linux_dsm_epyc7002/drivers/gpu/drm/exynos/exynos_hdmi.c

2410 lines
67 KiB
C
Raw Normal View History

drm/exynos: added hdmi display support This patch is hdmi display support for exynos drm driver. There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv and some low level code is already in s5p-tv and even headers for register define are almost same. but in this patch, we decide not to consider separated common code with s5p-tv. Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc. 1. mixer. The piece of hardware responsible for mixing and blending multiple data inputs before passing it to an output device. The mixer is capable of handling up to three image layers. One is the output of VP. Other two are images in RGB format. The blending factor, and layers' priority are controlled by mixer's registers. The output is passed to HDMI. 2. vp (video processor). It is used for processing of NV12/NV21 data. An image stored in RAM is accessed by DMA. The output in YCbCr444 format is send to mixer. 3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes pixel data from mixer and transforms it into data frames. The output is send to HDMIPHY interface. 4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to HDMI connector. Basically, it contains a PLL that produces source clock for mixer, vp and hdmi. 5. ddc (display data channel). It is dedicated i2c channel to exchange display information as edid with display monitor. With plane support, exynos hdmi driver fully supports two mixer layes and vp layer. Also vp layer supports multi buffer plane pixel formats having non contigus memory spaces. In exynos drm driver, common drm_hdmi driver to interface with drm framework has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls them. mixer controls all overlay layers in both mixer and vp. Vblank interrupts for hdmi are handled by mixer internally because drm framework cannot support multiple irq id. And pipe number is used to check which display device irq happens. History v2: this version - drm plane feature support to handle overlay layers. - multi buffer plane pixel format support for vp layer. - vp layer support RFCv1: original - at https://lkml.org/lkml/2011/11/4/164 Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com> Signed-off-by: Inki Dae <inki.dae@samsung.com> Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com> Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 15:39:39 +07:00
/*
* Copyright (C) 2011 Samsung Electronics Co.Ltd
* Authors:
* Seung-Woo Kim <sw0312.kim@samsung.com>
* Inki Dae <inki.dae@samsung.com>
* Joonyoung Shim <jy0922.shim@samsung.com>
*
* Based on drivers/media/video/s5p-tv/hdmi_drv.c
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*
*/
#include "drmP.h"
#include "drm_edid.h"
#include "drm_crtc_helper.h"
#include "regs-hdmi.h"
#include <linux/kernel.h>
#include <linux/spinlock.h>
#include <linux/wait.h>
#include <linux/i2c.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/delay.h>
#include <linux/pm_runtime.h>
#include <linux/clk.h>
#include <linux/regulator/consumer.h>
#include <drm/exynos_drm.h>
#include "exynos_drm_drv.h"
#include "exynos_drm_hdmi.h"
#include "exynos_hdmi.h"
#define MAX_WIDTH 1920
#define MAX_HEIGHT 1080
drm/exynos: added hdmi display support This patch is hdmi display support for exynos drm driver. There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv and some low level code is already in s5p-tv and even headers for register define are almost same. but in this patch, we decide not to consider separated common code with s5p-tv. Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc. 1. mixer. The piece of hardware responsible for mixing and blending multiple data inputs before passing it to an output device. The mixer is capable of handling up to three image layers. One is the output of VP. Other two are images in RGB format. The blending factor, and layers' priority are controlled by mixer's registers. The output is passed to HDMI. 2. vp (video processor). It is used for processing of NV12/NV21 data. An image stored in RAM is accessed by DMA. The output in YCbCr444 format is send to mixer. 3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes pixel data from mixer and transforms it into data frames. The output is send to HDMIPHY interface. 4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to HDMI connector. Basically, it contains a PLL that produces source clock for mixer, vp and hdmi. 5. ddc (display data channel). It is dedicated i2c channel to exchange display information as edid with display monitor. With plane support, exynos hdmi driver fully supports two mixer layes and vp layer. Also vp layer supports multi buffer plane pixel formats having non contigus memory spaces. In exynos drm driver, common drm_hdmi driver to interface with drm framework has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls them. mixer controls all overlay layers in both mixer and vp. Vblank interrupts for hdmi are handled by mixer internally because drm framework cannot support multiple irq id. And pipe number is used to check which display device irq happens. History v2: this version - drm plane feature support to handle overlay layers. - multi buffer plane pixel format support for vp layer. - vp layer support RFCv1: original - at https://lkml.org/lkml/2011/11/4/164 Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com> Signed-off-by: Inki Dae <inki.dae@samsung.com> Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com> Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 15:39:39 +07:00
#define get_hdmi_context(dev) platform_get_drvdata(to_platform_device(dev))
struct hdmi_resources {
struct clk *hdmi;
struct clk *sclk_hdmi;
struct clk *sclk_pixel;
struct clk *sclk_hdmiphy;
struct clk *hdmiphy;
struct regulator_bulk_data *regul_bulk;
int regul_count;
};
struct hdmi_context {
struct device *dev;
struct drm_device *drm_dev;
bool hpd;
bool powered;
bool is_v13;
struct mutex hdmi_mutex;
struct resource *regs_res;
void __iomem *regs;
unsigned int external_irq;
unsigned int internal_irq;
struct i2c_client *ddc_port;
struct i2c_client *hdmiphy_port;
/* current hdmiphy conf index */
int cur_conf;
struct hdmi_resources res;
void *parent_ctx;
void (*cfg_hpd)(bool external);
int (*get_hpd)(void);
};
/* HDMI Version 1.3 */
static const u8 hdmiphy_v13_conf27[32] = {
drm/exynos: added hdmi display support This patch is hdmi display support for exynos drm driver. There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv and some low level code is already in s5p-tv and even headers for register define are almost same. but in this patch, we decide not to consider separated common code with s5p-tv. Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc. 1. mixer. The piece of hardware responsible for mixing and blending multiple data inputs before passing it to an output device. The mixer is capable of handling up to three image layers. One is the output of VP. Other two are images in RGB format. The blending factor, and layers' priority are controlled by mixer's registers. The output is passed to HDMI. 2. vp (video processor). It is used for processing of NV12/NV21 data. An image stored in RAM is accessed by DMA. The output in YCbCr444 format is send to mixer. 3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes pixel data from mixer and transforms it into data frames. The output is send to HDMIPHY interface. 4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to HDMI connector. Basically, it contains a PLL that produces source clock for mixer, vp and hdmi. 5. ddc (display data channel). It is dedicated i2c channel to exchange display information as edid with display monitor. With plane support, exynos hdmi driver fully supports two mixer layes and vp layer. Also vp layer supports multi buffer plane pixel formats having non contigus memory spaces. In exynos drm driver, common drm_hdmi driver to interface with drm framework has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls them. mixer controls all overlay layers in both mixer and vp. Vblank interrupts for hdmi are handled by mixer internally because drm framework cannot support multiple irq id. And pipe number is used to check which display device irq happens. History v2: this version - drm plane feature support to handle overlay layers. - multi buffer plane pixel format support for vp layer. - vp layer support RFCv1: original - at https://lkml.org/lkml/2011/11/4/164 Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com> Signed-off-by: Inki Dae <inki.dae@samsung.com> Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com> Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 15:39:39 +07:00
0x01, 0x05, 0x00, 0xD8, 0x10, 0x1C, 0x30, 0x40,
0x6B, 0x10, 0x02, 0x51, 0xDF, 0xF2, 0x54, 0x87,
0x84, 0x00, 0x30, 0x38, 0x00, 0x08, 0x10, 0xE0,
0x22, 0x40, 0xE3, 0x26, 0x00, 0x00, 0x00, 0x00,
};
static const u8 hdmiphy_v13_conf27_027[32] = {
drm/exynos: added hdmi display support This patch is hdmi display support for exynos drm driver. There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv and some low level code is already in s5p-tv and even headers for register define are almost same. but in this patch, we decide not to consider separated common code with s5p-tv. Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc. 1. mixer. The piece of hardware responsible for mixing and blending multiple data inputs before passing it to an output device. The mixer is capable of handling up to three image layers. One is the output of VP. Other two are images in RGB format. The blending factor, and layers' priority are controlled by mixer's registers. The output is passed to HDMI. 2. vp (video processor). It is used for processing of NV12/NV21 data. An image stored in RAM is accessed by DMA. The output in YCbCr444 format is send to mixer. 3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes pixel data from mixer and transforms it into data frames. The output is send to HDMIPHY interface. 4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to HDMI connector. Basically, it contains a PLL that produces source clock for mixer, vp and hdmi. 5. ddc (display data channel). It is dedicated i2c channel to exchange display information as edid with display monitor. With plane support, exynos hdmi driver fully supports two mixer layes and vp layer. Also vp layer supports multi buffer plane pixel formats having non contigus memory spaces. In exynos drm driver, common drm_hdmi driver to interface with drm framework has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls them. mixer controls all overlay layers in both mixer and vp. Vblank interrupts for hdmi are handled by mixer internally because drm framework cannot support multiple irq id. And pipe number is used to check which display device irq happens. History v2: this version - drm plane feature support to handle overlay layers. - multi buffer plane pixel format support for vp layer. - vp layer support RFCv1: original - at https://lkml.org/lkml/2011/11/4/164 Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com> Signed-off-by: Inki Dae <inki.dae@samsung.com> Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com> Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 15:39:39 +07:00
0x01, 0x05, 0x00, 0xD4, 0x10, 0x9C, 0x09, 0x64,
0x6B, 0x10, 0x02, 0x51, 0xDF, 0xF2, 0x54, 0x87,
0x84, 0x00, 0x30, 0x38, 0x00, 0x08, 0x10, 0xE0,
0x22, 0x40, 0xE3, 0x26, 0x00, 0x00, 0x00, 0x00,
};
static const u8 hdmiphy_v13_conf74_175[32] = {
drm/exynos: added hdmi display support This patch is hdmi display support for exynos drm driver. There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv and some low level code is already in s5p-tv and even headers for register define are almost same. but in this patch, we decide not to consider separated common code with s5p-tv. Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc. 1. mixer. The piece of hardware responsible for mixing and blending multiple data inputs before passing it to an output device. The mixer is capable of handling up to three image layers. One is the output of VP. Other two are images in RGB format. The blending factor, and layers' priority are controlled by mixer's registers. The output is passed to HDMI. 2. vp (video processor). It is used for processing of NV12/NV21 data. An image stored in RAM is accessed by DMA. The output in YCbCr444 format is send to mixer. 3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes pixel data from mixer and transforms it into data frames. The output is send to HDMIPHY interface. 4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to HDMI connector. Basically, it contains a PLL that produces source clock for mixer, vp and hdmi. 5. ddc (display data channel). It is dedicated i2c channel to exchange display information as edid with display monitor. With plane support, exynos hdmi driver fully supports two mixer layes and vp layer. Also vp layer supports multi buffer plane pixel formats having non contigus memory spaces. In exynos drm driver, common drm_hdmi driver to interface with drm framework has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls them. mixer controls all overlay layers in both mixer and vp. Vblank interrupts for hdmi are handled by mixer internally because drm framework cannot support multiple irq id. And pipe number is used to check which display device irq happens. History v2: this version - drm plane feature support to handle overlay layers. - multi buffer plane pixel format support for vp layer. - vp layer support RFCv1: original - at https://lkml.org/lkml/2011/11/4/164 Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com> Signed-off-by: Inki Dae <inki.dae@samsung.com> Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com> Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 15:39:39 +07:00
0x01, 0x05, 0x00, 0xD8, 0x10, 0x9C, 0xef, 0x5B,
0x6D, 0x10, 0x01, 0x51, 0xef, 0xF3, 0x54, 0xb9,
0x84, 0x00, 0x30, 0x38, 0x00, 0x08, 0x10, 0xE0,
0x22, 0x40, 0xa5, 0x26, 0x01, 0x00, 0x00, 0x00,
};
static const u8 hdmiphy_v13_conf74_25[32] = {
drm/exynos: added hdmi display support This patch is hdmi display support for exynos drm driver. There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv and some low level code is already in s5p-tv and even headers for register define are almost same. but in this patch, we decide not to consider separated common code with s5p-tv. Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc. 1. mixer. The piece of hardware responsible for mixing and blending multiple data inputs before passing it to an output device. The mixer is capable of handling up to three image layers. One is the output of VP. Other two are images in RGB format. The blending factor, and layers' priority are controlled by mixer's registers. The output is passed to HDMI. 2. vp (video processor). It is used for processing of NV12/NV21 data. An image stored in RAM is accessed by DMA. The output in YCbCr444 format is send to mixer. 3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes pixel data from mixer and transforms it into data frames. The output is send to HDMIPHY interface. 4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to HDMI connector. Basically, it contains a PLL that produces source clock for mixer, vp and hdmi. 5. ddc (display data channel). It is dedicated i2c channel to exchange display information as edid with display monitor. With plane support, exynos hdmi driver fully supports two mixer layes and vp layer. Also vp layer supports multi buffer plane pixel formats having non contigus memory spaces. In exynos drm driver, common drm_hdmi driver to interface with drm framework has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls them. mixer controls all overlay layers in both mixer and vp. Vblank interrupts for hdmi are handled by mixer internally because drm framework cannot support multiple irq id. And pipe number is used to check which display device irq happens. History v2: this version - drm plane feature support to handle overlay layers. - multi buffer plane pixel format support for vp layer. - vp layer support RFCv1: original - at https://lkml.org/lkml/2011/11/4/164 Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com> Signed-off-by: Inki Dae <inki.dae@samsung.com> Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com> Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 15:39:39 +07:00
0x01, 0x05, 0x00, 0xd8, 0x10, 0x9c, 0xf8, 0x40,
0x6a, 0x10, 0x01, 0x51, 0xff, 0xf1, 0x54, 0xba,
0x84, 0x00, 0x10, 0x38, 0x00, 0x08, 0x10, 0xe0,
0x22, 0x40, 0xa4, 0x26, 0x01, 0x00, 0x00, 0x00,
};
static const u8 hdmiphy_v13_conf148_5[32] = {
drm/exynos: added hdmi display support This patch is hdmi display support for exynos drm driver. There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv and some low level code is already in s5p-tv and even headers for register define are almost same. but in this patch, we decide not to consider separated common code with s5p-tv. Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc. 1. mixer. The piece of hardware responsible for mixing and blending multiple data inputs before passing it to an output device. The mixer is capable of handling up to three image layers. One is the output of VP. Other two are images in RGB format. The blending factor, and layers' priority are controlled by mixer's registers. The output is passed to HDMI. 2. vp (video processor). It is used for processing of NV12/NV21 data. An image stored in RAM is accessed by DMA. The output in YCbCr444 format is send to mixer. 3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes pixel data from mixer and transforms it into data frames. The output is send to HDMIPHY interface. 4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to HDMI connector. Basically, it contains a PLL that produces source clock for mixer, vp and hdmi. 5. ddc (display data channel). It is dedicated i2c channel to exchange display information as edid with display monitor. With plane support, exynos hdmi driver fully supports two mixer layes and vp layer. Also vp layer supports multi buffer plane pixel formats having non contigus memory spaces. In exynos drm driver, common drm_hdmi driver to interface with drm framework has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls them. mixer controls all overlay layers in both mixer and vp. Vblank interrupts for hdmi are handled by mixer internally because drm framework cannot support multiple irq id. And pipe number is used to check which display device irq happens. History v2: this version - drm plane feature support to handle overlay layers. - multi buffer plane pixel format support for vp layer. - vp layer support RFCv1: original - at https://lkml.org/lkml/2011/11/4/164 Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com> Signed-off-by: Inki Dae <inki.dae@samsung.com> Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com> Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 15:39:39 +07:00
0x01, 0x05, 0x00, 0xD8, 0x10, 0x9C, 0xf8, 0x40,
0x6A, 0x18, 0x00, 0x51, 0xff, 0xF1, 0x54, 0xba,
0x84, 0x00, 0x10, 0x38, 0x00, 0x08, 0x10, 0xE0,
0x22, 0x40, 0xa4, 0x26, 0x02, 0x00, 0x00, 0x00,
};
struct hdmi_v13_tg_regs {
