSICAL_ADDR;
/*
* The kernel contains a table of relocation addresses. Those
* addresses have the final load address of the kernel in virtual
* memory. We are currently working in the self map. So we need to
* create an adjustment for kernel memory addresses to the self map.
* This will involve subtracting out the base address of the kernel.
*/
map = delta - __START_KERNEL_map;
x86/KASLR: Randomize virtual address separately The current KASLR implementation randomizes the physical and virtual addresses of the kernel together (both are offset by the same amount). It calculates the delta of the physical address where vmlinux was linked to load and where it is finally loaded. If the delta is not equal to 0 (i.e. the kernel was relocated), relocation handling needs be done. On 64-bit, this patch randomizes both the physical address where kernel is decompressed and the virtual address where kernel text is mapped and will execute from. We now have two values being chosen, so the function arguments are reorganized to pass by pointer so they can be directly updated. Since relocation handling only depends on the virtual address, we must check the virtual delta, not the physical delta for processing kernel relocations. This also populates the page table for the new virtual address range. 32-bit does not support a separate virtual address, so it continues to use the physical offset for its virtual offset. Additionally updates the sanity checks done on the resulting kernel addresses since they are potentially separate now. [kees: rewrote changelog, limited virtual split to 64-bit only, update checks] [kees: fix CONFIG_RANDOMIZE_BASE=n boot failure] Signed-off-by: Baoquan He <bhe@redhat.com> Signed-off-by: Kees Cook <keescook@chromium.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: H.J. Lu <hjl.tools@gmail.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Yinghai Lu <yinghai@kernel.org> Link: http://lkml.kernel.org/r/1464216334-17200-4-git-send-email-keescook@chromium.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-05-26 05:45:32 +07:00
/*
* 32-bit always performs relocations. 64-bit relocations are only
* needed if KASLR has chosen a different starting address offset
* from __START_KERNEL_map.
*/
if (IS_ENABLED(CONFIG_X86_64))
delta = virt_addr - LOAD_PHYSICAL_ADDR;
if (!delta) {
debug_putstr("No relocation needed... ");
return;
}
debug_putstr("Performing relocations... ");
/*
* Process relocations: 32 bit relocations first then 64 bit after.
* Three sets of binary relocations are added to the end of the kernel
* before compression. Each relocation table entry is the kernel
* address of the location which needs to be updated stored as a
* 32-bit value which is sign extended to 64 bits.
*
* Format is:
*
* kernel bits...
* 0 - zero terminator for 64 bit relocations
* 64 bit relocation repeated
* 0 - zero terminator for inverse 32 bit relocations
* 32 bit inverse relocation repeated
* 0 - zero terminator for 32 bit relocations
* 32 bit relocation repeated
*
* So we work backwards from the end of the decompressed image.
*/
for (reloc = output + output_len - sizeof(*reloc); *reloc; reloc--) {
long extended = *reloc;
extended += map;
ptr = (unsigned long)extended;
if (ptr < min_addr || ptr > max_addr)
error("32-bit relocation outside of kernel!\n");
*(uint32_t *)ptr += delta;
}
#ifdef CONFIG_X86_64
while (*--reloc) {
long extended = *reloc;
extended += map;
ptr = (unsigned long)extended;
if (ptr < min_addr || ptr > max_addr)
error("inverse 32-bit relocation outside of kernel!\n");
*(int32_t *)ptr -= delta;
}
for (reloc--; *reloc; reloc--) {
long extended = *reloc;
extended += map;
ptr = (unsigned long)extended;
if (ptr < min_addr || ptr > max_addr)
error("64-bit relocation outside of kernel!\n");
*(uint64_t *)ptr += delta;
}
#endif
}
#else