drm/exynos: added hdmi display support This patch is hdmi display support for exynos drm driver. There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv and some low level code is already in s5p-tv and even headers for register define are almost same. but in this patch, we decide not to consider separated common code with s5p-tv. Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc. 1. mixer. The piece of hardware responsible for mixing and blending multiple data inputs before passing it to an output device. The mixer is capable of handling up to three image layers. One is the output of VP. Other two are images in RGB format. The blending factor, and layers' priority are controlled by mixer's registers. The output is passed to HDMI. 2. vp (video processor). It is used for processing of NV12/NV21 data. An image stored in RAM is accessed by DMA. The output in YCbCr444 format is send to mixer. 3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes pixel data from mixer and transforms it into data frames. The output is send to HDMIPHY interface. 4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to HDMI connector. Basically, it contains a PLL that produces source clock for mixer, vp and hdmi. 5. ddc (display data channel). It is dedicated i2c channel to exchange display information as edid with display monitor. With plane support, exynos hdmi driver fully supports two mixer layes and vp layer. Also vp layer supports multi buffer plane pixel formats having non contigus memory spaces. In exynos drm driver, common drm_hdmi driver to interface with drm framework has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls them. mixer controls all overlay layers in both mixer and vp. Vblank interrupts for hdmi are handled by mixer internally because drm framework cannot support multiple irq id. And pipe number is used to check which display device irq happens. History v2: this version - drm plane feature support to handle overlay layers. - multi buffer plane pixel format support for vp layer. - vp layer support RFCv1: original - at https://lkml.org/lkml/2011/11/4/164 Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com> Signed-off-by: Inki Dae <inki.dae@samsung.com> Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com> Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 15:39:39 +07:00
u8 cmd;
u8 h_fsz_l;
u8 h_fsz_h;
u8 hact_st_l;
u8 hact_st_h;
u8 hact_sz_l;
u8 hact_sz_h;
u8 v_fsz_l;
u8 v_fsz_h;
u8 vsync_l;
u8 vsync_h;
u8 vsync2_l;
u8 vsync2_h;
u8 vact_st_l;
u8 vact_st_h;
u8 vact_sz_l;
u8 vact_sz_h;
u8 field_chg_l;
u8 field_chg_h;
u8 vact_st2_l;
u8 vact_st2_h;
u8 vsync_top_hdmi_l;
u8 vsync_top_hdmi_h;
u8 vsync_bot_hdmi_l;
u8 vsync_bot_hdmi_h;
u8 field_top_hdmi_l;
u8 field_top_hdmi_h;
u8 field_bot_hdmi_l;
u8 field_bot_hdmi_h;
};
struct hdmi_v13_core_regs {
drm/exynos: added hdmi display support This patch is hdmi display support for exynos drm driver. There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv and some low level code is already in s5p-tv and even headers for register define are almost same. but in this patch, we decide not to consider separated common code with s5p-tv. Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc. 1. mixer. The piece of hardware responsible for mixing and blending multiple data inputs before passing it to an output device. The mixer is capable of handling up to three image layers. One is the output of VP. Other two are images in RGB format. The blending factor, and layers' priority are controlled by mixer's registers. The output is passed to HDMI. 2. vp (video processor). It is used for processing of NV12/NV21 data. An image stored in RAM is accessed by DMA. The output in YCbCr444 format is send to mixer. 3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes pixel data from mixer and transforms it into data frames. The output is send to HDMIPHY interface. 4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to HDMI connector. Basically, it contains a PLL that produces source clock for mixer, vp and hdmi. 5. ddc (display data channel). It is dedicated i2c channel to exchange display information as edid with display monitor. With plane support, exynos hdmi driver fully supports two mixer layes and vp layer. Also vp layer supports multi buffer plane pixel formats having non contigus memory spaces. In exynos drm driver, common drm_hdmi driver to interface with drm framework has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls them. mixer controls all overlay layers in both mixer and vp. Vblank interrupts for hdmi are handled by mixer internally because drm framework cannot support multiple irq id. And pipe number is used to check which display device irq happens. History v2: this version - drm plane feature support to handle overlay layers. - multi buffer plane pixel format support for vp layer. - vp layer support RFCv1: original - at https://lkml.org/lkml/2011/11/4/164 Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com> Signed-off-by: Inki Dae <inki.dae@samsung.com> Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com> Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 15:39:39 +07:00
u8 h_blank[2];
u8 v_blank[3];
u8 h_v_line[3];
u8 vsync_pol[1];
u8 int_pro_mode[1];
u8 v_blank_f[3];
u8 h_sync_gen[3];
u8 v_sync_gen1[3];
u8 v_sync_gen2[3];
u8 v_sync_gen3[3];
};
struct hdmi_v13_preset_conf {
struct hdmi_v13_core_regs core;
struct hdmi_v13_tg_regs tg;
};
struct hdmi_v13_conf {
int width;
int height;
int vrefresh;
bool interlace;
const u8 *hdmiphy_data;
const struct hdmi_v13_preset_conf *conf;
drm/exynos: added hdmi display support This patch is hdmi display support for exynos drm driver. There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv and some low level code is already in s5p-tv and even headers for register define are almost same. but in this patch, we decide not to consider separated common code with s5p-tv. Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc. 1. mixer. The piece of hardware responsible for mixing and blending multiple data inputs before passing it to an output device. The mixer is capable of handling up to three image layers. One is the output of VP. Other two are images in RGB format. The blending factor, and layers' priority are controlled by mixer's registers. The output is passed to HDMI. 2. vp (video processor). It is used for processing of NV12/NV21 data. An image stored in RAM is accessed by DMA. The output in YCbCr444 format is send to mixer. 3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes pixel data from mixer and transforms it into data frames. The output is send to HDMIPHY interface. 4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to HDMI connector. Basically, it contains a PLL that produces source clock for mixer, vp and hdmi. 5. ddc (display data channel). It is dedicated i2c channel to exchange display information as edid with display monitor. With plane support, exynos hdmi driver fully supports two mixer layes and vp layer. Also vp layer supports multi buffer plane pixel formats having non contigus memory spaces. In exynos drm driver, common drm_hdmi driver to interface with drm framework has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls them. mixer controls all overlay layers in both mixer and vp. Vblank interrupts for hdmi are handled by mixer internally because drm framework cannot support multiple irq id. And pipe number is used to check which display device irq happens. History v2: this version - drm plane feature support to handle overlay layers. - multi buffer plane pixel format support for vp layer. - vp layer support RFCv1: original - at https://lkml.org/lkml/2011/11/4/164 Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com> Signed-off-by: Inki Dae <inki.dae@samsung.com> Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com> Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 15:39:39 +07:00
};
static const struct hdmi_v13_preset_conf hdmi_v13_conf_480p = {
drm/exynos: added hdmi display support This patch is hdmi display support for exynos drm driver. There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv and some low level code is already in s5p-tv and even headers for register define are almost same. but in this patch, we decide not to consider separated common code with s5p-tv. Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc. 1. mixer. The piece of hardware responsible for mixing and blending multiple data inputs before passing it to an output device. The mixer is capable of handling up to three image layers. One is the output of VP. Other two are images in RGB format. The blending factor, and layers' priority are controlled by mixer's registers. The output is passed to HDMI. 2. vp (video processor). It is used for processing of NV12/NV21 data. An image stored in RAM is accessed by DMA. The output in YCbCr444 format is send to mixer. 3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes pixel data from mixer and transforms it into data frames. The output is send to HDMIPHY interface. 4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to HDMI connector. Basically, it contains a PLL that produces source clock for mixer, vp and hdmi. 5. ddc (display data channel). It is dedicated i2c channel to exchange display information as edid with display monitor. With plane support, exynos hdmi driver fully supports two mixer layes and vp layer. Also vp layer supports multi buffer plane pixel formats having non contigus memory spaces. In exynos drm driver, common drm_hdmi driver to interface with drm framework has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls them. mixer controls all overlay layers in both mixer and vp. Vblank interrupts for hdmi are handled by mixer internally because drm framework cannot support multiple irq id. And pipe number is used to check which display device irq happens. History v2: this version - drm plane feature support to handle overlay layers. - multi buffer plane pixel format support for vp layer. - vp layer support RFCv1: original - at https://lkml.org/lkml/2011/11/4/164 Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com> Signed-off-by: Inki Dae <inki.dae@samsung.com> Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com> Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 15:39:39 +07:00
.core = {
.h_blank = {0x8a, 0x00},
.v_blank = {0x0d, 0x6a, 0x01},
.h_v_line = {0x0d, 0xa2, 0x35},
.vsync_pol = {0x01},
.int_pro_mode = {0x00},
.v_blank_f = {0x00, 0x00, 0x00},
.h_sync_gen = {0x0e, 0x30, 0x11},
.v_sync_gen1 = {0x0f, 0x90, 0x00},
/* other don't care */
},
.tg = {
0x00, /* cmd */
0x5a, 0x03, /* h_fsz */
0x8a, 0x00, 0xd0, 0x02, /* hact */
0x0d, 0x02, /* v_fsz */
0x01, 0x00, 0x33, 0x02, /* vsync */
0x2d, 0x00, 0xe0, 0x01, /* vact */
0x33, 0x02, /* field_chg */
0x49, 0x02, /* vact_st2 */
0x01, 0x00, 0x33, 0x02, /* vsync top/bot */
0x01, 0x00, 0x33, 0x02, /* field top/bot */
},
};
static const struct hdmi_v13_preset_conf hdmi_v13_conf_720p60 = {
drm/exynos: added hdmi display support This patch is hdmi display support for exynos drm driver. There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv and some low level code is already in s5p-tv and even headers for register define are almost same. but in this patch, we decide not to consider separated common code with s5p-tv. Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc. 1. mixer. The piece of hardware responsible for mixing and blending multiple data inputs before passing it to an output device. The mixer is capable of handling up to three image layers. One is the output of VP. Other two are images in RGB format. The blending factor, and layers' priority are controlled by mixer's registers. The output is passed to HDMI. 2. vp (video processor). It is used for processing of NV12/NV21 data. An image stored in RAM is accessed by DMA. The output in YCbCr444 format is send to mixer. 3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes pixel data from mixer and transforms it into data frames. The output is send to HDMIPHY interface. 4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to HDMI connector. Basically, it contains a PLL that produces source clock for mixer, vp and hdmi. 5. ddc (display data channel). It is dedicated i2c channel to exchange display information as edid with display monitor. With plane support, exynos hdmi driver fully supports two mixer layes and vp layer. Also vp layer supports multi buffer plane pixel formats having non contigus memory spaces. In exynos drm driver, common drm_hdmi driver to interface with drm framework has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls them. mixer controls all overlay layers in both mixer and vp. Vblank interrupts for hdmi are handled by mixer internally because drm framework cannot support multiple irq id. And pipe number is used to check which display device irq happens. History v2: this version - drm plane feature support to handle overlay layers. - multi buffer plane pixel format support for vp layer. - vp layer support RFCv1: original - at https://lkml.org/lkml/2011/11/4/164 Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com> Signed-off-by: Inki Dae <inki.dae@samsung.com> Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com> Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 15:39:39 +07:00
.core = {
.h_blank = {0x72, 0x01},
.v_blank = {0xee, 0xf2, 0x00},
.h_v_line = {0xee, 0x22, 0x67},
.vsync_pol = {0x00},
.int_pro_mode = {0x00},
.v_blank_f = {0x00, 0x00, 0x00}, /* don't care */
.h_sync_gen = {0x6c, 0x50, 0x02},
.v_sync_gen1 = {0x0a, 0x50, 0x00},
.v_sync_gen2 = {0x01, 0x10, 0x00},
.v_sync_gen3 = {0x01, 0x10, 0x00},
/* other don't care */
},
.tg = {
0x00, /* cmd */
0x72, 0x06, /* h_fsz */
0x71, 0x01, 0x01, 0x05, /* hact */
0xee, 0x02, /* v_fsz */
0x01, 0x00, 0x33, 0x02, /* vsync */
0x1e, 0x00, 0xd0, 0x02, /* vact */
0x33, 0x02, /* field_chg */
0x49, 0x02, /* vact_st2 */
0x01, 0x00, 0x01, 0x00, /* vsync top/bot */
0x01, 0x00, 0x33, 0x02, /* field top/bot */
},
};
static const struct hdmi_v13_preset_conf hdmi_v13_conf_1080i50 = {
drm/exynos: added hdmi display support This patch is hdmi display support for exynos drm driver. There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv and some low level code is already in s5p-tv and even headers for register define are almost same. but in this patch, we decide not to consider separated common code with s5p-tv. Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc. 1. mixer. The piece of hardware responsible for mixing and blending multiple data inputs before passing it to an output device. The mixer is capable of handling up to three image layers. One is the output of VP. Other two are images in RGB format. The blending factor, and layers' priority are controlled by mixer's registers. The output is passed to HDMI. 2. vp (video processor). It is used for processing of NV12/NV21 data. An image stored in RAM is accessed by DMA. The output in YCbCr444 format is send to mixer. 3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes pixel data from mixer and transforms it into data frames. The output is send to HDMIPHY interface. 4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to HDMI connector. Basically, it contains a PLL that produces source clock for mixer, vp and hdmi. 5. ddc (display data channel). It is dedicated i2c channel to exchange display information as edid with display monitor. With plane support, exynos hdmi driver fully supports two mixer layes and vp layer. Also vp layer supports multi buffer plane pixel formats having non contigus memory spaces. In exynos drm driver, common drm_hdmi driver to interface with drm framework has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls them. mixer controls all overlay layers in both mixer and vp. Vblank interrupts for hdmi are handled by mixer internally because drm framework cannot support multiple irq id. And pipe number is used to check which display device irq happens. History v2: this version - drm plane feature support to handle overlay layers. - multi buffer plane pixel format support for vp layer. - vp layer support RFCv1: original - at https://lkml.org/lkml/2011/11/4/164 Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com> Signed-off-by: Inki Dae <inki.dae@samsung.com> Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com> Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 15:39:39 +07:00
.core = {
.h_blank = {0xd0, 0x02},
.v_blank = {0x32, 0xB2, 0x00},
.h_v_line = {0x65, 0x04, 0xa5},
.vsync_pol = {0x00},
.int_pro_mode = {0x01},
.v_blank_f = {0x49, 0x2A, 0x23},
.h_sync_gen = {0x0E, 0xEA, 0x08},
.v_sync_gen1 = {0x07, 0x20, 0x00},
.v_sync_gen2 = {0x39, 0x42, 0x23},
.v_sync_gen3 = {0x38, 0x87, 0x73},
/* other don't care */
},
.tg = {
0x00, /* cmd */
0x50, 0x0A, /* h_fsz */
0xCF, 0x02, 0x81, 0x07, /* hact */
0x65, 0x04, /* v_fsz */
0x01, 0x00, 0x33, 0x02, /* vsync */
0x16, 0x00, 0x1c, 0x02, /* vact */
0x33, 0x02, /* field_chg */
0x49, 0x02, /* vact_st2 */
0x01, 0x00, 0x33, 0x02, /* vsync top/bot */
0x01, 0x00, 0x33, 0x02, /* field top/bot */
},
};
static const struct hdmi_v13_preset_conf hdmi_v13_conf_1080p50 = {
drm/exynos: added hdmi display support This patch is hdmi display support for exynos drm driver. There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv and some low level code is already in s5p-tv and even headers for register define are almost same. but in this patch, we decide not to consider separated common code with s5p-tv. Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc. 1. mixer. The piece of hardware responsible for mixing and blending multiple data inputs before passing it to an output device. The mixer is capable of handling up to three image layers. One is the output of VP. Other two are images in RGB format. The blending factor, and layers' priority are controlled by mixer's registers. The output is passed to HDMI. 2. vp (video processor). It is used for processing of NV12/NV21 data. An image stored in RAM is accessed by DMA. The output in YCbCr444 format is send to mixer. 3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes pixel data from mixer and transforms it into data frames. The output is send to HDMIPHY interface. 4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to HDMI connector. Basically, it contains a PLL that produces source clock for mixer, vp and hdmi. 5. ddc (display data channel). It is dedicated i2c channel to exchange display information as edid with display monitor. With plane support, exynos hdmi driver fully supports two mixer layes and vp layer. Also vp layer supports multi buffer plane pixel formats having non contigus memory spaces. In exynos drm driver, common drm_hdmi driver to interface with drm framework has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls them. mixer controls all overlay layers in both mixer and vp. Vblank interrupts for hdmi are handled by mixer internally because drm framework cannot support multiple irq id. And pipe number is used to check which display device irq happens. History v2: this version - drm plane feature support to handle overlay layers. - multi buffer plane pixel format support for vp layer. - vp layer support RFCv1: original - at https://lkml.org/lkml/2011/11/4/164 Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com> Signed-off-by: Inki Dae <inki.dae@samsung.com> Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com> Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 15:39:39 +07:00