x86/KASLR: Randomize virtual address separately The current KASLR implementation randomizes the physical and virtual addresses of the kernel together (both are offset by the same amount). It calculates the delta of the physical address where vmlinux was linked to load and where it is finally loaded. If the delta is not equal to 0 (i.e. the kernel was relocated), relocation handling needs be done. On 64-bit, this patch randomizes both the physical address where kernel is decompressed and the virtual address where kernel text is mapped and will execute from. We now have two values being chosen, so the function arguments are reorganized to pass by pointer so they can be directly updated. Since relocation handling only depends on the virtual address, we must check the virtual delta, not the physical delta for processing kernel relocations. This also populates the page table for the new virtual address range. 32-bit does not support a separate virtual address, so it continues to use the physical offset for its virtual offset. Additionally updates the sanity checks done on the resulting kernel addresses since they are potentially separate now. [kees: rewrote changelog, limited virtual split to 64-bit only, update checks] [kees: fix CONFIG_RANDOMIZE_BASE=n boot failure] Signed-off-by: Baoquan He <bhe@redhat.com> Signed-off-by: Kees Cook <keescook@chromium.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: H.J. Lu <hjl.tools@gmail.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Yinghai Lu <yinghai@kernel.org> Link: http://lkml.kernel.org/r/1464216334-17200-4-git-send-email-keescook@chromium.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-05-26 05:45:32 +07:00
static inline void handle_relocations(void *output, unsigned long output_len,
unsigned long virt_addr)
{ }
#endif
static void parse_elf(void *output)
{
#ifdef CONFIG_X86_64
Elf64_Ehdr ehdr;
Elf64_Phdr *phdrs, *phdr;
#else
Elf32_Ehdr ehdr;
Elf32_Phdr *phdrs, *phdr;
#endif
void *dest;
int i;
memcpy(&ehdr, output, sizeof(ehdr));
if (ehdr.e_ident[EI_MAG0] != ELFMAG0 ||
ehdr.e_ident[EI_MAG1] != ELFMAG1 ||
ehdr.e_ident[EI_MAG2] != ELFMAG2 ||
ehdr.e_ident[EI_MAG3] != ELFMAG3) {
error("Kernel is not a valid ELF file");
return;
}
debug_putstr("Parsing ELF... ");
phdrs = malloc(sizeof(*phdrs) * ehdr.e_phnum);
if (!phdrs)
error("Failed to allocate space for phdrs");
memcpy(phdrs, output + ehdr.e_phoff, sizeof(*phdrs) * ehdr.e_phnum);
for (i = 0; i < ehdr.e_phnum; i++) {
phdr = &phdrs[i];
switch (phdr->p_type) {
case PT_LOAD:
#ifdef CONFIG_X86_64
if ((phdr->p_align % 0x200000) != 0)
error("Alignment of LOAD segment isn't multiple of 2MB");
#endif
#ifdef CONFIG_RELOCATABLE
dest = output;
dest += (phdr->p_paddr - LOAD_PHYSICAL_ADDR);
#else
dest = (void *)(phdr->p_paddr);
#endif
memmove(dest, output + phdr->p_offset, phdr->p_filesz);
break;
default: /* Ignore other PT_* */ break;
}
}
free(phdrs);
}
x86/boot: Move compressed kernel to the end of the decompression buffer This change makes later calculations about where the kernel is located easier to reason about. To better understand this change, we must first clarify what 'VO' and 'ZO' are. These values were introduced in commits by hpa: 77d1a4999502 ("x86, boot: make symbols from the main vmlinux available") 37ba7ab5e33c ("x86, boot: make kernel_alignment adjustable; new bzImage fields") Specifically: All names prefixed with 'VO_': - relate to the uncompressed kernel image - the size of the VO image is: VO__end-VO__text ("VO_INIT_SIZE" define) All names prefixed with 'ZO_': - relate to the bootable compressed kernel image (boot/compressed/vmlinux), which is composed of the following memory areas: - head text - compressed kernel (VO image and relocs table) - decompressor code - the size of the ZO image is: ZO__end - ZO_startup_32 ("ZO_INIT_SIZE" define, though see below) The 'INIT_SIZE' value is used to find the larger of the two image sizes: #define ZO_INIT_SIZE (ZO__end - ZO_startup_32 + ZO_z_extract_offset) #define VO_INIT_SIZE (VO__end - VO__text) #if ZO_INIT_SIZE > VO_INIT_SIZE # define INIT_SIZE ZO_INIT_SIZE #else # define INIT_SIZE VO_INIT_SIZE #endif The current code uses extract_offset to decide where to position the copied ZO (i.e. ZO starts