.core = {
.h_blank = {0xd0, 0x02},
.v_blank = {0x65, 0x6c, 0x01},
.h_v_line = {0x65, 0x04, 0xa5},
.vsync_pol = {0x00},
.int_pro_mode = {0x00},
.v_blank_f = {0x00, 0x00, 0x00}, /* don't care */
.h_sync_gen = {0x0e, 0xea, 0x08},
.v_sync_gen1 = {0x09, 0x40, 0x00},
.v_sync_gen2 = {0x01, 0x10, 0x00},
.v_sync_gen3 = {0x01, 0x10, 0x00},
/* other don't care */
},
.tg = {
0x00, /* cmd */
0x50, 0x0A, /* h_fsz */
0xCF, 0x02, 0x81, 0x07, /* hact */
0x65, 0x04, /* v_fsz */
0x01, 0x00, 0x33, 0x02, /* vsync */
0x2d, 0x00, 0x38, 0x04, /* vact */
0x33, 0x02, /* field_chg */
0x48, 0x02, /* vact_st2 */
0x01, 0x00, 0x01, 0x00, /* vsync top/bot */
0x01, 0x00, 0x33, 0x02, /* field top/bot */
},
};
static const struct hdmi_v13_preset_conf hdmi_v13_conf_1080i60 = {
drm/exynos: added hdmi display support This patch is hdmi display support for exynos drm driver. There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv and some low level code is already in s5p-tv and even headers for register define are almost same. but in this patch, we decide not to consider separated common code with s5p-tv. Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc. 1. mixer. The piece of hardware responsible for mixing and blending multiple data inputs before passing it to an output device. The mixer is capable of handling up to three image layers. One is the output of VP. Other two are images in RGB format. The blending factor, and layers' priority are controlled by mixer's registers. The output is passed to HDMI. 2. vp (video processor). It is used for processing of NV12/NV21 data. An image stored in RAM is accessed by DMA. The output in YCbCr444 format is send to mixer. 3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes pixel data from mixer and transforms it into data frames. The output is send to HDMIPHY interface. 4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to HDMI connector. Basically, it contains a PLL that produces source clock for mixer, vp and hdmi. 5. ddc (display data channel). It is dedicated i2c channel to exchange display information as edid with display monitor. With plane support, exynos hdmi driver fully supports two mixer layes and vp layer. Also vp layer supports multi buffer plane pixel formats having non contigus memory spaces. In exynos drm driver, common drm_hdmi driver to interface with drm framework has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls them. mixer controls all overlay layers in both mixer and vp. Vblank interrupts for hdmi are handled by mixer internally because drm framework cannot support multiple irq id. And pipe number is used to check which display device irq happens. History v2: this version - drm plane feature support to handle overlay layers. - multi buffer plane pixel format support for vp layer. - vp layer support RFCv1: original - at https://lkml.org/lkml/2011/11/4/164 Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com> Signed-off-by: Inki Dae <inki.dae@samsung.com> Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com> Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 15:39:39 +07:00
.core = {
.h_blank = {0x18, 0x01},
.v_blank = {0x32, 0xB2, 0x00},
.h_v_line = {0x65, 0x84, 0x89},
.vsync_pol = {0x00},
.int_pro_mode = {0x01},
.v_blank_f = {0x49, 0x2A, 0x23},
.h_sync_gen = {0x56, 0x08, 0x02},
.v_sync_gen1 = {0x07, 0x20, 0x00},
.v_sync_gen2 = {0x39, 0x42, 0x23},
.v_sync_gen3 = {0xa4, 0x44, 0x4a},
/* other don't care */
},
.tg = {
0x00, /* cmd */
0x98, 0x08, /* h_fsz */
0x17, 0x01, 0x81, 0x07, /* hact */
0x65, 0x04, /* v_fsz */
0x01, 0x00, 0x33, 0x02, /* vsync */
0x16, 0x00, 0x1c, 0x02, /* vact */
0x33, 0x02, /* field_chg */
0x49, 0x02, /* vact_st2 */
0x01, 0x00, 0x33, 0x02, /* vsync top/bot */
0x01, 0x00, 0x33, 0x02, /* field top/bot */
},
};
static const struct hdmi_v13_preset_conf hdmi_v13_conf_1080p60 = {
drm/exynos: added hdmi display support This patch is hdmi display support for exynos drm driver. There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv and some low level code is already in s5p-tv and even headers for register define are almost same. but in this patch, we decide not to consider separated common code with s5p-tv. Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc. 1. mixer. The piece of hardware responsible for mixing and blending multiple data inputs before passing it to an output device. The mixer is capable of handling up to three image layers. One is the output of VP. Other two are images in RGB format. The blending factor, and layers' priority are controlled by mixer's registers. The output is passed to HDMI. 2. vp (video processor). It is used for processing of NV12/NV21 data. An image stored in RAM is accessed by DMA. The output in YCbCr444 format is send to mixer. 3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes pixel data from mixer and transforms it into data frames. The output is send to HDMIPHY interface. 4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to HDMI connector. Basically, it contains a PLL that produces source clock for mixer, vp and hdmi. 5. ddc (display data channel). It is dedicated i2c channel to exchange display information as edid with display monitor. With plane support, exynos hdmi driver fully supports two mixer layes and vp layer. Also vp layer supports multi buffer plane pixel formats having non contigus memory spaces. In exynos drm driver, common drm_hdmi driver to interface with drm framework has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls them. mixer controls all overlay layers in both mixer and vp. Vblank interrupts for hdmi are handled by mixer internally because drm framework cannot support multiple irq id. And pipe number is used to check which display device irq happens. History v2: this version - drm plane feature support to handle overlay layers. - multi buffer plane pixel format support for vp layer. - vp layer support RFCv1: original - at https://lkml.org/lkml/2011/11/4/164 Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com> Signed-off-by: Inki Dae <inki.dae@samsung.com> Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com> Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 15:39:39 +07:00
.core = {
.h_blank = {0x18, 0x01},
.v_blank = {0x65, 0x6c, 0x01},
.h_v_line = {0x65, 0x84, 0x89},
.vsync_pol = {0x00},
.int_pro_mode = {0x00},
.v_blank_f = {0x00, 0x00, 0x00}, /* don't care */
.h_sync_gen = {0x56, 0x08, 0x02},
.v_sync_gen1 = {0x09, 0x40, 0x00},
.v_sync_gen2 = {0x01, 0x10, 0x00},
.v_sync_gen3 = {0x01, 0x10, 0x00},
/* other don't care */
},
.tg = {
0x00, /* cmd */
0x98, 0x08, /* h_fsz */
0x17, 0x01, 0x81, 0x07, /* hact */
0x65, 0x04, /* v_fsz */
0x01, 0x00, 0x33, 0x02, /* vsync */
0x2d, 0x00, 0x38, 0x04, /* vact */
0x33, 0x02, /* field_chg */
0x48, 0x02, /* vact_st2 */
0x01, 0x00, 0x01, 0x00, /* vsync top/bot */
0x01, 0x00, 0x33, 0x02, /* field top/bot */
},
};
static const struct hdmi_v13_conf hdmi_v13_confs[] = {
{ 1280, 720, 60, false, hdmiphy_v13_conf74_25, &hdmi_v13_conf_720p60 },
{ 1280, 720, 50, false, hdmiphy_v13_conf74_25, &hdmi_v13_conf_720p60 },
{ 720, 480, 60, false, hdmiphy_v13_conf27_027, &hdmi_v13_conf_480p },
{ 1920, 1080, 50, true, hdmiphy_v13_conf74_25, &hdmi_v13_conf_1080i50 },
{ 1920, 1080, 50, false, hdmiphy_v13_conf148_5,
&hdmi_v13_conf_1080p50 },
{ 1920, 1080, 60, true, hdmiphy_v13_conf74_25, &hdmi_v13_conf_1080i60 },
{ 1920, 1080, 60, false, hdmiphy_v13_conf148_5,
&hdmi_v13_conf_1080p60 },
};
/* HDMI Version 1.4 */
static const u8 hdmiphy_conf27_027[32] = {
0x01, 0xd1, 0x2d, 0x72, 0x40, 0x64, 0x12, 0x08,
0x43, 0xa0, 0x0e, 0xd9, 0x45, 0xa0, 0xac, 0x80,
0x08, 0x80, 0x11, 0x04, 0x02, 0x22, 0x44, 0x86,
0x54, 0xe3, 0x24, 0x00, 0x00, 0x00, 0x01, 0x00,
};
static const u8 hdmiphy_conf74_25[32] = {
0x01, 0xd1, 0x1f, 0x10, 0x40, 0x40, 0xf8, 0x08,
0x81, 0xa0, 0xba, 0xd8, 0x45, 0xa0, 0xac, 0x80,
0x3c, 0x80, 0x11, 0x04, 0x02, 0x22, 0x44, 0x86,
0x54, 0xa5, 0x24, 0x01, 0x00, 0x00, 0x01, 0x00,
};
static const u8 hdmiphy_conf148_5[32] = {
0x01, 0xd1, 0x1f, 0x00, 0x40, 0x40, 0xf8, 0x08,
0x81, 0xa0, 0xba, 0xd8, 0x45, 0xa0, 0xac, 0x80,
0x3c, 0x80, 0x11, 0x04, 0x02, 0x22, 0x44, 0x86,
0x54, 0x4b, 0x25, 0x03, 0x00, 0x00, 0x01, 0x00,
};
struct hdmi_tg_regs {
u8 cmd;
u8 h_fsz_l;
u8 h_fsz_h;
u8 hact_st_l;
u8 hact_st_h;
u8 hact_sz_l;
u8 hact_sz_h;
u8 v_fsz_l;
u8 v_fsz_h;
u8 vsync_l;
u8 vsync_h;
u8 vsync2_l;
u8 vsync2_h;
u8 vact_st_l;
u8 vact_st_h;
u8 vact_sz_l;
u8 vact_sz_h;
u8 field_chg_l;
u8 field_chg_h;
u8 vact_st2_l;
u8 vact_st2_h;
u8 vact_st3_l;
u8 vact_st3_h;
u8 vact_st4_l;
u8 vact_st4_h;
u8 vsync_top_hdmi_l;
u8 vsync_top_hdmi_h;
u8 vsync_bot_hdmi_l;
u8 vsync_bot_hdmi_h;
u8 field_top_hdmi_l;
u8 field_top_hdmi_h;
u8 field_bot_hdmi_l;
u8 field_bot_hdmi_h;
u8 tg_3d;
};
struct hdmi_core_regs {
u8 h_blank[2];
u8 v2_blank[2];
u8 v1_blank[2];
u8 v_line[2];
u8 h_line[2];
u8 hsync_pol[1];
u8 vsync_pol[1];
u8 int_pro_mode[1];
u8 v_blank_f0[2];
u8 v_blank_f1[2];
u8 h_sync_start[2];
u8 h_sync_end[2];
u8 v_sync_line_bef_2[2];
u8 v_sync_line_bef_1[2];
u8 v_sync_line_aft_2[2];
u8 v_sync_line_aft_1[2];
u8 v_sync_line_aft_pxl_2[2];
u8 v_sync_line_aft_pxl_1[2];
u8 v_blank_f2[2]; /* for 3D mode */
u8 v_blank_f3[2]; /* for 3D mode */
u8 v_blank_f4[2]; /* for 3D mode */
u8 v_blank_f5[2]; /* for 3D mode */
u8 v_sync_line_aft_3[2];
u8 v_sync_line_aft_4[2];
u8 v_sync_line_aft_5[2];
u8 v_sync_line_aft_6[2];
u8 v_sync_line_aft_pxl_3[2];
u8 v_sync_line_aft_pxl_4[2];
u8 v_sync_line_aft_pxl_5[2];
u8 v_sync_line_aft_pxl_6[2];
u8 vact_space_1[2];
u8 vact_space_2[2];
u8 vact_space_3[2];
u8 vact_space_4[2];
u8 vact_space_5[2];
u8 vact_space_6[2];
};
struct hdmi_preset_conf {
struct hdmi_core_regs core;
struct hdmi_tg_regs tg;
};
struct hdmi_conf {
int width;
int height;
int vrefresh;
bool interlace;
const u8 *hdmiphy_data;
const struct hdmi_preset_conf *conf;
};
static const struct hdmi_preset_conf hdmi_conf_480p60 = {
.core = {
.h_blank = {0x8a, 0x00},
.v2_blank = {0x0d, 0x02},
.v1_blank = {0x2d, 0x00},
.v_line = {0x0d, 0x02},
.h_line = {0x5a, 0x03},
.hsync_pol = {0x01},
.vsync_pol = {0x01},
.int_pro_mode = {0x00},
.v_blank_f0 = {0xff, 0xff},
.v_blank_f1 = {0xff, 0xff},
.h_sync_start = {0x0e, 0x00},
.h_sync_end = {0x4c, 0x00},
.v_sync_line_bef_2 = {0x0f, 0x00},
.v_sync_line_bef_1 = {0x09, 0x00},
.v_sync_line_aft_2 = {0xff, 0xff},
.v_sync_line_aft_1 = {0xff, 0xff},
.v_sync_line_aft_pxl_2 = {0xff, 0xff},
.v_sync_line_aft_pxl_1 = {0xff, 0xff},
.v_blank_f2 = {0xff, 0xff},
.v_blank_f3 = {0xff, 0xff},
.v_blank_f4 = {0xff, 0xff},
.v_blank_f5 = {0xff, 0xff},
.v_sync_line_aft_3 = {0xff, 0xff},
.v_sync_line_aft_4 = {0xff, 0xff},
.v_sync_line_aft_5 = {0xff, 0xff},
.v_sync_line_aft_6 = {0xff, 0xff},
.v_sync_line_aft_pxl_3 = {0xff, 0xff},
.v_sync_line_aft_pxl_4 = {0xff, 0xff},
.v_sync_line_aft_pxl_5 = {0xff, 0xff},
.v_sync_line_aft_pxl_6 = {0xff, 0xff},
.vact_space_1 = {0xff, 0xff},
.vact_space_2 = {0xff, 0xff},
.vact_space_3 = {0xff, 0xff},
.vact_space_4 = {0xff, 0xff},
.vact_space_5 = {0xff, 0xff},
.vact_space_6 = {0xff, 0xff},
/* other don't care */
},
.tg = {
0x00, /* cmd */
0x5a, 0x03, /* h_fsz */
0x8a, 0x00, 0xd0, 0x02, /* hact */
0x0d, 0x02, /* v_fsz */
0x01, 0x00, 0x33, 0x02, /* vsync */
0x2d, 0x00, 0xe0, 0x01, /* vact */
0x33, 0x02, /* field_chg */
0x48, 0x02, /* vact_st2 */
0x00, 0x00, /* vact_st3 */
0x00, 0x00, /* vact_st4 */
0x01, 0x00, 0x01, 0x00, /* vsync top/bot */
0x01, 0x00, 0x33, 0x02, /* field top/bot */
0x00, /* 3d FP */
},
};
static const struct hdmi_preset_conf hdmi_conf_720p50 = {
.core = {
.h_blank = {0xbc, 0x02},
.v2_blank = {0xee, 0x02},
.v1_blank = {0x1e, 0x00},
.v_line = {0xee, 0x02},
.h_line = {0xbc, 0x07},
.hsync_pol = {0x00},
.vsync_pol = {0x00},
.int_pro_mode = {0x00},
.v_blank_f0 = {0xff, 0xff},
.v_blank_f1 = {0xff, 0xff},
.h_sync_start = {0xb6, 0x01},
.h_sync_end = {0xde, 0x01},
.v_sync_line_bef_2 = {0x0a, 0x00},
.v_sync_line_bef_1 = {0x05, 0x00},
.v_sync_line_aft_2 = {0xff, 0xff},
.v_sync_line_aft_1 = {0xff, 0xff},
.v_sync_line_aft_pxl_2 = {0xff, 0xff},
.v_sync_line_aft_pxl_1 = {0xff, 0xff},
.v_blank_f2 = {0xff, 0xff},
.v_blank_f3 = {0xff, 0xff},
.v_blank_f4 = {0xff, 0xff},
.v_blank_f5 = {0xff, 0xff},
.v_sync_line_aft_3 = {0xff, 0xff},
.v_sync_line_aft_4 = {0xff, 0xff},
.v_sync_line_aft_5 = {0xff, 0xff},
.v_sync_line_aft_6 = {0xff, 0xff},
.v_sync_line_aft_pxl_3 = {0xff, 0xff},
.v_sync_line_aft_pxl_4 = {0xff, 0xff},
.v_sync_line_aft_pxl_5 = {0xff, 0xff},
.v_sync_line_aft_pxl_6 = {0xff, 0xff},
.vact_space_1 = {0xff, 0xff},
.vact_space_2 = {0xff, 0xff},
.vact_space_3 = {0xff, 0xff},
.vact_space_4 = {0xff, 0xff},
.vact_space_5 = {0xff, 0xff},
.vact_space_6 = {0xff, 0xff},
/* other don't care */
},
.tg = {
0x00, /* cmd */
0xbc, 0x07, /* h_fsz */
0xbc, 0x02, 0x00, 0x05, /* hact */
0xee, 0x02, /* v_fsz */
0x01, 0x00, 0x33, 0x02, /* vsync */
0x1e, 0x00, 0xd0, 0x02, /* vact */
0x33, 0x02, /* field_chg */
0x48, 0x02, /* vact_st2 */
0x00, 0x00, /* vact_st3 */
0x00, 0x00, /* vact_st4 */
0x01, 0x00, 0x01, 0x00, /* vsync top/bot */
0x01, 0x00, 0x33, 0x02, /* field top/bot */
0x00, /* 3d FP */
},
};
static const struct hdmi_preset_conf hdmi_conf_720p60 = {
.core = {
.h_blank = {0x72, 0x01},
.v2_blank = {0xee, 0x02},
.v1_blank = {0x1e, 0x00},
.v_line = {0xee, 0x02},
.h_line = {0x72, 0x06},
.hsync_pol = {0x00},
.vsync_pol = {0x00},
.int_pro_mode = {0x00},
.v_blank_f0 = {0xff, 0xff},
.v_blank_f1 = {0xff, 0xff},
.h_sync_start = {0x6c, 0x00},
.h_sync_end = {0x94, 0x00},
.v_sync_line_bef_2 = {0x0a, 0x00},
.v_sync_line_bef_1 = {0x05, 0x00},
.v_sync_line_aft_2 = {0xff, 0xff},
.v_sync_line_aft_1 = {0xff, 0xff},
.v_sync_line_aft_pxl_2 = {0xff, 0xff},
.v_sync_line_aft_pxl_1 = {0xff, 0xff},
.v_blank_f2 = {0xff, 0xff},
.v_blank_f3 = {0xff, 0xff},
.v_blank_f4 = {0xff, 0xff},
.v_blank_f5 = {0xff, 0xff},
.v_sync_line_aft_3 = {0xff, 0xff},
.v_sync_line_aft_4 = {0xff, 0xff},
.v_sync_line_aft_5 = {0xff, 0xff},
.v_sync_line_aft_6 = {0xff, 0xff},
.v_sync_line_aft_pxl_3 = {0xff, 0xff},
.v_sync_line_aft_pxl_4 = {0xff, 0xff},
.v_sync_line_aft_pxl_5 = {0xff, 0xff},
.v_sync_line_aft_pxl_6 = {0xff, 0xff},
.vact_space_1 = {0xff, 0xff},
.vact_space_2 = {0xff, 0xff},
.vact_space_3 = {0xff, 0xff},
.vact_space_4 = {0xff, 0xff},
.vact_space_5 = {0xff, 0xff},
.vact_space_6 = {0xff, 0xff},
/* other don't care */
},
.tg = {
0x00, /* cmd */
0x72, 0x06, /* h_fsz */
0x72, 0x01, 0x00, 0x05, /* hact */
0xee, 0x02, /* v_fsz */
0x01, 0x00, 0x33, 0x02, /* vsync */
0x1e, 0x00, 0xd0, 0x02, /* vact */
0x33, 0x02, /* field_chg */
0x48, 0x02, /* vact_st2 */
0x00, 0x00, /* vact_st3 */
0x00, 0x00, /* vact_st4 */
0x01, 0x00, 0x01, 0x00, /* vsync top/bot */
0x01, 0x00, 0x33, 0x02, /* field top/bot */
0x00, /* 3d FP */
},
};
static const struct hdmi_preset_conf hdmi_conf_1080i50 = {
.core = {
.h_blank = {0xd0, 0x02},
.v2_blank = {0x32, 0x02},
.v1_blank = {0x16, 0x00},
.v_line = {0x65, 0x04},
.h_line = {0x50, 0x0a},
.hsync_pol = {0x00},
.vsync_pol = {0x00},
.int_pro_mode = {0x01},
.v_blank_f0 = {0x49, 0x02},
.v_blank_f1 = {0x65, 0x04},
.h_sync_start = {0x0e, 0x02},
.h_sync_end = {0x3a, 0x02},
.v_sync_line_bef_2 = {0x07, 0x00},
.v_sync_line_bef_1 = {0x02, 0x00},
.v_sync_line_aft_2 = {0x39, 0x02},
.v_sync_line_aft_1 = {0x34, 0x02},
.v_sync_line_aft_pxl_2 = {0x38, 0x07},
.v_sync_line_aft_pxl_1 = {0x38, 0x07},
.v_blank_f2 = {0xff, 0xff},
.v_blank_f3 = {0xff, 0xff},
.v_blank_f4 = {0xff, 0xff},
.v_blank_f5 = {0xff, 0xff},
.v_sync_line_aft_3 = {0xff, 0xff},
.v_sync_line_aft_4 = {0xff, 0xff},
.v_sync_line_aft_5 = {0xff, 0xff},
.v_sync_line_aft_6 = {0xff, 0xff},
.v_sync_line_aft_pxl_3 = {0xff, 0xff},
.v_sync_line_aft_pxl_4 = {0xff, 0xff},
.v_sync_line_aft_pxl_5 = {0xff, 0xff},
.v_sync_line_aft_pxl_6 = {0xff, 0xff},
.vact_space_1 = {0xff, 0xff},
.vact_space_2 = {0xff, 0xff},
.vact_space_3 = {0xff, 0xff},
.vact_space_4 = {0xff, 0xff},
.vact_space_5 = {0xff, 0xff},
.vact_space_6 = {0xff, 0xff},
/* other don't care */
},
.tg = {
0x00, /* cmd */
0x50, 0x0a, /* h_fsz */
0xd0, 0x02, 0x80, 0x07, /* hact */
0x65, 0x04, /* v_fsz */
0x01, 0x00, 0x33, 0x02, /* vsync */
0x16, 0x00, 0x1c, 0x02, /* vact */
0x33, 0x02, /* field_chg */
0x49, 0x02, /* vact_st2 */
0x00, 0x00, /* vact_st3 */
0x00, 0x00, /* vact_st4 */
0x01, 0x00, 0x33, 0x02, /* vsync top/bot */
0x01, 0x00, 0x33, 0x02, /* field top/bot */
0x00, /* 3d FP */
},
};
static const struct hdmi_preset_conf hdmi_conf_1080i60 = {
.core = {
.h_blank = {0x18, 0x01},
.v2_blank = {0x32, 0x02},
.v1_blank = {0x16, 0x00},
.v_line = {0x65, 0x04},
.h_line = {0x98, 0x08},
.hsync_pol = {0x00},
.vsync_pol = {0x00},
.int_pro_mode = {0x01},
.v_blank_f0 = {0x49, 0x02},
.v_blank_f1 = {0x65, 0x04},
.h_sync_start = {0x56, 0x00},
.h_sync_end = {0x82, 0x00},
.v_sync_line_bef_2 = {0x07, 0x00},
.v_sync_line_bef_1 = {0x02, 0x00},
.v_sync_line_aft_2 = {0x39, 0x02},
.v_sync_line_aft_1 = {0x34, 0x02},
.v_sync_line_aft_pxl_2 = {0xa4, 0x04},
.v_sync_line_aft_pxl_1 = {0xa4, 0x04},
.v_blank_f2 = {0xff, 0xff},
.v_blank_f3 = {0xff, 0xff},
.v_blank_f4 = {0xff, 0xff},
.v_blank_f5 = {0xff, 0xff},
.v_sync_line_aft_3 = {0xff, 0xff},
.v_sync_line_aft_4 = {0xff, 0xff},
.v_sync_line_aft_5 = {0xff, 0xff},
.v_sync_line_aft_6 = {0xff, 0xff},
.v_sync_line_aft_pxl_3 = {0xff, 0xff},
.v_sync_line_aft_pxl_4 = {0xff, 0xff},
.v_sync_line_aft_pxl_5 = {0xff, 0xff},
.v_sync_line_aft_pxl_6 = {0xff, 0xff},
.vact_space_1 = {0xff, 0xff},
.vact_space_2 = {0xff, 0xff},
.vact_space_3 = {0xff, 0xff},
.vact_space_4 = {0xff, 0xff},
.vact_space_5 = {0xff, 0xff},
.vact_space_6 = {0xff, 0xff},
/* other don't care */
},
.tg = {
0x00, /* cmd */
0x98, 0x08, /* h_fsz */
0x18, 0x01, 0x80, 0x07, /* hact */
0x65, 0x04, /* v_fsz */
0x01, 0x00, 0x33, 0x02, /* vsync */
0x16, 0x00, 0x1c, 0x02, /* vact */
0x33, 0x02, /* field_chg */
0x49, 0x02, /* vact_st2 */
0x00, 0x00, /* vact_st3 */
0x00, 0x00, /* vact_st4 */
0x01, 0x00, 0x33, 0x02, /* vsync top/bot */
0x01, 0x00, 0x33, 0x02, /* field top/bot */
0x00, /* 3d FP */
},
};
static const struct hdmi_preset_conf hdmi_conf_1080p50 = {
.core = {
.h_blank = {0xd0, 0x02},
.v2_blank = {0x65, 0x04},
.v1_blank = {0x2d, 0x00},
.v_line = {0x65, 0x04},
.h_line = {0x50, 0x0a},
.hsync_pol = {0x00},
.vsync_pol = {0x00},
.int_pro_mode = {0x00},
.v_blank_f0 = {0xff, 0xff},
.v_blank_f1 = {0xff, 0xff},
.h_sync_start = {0x0e, 0x02},
.h_sync_end = {0x3a, 0x02},
.v_sync_line_bef_2 = {0x09, 0x00},
.v_sync_line_bef_1 = {0x04, 0x00},
.v_sync_line_aft_2 = {0xff, 0xff},
.v_sync_line_aft_1 = {0xff, 0xff},
.v_sync_line_aft_pxl_2 = {0xff, 0xff},
.v_sync_line_aft_pxl_1 = {0xff, 0xff},
.v_blank_f2 = {0xff, 0xff},
.v_blank_f3 = {0xff, 0xff},
.v_blank_f4 = {0xff, 0xff},
.v_blank_f5 = {0xff, 0xff},
.v_sync_line_aft_3 = {0xff, 0xff},
.v_sync_line_aft_4 = {0xff, 0xff},
.v_sync_line_aft_5 = {0xff, 0xff},
.v_sync_line_aft_6 = {0xff, 0xff},
.v_sync_line_aft_pxl_3 = {0xff, 0xff},
.v_sync_line_aft_pxl_4 = {0xff, 0xff},
.v_sync_line_aft_pxl_5 = {0xff, 0xff},
.v_sync_line_aft_pxl_6 = {0xff, 0xff},
.vact_space_1 = {0xff, 0xff},
.vact_space_2 = {0xff, 0xff},
.vact_space_3 = {0xff, 0xff},
.vact_space_4 = {0xff, 0xff},
.vact_space_5 = {0xff, 0xff},
.vact_space_6 = {0xff, 0xff},
/* other don't care */
},
.tg = {
0x00, /* cmd */
0x50, 0x0a, /* h_fsz */
0xd0, 0x02, 0x80, 0x07, /* hact */
0x65, 0x04, /* v_fsz */
0x01, 0x00, 0x33, 0x02, /* vsync */
0x2d, 0x00, 0x38, 0x04, /* vact */