at extract_offset). (This is why ZO_INIT_SIZE currently includes the extract_offset.) Why does z_extract_offset exist? It's needed because we are trying to minimize the amount of RAM used for the whole act of creating an uncompressed, executable, properly relocation-linked kernel image in system memory. We do this so that kernels can be booted on even very small systems. To achieve the goal of minimal memory consumption we have implemented an in-place decompression strategy: instead of cleanly separating the VO and ZO images and also allocating some memory for the decompression code's runtime needs, we instead create this elaborate layout of memory buffers where the output (decompressed) stream, as it progresses, overlaps with and destroys the input (compressed) stream. This can only be done safely if the ZO image is placed to the end of the VO range, plus a certain amount of safety distance to make sure that when the last bytes of the VO range are decompressed, the compressed stream pointer is safely beyond the end of the VO range. z_extract_offset is calculated in arch/x86/boot/compressed/mkpiggy.c during the build process, at a point when we know the exact compressed and uncompressed size of the kernel images and can calculate this safe minimum offset value. (Note that the mkpiggy.c calculation is not perfect, because we don't know the decompressor used at that stage, so the z_extract_offset calculation is necessarily imprecise and is mostly based on gzip internals - we'll improve that in the next patch.) When INIT_SIZE is bigger than VO_INIT_SIZE (uncommon but possible), the copied ZO occupies the memory from extract_offset to the end of decompression buffer. It overlaps with the soon-to-be-uncompressed kernel like this: |-----compressed kernel image------| V V 0 extract_offset +INIT_SIZE |-----------|---------------|-------------------------|--------| | | | | VO__text startup_32 of ZO VO__end ZO__end ^ ^ |-------uncompressed kernel image---------| When INIT_SIZE is equal to VO_INIT_SIZE (likely) there's still space left from end of ZO to the end of decompressing buffer, like below. |-compressed kernel image-| V V 0 extract_offset +INIT_SIZE |-----------|---------------|-------------------------|--------| | | | | VO__text startup_32 of ZO ZO__end VO__end ^ ^ |------------uncompressed kernel image-------------| To simplify calculations and avoid special cases, it is cleaner to always place the compressed kernel image in memory so that ZO__end is at the end of the decompression buffer, instead of placing t at the start of extract_offset as is currently done. This patch adds BP_init_size (which is the INIT_SIZE as passed in from the boot_params) into asm-offsets.c to make it visible to the assembly code. Then when moving the ZO, it calculates the starting position of the copied ZO (via BP_init_size and the ZO run size) so that the VO__end will be at the end of the decompression buffer. To make the position calculation safe, the end of ZO is page aligned (and a comment is added to the existing VO alignment for good measure). Signed-off-by: Yinghai Lu <yinghai@kernel.org> [ Rewrote changelog and comments. ] Signed-off-by: Kees Cook <keescook@chromium.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Andy Lutomirski <luto@kernel.org> Cc: Baoquan He <bhe@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Dave Young <dyoung@redhat.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vivek Goyal <vgoyal@redhat.com> Cc: lasse.collin@tukaani.org Link: http://lkml.kernel.org/r/1461888548-32439-3-git-send-email-keescook@chromium.org [ Rewrote the changelog some more. ] Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-04-29 07:09:04 +07:00
/*
* The compressed kernel image (ZO), has been moved so that its position
* is against the end of the buffer used to hold the uncompressed kernel
* image (VO) and the execution environment (.bss, .brk), which makes sure
* there is room to do the in-place decompression. (See header.S for the
* calculations.)
*
* |-----compressed kernel image------|
* V V
* 0 extract_offset +INIT_SIZE
* |-----------|---------------|-------------------------|--------|
* | | | |
* VO__text startup_32 of ZO VO__end ZO__end
* ^ ^
* |-------uncompressed kernel image---------|
*
*/
asmlinkage __visible void *extract_kernel(void *rmode, memptr heap,
unsigned char *input_data,
unsigned long input_len,
unsigned char *output,
unsigned long output_len)
{
const unsigned long kernel_total_size = VO__end - VO__text;
unsigned long virt_addr = LOAD_PHYSICAL_ADDR;
/* Retain x86 boot parameters pointer passed from startup_32/64. */
boot_params = rmode;
/* Clear flags intended for solely in-kernel use. */
boot_params->hdr.loadflags &= ~KASLR_FLAG;
/* Save RSDP address for later use. */
boot_params->acpi_rsdp_addr = get_rsdp_addr();
sanitize_boot_params(boot_params);
if (boot_params->screen_info.orig_video_mode == 7) {
vidmem = (char *) 0xb0000;
vidport = 0x3b4;
} else {
vidmem = (char *) 0xb8000;
vidport = 0x3d4;
}
lines = boot_params->screen_info.orig_video_lines;
cols = boot_params->screen_info.orig_video_cols;
console_init();
debug_putstr("early console in extract_kernel\n");
free_mem_ptr = heap; /* Heap */
free_mem_end_ptr = heap + BOOT_HEAP_SIZE;
/* Report initial kernel position details. */
debug_putaddr(input_data);
debug_putaddr(input_len);
debug_putaddr(output);
debug_putaddr(output_len);
debug_putaddr(kernel_total_size);
x86/boot/compressed/64: Find a place for 32-bit trampoline If a bootloader enables 64-bit mode with 4-level paging, we might need to switch over to 5-level paging. The switching requires the disabling of paging, which works fine if kernel itself is loaded below 4G. But if the bootloader puts the kernel above 4G (not sure if anybody does this), we would lose control as soon as paging is disabled, because the code becomes unreachable to the CPU. To handle the situation, we need a trampoline in lower memory that would take care of switching on 5-level paging. This patch finds a spot in low memory for a trampoline. The heuristic is based on code in reserve_bios_regions(). We find the end of low memory based on BIOS and EBDA start addresses. The trampoline is put just before end of low memory. It's mimic approach taken to allocate memory for realtime trampoline. Tested-by: Borislav Petkov <bp@suse.de> Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Andy Shevchenko <andy.shevchenko@gmail.com> Cc: Cyrill Gorcunov <gorcunov@openvz.org> Cc: Eric Biederman <ebiederm@xmission.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Juergen Gross <jgross@suse.com> Cc: Kees Cook <keescook@chromium.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Matthew Wilcox <willy@infradead.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-mm@kvack.org Link: http://lkml.kernel.org/r/20180226180451.86788-3-kirill.shutemov@linux.intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-02-27 01:04:48 +07:00
#ifdef CONFIG_X86_64
/* Report address of 32-bit trampoline */
debug_putaddr(trampoline_32bit);
#endif
x86, kaslr: Prevent .bss from overlaping initrd When choosing a random address, the current implementation does not take into account the reversed space for .bss and .brk sections. Thus the relocated kernel may overlap other components in memory. Here is an example of the overlap from a x86_64 kernel in qemu (the ranges of physical addresses are presented): Physical Address 0x0fe00000 --+--------------------+ <-- randomized base / | relocated kernel | vmlinux.bin | (from vmlinux.bin) | 0x1336d000 (an ELF file) +--------------------+-- \ | | \ 0x1376d870 --+--------------------+ | | relocs table | | 0x13c1c2a8 +--------------------+ .bss and .brk | | | 0x13ce6000 +--------------------+ | | | / 0x13f77000 | initrd |-- | | 0x13fef374 +--------------------+ The initrd image will then be overwritten by the memset during early initialization: [ 1.655204] Unpacking initramfs... [ 1.662831] Initramfs unpacking failed: junk in compressed archive This patch prevents the above situation by requiring a larger space when looking for a random kernel base, so that existing logic can effectively avoids the overlap. [kees: switched to perl to avoid hex translation pain in mawk vs gawk] [kees: calculated overlap without relocs table] Fixes: 82fa9637a2 ("x86, kaslr: Select random position from e820 maps") Reported-by: Fengguang Wu <fengguang.wu@intel.com> Signed-off-by: Junjie Mao <eternal.n08@gmail.com> Signed-off-by: Kees Cook <keescook@chromium.org> Cc: Josh Triplett <josh@joshtriplett.org> Cc: Matt Fleming <matt.fleming@intel.com> Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org> Cc: Vivek Goyal <vgoyal@redhat.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: stable@vger.kernel.org Link: http://lkml.kernel.org/r/1414762838-13067-1-git-send-email-eternal.n08@gmail.com Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2014-10-31 20:40:38 +07:00
/*
* The memory hole needed for the kernel is the larger of either
* the entire decompressed kernel plus relocation table, or the
* entire decompressed kernel plus .bss and .brk sections.