0x33, 0x02, /* field_chg */
0x48, 0x02, /* vact_st2 */
0x00, 0x00, /* vact_st3 */
0x00, 0x00, /* vact_st4 */
0x01, 0x00, 0x01, 0x00, /* vsync top/bot */
0x01, 0x00, 0x33, 0x02, /* field top/bot */
0x00, /* 3d FP */
},
};
static const struct hdmi_preset_conf hdmi_conf_1080p60 = {
.core = {
.h_blank = {0x18, 0x01},
.v2_blank = {0x65, 0x04},
.v1_blank = {0x2d, 0x00},
.v_line = {0x65, 0x04},
.h_line = {0x98, 0x08},
.hsync_pol = {0x00},
.vsync_pol = {0x00},
.int_pro_mode = {0x00},
.v_blank_f0 = {0xff, 0xff},
.v_blank_f1 = {0xff, 0xff},
.h_sync_start = {0x56, 0x00},
.h_sync_end = {0x82, 0x00},
.v_sync_line_bef_2 = {0x09, 0x00},
.v_sync_line_bef_1 = {0x04, 0x00},
.v_sync_line_aft_2 = {0xff, 0xff},
.v_sync_line_aft_1 = {0xff, 0xff},
.v_sync_line_aft_pxl_2 = {0xff, 0xff},
.v_sync_line_aft_pxl_1 = {0xff, 0xff},
.v_blank_f2 = {0xff, 0xff},
.v_blank_f3 = {0xff, 0xff},
.v_blank_f4 = {0xff, 0xff},
.v_blank_f5 = {0xff, 0xff},
.v_sync_line_aft_3 = {0xff, 0xff},
.v_sync_line_aft_4 = {0xff, 0xff},
.v_sync_line_aft_5 = {0xff, 0xff},
.v_sync_line_aft_6 = {0xff, 0xff},
.v_sync_line_aft_pxl_3 = {0xff, 0xff},
.v_sync_line_aft_pxl_4 = {0xff, 0xff},
.v_sync_line_aft_pxl_5 = {0xff, 0xff},
.v_sync_line_aft_pxl_6 = {0xff, 0xff},
/* other don't care */
},
.tg = {
0x00, /* cmd */
0x98, 0x08, /* h_fsz */
0x18, 0x01, 0x80, 0x07, /* hact */
0x65, 0x04, /* v_fsz */
0x01, 0x00, 0x33, 0x02, /* vsync */
0x2d, 0x00, 0x38, 0x04, /* vact */
0x33, 0x02, /* field_chg */
0x48, 0x02, /* vact_st2 */
0x00, 0x00, /* vact_st3 */
0x00, 0x00, /* vact_st4 */
0x01, 0x00, 0x01, 0x00, /* vsync top/bot */
0x01, 0x00, 0x33, 0x02, /* field top/bot */
0x00, /* 3d FP */
},
};
drm/exynos: added hdmi display support This patch is hdmi display support for exynos drm driver. There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv and some low level code is already in s5p-tv and even headers for register define are almost same. but in this patch, we decide not to consider separated common code with s5p-tv. Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc. 1. mixer. The piece of hardware responsible for mixing and blending multiple data inputs before passing it to an output device. The mixer is capable of handling up to three image layers. One is the output of VP. Other two are images in RGB format. The blending factor, and layers' priority are controlled by mixer's registers. The output is passed to HDMI. 2. vp (video processor). It is used for processing of NV12/NV21 data. An image stored in RAM is accessed by DMA. The output in YCbCr444 format is send to mixer. 3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes pixel data from mixer and transforms it into data frames. The output is send to HDMIPHY interface. 4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to HDMI connector. Basically, it contains a PLL that produces source clock for mixer, vp and hdmi. 5. ddc (display data channel). It is dedicated i2c channel to exchange display information as edid with display monitor. With plane support, exynos hdmi driver fully supports two mixer layes and vp layer. Also vp layer supports multi buffer plane pixel formats having non contigus memory spaces. In exynos drm driver, common drm_hdmi driver to interface with drm framework has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls them. mixer controls all overlay layers in both mixer and vp. Vblank interrupts for hdmi are handled by mixer internally because drm framework cannot support multiple irq id. And pipe number is used to check which display device irq happens. History v2: this version - drm plane feature support to handle overlay layers. - multi buffer plane pixel format support for vp layer. - vp layer support RFCv1: original - at https://lkml.org/lkml/2011/11/4/164 Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com> Signed-off-by: Inki Dae <inki.dae@samsung.com> Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com> Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 15:39:39 +07:00
static const struct hdmi_conf hdmi_confs[] = {
{ 720, 480, 60, false, hdmiphy_conf27_027, &hdmi_conf_480p60 },
{ 1280, 720, 50, false, hdmiphy_conf74_25, &hdmi_conf_720p50 },
drm/exynos: added hdmi display support This patch is hdmi display support for exynos drm driver. There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv and some low level code is already in s5p-tv and even headers for register define are almost same. but in this patch, we decide not to consider separated common code with s5p-tv. Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc. 1. mixer. The piece of hardware responsible for mixing and blending multiple data inputs before passing it to an output device. The mixer is capable of handling up to three image layers. One is the output of VP. Other two are images in RGB format. The blending factor, and layers' priority are controlled by mixer's registers. The output is passed to HDMI. 2. vp (video processor). It is used for processing of NV12/NV21 data. An image stored in RAM is accessed by DMA. The output in YCbCr444 format is send to mixer. 3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes pixel data from mixer and transforms it into data frames. The output is send to HDMIPHY interface. 4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to HDMI connector. Basically, it contains a PLL that produces source clock for mixer, vp and hdmi. 5. ddc (display data channel). It is dedicated i2c channel to exchange display information as edid with display monitor. With plane support, exynos hdmi driver fully supports two mixer layes and vp layer. Also vp layer supports multi buffer plane pixel formats having non contigus memory spaces. In exynos drm driver, common drm_hdmi driver to interface with drm framework has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls them. mixer controls all overlay layers in both mixer and vp. Vblank interrupts for hdmi are handled by mixer internally because drm framework cannot support multiple irq id. And pipe number is used to check which display device irq happens. History v2: this version - drm plane feature support to handle overlay layers. - multi buffer plane pixel format support for vp layer. - vp layer support RFCv1: original - at https://lkml.org/lkml/2011/11/4/164 Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com> Signed-off-by: Inki Dae <inki.dae@samsung.com> Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com> Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 15:39:39 +07:00
{ 1280, 720, 60, false, hdmiphy_conf74_25, &hdmi_conf_720p60 },
{ 1920, 1080, 50, true, hdmiphy_conf74_25, &hdmi_conf_1080i50 },
{ 1920, 1080, 60, true, hdmiphy_conf74_25, &hdmi_conf_1080i60 },
{ 1920, 1080, 50, false, hdmiphy_conf148_5, &hdmi_conf_1080p50 },
drm/exynos: added hdmi display support This patch is hdmi display support for exynos drm driver. There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv and some low level code is already in s5p-tv and even headers for register define are almost same. but in this patch, we decide not to consider separated common code with s5p-tv. Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc. 1. mixer. The piece of hardware responsible for mixing and blending multiple data inputs before passing it to an output device. The mixer is capable of handling up to three image layers. One is the output of VP. Other two are images in RGB format. The blending factor, and layers' priority are controlled by mixer's registers. The output is passed to HDMI. 2. vp (video processor). It is used for processing of NV12/NV21 data. An image stored in RAM is accessed by DMA. The output in YCbCr444 format is send to mixer. 3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes pixel data from mixer and transforms it into data frames. The output is send to HDMIPHY interface. 4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to HDMI connector. Basically, it contains a PLL that produces source clock for mixer, vp and hdmi. 5. ddc (display data channel). It is dedicated i2c channel to exchange display information as edid with display monitor. With plane support, exynos hdmi driver fully supports two mixer layes and vp layer. Also vp layer supports multi buffer plane pixel formats having non contigus memory spaces. In exynos drm driver, common drm_hdmi driver to interface with drm framework has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls them. mixer controls all overlay layers in both mixer and vp. Vblank interrupts for hdmi are handled by mixer internally because drm framework cannot support multiple irq id. And pipe number is used to check which display device irq happens. History v2: this version - drm plane feature support to handle overlay layers. - multi buffer plane pixel format support for vp layer. - vp layer support RFCv1: original - at https://lkml.org/lkml/2011/11/4/164 Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com> Signed-off-by: Inki Dae <inki.dae@samsung.com> Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com> Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 15:39:39 +07:00
{ 1920, 1080, 60, false, hdmiphy_conf148_5, &hdmi_conf_1080p60 },
};
static inline u32 hdmi_reg_read(struct hdmi_context *hdata, u32 reg_id)
{
return readl(hdata->regs + reg_id);
}
static inline void hdmi_reg_writeb(struct hdmi_context *hdata,
u32 reg_id, u8 value)
{
writeb(value, hdata->regs + reg_id);
}
static inline void hdmi_reg_writemask(struct hdmi_context *hdata,
u32 reg_id, u32 value, u32 mask)
{
u32 old = readl(hdata->regs + reg_id);
value = (value & mask) | (old & ~mask);
writel(value, hdata->regs + reg_id);
}
static void hdmi_v13_regs_dump(struct hdmi_context *hdata, char *prefix)
drm/exynos: added hdmi display support This patch is hdmi display support for exynos drm driver. There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv and some low level code is already in s5p-tv and even headers for register define are almost same. but in this patch, we decide not to consider separated common code with s5p-tv. Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc. 1. mixer. The piece of hardware responsible for mixing and blending multiple data inputs before passing it to an output device. The mixer is capable of handling up to three image layers. One is the output of VP. Other two are images in RGB format. The blending factor, and layers' priority are controlled by mixer's registers. The output is passed to HDMI. 2. vp (video processor). It is used for processing of NV12/NV21 data. An image stored in RAM is accessed by DMA. The output in YCbCr444 format is send to mixer. 3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes pixel data from mixer and transforms it into data frames. The output is send to HDMIPHY interface. 4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to HDMI connector. Basically, it contains a PLL that produces source clock for mixer, vp and hdmi. 5. ddc (display data channel). It is dedicated i2c channel to exchange display information as edid with display monitor. With plane support, exynos hdmi driver fully supports two mixer layes and vp layer. Also vp layer supports multi buffer plane pixel formats having non contigus memory spaces. In exynos drm driver, common drm_hdmi driver to interface with drm framework has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls them. mixer controls all overlay layers in both mixer and vp. Vblank interrupts for hdmi are handled by mixer internally because drm framework cannot support multiple irq id. And pipe number is used to check which display device irq happens. History v2: this version - drm plane feature support to handle overlay layers. - multi buffer plane pixel format support for vp layer. - vp layer support RFCv1: original - at https://lkml.org/lkml/2011/11/4/164 Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com> Signed-off-by: Inki Dae <inki.dae@samsung.com> Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com> Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 15:39:39 +07:00
{
#define DUMPREG(reg_id) \
DRM_DEBUG_KMS("%s:" #reg_id " = %08x\n", prefix, \
readl(hdata->regs + reg_id))
DRM_DEBUG_KMS("%s: ---- CONTROL REGISTERS ----\n", prefix);
DUMPREG(HDMI_INTC_FLAG);
DUMPREG(HDMI_INTC_CON);
DUMPREG(HDMI_HPD_STATUS);
DUMPREG(HDMI_V13_PHY_RSTOUT);
DUMPREG(HDMI_V13_PHY_VPLL);
DUMPREG(HDMI_V13_PHY_CMU);
DUMPREG(HDMI_V13_CORE_RSTOUT);
DRM_DEBUG_KMS("%s: ---- CORE REGISTERS ----\n", prefix);
DUMPREG(HDMI_CON_0);
DUMPREG(HDMI_CON_1);
DUMPREG(HDMI_CON_2);
DUMPREG(HDMI_SYS_STATUS);
DUMPREG(HDMI_V13_PHY_STATUS);
DUMPREG(HDMI_STATUS_EN);
DUMPREG(HDMI_HPD);
DUMPREG(HDMI_MODE_SEL);
DUMPREG(HDMI_V13_HPD_GEN);
DUMPREG(HDMI_V13_DC_CONTROL);
DUMPREG(HDMI_V13_VIDEO_PATTERN_GEN);
DRM_DEBUG_KMS("%s: ---- CORE SYNC REGISTERS ----\n", prefix);
DUMPREG(HDMI_H_BLANK_0);
DUMPREG(HDMI_H_BLANK_1);
DUMPREG(HDMI_V13_V_BLANK_0);
DUMPREG(HDMI_V13_V_BLANK_1);
DUMPREG(HDMI_V13_V_BLANK_2);
DUMPREG(HDMI_V13_H_V_LINE_0);
DUMPREG(HDMI_V13_H_V_LINE_1);
DUMPREG(HDMI_V13_H_V_LINE_2);
DUMPREG(HDMI_VSYNC_POL);
DUMPREG(HDMI_INT_PRO_MODE);
DUMPREG(HDMI_V13_V_BLANK_F_0);
DUMPREG(HDMI_V13_V_BLANK_F_1);
DUMPREG(HDMI_V13_V_BLANK_F_2);
DUMPREG(HDMI_V13_H_SYNC_GEN_0);
DUMPREG(HDMI_V13_H_SYNC_GEN_1);
DUMPREG(HDMI_V13_H_SYNC_GEN_2);
DUMPREG(HDMI_V13_V_SYNC_GEN_1_0);
DUMPREG(HDMI_V13_V_SYNC_GEN_1_1);
DUMPREG(HDMI_V13_V_SYNC_GEN_1_2);
DUMPREG(HDMI_V13_V_SYNC_GEN_2_0);
DUMPREG(HDMI_V13_V_SYNC_GEN_2_1);
DUMPREG(HDMI_V13_V_SYNC_GEN_2_2);
DUMPREG(HDMI_V13_V_SYNC_GEN_3_0);
DUMPREG(HDMI_V13_V_SYNC_GEN_3_1);
DUMPREG(HDMI_V13_V_SYNC_GEN_3_2);
DRM_DEBUG_KMS("%s: ---- TG REGISTERS ----\n", prefix);
DUMPREG(HDMI_TG_CMD);
DUMPREG(HDMI_TG_H_FSZ_L);
DUMPREG(HDMI_TG_H_FSZ_H);
DUMPREG(HDMI_TG_HACT_ST_L);
DUMPREG(HDMI_TG_HACT_ST_H);
DUMPREG(HDMI_TG_HACT_SZ_L);
DUMPREG(HDMI_TG_HACT_SZ_H);
DUMPREG(HDMI_TG_V_FSZ_L);
DUMPREG(HDMI_TG_V_FSZ_H);
DUMPREG(HDMI_TG_VSYNC_L);
DUMPREG(HDMI_TG_VSYNC_H);
DUMPREG(HDMI_TG_VSYNC2_L);
DUMPREG(HDMI_TG_VSYNC2_H);
DUMPREG(HDMI_TG_VACT_ST_L);
DUMPREG(HDMI_TG_VACT_ST_H);
DUMPREG(HDMI_TG_VACT_SZ_L);
DUMPREG(HDMI_TG_VACT_SZ_H);
DUMPREG(HDMI_TG_FIELD_CHG_L);
DUMPREG(HDMI_TG_FIELD_CHG_H);
DUMPREG(HDMI_TG_VACT_ST2_L);
DUMPREG(HDMI_TG_VACT_ST2_H);
DUMPREG(HDMI_TG_VSYNC_TOP_HDMI_L);
DUMPREG(HDMI_TG_VSYNC_TOP_HDMI_H);
DUMPREG(HDMI_TG_VSYNC_BOT_HDMI_L);
DUMPREG(HDMI_TG_VSYNC_BOT_HDMI_H);
DUMPREG(HDMI_TG_FIELD_TOP_HDMI_L);
DUMPREG(HDMI_TG_FIELD_TOP_HDMI_H);
DUMPREG(HDMI_TG_FIELD_BOT_HDMI_L);
DUMPREG(HDMI_TG_FIELD_BOT_HDMI_H);
#undef DUMPREG
}
static void hdmi_v14_regs_dump(struct hdmi_context *hdata, char *prefix)
{
int i;
#define DUMPREG(reg_id) \
DRM_DEBUG_KMS("%s:" #reg_id " = %08x\n", prefix, \
readl(hdata->regs + reg_id))
DRM_DEBUG_KMS("%s: ---- CONTROL REGISTERS ----\n", prefix);
DUMPREG(HDMI_INTC_CON);
DUMPREG(HDMI_INTC_FLAG);
DUMPREG(HDMI_HPD_STATUS);
DUMPREG(HDMI_INTC_CON_1);
DUMPREG(HDMI_INTC_FLAG_1);
DUMPREG(HDMI_PHY_STATUS_0);
DUMPREG(HDMI_PHY_STATUS_PLL);
DUMPREG(HDMI_PHY_CON_0);
drm/exynos: added hdmi display support This patch is hdmi display support for exynos drm driver. There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv and some low level code is already in s5p-tv and even headers for register define are almost same. but in this patch, we decide not to consider separated common code with s5p-tv. Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc. 1. mixer. The piece of hardware responsible for mixing and blending multiple data inputs before passing it to an output device. The mixer is capable of handling up to three image layers. One is the output of VP. Other two are images in RGB format. The blending factor, and layers' priority are controlled by mixer's registers. The output is passed to HDMI. 2. vp (video processor). It is used for processing of NV12/NV21 data. An image stored in RAM is accessed by DMA. The output in YCbCr444 format is send to mixer. 3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes pixel data from mixer and transforms it into data frames. The output is send to HDMIPHY interface. 4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to HDMI connector. Basically, it contains a PLL that produces source clock for mixer, vp and hdmi. 5. ddc (display data channel). It is dedicated i2c channel to exchange display information as edid with display monitor. With plane support, exynos hdmi driver fully supports two mixer layes and vp layer. Also vp layer supports multi buffer plane pixel formats having non contigus memory spaces. In exynos drm driver, common drm_hdmi driver to interface with drm framework has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls them. mixer controls all overlay layers in both mixer and vp. Vblank interrupts for hdmi are handled by mixer internally because drm framework cannot support multiple irq id. And pipe number is used to check which display device irq happens. History v2: this version - drm plane feature support to handle overlay layers. - multi buffer plane pixel format support for vp layer. - vp layer support RFCv1: original - at https://lkml.org/lkml/2011/11/4/164 Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com> Signed-off-by: Inki Dae <inki.dae@samsung.com> Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com> Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 15:39:39 +07:00
DUMPREG(HDMI_PHY_RSTOUT);
DUMPREG(HDMI_PHY_VPLL);
DUMPREG(HDMI_PHY_CMU);
DUMPREG(HDMI_CORE_RSTOUT);
DRM_DEBUG_KMS("%s: ---- CORE REGISTERS ----\n", prefix);
DUMPREG(HDMI_CON_0);
DUMPREG(HDMI_CON_1);
DUMPREG(HDMI_CON_2);
DUMPREG(HDMI_SYS_STATUS);
DUMPREG(HDMI_PHY_STATUS_0);
drm/exynos: added hdmi display support This patch is hdmi display support for exynos drm driver. There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv and some low level code is already in s5p-tv and even headers for register define are almost same. but in this patch, we decide not to consider separated common code with s5p-tv. Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc. 1. mixer. The piece of hardware responsible for mixing and blending multiple data inputs before passing it to an output device. The mixer is capable of handling up to three image layers. One is the output of VP. Other two are images in RGB format. The blending factor, and layers' priority are controlled by mixer's registers. The output is passed to HDMI. 2. vp (video processor). It is used for processing of NV12/NV21 data. An image stored in RAM is accessed by DMA. The output in YCbCr444 format is send to mixer. 3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes pixel data from mixer and transforms it into data frames. The output is send to HDMIPHY interface. 4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to HDMI connector. Basically, it contains a PLL that produces source clock for mixer, vp and hdmi. 5. ddc (display data channel). It is dedicated i2c channel to exchange display information as edid with display monitor. With plane support, exynos hdmi driver fully supports two mixer layes and vp layer. Also vp layer supports multi buffer plane pixel formats having non contigus memory spaces. In exynos drm driver, common drm_hdmi driver to interface with drm framework has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls them. mixer controls all overlay layers in both mixer and vp. Vblank interrupts for hdmi are handled by mixer internally because drm framework cannot support multiple irq id. And pipe number is used to check which display device irq happens. History v2: this version - drm plane feature support to handle overlay layers. - multi buffer plane pixel format support for vp layer. - vp layer support RFCv1: original - at https://lkml.org/lkml/2011/11/4/164 Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com> Signed-off-by: Inki Dae <inki.dae@samsung.com> Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com> Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 15:39:39 +07:00