*/
x86/KASLR: Randomize virtual address separately The current KASLR implementation randomizes the physical and virtual addresses of the kernel together (both are offset by the same amount). It calculates the delta of the physical address where vmlinux was linked to load and where it is finally loaded. If the delta is not equal to 0 (i.e. the kernel was relocated), relocation handling needs be done. On 64-bit, this patch randomizes both the physical address where kernel is decompressed and the virtual address where kernel text is mapped and will execute from. We now have two values being chosen, so the function arguments are reorganized to pass by pointer so they can be directly updated. Since relocation handling only depends on the virtual address, we must check the virtual delta, not the physical delta for processing kernel relocations. This also populates the page table for the new virtual address range. 32-bit does not support a separate virtual address, so it continues to use the physical offset for its virtual offset. Additionally updates the sanity checks done on the resulting kernel addresses since they are potentially separate now. [kees: rewrote changelog, limited virtual split to 64-bit only, update checks] [kees: fix CONFIG_RANDOMIZE_BASE=n boot failure] Signed-off-by: Baoquan He <bhe@redhat.com> Signed-off-by: Kees Cook <keescook@chromium.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: H.J. Lu <hjl.tools@gmail.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Yinghai Lu <yinghai@kernel.org> Link: http://lkml.kernel.org/r/1464216334-17200-4-git-send-email-keescook@chromium.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-05-26 05:45:32 +07:00
choose_random_location((unsigned long)input_data, input_len,
(unsigned long *)&output,
max(output_len, kernel_total_size),
&virt_addr);
/* Validate memory location choices. */
if ((unsigned long)output & (MIN_KERNEL_ALIGN - 1))
x86/KASLR: Randomize virtual address separately The current KASLR implementation randomizes the physical and virtual addresses of the kernel together (both are offset by the same amount). It calculates the delta of the physical address where vmlinux was linked to load and where it is finally loaded. If the delta is not equal to 0 (i.e. the kernel was relocated), relocation handling needs be done. On 64-bit, this patch randomizes both the physical address where kernel is decompressed and the virtual address where kernel text is mapped and will execute from. We now have two values being chosen, so the function arguments are reorganized to pass by pointer so they can be directly updated. Since relocation handling only depends on the virtual address, we must check the virtual delta, not the physical delta for processing kernel relocations. This also populates the page table for the new virtual address range. 32-bit does not support a separate virtual address, so it continues to use the physical offset for its virtual offset. Additionally updates the sanity checks done on the resulting kernel addresses since they are potentially separate now. [kees: rewrote changelog, limited virtual split to 64-bit only, update checks] [kees: fix CONFIG_RANDOMIZE_BASE=n boot failure] Signed-off-by: Baoquan He <bhe@redhat.com> Signed-off-by: Kees Cook <keescook@chromium.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: H.J. Lu <hjl.tools@gmail.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Yinghai Lu <yinghai@kernel.org> Link: http://lkml.kernel.org/r/1464216334-17200-4-git-send-email-keescook@chromium.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-05-26 05:45:32 +07:00
error("Destination physical address inappropriately aligned");
if (virt_addr & (MIN_KERNEL_ALIGN - 1))
error("Destination virtual address inappropriately aligned");
#ifdef CONFIG_X86_64
if (heap > 0x3fffffffffffUL)
error("Destination address too large");
if (virt_addr + max(output_len, kernel_total_size) > KERNEL_IMAGE_SIZE)
error("Destination virtual address is beyond the kernel mapping area");
#else
if (heap > ((-__PAGE_OFFSET-(128<<20)-1) & 0x7fffffff))
error("Destination address too large");
#endif
#ifndef CONFIG_RELOCATABLE
if ((unsigned long)output != LOAD_PHYSICAL_ADDR)
x86/KASLR: Randomize virtual address separately The current KASLR implementation randomizes the physical and virtual addresses of the kernel together (both are offset by the same amount). It calculates the delta of the physical address where vmlinux was linked to load and where it is finally loaded. If the delta is not equal to 0 (i.e. the kernel was relocated), relocation handling needs be done. On 64-bit, this patch randomizes both the physical address where kernel is decompressed and the virtual address where kernel text is mapped and will execute from. We now have two values being chosen, so the function arguments are reorganized to pass by pointer so they can be directly updated. Since relocation handling only depends on the virtual address, we must check the virtual delta, not the physical delta for processing kernel relocations. This also populates the page table for the new virtual address range. 32-bit does not support a separate virtual address, so it continues to use the physical offset for its virtual offset. Additionally updates the sanity checks done on the resulting kernel addresses since they are potentially separate now. [kees: rewrote changelog, limited virtual split to 64-bit only, update checks] [kees: fix CONFIG_RANDOMIZE_BASE=n boot failure] Signed-off-by: Baoquan He <bhe@redhat.com> Signed-off-by: Kees Cook <keescook@chromium.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: H.J. Lu <hjl.tools@gmail.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Yinghai Lu <yinghai@kernel.org> Link: http://lkml.kernel.org/r/1464216334-17200-4-git-send-email-keescook@chromium.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-05-26 05:45:32 +07:00
error("Destination address does not match LOAD_PHYSICAL_ADDR");
if (virt_addr != LOAD_PHYSICAL_ADDR)
x86/KASLR: Randomize virtual address separately The current KASLR implementation randomizes the physical and virtual addresses of the kernel together (both are offset by the same amount). It calculates the delta of the physical address where vmlinux was linked to load and where it is finally loaded. If the delta is not equal to 0 (i.e. the kernel was relocated), relocation handling needs be done. On 64-bit, this patch randomizes both the physical address where kernel is decompressed and the virtual address where kernel text is mapped and will execute from. We now have two values being chosen, so the function arguments are reorganized to pass by pointer so they can be directly updated. Since relocation handling only depends on the virtual address, we must check the virtual delta, not the physical delta for processing kernel relocations. This also populates the page table for the new virtual address range. 32-bit does not support a separate virtual address, so it continues to use the physical offset for its virtual offset. Additionally updates the sanity checks done on the resulting kernel addresses since they are potentially separate now. [kees: rewrote changelog, limited virtual split to 64-bit only, update checks] [kees: fix CONFIG_RANDOMIZE_BASE=n boot failure] Signed-off-by: Baoquan He <bhe@redhat.com> Signed-off-by: Kees Cook <keescook@chromium.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: H.J. Lu <hjl.tools@gmail.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Yinghai Lu <yinghai@kernel.org> Link: http://lkml.kernel.org/r/1464216334-17200-4-git-send-email-keescook@chromium.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-05-26 05:45:32 +07:00
error("Destination virtual address changed when not relocatable");
#endif
debug_putstr("\nDecompressing Linux... ");
lib/decompressors: use real out buf size for gunzip with kernel When loading x86 64bit kernel above 4GiB with patched grub2, got kernel gunzip error. | early console in decompress_kernel | decompress_kernel: | input: [0x807f2143b4-0x807ff61aee] | output: [0x807cc00000-0x807f3ea29b] 0x027ea29c: output_len | boot via startup_64 | KASLR using RDTSC... | new output: [0x46fe000000-0x470138cfff] 0x0338d000: output_run_size | decompress: [0x46fe000000-0x47007ea29b] <=== [0x807f2143b4-0x807ff61aee] | | Decompressing Linux... gz... | | uncompression error | | -- System halted the new buffer is at 0x46fe000000ULL, decompressor_gzip is using 0xffffffb901ffffff as out_len. gunzip in lib/zlib_inflate/inflate.c cap that len to 0x01ffffff and decompress fails later. We could hit this problem with crashkernel booting that uses kexec loading kernel above 4GiB. We have decompress_* support: 1. inbuf[]/outbuf[] for kernel preboot. 2. inbuf[]/flush() for initramfs 3. fill()/flush() for initrd. This bug only affect kernel preboot path that use outbuf[]. Add __decompress and take real out_buf_len for gunzip instead of guessing wrong buf size. Fixes: 1431574a1c4 (lib/decompressors: fix "no limit" output buffer length) Signed-off-by: Yinghai Lu <yinghai@kernel.org> Cc: Alexandre Courbot <acourbot@nvidia.com> Cc: Jon Medhurst <tixy@linaro.org> Cc: Stephen Warren <swarren@wwwdotorg.org> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-09-10 05:39:12 +07:00
__decompress(input_data, input_len, NULL, NULL, output, output_len,
NULL, error);
parse_elf(output);