DUMPREG(HDMI_STATUS_EN);
DUMPREG(HDMI_HPD);
DUMPREG(HDMI_MODE_SEL);
DUMPREG(HDMI_ENC_EN);
drm/exynos: added hdmi display support This patch is hdmi display support for exynos drm driver. There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv and some low level code is already in s5p-tv and even headers for register define are almost same. but in this patch, we decide not to consider separated common code with s5p-tv. Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc. 1. mixer. The piece of hardware responsible for mixing and blending multiple data inputs before passing it to an output device. The mixer is capable of handling up to three image layers. One is the output of VP. Other two are images in RGB format. The blending factor, and layers' priority are controlled by mixer's registers. The output is passed to HDMI. 2. vp (video processor). It is used for processing of NV12/NV21 data. An image stored in RAM is accessed by DMA. The output in YCbCr444 format is send to mixer. 3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes pixel data from mixer and transforms it into data frames. The output is send to HDMIPHY interface. 4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to HDMI connector. Basically, it contains a PLL that produces source clock for mixer, vp and hdmi. 5. ddc (display data channel). It is dedicated i2c channel to exchange display information as edid with display monitor. With plane support, exynos hdmi driver fully supports two mixer layes and vp layer. Also vp layer supports multi buffer plane pixel formats having non contigus memory spaces. In exynos drm driver, common drm_hdmi driver to interface with drm framework has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls them. mixer controls all overlay layers in both mixer and vp. Vblank interrupts for hdmi are handled by mixer internally because drm framework cannot support multiple irq id. And pipe number is used to check which display device irq happens. History v2: this version - drm plane feature support to handle overlay layers. - multi buffer plane pixel format support for vp layer. - vp layer support RFCv1: original - at https://lkml.org/lkml/2011/11/4/164 Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com> Signed-off-by: Inki Dae <inki.dae@samsung.com> Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com> Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 15:39:39 +07:00
DUMPREG(HDMI_DC_CONTROL);
DUMPREG(HDMI_VIDEO_PATTERN_GEN);
DRM_DEBUG_KMS("%s: ---- CORE SYNC REGISTERS ----\n", prefix);
DUMPREG(HDMI_H_BLANK_0);
DUMPREG(HDMI_H_BLANK_1);
DUMPREG(HDMI_V2_BLANK_0);
DUMPREG(HDMI_V2_BLANK_1);
DUMPREG(HDMI_V1_BLANK_0);
DUMPREG(HDMI_V1_BLANK_1);
DUMPREG(HDMI_V_LINE_0);
DUMPREG(HDMI_V_LINE_1);
DUMPREG(HDMI_H_LINE_0);
DUMPREG(HDMI_H_LINE_1);
DUMPREG(HDMI_HSYNC_POL);
drm/exynos: added hdmi display support This patch is hdmi display support for exynos drm driver. There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv and some low level code is already in s5p-tv and even headers for register define are almost same. but in this patch, we decide not to consider separated common code with s5p-tv. Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc. 1. mixer. The piece of hardware responsible for mixing and blending multiple data inputs before passing it to an output device. The mixer is capable of handling up to three image layers. One is the output of VP. Other two are images in RGB format. The blending factor, and layers' priority are controlled by mixer's registers. The output is passed to HDMI. 2. vp (video processor). It is used for processing of NV12/NV21 data. An image stored in RAM is accessed by DMA. The output in YCbCr444 format is send to mixer. 3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes pixel data from mixer and transforms it into data frames. The output is send to HDMIPHY interface. 4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to HDMI connector. Basically, it contains a PLL that produces source clock for mixer, vp and hdmi. 5. ddc (display data channel). It is dedicated i2c channel to exchange display information as edid with display monitor. With plane support, exynos hdmi driver fully supports two mixer layes and vp layer. Also vp layer supports multi buffer plane pixel formats having non contigus memory spaces. In exynos drm driver, common drm_hdmi driver to interface with drm framework has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls them. mixer controls all overlay layers in both mixer and vp. Vblank interrupts for hdmi are handled by mixer internally because drm framework cannot support multiple irq id. And pipe number is used to check which display device irq happens. History v2: this version - drm plane feature support to handle overlay layers. - multi buffer plane pixel format support for vp layer. - vp layer support RFCv1: original - at https://lkml.org/lkml/2011/11/4/164 Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com> Signed-off-by: Inki Dae <inki.dae@samsung.com> Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com> Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 15:39:39 +07:00
DUMPREG(HDMI_VSYNC_POL);
DUMPREG(HDMI_INT_PRO_MODE);
DUMPREG(HDMI_V_BLANK_F0_0);
DUMPREG(HDMI_V_BLANK_F0_1);
DUMPREG(HDMI_V_BLANK_F1_0);
DUMPREG(HDMI_V_BLANK_F1_1);
DUMPREG(HDMI_H_SYNC_START_0);
DUMPREG(HDMI_H_SYNC_START_1);
DUMPREG(HDMI_H_SYNC_END_0);
DUMPREG(HDMI_H_SYNC_END_1);
DUMPREG(HDMI_V_SYNC_LINE_BEF_2_0);
DUMPREG(HDMI_V_SYNC_LINE_BEF_2_1);
DUMPREG(HDMI_V_SYNC_LINE_BEF_1_0);
DUMPREG(HDMI_V_SYNC_LINE_BEF_1_1);
DUMPREG(HDMI_V_SYNC_LINE_AFT_2_0);
DUMPREG(HDMI_V_SYNC_LINE_AFT_2_1);
DUMPREG(HDMI_V_SYNC_LINE_AFT_1_0);
DUMPREG(HDMI_V_SYNC_LINE_AFT_1_1);
DUMPREG(HDMI_V_SYNC_LINE_AFT_PXL_2_0);
DUMPREG(HDMI_V_SYNC_LINE_AFT_PXL_2_1);
DUMPREG(HDMI_V_SYNC_LINE_AFT_PXL_1_0);
DUMPREG(HDMI_V_SYNC_LINE_AFT_PXL_1_1);
DUMPREG(HDMI_V_BLANK_F2_0);
DUMPREG(HDMI_V_BLANK_F2_1);
DUMPREG(HDMI_V_BLANK_F3_0);
DUMPREG(HDMI_V_BLANK_F3_1);
DUMPREG(HDMI_V_BLANK_F4_0);
DUMPREG(HDMI_V_BLANK_F4_1);
DUMPREG(HDMI_V_BLANK_F5_0);
DUMPREG(HDMI_V_BLANK_F5_1);
DUMPREG(HDMI_V_SYNC_LINE_AFT_3_0);
DUMPREG(HDMI_V_SYNC_LINE_AFT_3_1);
DUMPREG(HDMI_V_SYNC_LINE_AFT_4_0);
DUMPREG(HDMI_V_SYNC_LINE_AFT_4_1);
DUMPREG(HDMI_V_SYNC_LINE_AFT_5_0);
DUMPREG(HDMI_V_SYNC_LINE_AFT_5_1);
DUMPREG(HDMI_V_SYNC_LINE_AFT_6_0);
DUMPREG(HDMI_V_SYNC_LINE_AFT_6_1);
DUMPREG(HDMI_V_SYNC_LINE_AFT_PXL_3_0);
DUMPREG(HDMI_V_SYNC_LINE_AFT_PXL_3_1);
DUMPREG(HDMI_V_SYNC_LINE_AFT_PXL_4_0);
DUMPREG(HDMI_V_SYNC_LINE_AFT_PXL_4_1);
DUMPREG(HDMI_V_SYNC_LINE_AFT_PXL_5_0);
DUMPREG(HDMI_V_SYNC_LINE_AFT_PXL_5_1);
DUMPREG(HDMI_V_SYNC_LINE_AFT_PXL_6_0);
DUMPREG(HDMI_V_SYNC_LINE_AFT_PXL_6_1);
DUMPREG(HDMI_VACT_SPACE_1_0);
DUMPREG(HDMI_VACT_SPACE_1_1);
DUMPREG(HDMI_VACT_SPACE_2_0);
DUMPREG(HDMI_VACT_SPACE_2_1);
DUMPREG(HDMI_VACT_SPACE_3_0);
DUMPREG(HDMI_VACT_SPACE_3_1);
DUMPREG(HDMI_VACT_SPACE_4_0);
DUMPREG(HDMI_VACT_SPACE_4_1);
DUMPREG(HDMI_VACT_SPACE_5_0);
DUMPREG(HDMI_VACT_SPACE_5_1);
DUMPREG(HDMI_VACT_SPACE_6_0);
DUMPREG(HDMI_VACT_SPACE_6_1);
drm/exynos: added hdmi display support This patch is hdmi display support for exynos drm driver. There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv and some low level code is already in s5p-tv and even headers for register define are almost same. but in this patch, we decide not to consider separated common code with s5p-tv. Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc. 1. mixer. The piece of hardware responsible for mixing and blending multiple data inputs before passing it to an output device. The mixer is capable of handling up to three image layers. One is the output of VP. Other two are images in RGB format. The blending factor, and layers' priority are controlled by mixer's registers. The output is passed to HDMI. 2. vp (video processor). It is used for processing of NV12/NV21 data. An image stored in RAM is accessed by DMA. The output in YCbCr444 format is send to mixer. 3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes pixel data from mixer and transforms it into data frames. The output is send to HDMIPHY interface. 4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to HDMI connector. Basically, it contains a PLL that produces source clock for mixer, vp and hdmi. 5. ddc (display data channel). It is dedicated i2c channel to exchange display information as edid with display monitor. With plane support, exynos hdmi driver fully supports two mixer layes and vp layer. Also vp layer supports multi buffer plane pixel formats having non contigus memory spaces. In exynos drm driver, common drm_hdmi driver to interface with drm framework has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls them. mixer controls all overlay layers in both mixer and vp. Vblank interrupts for hdmi are handled by mixer internally because drm framework cannot support multiple irq id. And pipe number is used to check which display device irq happens. History v2: this version - drm plane feature support to handle overlay layers. - multi buffer plane pixel format support for vp layer. - vp layer support RFCv1: original - at https://lkml.org/lkml/2011/11/4/164 Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com> Signed-off-by: Inki Dae <inki.dae@samsung.com> Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com> Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 15:39:39 +07:00
DRM_DEBUG_KMS("%s: ---- TG REGISTERS ----\n", prefix);
DUMPREG(HDMI_TG_CMD);
DUMPREG(HDMI_TG_H_FSZ_L);
DUMPREG(HDMI_TG_H_FSZ_H);
DUMPREG(HDMI_TG_HACT_ST_L);
DUMPREG(HDMI_TG_HACT_ST_H);
DUMPREG(HDMI_TG_HACT_SZ_L);
DUMPREG(HDMI_TG_HACT_SZ_H);
DUMPREG(HDMI_TG_V_FSZ_L);
DUMPREG(HDMI_TG_V_FSZ_H);
DUMPREG(HDMI_TG_VSYNC_L);
DUMPREG(HDMI_TG_VSYNC_H);
DUMPREG(HDMI_TG_VSYNC2_L);
DUMPREG(HDMI_TG_VSYNC2_H);
DUMPREG(HDMI_TG_VACT_ST_L);
DUMPREG(HDMI_TG_VACT_ST_H);
DUMPREG(HDMI_TG_VACT_SZ_L);
DUMPREG(HDMI_TG_VACT_SZ_H);
DUMPREG(HDMI_TG_FIELD_CHG_L);
DUMPREG(HDMI_TG_FIELD_CHG_H);
DUMPREG(HDMI_TG_VACT_ST2_L);
DUMPREG(HDMI_TG_VACT_ST2_H);
DUMPREG(HDMI_TG_VACT_ST3_L);
DUMPREG(HDMI_TG_VACT_ST3_H);
DUMPREG(HDMI_TG_VACT_ST4_L);
DUMPREG(HDMI_TG_VACT_ST4_H);
drm/exynos: added hdmi display support This patch is hdmi display support for exynos drm driver. There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv and some low level code is already in s5p-tv and even headers for register define are almost same. but in this patch, we decide not to consider separated common code with s5p-tv. Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc. 1. mixer. The piece of hardware responsible for mixing and blending multiple data inputs before passing it to an output device. The mixer is capable of handling up to three image layers. One is the output of VP. Other two are images in RGB format. The blending factor, and layers' priority are controlled by mixer's registers. The output is passed to HDMI. 2. vp (video processor). It is used for processing of NV12/NV21 data. An image stored in RAM is accessed by DMA. The output in YCbCr444 format is send to mixer. 3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes pixel data from mixer and transforms it into data frames. The output is send to HDMIPHY interface. 4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to HDMI connector. Basically, it contains a PLL that produces source clock for mixer, vp and hdmi. 5. ddc (display data channel). It is dedicated i2c channel to exchange display information as edid with display monitor. With plane support, exynos hdmi driver fully supports two mixer layes and vp layer. Also vp layer supports multi buffer plane pixel formats having non contigus memory spaces. In exynos drm driver, common drm_hdmi driver to interface with drm framework has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls them. mixer controls all overlay layers in both mixer and vp. Vblank interrupts for hdmi are handled by mixer internally because drm framework cannot support multiple irq id. And pipe number is used to check which display device irq happens. History v2: this version - drm plane feature support to handle overlay layers. - multi buffer plane pixel format support for vp layer. - vp layer support RFCv1: original - at https://lkml.org/lkml/2011/11/4/164 Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com> Signed-off-by: Inki Dae <inki.dae@samsung.com> Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com> Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 15:39:39 +07:00
DUMPREG(HDMI_TG_VSYNC_TOP_HDMI_L);
DUMPREG(HDMI_TG_VSYNC_TOP_HDMI_H);
DUMPREG(HDMI_TG_VSYNC_BOT_HDMI_L);
DUMPREG(HDMI_TG_VSYNC_BOT_HDMI_H);
DUMPREG(HDMI_TG_FIELD_TOP_HDMI_L);
DUMPREG(HDMI_TG_FIELD_TOP_HDMI_H);
DUMPREG(HDMI_TG_FIELD_BOT_HDMI_L);
DUMPREG(HDMI_TG_FIELD_BOT_HDMI_H);
DUMPREG(HDMI_TG_3D);
DRM_DEBUG_KMS("%s: ---- PACKET REGISTERS ----\n", prefix);
DUMPREG(HDMI_AVI_CON);
DUMPREG(HDMI_AVI_HEADER0);
DUMPREG(HDMI_AVI_HEADER1);
DUMPREG(HDMI_AVI_HEADER2);
DUMPREG(HDMI_AVI_CHECK_SUM);
DUMPREG(HDMI_VSI_CON);
DUMPREG(HDMI_VSI_HEADER0);
DUMPREG(HDMI_VSI_HEADER1);
DUMPREG(HDMI_VSI_HEADER2);
for (i = 0; i < 7; ++i)
DUMPREG(HDMI_VSI_DATA(i));
drm/exynos: added hdmi display support This patch is hdmi display support for exynos drm driver. There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv and some low level code is already in s5p-tv and even headers for register define are almost same. but in this patch, we decide not to consider separated common code with s5p-tv. Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc. 1. mixer. The piece of hardware responsible for mixing and blending multiple data inputs before passing it to an output device. The mixer is capable of handling up to three image layers. One is the output of VP. Other two are images in RGB format. The blending factor, and layers' priority are controlled by mixer's registers. The output is passed to HDMI. 2. vp (video processor). It is used for processing of NV12/NV21 data. An image stored in RAM is accessed by DMA. The output in YCbCr444 format is send to mixer. 3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes pixel data from mixer and transforms it into data frames. The output is send to HDMIPHY interface. 4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to HDMI connector. Basically, it contains a PLL that produces source clock for mixer, vp and hdmi. 5. ddc (display data channel). It is dedicated i2c channel to exchange display information as edid with display monitor. With plane support, exynos hdmi driver fully supports two mixer layes and vp layer. Also vp layer supports multi buffer plane pixel formats having non contigus memory spaces. In exynos drm driver, common drm_hdmi driver to interface with drm framework has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls them. mixer controls all overlay layers in both mixer and vp. Vblank interrupts for hdmi are handled by mixer internally because drm framework cannot support multiple irq id. And pipe number is used to check which display device irq happens. History v2: this version - drm plane feature support to handle overlay layers. - multi buffer plane pixel format support for vp layer. - vp layer support RFCv1: original - at https://lkml.org/lkml/2011/11/4/164 Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com> Signed-off-by: Inki Dae <inki.dae@samsung.com> Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com> Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 15:39:39 +07:00
#undef DUMPREG
}
static void hdmi_regs_dump(struct hdmi_context *hdata, char *prefix)
{
if (hdata->is_v13)
hdmi_v13_regs_dump(hdata, prefix);
else
hdmi_v14_regs_dump(hdata, prefix);
}
static int hdmi_v13_conf_index(struct drm_display_mode *mode)
{
int i;
for (i = 0; i < ARRAY_SIZE(hdmi_v13_confs); ++i)
if (hdmi_v13_confs[i].width == mode->hdisplay &&
hdmi_v13_confs[i].height == mode->vdisplay &&
hdmi_v13_confs[i].vrefresh == mode->vrefresh &&
hdmi_v13_confs[i].interlace ==
((mode->flags & DRM_MODE_FLAG_INTERLACE) ?
true : false))
return i;
return -EINVAL;
}
static int hdmi_v14_conf_index(struct drm_display_mode *mode)
drm/exynos: added hdmi display support This patch is hdmi display support for exynos drm driver. There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv and some low level code is already in s5p-tv and even headers for register define are almost same. but in this patch, we decide not to consider separated common code with s5p-tv. Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc. 1. mixer. The piece of hardware responsible for mixing and blending multiple data inputs before passing it to an output device. The mixer is capable of handling up to three image layers. One is the output of VP. Other two are images in RGB format. The blending factor, and layers' priority are controlled by mixer's registers. The output is passed to HDMI. 2. vp (video processor). It is used for processing of NV12/NV21 data. An image stored in RAM is accessed by DMA. The output in YCbCr444 format is send to mixer. 3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes pixel data from mixer and transforms it into data frames. The output is send to HDMIPHY interface. 4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to HDMI connector. Basically, it contains a PLL that produces source clock for mixer, vp and hdmi. 5. ddc (display data channel). It is dedicated i2c channel to exchange display information as edid with display monitor. With plane support, exynos hdmi driver fully supports two mixer layes and vp layer. Also vp layer supports multi buffer plane pixel formats having non contigus memory spaces. In exynos drm driver, common drm_hdmi driver to interface with drm framework has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls them. mixer controls all overlay layers in both mixer and vp. Vblank interrupts for hdmi are handled by mixer internally because drm framework cannot support multiple irq id. And pipe number is used to check which display device irq happens. History v2: this version - drm plane feature support to handle overlay layers. - multi buffer plane pixel format support for vp layer. - vp layer support RFCv1: original - at https://lkml.org/lkml/2011/11/4/164 Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com> Signed-off-by: Inki Dae <inki.dae@samsung.com> Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com> Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 15:39:39 +07:00
{
int i;
for (i = 0; i < ARRAY_SIZE(hdmi_confs); ++i)
if (hdmi_confs[i].width == mode->hdisplay &&
hdmi_confs[i].height == mode->vdisplay &&
hdmi_confs[i].vrefresh == mode->vrefresh &&
hdmi_confs[i].interlace ==
((mode->flags & DRM_MODE_FLAG_INTERLACE) ?