x86/KASLR: Randomize virtual address separately The current KASLR implementation randomizes the physical and virtual addresses of the kernel together (both are offset by the same amount). It calculates the delta of the physical address where vmlinux was linked to load and where it is finally loaded. If the delta is not equal to 0 (i.e. the kernel was relocated), relocation handling needs be done. On 64-bit, this patch randomizes both the physical address where kernel is decompressed and the virtual address where kernel text is mapped and will execute from. We now have two values being chosen, so the function arguments are reorganized to pass by pointer so they can be directly updated. Since relocation handling only depends on the virtual address, we must check the virtual delta, not the physical delta for processing kernel relocations. This also populates the page table for the new virtual address range. 32-bit does not support a separate virtual address, so it continues to use the physical offset for its virtual offset. Additionally updates the sanity checks done on the resulting kernel addresses since they are potentially separate now. [kees: rewrote changelog, limited virtual split to 64-bit only, update checks] [kees: fix CONFIG_RANDOMIZE_BASE=n boot failure] Signed-off-by: Baoquan He <bhe@redhat.com> Signed-off-by: Kees Cook <keescook@chromium.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: H.J. Lu <hjl.tools@gmail.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Yinghai Lu <yinghai@kernel.org> Link: http://lkml.kernel.org/r/1464216334-17200-4-git-send-email-keescook@chromium.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-05-26 05:45:32 +07:00
handle_relocations(output, output_len, virt_addr);
debug_putstr("done.\nBooting the kernel.\n");
return output;
}
include/linux/string.h: add the option of fortified string.h functions This adds support for compiling with a rough equivalent to the glibc _FORTIFY_SOURCE=1 feature, providing compile-time and runtime buffer overflow checks for string.h functions when the compiler determines the size of the source or destination buffer at compile-time. Unlike glibc, it covers buffer reads in addition to writes. GNU C __builtin_*_chk intrinsics are avoided because they would force a much more complex implementation. They aren't designed to detect read overflows and offer no real benefit when using an implementation based on inline checks. Inline checks don't add up to much code size and allow full use of the regular string intrinsics while avoiding the need for a bunch of _chk functions and per-arch assembly to avoid wrapper overhead. This detects various overflows at compile-time in various drivers and some non-x86 core kernel code. There will likely be issues caught in regular use at runtime too. Future improvements left out of initial implementation for simplicity, as it's all quite optional and can be done incrementally: * Some of the fortified string functions (strncpy, strcat), don't yet place a limit on reads from the source based on __builtin_object_size of the source buffer. * Extending coverage to more string functions like strlcat. * It should be possible to optionally use __builtin_object_size(x, 1) for some functions (C strings) to detect intra-object overflows (like glibc's _FORTIFY_SOURCE=2), but for now this takes the conservative approach to avoid likely compatibility issues. * The compile-time checks should be made available via a separate config option which can be enabled by default (or always enabled) once enough time has passed to get the issues it catches fixed. Kees said: "This is great to have. While it was out-of-tree code, it would have blocked at least CVE-2016-3858 from being exploitable (improper size argument to strlcpy()). I've sent a number of fixes for out-of-bounds-reads that this detected upstream already" [arnd@arndb.de: x86: fix fortified memcpy] Link: http://lkml.kernel.org/r/20170627150047.660360-1-arnd@arndb.de [keescook@chromium.org: avoid panic() in favor of BUG()] Link: http://lkml.kernel.org/r/20170626235122.GA25261@beast [keescook@chromium.org: move from -mm, add ARCH_HAS_FORTIFY_SOURCE, tweak Kconfig help] Link: http://lkml.kernel.org/r/20170526095404.20439-1-danielmicay@gmail.com Link: http://lkml.kernel.org/r/1497903987-21002-8-git-send-email-keescook@chromium.org Signed-off-by: Daniel Micay <danielmicay@gmail.com> Signed-off-by: Kees Cook <keescook@chromium.org> Signed-off-by: Arnd Bergmann <arnd@arndb.de> Acked-by: Kees Cook <keescook@chromium.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Daniel Axtens <dja@axtens.net> Cc: Rasmus Villemoes <linux@rasmusvillemoes.dk> Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Cc: Chris Metcalf <cmetcalf@ezchip.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@elte.hu> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-13 04:36:10 +07:00
void fortify_panic(const char *name)
{
error("detected buffer overflow");
}