true : false))
return i;
return -EINVAL;
drm/exynos: added hdmi display support This patch is hdmi display support for exynos drm driver. There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv and some low level code is already in s5p-tv and even headers for register define are almost same. but in this patch, we decide not to consider separated common code with s5p-tv. Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc. 1. mixer. The piece of hardware responsible for mixing and blending multiple data inputs before passing it to an output device. The mixer is capable of handling up to three image layers. One is the output of VP. Other two are images in RGB format. The blending factor, and layers' priority are controlled by mixer's registers. The output is passed to HDMI. 2. vp (video processor). It is used for processing of NV12/NV21 data. An image stored in RAM is accessed by DMA. The output in YCbCr444 format is send to mixer. 3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes pixel data from mixer and transforms it into data frames. The output is send to HDMIPHY interface. 4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to HDMI connector. Basically, it contains a PLL that produces source clock for mixer, vp and hdmi. 5. ddc (display data channel). It is dedicated i2c channel to exchange display information as edid with display monitor. With plane support, exynos hdmi driver fully supports two mixer layes and vp layer. Also vp layer supports multi buffer plane pixel formats having non contigus memory spaces. In exynos drm driver, common drm_hdmi driver to interface with drm framework has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls them. mixer controls all overlay layers in both mixer and vp. Vblank interrupts for hdmi are handled by mixer internally because drm framework cannot support multiple irq id. And pipe number is used to check which display device irq happens. History v2: this version - drm plane feature support to handle overlay layers. - multi buffer plane pixel format support for vp layer. - vp layer support RFCv1: original - at https://lkml.org/lkml/2011/11/4/164 Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com> Signed-off-by: Inki Dae <inki.dae@samsung.com> Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com> Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 15:39:39 +07:00
}
static int hdmi_conf_index(struct hdmi_context *hdata,
struct drm_display_mode *mode)
{
if (hdata->is_v13)
return hdmi_v13_conf_index(mode);
return hdmi_v14_conf_index(mode);
}
drm/exynos: added hdmi display support This patch is hdmi display support for exynos drm driver. There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv and some low level code is already in s5p-tv and even headers for register define are almost same. but in this patch, we decide not to consider separated common code with s5p-tv. Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc. 1. mixer. The piece of hardware responsible for mixing and blending multiple data inputs before passing it to an output device. The mixer is capable of handling up to three image layers. One is the output of VP. Other two are images in RGB format. The blending factor, and layers' priority are controlled by mixer's registers. The output is passed to HDMI. 2. vp (video processor). It is used for processing of NV12/NV21 data. An image stored in RAM is accessed by DMA. The output in YCbCr444 format is send to mixer. 3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes pixel data from mixer and transforms it into data frames. The output is send to HDMIPHY interface. 4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to HDMI connector. Basically, it contains a PLL that produces source clock for mixer, vp and hdmi. 5. ddc (display data channel). It is dedicated i2c channel to exchange display information as edid with display monitor. With plane support, exynos hdmi driver fully supports two mixer layes and vp layer. Also vp layer supports multi buffer plane pixel formats having non contigus memory spaces. In exynos drm driver, common drm_hdmi driver to interface with drm framework has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls them. mixer controls all overlay layers in both mixer and vp. Vblank interrupts for hdmi are handled by mixer internally because drm framework cannot support multiple irq id. And pipe number is used to check which display device irq happens. History v2: this version - drm plane feature support to handle overlay layers. - multi buffer plane pixel format support for vp layer. - vp layer support RFCv1: original - at https://lkml.org/lkml/2011/11/4/164 Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com> Signed-off-by: Inki Dae <inki.dae@samsung.com> Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com> Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 15:39:39 +07:00
static bool hdmi_is_connected(void *ctx)
{
struct hdmi_context *hdata = ctx;
drm/exynos: added hdmi display support This patch is hdmi display support for exynos drm driver. There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv and some low level code is already in s5p-tv and even headers for register define are almost same. but in this patch, we decide not to consider separated common code with s5p-tv. Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc. 1. mixer. The piece of hardware responsible for mixing and blending multiple data inputs before passing it to an output device. The mixer is capable of handling up to three image layers. One is the output of VP. Other two are images in RGB format. The blending factor, and layers' priority are controlled by mixer's registers. The output is passed to HDMI. 2. vp (video processor). It is used for processing of NV12/NV21 data. An image stored in RAM is accessed by DMA. The output in YCbCr444 format is send to mixer. 3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes pixel data from mixer and transforms it into data frames. The output is send to HDMIPHY interface. 4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to HDMI connector. Basically, it contains a PLL that produces source clock for mixer, vp and hdmi. 5. ddc (display data channel). It is dedicated i2c channel to exchange display information as edid with display monitor. With plane support, exynos hdmi driver fully supports two mixer layes and vp layer. Also vp layer supports multi buffer plane pixel formats having non contigus memory spaces. In exynos drm driver, common drm_hdmi driver to interface with drm framework has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls them. mixer controls all overlay layers in both mixer and vp. Vblank interrupts for hdmi are handled by mixer internally because drm framework cannot support multiple irq id. And pipe number is used to check which display device irq happens. History v2: this version - drm plane feature support to handle overlay layers. - multi buffer plane pixel format support for vp layer. - vp layer support RFCv1: original - at https://lkml.org/lkml/2011/11/4/164 Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com> Signed-off-by: Inki Dae <inki.dae@samsung.com> Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com> Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 15:39:39 +07:00
return hdata->hpd;
drm/exynos: added hdmi display support This patch is hdmi display support for exynos drm driver. There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv and some low level code is already in s5p-tv and even headers for register define are almost same. but in this patch, we decide not to consider separated common code with s5p-tv. Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc. 1. mixer. The piece of hardware responsible for mixing and blending multiple data inputs before passing it to an output device. The mixer is capable of handling up to three image layers. One is the output of VP. Other two are images in RGB format. The blending factor, and layers' priority are controlled by mixer's registers. The output is passed to HDMI. 2. vp (video processor). It is used for processing of NV12/NV21 data. An image stored in RAM is accessed by DMA. The output in YCbCr444 format is send to mixer. 3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes pixel data from mixer and transforms it into data frames. The output is send to HDMIPHY interface. 4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to HDMI connector. Basically, it contains a PLL that produces source clock for mixer, vp and hdmi. 5. ddc (display data channel). It is dedicated i2c channel to exchange display information as edid with display monitor. With plane support, exynos hdmi driver fully supports two mixer layes and vp layer. Also vp layer supports multi buffer plane pixel formats having non contigus memory spaces. In exynos drm driver, common drm_hdmi driver to interface with drm framework has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls them. mixer controls all overlay layers in both mixer and vp. Vblank interrupts for hdmi are handled by mixer internally because drm framework cannot support multiple irq id. And pipe number is used to check which display device irq happens. History v2: this version - drm plane feature support to handle overlay layers. - multi buffer plane pixel format support for vp layer. - vp layer support RFCv1: original - at https://lkml.org/lkml/2011/11/4/164 Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com> Signed-off-by: Inki Dae <inki.dae@samsung.com> Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com> Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 15:39:39 +07:00
}
static int hdmi_get_edid(void *ctx, struct drm_connector *connector,
u8 *edid, int len)
{
struct edid *raw_edid;
struct hdmi_context *hdata = ctx;
drm/exynos: added hdmi display support This patch is hdmi display support for exynos drm driver. There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv and some low level code is already in s5p-tv and even headers for register define are almost same. but in this patch, we decide not to consider separated common code with s5p-tv. Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc. 1. mixer. The piece of hardware responsible for mixing and blending multiple data inputs before passing it to an output device. The mixer is capable of handling up to three image layers. One is the output of VP. Other two are images in RGB format. The blending factor, and layers' priority are controlled by mixer's registers. The output is passed to HDMI. 2. vp (video processor). It is used for processing of NV12/NV21 data. An image stored in RAM is accessed by DMA. The output in YCbCr444 format is send to mixer. 3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes pixel data from mixer and transforms it into data frames. The output is send to HDMIPHY interface. 4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to HDMI connector. Basically, it contains a PLL that produces source clock for mixer, vp and hdmi. 5. ddc (display data channel). It is dedicated i2c channel to exchange display information as edid with display monitor. With plane support, exynos hdmi driver fully supports two mixer layes and vp layer. Also vp layer supports multi buffer plane pixel formats having non contigus memory spaces. In exynos drm driver, common drm_hdmi driver to interface with drm framework has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls them. mixer controls all overlay layers in both mixer and vp. Vblank interrupts for hdmi are handled by mixer internally because drm framework cannot support multiple irq id. And pipe number is used to check which display device irq happens. History v2: this version - drm plane feature support to handle overlay layers. - multi buffer plane pixel format support for vp layer. - vp layer support RFCv1: original - at https://lkml.org/lkml/2011/11/4/164 Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com> Signed-off-by: Inki Dae <inki.dae@samsung.com> Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com> Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 15:39:39 +07:00
DRM_DEBUG_KMS("[%d] %s\n", __LINE__, __func__);
if (!hdata->ddc_port)
return -ENODEV;
raw_edid = drm_get_edid(connector, hdata->ddc_port->adapter);
if (raw_edid) {
memcpy(edid, raw_edid, min((1 + raw_edid->extensions)
* EDID_LENGTH, len));
DRM_DEBUG_KMS("width[%d] x height[%d]\n",
raw_edid->width_cm, raw_edid->height_cm);
} else {
return -ENODEV;
}
return 0;
}
static int hdmi_v13_check_timing(struct fb_videomode *check_timing)
drm/exynos: added hdmi display support This patch is hdmi display support for exynos drm driver. There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv and some low level code is already in s5p-tv and even headers for register define are almost same. but in this patch, we decide not to consider separated common code with s5p-tv. Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc. 1. mixer. The piece of hardware responsible for mixing and blending multiple data inputs before passing it to an output device. The mixer is capable of handling up to three image layers. One is the output of VP. Other two are images in RGB format. The blending factor, and layers' priority are controlled by mixer's registers. The output is passed to HDMI. 2. vp (video processor). It is used for processing of NV12/NV21 data. An image stored in RAM is accessed by DMA. The output in YCbCr444 format is send to mixer. 3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes pixel data from mixer and transforms it into data frames. The output is send to HDMIPHY interface. 4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to HDMI connector. Basically, it contains a PLL that produces source clock for mixer, vp and hdmi. 5. ddc (display data channel). It is dedicated i2c channel to exchange display information as edid with display monitor. With plane support, exynos hdmi driver fully supports two mixer layes and vp layer. Also vp layer supports multi buffer plane pixel formats having non contigus memory spaces. In exynos drm driver, common drm_hdmi driver to interface with drm framework has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls them. mixer controls all overlay layers in both mixer and vp. Vblank interrupts for hdmi are handled by mixer internally because drm framework cannot support multiple irq id. And pipe number is used to check which display device irq happens. History v2: this version - drm plane feature support to handle overlay layers. - multi buffer plane pixel format support for vp layer. - vp layer support RFCv1: original - at https://lkml.org/lkml/2011/11/4/164 Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com> Signed-off-by: Inki Dae <inki.dae@samsung.com> Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com> Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 15:39:39 +07:00
{
int i;
DRM_DEBUG_KMS("valid mode : xres=%d, yres=%d, refresh=%d, intl=%d\n",
check_timing->xres, check_timing->yres,
check_timing->refresh, (check_timing->vmode &
FB_VMODE_INTERLACED) ? true : false);
for (i = 0; i < ARRAY_SIZE(hdmi_v13_confs); ++i)
if (hdmi_v13_confs[i].width == check_timing->xres &&
hdmi_v13_confs[i].height == check_timing->yres &&
hdmi_v13_confs[i].vrefresh == check_timing->refresh &&
hdmi_v13_confs[i].interlace ==
((check_timing->vmode & FB_VMODE_INTERLACED) ?
true : false))
return 0;
/* TODO */
drm/exynos: added hdmi display support This patch is hdmi display support for exynos drm driver. There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv and some low level code is already in s5p-tv and even headers for register define are almost same. but in this patch, we decide not to consider separated common code with s5p-tv. Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc. 1. mixer. The piece of hardware responsible for mixing and blending multiple data inputs before passing it to an output device. The mixer is capable of handling up to three image layers. One is the output of VP. Other two are images in RGB format. The blending factor, and layers' priority are controlled by mixer's registers. The output is passed to HDMI. 2. vp (video processor). It is used for processing of NV12/NV21 data. An image stored in RAM is accessed by DMA. The output in YCbCr444 format is send to mixer. 3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes pixel data from mixer and transforms it into data frames. The output is send to HDMIPHY interface. 4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to HDMI connector. Basically, it contains a PLL that produces source clock for mixer, vp and hdmi. 5. ddc (display data channel). It is dedicated i2c channel to exchange display information as edid with display monitor. With plane support, exynos hdmi driver fully supports two mixer layes and vp layer. Also vp layer supports multi buffer plane pixel formats having non contigus memory spaces. In exynos drm driver, common drm_hdmi driver to interface with drm framework has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls them. mixer controls all overlay layers in both mixer and vp. Vblank interrupts for hdmi are handled by mixer internally because drm framework cannot support multiple irq id. And pipe number is used to check which display device irq happens. History v2: this version - drm plane feature support to handle overlay layers. - multi buffer plane pixel format support for vp layer. - vp layer support RFCv1: original - at https://lkml.org/lkml/2011/11/4/164 Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com> Signed-off-by: Inki Dae <inki.dae@samsung.com> Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com> Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 15:39:39 +07:00
return -EINVAL;
}
static int hdmi_v14_check_timing(struct fb_videomode *check_timing)
{
int i;
drm/exynos: added hdmi display support This patch is hdmi display support for exynos drm driver. There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv and some low level code is already in s5p-tv and even headers for register define are almost same. but in this patch, we decide not to consider separated common code with s5p-tv. Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc. 1. mixer. The piece of hardware responsible for mixing and blending multiple data inputs before passing it to an output device. The mixer is capable of handling up to three image layers. One is the output of VP. Other two are images in RGB format. The blending factor, and layers' priority are controlled by mixer's registers. The output is passed to HDMI. 2. vp (video processor). It is used for processing of NV12/NV21 data. An image stored in RAM is accessed by DMA. The output in YCbCr444 format is send to mixer. 3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes pixel data from mixer and transforms it into data frames. The output is send to HDMIPHY interface. 4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to HDMI connector. Basically, it contains a PLL that produces source clock for mixer, vp and hdmi. 5. ddc (display data channel). It is dedicated i2c channel to exchange display information as edid with display monitor. With plane support, exynos hdmi driver fully supports two mixer layes and vp layer. Also vp layer supports multi buffer plane pixel formats having non contigus memory spaces. In exynos drm driver, common drm_hdmi driver to interface with drm framework has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls them. mixer controls all overlay layers in both mixer and vp. Vblank interrupts for hdmi are handled by mixer internally because drm framework cannot support multiple irq id. And pipe number is used to check which display device irq happens. History v2: this version - drm plane feature support to handle overlay layers. - multi buffer plane pixel format support for vp layer. - vp layer support RFCv1: original - at https://lkml.org/lkml/2011/11/4/164 Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com> Signed-off-by: Inki Dae <inki.dae@samsung.com> Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com> Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 15:39:39 +07:00
DRM_DEBUG_KMS("valid mode : xres=%d, yres=%d, refresh=%d, intl=%d\n",
check_timing->xres, check_timing->yres,
check_timing->refresh, (check_timing->vmode &
FB_VMODE_INTERLACED) ? true : false);
for (i = 0; i < ARRAY_SIZE(hdmi_confs); i++)
drm/exynos: added hdmi display support This patch is hdmi display support for exynos drm driver. There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv and some low level code is already in s5p-tv and even headers for register define are almost same. but in this patch, we decide not to consider separated common code with s5p-tv. Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc. 1. mixer. The piece of hardware responsible for mixing and blending multiple data inputs before passing it to an output device. The mixer is capable of handling up to three image layers. One is the output of VP. Other two are images in RGB format. The blending factor, and layers' priority are controlled by mixer's registers. The output is passed to HDMI. 2. vp (video processor). It is used for processing of NV12/NV21 data. An image stored in RAM is accessed by DMA. The output in YCbCr444 format is send to mixer. 3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes pixel data from mixer and transforms it into data frames. The output is send to HDMIPHY interface. 4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to HDMI connector. Basically, it contains a PLL that produces source clock for mixer, vp and hdmi. 5. ddc (display data channel). It is dedicated i2c channel to exchange display information as edid with display monitor. With plane support, exynos hdmi driver fully supports two mixer layes and vp layer. Also vp layer supports multi buffer plane pixel formats having non contigus memory spaces. In exynos drm driver, common drm_hdmi driver to interface with drm framework has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls them. mixer controls all overlay layers in both mixer and vp. Vblank interrupts for hdmi are handled by mixer internally because drm framework cannot support multiple irq id. And pipe number is used to check which display device irq happens. History v2: this version - drm plane feature support to handle overlay layers. - multi buffer plane pixel format support for vp layer. - vp layer support RFCv1: original - at https://lkml.org/lkml/2011/11/4/164 Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com> Signed-off-by: Inki Dae <inki.dae@samsung.com> Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com> Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 15:39:39 +07:00
if (hdmi_confs[i].width == check_timing->xres &&
hdmi_confs[i].height == check_timing->yres &&
hdmi_confs[i].vrefresh == check_timing->refresh &&
hdmi_confs[i].interlace ==
((check_timing->vmode & FB_VMODE_INTERLACED) ?
true : false))
return 0;
/* TODO */
drm/exynos: added hdmi display support This patch is hdmi display support for exynos drm driver. There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv and some low level code is already in s5p-tv and even headers for register define are almost same. but in this patch, we decide not to consider separated common code with s5p-tv. Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc. 1. mixer. The piece of hardware responsible for mixing and blending multiple data inputs before passing it to an output device. The mixer is capable of handling up to three image layers. One is the output of VP. Other two are images in RGB format. The blending factor, and layers' priority are controlled by mixer's registers. The output is passed to HDMI. 2. vp (video processor). It is used for processing of NV12/NV21 data. An image stored in RAM is accessed by DMA. The output in YCbCr444 format is send to mixer. 3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes pixel data from mixer and transforms it into data frames. The output is send to HDMIPHY interface. 4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to HDMI connector. Basically, it contains a PLL that produces source clock for mixer, vp and hdmi. 5. ddc (display data channel). It is dedicated i2c channel to exchange display information as edid with display monitor. With plane support, exynos hdmi driver fully supports two mixer layes and vp layer. Also vp layer supports multi buffer plane pixel formats having non contigus memory spaces. In exynos drm driver, common drm_hdmi driver to interface with drm framework has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls them. mixer controls all overlay layers in both mixer and vp. Vblank interrupts for hdmi are handled by mixer internally because drm framework cannot support multiple irq id. And pipe number is used to check which display device irq happens. History v2: this version - drm plane feature support to handle overlay layers. - multi buffer plane pixel format support for vp layer. - vp layer support RFCv1: original - at https://lkml.org/lkml/2011/11/4/164 Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com> Signed-off-by: Inki Dae <inki.dae@samsung.com> Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com> Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 15:39:39 +07:00
return -EINVAL;
}
static int hdmi_check_timing(void *ctx, void *timing)
{
struct hdmi_context *hdata = ctx;
struct fb_videomode *check_timing = timing;
DRM_DEBUG_KMS("[%d] %s\n", __LINE__, __func__);
DRM_DEBUG_KMS("[%d]x[%d] [%d]Hz [%x]\n", check_timing->xres,
check_timing->yres, check_timing->refresh,
check_timing->vmode);
if (hdata->is_v13)
return hdmi_v13_check_timing(check_timing);
else
return hdmi_v14_check_timing(check_timing);
}
static void hdmi_set_acr(u32 freq, u8 *acr)
{
u32 n, cts;
switch (freq) {
case 32000:
n = 4096;
cts = 27000;
break;
case 44100:
n = 6272;
cts = 30000;
break;
case 88200:
n = 12544;
cts = 30000;
break;
case 176400:
n = 25088;
cts = 30000;
break;
case 48000:
n = 6144;
cts = 27000;
break;
case 96000:
n = 12288;
cts = 27000;
break;
case 192000:
n = 24576;
cts = 27000;
break;
default:
n = 0;
cts = 0;
break;
}
acr[1] = cts >> 16;
acr[2] = cts >> 8 & 0xff;
acr[3] = cts & 0xff;
acr[4] = n >> 16;
acr[5] = n >> 8 & 0xff;
acr[6] = n & 0xff;
}
static void hdmi_reg_acr(struct hdmi_context *hdata, u8 *acr)
{
hdmi_reg_writeb(hdata, HDMI_ACR_N0, acr[6]);
hdmi_reg_writeb(hdata, HDMI_ACR_N1, acr[5]);
hdmi_reg_writeb(hdata, HDMI_ACR_N2, acr[4]);
hdmi_reg_writeb(hdata, HDMI_ACR_MCTS0, acr[3]);
hdmi_reg_writeb(hdata, HDMI_ACR_MCTS1, acr[2]);
hdmi_reg_writeb(hdata, HDMI_ACR_MCTS2, acr[1]);
hdmi_reg_writeb(hdata, HDMI_ACR_CTS0, acr[3]);
hdmi_reg_writeb(hdata, HDMI_ACR_CTS1, acr[2]);
hdmi_reg_writeb(hdata, HDMI_ACR_CTS2, acr[1]);
if (hdata->is_v13)
hdmi_reg_writeb(hdata, HDMI_V13_ACR_CON, 4);
else
hdmi_reg_writeb(hdata, HDMI_ACR_CON, 4);
}
static void hdmi_audio_init(struct hdmi_context *hdata)
{
u32 sample_rate, bits_per_sample, frame_size_code;
u32 data_num, bit_ch, sample_frq;
u32 val;
u8 acr[7];
sample_rate = 44100;
bits_per_sample = 16;
frame_size_code = 0;
switch (bits_per_sample) {
case 20:
data_num = 2;
bit_ch = 1;
break;
case 24:
data_num = 3;
bit_ch = 1;
break;
default:
data_num = 1;
bit_ch = 0;
break;
}
hdmi_set_acr(sample_rate, acr);
hdmi_reg_acr(hdata, acr);
hdmi_reg_writeb(hdata, HDMI_I2S_MUX_CON, HDMI_I2S_IN_DISABLE
| HDMI_I2S_AUD_I2S | HDMI_I2S_CUV_I2S_ENABLE
| HDMI_I2S_MUX_ENABLE);
hdmi_reg_writeb(hdata, HDMI_I2S_MUX_CH, HDMI_I2S_CH0_EN
| HDMI_I2S_CH1_EN | HDMI_I2S_CH2_EN);
hdmi_reg_writeb(hdata, HDMI_I2S_MUX_CUV, HDMI_I2S_CUV_RL_EN);
sample_frq = (sample_rate == 44100) ? 0 :
(sample_rate == 48000) ? 2 :
(sample_rate == 32000) ? 3 :
(sample_rate == 96000) ? 0xa : 0x0;
hdmi_reg_writeb(hdata, HDMI_I2S_CLK_CON, HDMI_I2S_CLK_DIS);
hdmi_reg_writeb(hdata, HDMI_I2S_CLK_CON, HDMI_I2S_CLK_EN);
val = hdmi_reg_read(hdata, HDMI_I2S_DSD_CON) | 0x01;
hdmi_reg_writeb(hdata, HDMI_I2S_DSD_CON, val);
/* Configuration I2S input ports. Configure I2S_PIN_SEL_0~4 */
hdmi_reg_writeb(hdata, HDMI_I2S_PIN_SEL_0, HDMI_I2S_SEL_SCLK(5)
| HDMI_I2S_SEL_LRCK(6));
hdmi_reg_writeb(hdata, HDMI_I2S_PIN_SEL_1, HDMI_I2S_SEL_SDATA1(1)
| HDMI_I2S_SEL_SDATA2(4));
hdmi_reg_writeb(hdata, HDMI_I2S_PIN_SEL_2, HDMI_I2S_SEL_SDATA3(1)
| HDMI_I2S_SEL_SDATA2(2));
hdmi_reg_writeb(hdata, HDMI_I2S_PIN_SEL_3, HDMI_I2S_SEL_DSD(0));
/* I2S_CON_1 & 2 */
hdmi_reg_writeb(hdata, HDMI_I2S_CON_1, HDMI_I2S_SCLK_FALLING_EDGE
| HDMI_I2S_L_CH_LOW_POL);
hdmi_reg_writeb(hdata, HDMI_I2S_CON_2, HDMI_I2S_MSB_FIRST_MODE
| HDMI_I2S_SET_BIT_CH(bit_ch)
| HDMI_I2S_SET_SDATA_BIT(data_num)
| HDMI_I2S_BASIC_FORMAT);
/* Configure register related to CUV information */
hdmi_reg_writeb(hdata, HDMI_I2S_CH_ST_0, HDMI_I2S_CH_STATUS_MODE_0
| HDMI_I2S_2AUD_CH_WITHOUT_PREEMPH
| HDMI_I2S_COPYRIGHT
| HDMI_I2S_LINEAR_PCM
| HDMI_I2S_CONSUMER_FORMAT);
hdmi_reg_writeb(hdata, HDMI_I2S_CH_ST_1, HDMI_I2S_CD_PLAYER);
hdmi_reg_writeb(hdata, HDMI_I2S_CH_ST_2, HDMI_I2S_SET_SOURCE_NUM(0));
hdmi_reg_writeb(hdata, HDMI_I2S_CH_ST_3, HDMI_I2S_CLK_ACCUR_LEVEL_2
| HDMI_I2S_SET_SMP_FREQ(sample_frq));
hdmi_reg_writeb(hdata, HDMI_I2S_CH_ST_4,
HDMI_I2S_ORG_SMP_FREQ_44_1
| HDMI_I2S_WORD_LEN_MAX24_24BITS
| HDMI_I2S_WORD_LEN_MAX_24BITS);
hdmi_reg_writeb(hdata, HDMI_I2S_CH_ST_CON, HDMI_I2S_CH_STATUS_RELOAD);
}
static void hdmi_audio_control(struct hdmi_context *hdata, bool onoff)
{
u32 mod;
mod = hdmi_reg_read(hdata, HDMI_MODE_SEL);
if (mod & HDMI_DVI_MODE_EN)
return;
hdmi_reg_writeb(hdata, HDMI_AUI_CON, onoff ? 2 : 0);
hdmi_reg_writemask(hdata, HDMI_CON_0, onoff ?
HDMI_ASP_EN : HDMI_ASP_DIS, HDMI_ASP_MASK);
}
drm/exynos: added hdmi display support This patch is hdmi display support for exynos drm driver. There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv and some low level code is already in s5p-tv and even headers for register define are almost same. but in this patch, we decide not to consider separated common code with s5p-tv. Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc. 1. mixer. The piece of hardware responsible for mixing and blending multiple data inputs before passing it to an output device. The mixer is capable of handling up to three image layers. One is the output of VP. Other two are images in RGB format. The blending factor, and layers' priority are controlled by mixer's registers. The output is passed to HDMI. 2. vp (video processor). It is used for processing of NV12/NV21 data. An image stored in RAM is accessed by DMA. The output in YCbCr444 format is send to mixer. 3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes pixel data from mixer and transforms it into data frames. The output is send to HDMIPHY interface. 4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to HDMI connector. Basically, it contains a PLL that produces source clock for mixer, vp and hdmi. 5. ddc (display data channel). It is dedicated i2c channel to exchange display information as edid with display monitor. With plane support, exynos hdmi driver fully supports two mixer layes and vp layer. Also vp layer supports multi buffer plane pixel formats having non contigus memory spaces. In exynos drm driver, common drm_hdmi driver to interface with drm framework has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls them. mixer controls all overlay layers in both mixer and vp. Vblank interrupts for hdmi are handled by mixer internally because drm framework cannot support multiple irq id. And pipe number is used to check which display device irq happens. History v2: this version - drm plane feature support to handle overlay layers. - multi buffer plane pixel format support for vp layer. - vp layer support RFCv1: original - at https://lkml.org/lkml/2011/11/4/164 Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com> Signed-off-by: Inki Dae <inki.dae@samsung.com> Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com> Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 15:39:39 +07:00
static void hdmi_conf_reset(struct hdmi_context *hdata)
{
u32 reg;
if (hdata->is_v13)
reg = HDMI_V13_CORE_RSTOUT;
else
reg = HDMI_CORE_RSTOUT;
drm/exynos: added hdmi display support This patch is hdmi display support for exynos drm driver. There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv and some low level code is already in s5p-tv and even headers for register define are almost same. but in this patch, we decide not to consider separated common code with s5p-tv. Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc. 1. mixer. The piece of hardware responsible for mixing and blending multiple data inputs before passing it to an output device. The mixer is capable of handling up to three image layers. One is the output of VP. Other two are images in RGB format. The blending factor, and layers' priority are controlled by mixer's registers. The output is passed to HDMI. 2. vp (video processor). It is used for processing of NV12/NV21 data. An image stored in RAM is accessed by DMA. The output in YCbCr444 format is send to mixer. 3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes pixel data from mixer and transforms it into data frames. The output is send to HDMIPHY interface. 4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to HDMI connector. Basically, it contains a PLL that produces source clock for mixer, vp and hdmi. 5. ddc (display data channel). It is dedicated i2c channel to exchange display information as edid with display monitor. With plane support, exynos hdmi driver fully supports two mixer layes and vp layer. Also vp layer supports multi buffer plane pixel formats having non contigus memory spaces. In exynos drm driver, common drm_hdmi driver to interface with drm framework has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls them. mixer controls all overlay layers in both mixer and vp. Vblank interrupts for hdmi are handled by mixer internally because drm framework cannot support multiple irq id. And pipe number is used to check which display device irq happens. History v2: this version - drm plane feature support to handle overlay layers. - multi buffer plane pixel format support for vp layer. - vp layer support RFCv1: original - at https://lkml.org/lkml/2011/11/4/164 Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com> Signed-off-by: Inki Dae <inki.dae@samsung.com> Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com> Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 15:39:39 +07:00
/* resetting HDMI core */
hdmi_reg_writemask(hdata, reg, 0, HDMI_CORE_SW_RSTOUT);
drm/exynos: added hdmi display support This patch is hdmi display support for exynos drm driver. There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv and some low level code is already in s5p-tv and even headers for register define are almost same. but in this patch, we decide not to consider separated common code with s5p-tv. Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc. 1. mixer. The piece of hardware responsible for mixing and blending multiple data inputs before passing it to an output device. The mixer is capable of handling up to three image layers. One is the output of VP. Other two are images in RGB format. The blending factor, and layers' priority are controlled by mixer's registers. The output is passed to HDMI. 2. vp (video processor). It is used for processing of NV12/NV21 data. An image stored in RAM is accessed by DMA. The output in YCbCr444 format is send to mixer. 3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes pixel data from mixer and transforms it into data frames. The output is send to HDMIPHY interface. 4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to HDMI connector. Basically, it contains a PLL that produces source clock for mixer, vp and hdmi. 5. ddc (display data channel). It is dedicated i2c channel to exchange display information as edid with display monitor. With plane support, exynos hdmi driver fully supports two mixer layes and vp layer. Also vp layer supports multi buffer plane pixel formats having non contigus memory spaces. In exynos drm driver, common drm_hdmi driver to interface with drm framework has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls them. mixer controls all overlay layers in both mixer and vp. Vblank interrupts for hdmi are handled by mixer internally because drm framework cannot support multiple irq id. And pipe number is used to check which display device irq happens. History v2: this version - drm plane feature support to handle overlay layers. - multi buffer plane pixel format support for vp layer. - vp layer support RFCv1: original - at https://lkml.org/lkml/2011/11/4/164 Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com> Signed-off-by: Inki Dae <inki.dae@samsung.com> Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com> Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 15:39:39 +07:00
mdelay(10);
hdmi_reg_writemask(hdata, reg, ~0, HDMI_CORE_SW_RSTOUT);
drm/exynos: added hdmi display support This patch is hdmi display support for exynos drm driver. There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv and some low level code is already in s5p-tv and even headers for register define are almost same. but in this patch, we decide not to consider separated common code with s5p-tv. Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc. 1. mixer. The piece of hardware responsible for mixing and blending multiple data inputs before passing it to an output device. The mixer is capable of handling up to three image layers. One is the output of VP. Other two are images in RGB format. The blending factor, and layers' priority are controlled by mixer's registers. The output is passed to HDMI. 2. vp (video processor). It is used for processing of NV12/NV21 data. An image stored in RAM is accessed by DMA. The output in YCbCr444 format is send to mixer. 3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes pixel data from mixer and transforms it into data frames. The output is send to HDMIPHY interface. 4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to HDMI connector. Basically, it contains a PLL that produces source clock for mixer, vp and hdmi. 5. ddc (display data channel). It is dedicated i2c channel to exchange display information as edid with display monitor. With plane support, exynos hdmi driver fully supports two mixer layes and vp layer. Also vp layer supports multi buffer plane pixel formats having non contigus memory spaces. In exynos drm driver, common drm_hdmi driver to interface with drm framework has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls them. mixer controls all overlay layers in both mixer and vp. Vblank interrupts for hdmi are handled by mixer internally because drm framework cannot support multiple irq id. And pipe number is used to check which display device irq happens. History v2: this version - drm plane feature support to handle overlay layers. - multi buffer plane pixel format support for vp layer. - vp layer support RFCv1: original - at https://lkml.org/lkml/2011/11/4/164 Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com> Signed-off-by: Inki Dae <inki.dae@samsung.com> Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com> Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 15:39:39 +07:00
mdelay(10);
}
static void hdmi_conf_init(struct hdmi_context *hdata)
{
/* enable HPD interrupts */
hdmi_reg_writemask(hdata, HDMI_INTC_CON, 0, HDMI_INTC_EN_GLOBAL |
HDMI_INTC_EN_HPD_PLUG | HDMI_INTC_EN_HPD_UNPLUG);
mdelay(10);
hdmi_reg_writemask(hdata, HDMI_INTC_CON, ~0, HDMI_INTC_EN_GLOBAL |
HDMI_INTC_EN_HPD_PLUG | HDMI_INTC_EN_HPD_UNPLUG);
/* choose HDMI mode */
hdmi_reg_writemask(hdata, HDMI_MODE_SEL,
HDMI_MODE_HDMI_EN, HDMI_MODE_MASK);
/* disable bluescreen */
hdmi_reg_writemask(hdata, HDMI_CON_0, 0, HDMI_BLUE_SCR_EN);
if (hdata->is_v13) {
/* choose bluescreen (fecal) color */
hdmi_reg_writeb(hdata, HDMI_V13_BLUE_SCREEN_0, 0x12);
hdmi_reg_writeb(hdata, HDMI_V13_BLUE_SCREEN_1, 0x34);
hdmi_reg_writeb(hdata, HDMI_V13_BLUE_SCREEN_2, 0x56);
/* enable AVI packet every vsync, fixes purple line problem */
hdmi_reg_writeb(hdata, HDMI_V13_AVI_CON, 0x02);
/* force RGB, look to CEA-861-D, table 7 for more detail */
hdmi_reg_writeb(hdata, HDMI_V13_AVI_BYTE(0), 0 << 5);
hdmi_reg_writemask(hdata, HDMI_CON_1, 0x10 << 5, 0x11 << 5);
hdmi_reg_writeb(hdata, HDMI_V13_SPD_CON, 0x02);
hdmi_reg_writeb(hdata, HDMI_V13_AUI_CON, 0x02);
hdmi_reg_writeb(hdata, HDMI_V13_ACR_CON, 0x04);
} else {
/* enable AVI packet every vsync, fixes purple line problem */
hdmi_reg_writeb(hdata, HDMI_AVI_CON, 0x02);
hdmi_reg_writeb(hdata, HDMI_AVI_BYTE(1), 2 << 5);
hdmi_reg_writemask(hdata, HDMI_CON_1, 2, 3 << 5);
}
drm/exynos: added hdmi display support This patch is hdmi display support for exynos drm driver. There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv and some low level code is already in s5p-tv and even headers for register define are almost same. but in this patch, we decide not to consider separated common code with s5p-tv. Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc. 1. mixer. The piece of hardware responsible for mixing and blending multiple data inputs before passing it to an output device. The mixer is capable of handling up to three image layers. One is the output of VP. Other two are images in RGB format. The blending factor, and layers' priority are controlled by mixer's registers. The output is passed to HDMI. 2. vp (video processor). It is used for processing of NV12/NV21 data. An image stored in RAM is accessed by DMA. The output in YCbCr444 format is send to mixer. 3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes pixel data from mixer and transforms it into data frames. The output is send to HDMIPHY interface. 4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to HDMI connector. Basically, it contains a PLL that produces source clock for mixer, vp and hdmi. 5. ddc (display data channel). It is dedicated i2c channel to exchange display information as edid with display monitor. With plane support, exynos hdmi driver fully supports two mixer layes and vp layer. Also vp layer supports multi buffer plane pixel formats having non contigus memory spaces. In exynos drm driver, common drm_hdmi driver to interface with drm framework has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls them. mixer controls all overlay layers in both mixer and vp. Vblank interrupts for hdmi are handled by mixer internally because drm framework cannot support multiple irq id. And pipe number is used to check which display device irq happens. History v2: this version - drm plane feature support to handle overlay layers. - multi buffer plane pixel format support for vp layer. - vp layer support RFCv1: original - at https://lkml.org/lkml/2011/11/4/164 Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com> Signed-off-by: Inki Dae <inki.dae@samsung.com> Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com> Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 15:39:39 +07:00
}
static void hdmi_v13_timing_apply(struct hdmi_context *hdata)
drm/exynos: added hdmi display support This patch is hdmi display support for exynos drm driver. There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv and some low level code is already in s5p-tv and even headers for register define are almost same. but in this patch, we decide not to consider separated common code with s5p-tv. Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc. 1. mixer. The piece of hardware responsible for mixing and blending multiple data inputs before passing it to an output device. The mixer is capable of handling up to three image layers. One is the output of VP. Other two are images in RGB format. The blending factor, and layers' priority are controlled by mixer's registers. The output is passed to HDMI. 2. vp (video processor). It is used for processing of NV12/NV21 data. An image stored in RAM is accessed by DMA. The output in YCbCr444 format is send to mixer. 3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes pixel data from mixer and transforms it into data frames. The output is send to HDMIPHY interface. 4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to HDMI connector. Basically, it contains a PLL that produces source clock for mixer, vp and hdmi. 5. ddc (display data channel). It is dedicated i2c channel to exchange display information as edid with display monitor. With plane support, exynos hdmi driver fully supports two mixer layes and vp layer. Also vp layer supports multi buffer plane pixel formats having non contigus memory spaces. In exynos drm driver, common drm_hdmi driver to interface with drm framework has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls them. mixer controls all overlay layers in both mixer and vp. Vblank interrupts for hdmi are handled by mixer internally because drm framework cannot support multiple irq id. And pipe number is used to check which display device irq happens. History v2: this version - drm plane feature support to handle overlay layers. - multi buffer plane pixel format support for vp layer. - vp layer support RFCv1: original - at https://lkml.org/lkml/2011/11/4/164 Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com> Signed-off-by: Inki Dae <inki.dae@samsung.com> Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com> Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 15:39:39 +07:00
{
const struct hdmi_v13_preset_conf *conf =
hdmi_v13_confs[hdata->cur_conf].conf;
const struct hdmi_v13_core_regs *core = &conf->core;
const struct hdmi_v13_tg_regs *tg = &conf->tg;
int tries;
/* setting core registers */
hdmi_reg_writeb(hdata, HDMI_H_BLANK_0, core->h_blank[0]);
hdmi_reg_writeb(hdata, HDMI_H_BLANK_1, core->h_blank[1]);
hdmi_reg_writeb(hdata, HDMI_V13_V_BLANK_0, core->v_blank[0]);
hdmi_reg_writeb(hdata, HDMI_V13_V_BLANK_1, core->v_blank[1]);
hdmi_reg_writeb(hdata, HDMI_V13_V_BLANK_2, core->v_blank[2]);
hdmi_reg_writeb(hdata, HDMI_V13_H_V_LINE_0, core->h_v_line[0]);
hdmi_reg_writeb(hdata, HDMI_V13_H_V_LINE_1, core->h_v_line[1]);
hdmi_reg_writeb(hdata, HDMI_V13_H_V_LINE_2, core->h_v_line[2]);
hdmi_reg_writeb(hdata, HDMI_VSYNC_POL, core->vsync_pol[0]);
hdmi_reg_writeb(hdata, HDMI_INT_PRO_MODE, core->int_pro_mode[0]);
hdmi_reg_writeb(hdata, HDMI_V13_V_BLANK_F_0, core->v_blank_f[0]);
hdmi_reg_writeb(hdata, HDMI_V13_V_BLANK_F_1, core->v_blank_f[1]);
hdmi_reg_writeb(hdata, HDMI_V13_V_BLANK_F_2, core->v_blank_f[2]);
hdmi_reg_writeb(hdata, HDMI_V13_H_SYNC_GEN_0, core->h_sync_gen[0]);
hdmi_reg_writeb(hdata, HDMI_V13_H_SYNC_GEN_1, core->h_sync_gen[1]);
hdmi_reg_writeb(hdata, HDMI_V13_H_SYNC_GEN_2, core->h_sync_gen[2]);
hdmi_reg_writeb(hdata, HDMI_V13_V_SYNC_GEN_1_0, core->v_sync_gen1[0]);
hdmi_reg_writeb(hdata, HDMI_V13_V_SYNC_GEN_1_1, core->v_sync_gen1[1]);
hdmi_reg_writeb(hdata, HDMI_V13_V_SYNC_GEN_1_2, core->v_sync_gen1[2]);
hdmi_reg_writeb(hdata, HDMI_V13_V_SYNC_GEN_2_0, core->v_sync_gen2[0]);
hdmi_reg_writeb(hdata, HDMI_V13_V_SYNC_GEN_2_1, core->v_sync_gen2[1]);
hdmi_reg_writeb(hdata, HDMI_V13_V_SYNC_GEN_2_2, core->v_sync_gen2[2]);
hdmi_reg_writeb(hdata, HDMI_V13_V_SYNC_GEN_3_0, core->v_sync_gen3[0]);
hdmi_reg_writeb(hdata, HDMI_V13_V_SYNC_GEN_3_1, core->v_sync_gen3[1]);
hdmi_reg_writeb(hdata, HDMI_V13_V_SYNC_GEN_3_2, core->v_sync_gen3[2]);
/* Timing generator registers */
hdmi_reg_writeb(hdata, HDMI_TG_H_FSZ_L, tg->h_fsz_l);
hdmi_reg_writeb(hdata, HDMI_TG_H_FSZ_H, tg->h_fsz_h);
hdmi_reg_writeb(hdata, HDMI_TG_HACT_ST_L, tg->hact_st_l);
hdmi_reg_writeb(hdata, HDMI_TG_HACT_ST_H, tg->hact_st_h);
hdmi_reg_writeb(hdata, HDMI_TG_HACT_SZ_L, tg->hact_sz_l);
hdmi_reg_writeb(hdata, HDMI_TG_HACT_SZ_H, tg->hact_sz_h);
hdmi_reg_writeb(hdata, HDMI_TG_V_FSZ_L, tg->v_fsz_l);
hdmi_reg_writeb(hdata, HDMI_TG_V_FSZ_H, tg->v_fsz_h);
hdmi_reg_writeb(hdata, HDMI_TG_VSYNC_L, tg->vsync_l);
hdmi_reg_writeb(hdata, HDMI_TG_VSYNC_H, tg->vsync_h);
hdmi_reg_writeb(hdata, HDMI_TG_VSYNC2_L, tg->vsync2_l);
hdmi_reg_writeb(hdata, HDMI_TG_VSYNC2_H, tg->vsync2_h);
hdmi_reg_writeb(hdata, HDMI_TG_VACT_ST_L, tg->vact_st_l);
hdmi_reg_writeb(hdata, HDMI_TG_VACT_ST_H, tg->vact_st_h);
hdmi_reg_writeb(hdata, HDMI_TG_VACT_SZ_L, tg->vact_sz_l);
hdmi_reg_writeb(hdata, HDMI_TG_VACT_SZ_H, tg->vact_sz_h);
hdmi_reg_writeb(hdata, HDMI_TG_FIELD_CHG_L, tg->field_chg_l);
hdmi_reg_writeb(hdata, HDMI_TG_FIELD_CHG_H, tg->field_chg_h);
hdmi_reg_writeb(hdata, HDMI_TG_VACT_ST2_L, tg->vact_st2_l);
hdmi_reg_writeb(hdata, HDMI_TG_VACT_ST2_H, tg->vact_st2_h);
hdmi_reg_writeb(hdata, HDMI_TG_VSYNC_TOP_HDMI_L, tg->vsync_top_hdmi_l);
hdmi_reg_writeb(hdata, HDMI_TG_VSYNC_TOP_HDMI_H, tg->vsync_top_hdmi_h);
hdmi_reg_writeb(hdata, HDMI_TG_VSYNC_BOT_HDMI_L, tg->vsync_bot_hdmi_l);
hdmi_reg_writeb(hdata, HDMI_TG_VSYNC_BOT_HDMI_H, tg->vsync_bot_hdmi_h);
hdmi_reg_writeb(hdata, HDMI_TG_FIELD_TOP_HDMI_L, tg->field_top_hdmi_l);
hdmi_reg_writeb(hdata, HDMI_TG_FIELD_TOP_HDMI_H, tg->field_top_hdmi_h);
hdmi_reg_writeb(hdata, HDMI_TG_FIELD_BOT_HDMI_L, tg->field_bot_hdmi_l);
hdmi_reg_writeb(hdata, HDMI_TG_FIELD_BOT_HDMI_H, tg->field_bot_hdmi_h);
/* waiting for HDMIPHY's PLL to get to steady state */
for (tries = 100; tries; --tries) {
u32 val = hdmi_reg_read(hdata, HDMI_V13_PHY_STATUS);
if (val & HDMI_PHY_STATUS_READY)
break;
mdelay(1);
}
/* steady state not achieved */
if (tries == 0) {
DRM_ERROR("hdmiphy's pll could not reach steady state.\n");
hdmi_regs_dump(hdata, "timing apply");
}
clk_disable(hdata->res.sclk_hdmi);
clk_set_parent(hdata->res.sclk_hdmi, hdata->res.sclk_hdmiphy);
clk_enable(hdata->res.sclk_hdmi);
/* enable HDMI and timing generator */
hdmi_reg_writemask(hdata, HDMI_CON_0, ~0, HDMI_EN);
if (core->int_pro_mode[0])
hdmi_reg_writemask(hdata, HDMI_TG_CMD, ~0, HDMI_TG_EN |
HDMI_FIELD_EN);
else
hdmi_reg_writemask(hdata, HDMI_TG_CMD, ~0, HDMI_TG_EN);
}
static void hdmi_v14_timing_apply(struct hdmi_context *hdata)
{
const struct hdmi_preset_conf *conf = hdmi_confs[hdata->cur_conf].conf;
drm/exynos: added hdmi display support This patch is hdmi display support for exynos drm driver. There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv and some low level code is already in s5p-tv and even headers for register define are almost same. but in this patch, we decide not to consider separated common code with s5p-tv. Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc. 1. mixer. The piece of hardware responsible for mixing and blending multiple data inputs before passing it to an output device. The mixer is capable of handling up to three image layers. One is the output of VP. Other two are images in RGB format. The blending factor, and layers' priority are controlled by mixer's registers. The output is passed to HDMI. 2. vp (video processor). It is used for processing of NV12/NV21 data. An image stored in RAM is accessed by DMA. The output in YCbCr444 format is send to mixer. 3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes pixel data from mixer and transforms it into data frames. The output is send to HDMIPHY interface. 4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to HDMI connector. Basically, it contains a PLL that produces source clock for mixer, vp and hdmi. 5. ddc (display data channel). It is dedicated i2c channel to exchange display information as edid with display monitor. With plane support, exynos hdmi driver fully supports two mixer layes and vp layer. Also vp layer supports multi buffer plane pixel formats having non contigus memory spaces. In exynos drm driver, common drm_hdmi driver to interface with drm framework has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls them. mixer controls all overlay layers in both mixer and vp. Vblank interrupts for hdmi are handled by mixer internally because drm framework cannot support multiple irq id. And pipe number is used to check which display device irq happens. History v2: this version - drm plane feature support to handle overlay layers. - multi buffer plane pixel format support for vp layer. - vp layer support RFCv1: original - at https://lkml.org/lkml/2011/11/4/164 Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com> Signed-off-by: Inki Dae <inki.dae@samsung.com> Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com> Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 15:39:39 +07:00
const struct hdmi_core_regs *core = &conf->core;
const struct hdmi_tg_regs *tg = &conf->tg;
int tries;
/* setting core registers */
hdmi_reg_writeb(hdata, HDMI_H_BLANK_0, core->h_blank[0]);
hdmi_reg_writeb(hdata, HDMI_H_BLANK_1, core->h_blank[1]);
hdmi_reg_writeb(hdata, HDMI_V2_BLANK_0, core->v2_blank[0]);
hdmi_reg_writeb(hdata, HDMI_V2_BLANK_1, core->v2_blank[1]);
hdmi_reg_writeb(hdata, HDMI_V1_BLANK_0, core->v1_blank[0]);
hdmi_reg_writeb(hdata, HDMI_V1_BLANK_1, core->v1_blank[1]);
hdmi_reg_writeb(hdata, HDMI_V_LINE_0, core->v_line[0]);
hdmi_reg_writeb(hdata, HDMI_V_LINE_1, core->v_line[1]);
hdmi_reg_writeb(hdata, HDMI_H_LINE_0, core->h_line[0]);
hdmi_reg_writeb(hdata, HDMI_H_LINE_1, core->h_line[1]);
hdmi_reg_writeb(hdata, HDMI_HSYNC_POL, core->hsync_pol[0]);
drm/exynos: added hdmi display support This patch is hdmi display support for exynos drm driver. There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv and some low level code is already in s5p-tv and even headers for register define are almost same. but in this patch, we decide not to consider separated common code with s5p-tv. Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc. 1. mixer. The piece of hardware responsible for mixing and blending multiple data inputs before passing it to an output device. The mixer is capable of handling up to three image layers. One is the output of VP. Other two are images in RGB format. The blending factor, and layers' priority are controlled by mixer's registers. The output is passed to HDMI. 2. vp (video processor). It is used for processing of NV12/NV21 data. An image stored in RAM is accessed by DMA. The output in YCbCr444 format is send to mixer. 3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes pixel data from mixer and transforms it into data frames. The output is send to HDMIPHY interface. 4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to HDMI connector. Basically, it contains a PLL that produces source clock for mixer, vp and hdmi. 5. ddc (display data channel). It is dedicated i2c channel to exchange display information as edid with display monitor. With plane support, exynos hdmi driver fully supports two mixer layes and vp layer. Also vp layer supports multi buffer plane pixel formats having non contigus memory spaces. In exynos drm driver, common drm_hdmi driver to interface with drm framework has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls them. mixer controls all overlay layers in both mixer and vp. Vblank interrupts for hdmi are handled by mixer internally because drm framework cannot support multiple irq id. And pipe number is used to check which display device irq happens. History v2: this version - drm plane feature support to handle overlay layers. - multi buffer plane pixel format support for vp layer. - vp layer support RFCv1: original - at https://lkml.org/lkml/2011/11/4/164 Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com> Signed-off-by: Inki Dae <inki.dae@samsung.com> Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com> Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 15:39:39 +07:00
hdmi_reg_writeb(hdata, HDMI_VSYNC_POL, core->vsync_pol[0]);
hdmi_reg_writeb(hdata, HDMI_INT_PRO_MODE, core->int_pro_mode[0]);
hdmi_reg_writeb(hdata, HDMI_V_BLANK_F0_0, core->v_blank_f0[0]);
hdmi_reg_writeb(hdata, HDMI_V_BLANK_F0_1, core->v_blank_f0[1]);
hdmi_reg_writeb(hdata, HDMI_V_BLANK_F1_0, core->v_blank_f1[0]);
hdmi_reg_writeb(hdata, HDMI_V_BLANK_F1_1, core->v_blank_f1[1]);
hdmi_reg_writeb(hdata, HDMI_H_SYNC_START_0, core->h_sync_start[0]);
hdmi_reg_writeb(hdata, HDMI_H_SYNC_START_1, core->h_sync_start[1]);
hdmi_reg_writeb(hdata, HDMI_H_SYNC_END_0, core->h_sync_end[0]);
hdmi_reg_writeb(hdata, HDMI_H_SYNC_END_1, core->h_sync_end[1]);
hdmi_reg_writeb(hdata, HDMI_V_SYNC_LINE_BEF_2_0,
core->v_sync_line_bef_2[0]);
hdmi_reg_writeb(hdata, HDMI_V_SYNC_LINE_BEF_2_1,
core->v_sync_line_bef_2[1]);
hdmi_reg_writeb(hdata, HDMI_V_SYNC_LINE_BEF_1_0,
core->v_sync_line_bef_1[0]);
hdmi_reg_writeb(hdata, HDMI_V_SYNC_LINE_BEF_1_1,
core->v_sync_line_bef_1[1]);
hdmi_reg_writeb(hdata, HDMI_V_SYNC_LINE_AFT_2_0,
core->v_sync_line_aft_2[0]);
hdmi_reg_writeb(hdata, HDMI_V_SYNC_LINE_AFT_2_1,
core->v_sync_line_aft_2[1]);
hdmi_reg_writeb(hdata, HDMI_V_SYNC_LINE_AFT_1_0,
core->v_sync_line_aft_1[0]);
hdmi_reg_writeb(hdata, HDMI_V_SYNC_LINE_AFT_1_1,
core->v_sync_line_aft_1[1]);
hdmi_reg_writeb(hdata, HDMI_V_SYNC_LINE_AFT_PXL_2_0,
core->v_sync_line_aft_pxl_2[0]);
hdmi_reg_writeb(hdata, HDMI_V_SYNC_LINE_AFT_PXL_2_1,
core->v_sync_line_aft_pxl_2[1]);
hdmi_reg_writeb(hdata, HDMI_V_SYNC_LINE_AFT_PXL_1_0,
core->v_sync_line_aft_pxl_1[0]);
hdmi_reg_writeb(hdata, HDMI_V_SYNC_LINE_AFT_PXL_1_1,
core->v_sync_line_aft_pxl_1[1]);
hdmi_reg_writeb(hdata, HDMI_V_BLANK_F2_0, core->v_blank_f2[0]);
hdmi_reg_writeb(hdata, HDMI_V_BLANK_F2_1, core->v_blank_f2[1]);
hdmi_reg_writeb(hdata, HDMI_V_BLANK_F3_0, core->v_blank_f3[0]);
hdmi_reg_writeb(hdata, HDMI_V_BLANK_F3_1, core->v_blank_f3[1]);
hdmi_reg_writeb(hdata, HDMI_V_BLANK_F4_0, core->v_blank_f4[0]);
hdmi_reg_writeb(hdata, HDMI_V_BLANK_F4_1, core->v_blank_f4[1]);
hdmi_reg_writeb(hdata, HDMI_V_BLANK_F5_0, core->v_blank_f5[0]);
hdmi_reg_writeb(hdata, HDMI_V_BLANK_F5_1, core->v_blank_f5[1]);
hdmi_reg_writeb(hdata, HDMI_V_SYNC_LINE_AFT_3_0,
core->v_sync_line_aft_3[0]);
hdmi_reg_writeb(hdata, HDMI_V_SYNC_LINE_AFT_3_1,
core->v_sync_line_aft_3[1]);
hdmi_reg_writeb(hdata, HDMI_V_SYNC_LINE_AFT_4_0,
core->v_sync_line_aft_4[0]);
hdmi_reg_writeb(hdata, HDMI_V_SYNC_LINE_AFT_4_1,
core->v_sync_line_aft_4[1]);
hdmi_reg_writeb(hdata, HDMI_V_SYNC_LINE_AFT_5_0,
core->v_sync_line_aft_5[0]);
hdmi_reg_writeb(hdata, HDMI_V_SYNC_LINE_AFT_5_1,
core->v_sync_line_aft_5[1]);
hdmi_reg_writeb(hdata, HDMI_V_SYNC_LINE_AFT_6_0,
core->v_sync_line_aft_6[0]);
hdmi_reg_writeb(hdata, HDMI_V_SYNC_LINE_AFT_6_1,
core->v_sync_line_aft_6[1]);
hdmi_reg_writeb(hdata, HDMI_V_SYNC_LINE_AFT_PXL_3_0,
core->v_sync_line_aft_pxl_3[0]);
hdmi_reg_writeb(hdata, HDMI_V_SYNC_LINE_AFT_PXL_3_1,
core->v_sync_line_aft_pxl_3[1]);
hdmi_reg_writeb(hdata, HDMI_V_SYNC_LINE_AFT_PXL_4_0,
core->v_sync_line_aft_pxl_4[0]);
hdmi_reg_writeb(hdata, HDMI_V_SYNC_LINE_AFT_PXL_4_1,
core->v_sync_line_aft_pxl_4[1]);
hdmi_reg_writeb(hdata, HDMI_V_SYNC_LINE_AFT_PXL_5_0,
core->v_sync_line_aft_pxl_5[0]);
hdmi_reg_writeb(hdata, HDMI_V_SYNC_LINE_AFT_PXL_5_1,
core->v_sync_line_aft_pxl_5[1]);
hdmi_reg_writeb(hdata, HDMI_V_SYNC_LINE_AFT_PXL_6_0,
core->v_sync_line_aft_pxl_6[0]);
hdmi_reg_writeb(hdata, HDMI_V_SYNC_LINE_AFT_PXL_6_1,
core->v_sync_line_aft_pxl_6[1]);
hdmi_reg_writeb(hdata, HDMI_VACT_SPACE_1_0, core->vact_space_1[0]);
hdmi_reg_writeb(hdata, HDMI_VACT_SPACE_1_1, core->vact_space_1[1]);
hdmi_reg_writeb(hdata, HDMI_VACT_SPACE_2_0, core->vact_space_2[0]);
hdmi_reg_writeb(hdata, HDMI_VACT_SPACE_2_1, core->vact_space_2[1]);
hdmi_reg_writeb(hdata, HDMI_VACT_SPACE_3_0, core->vact_space_3[0]);
hdmi_reg_writeb(hdata, HDMI_VACT_SPACE_3_1, core->vact_space_3[1]);
hdmi_reg_writeb(hdata, HDMI_VACT_SPACE_4_0, core->vact_space_4[0]);
hdmi_reg_writeb(hdata, HDMI_VACT_SPACE_4_1, core->vact_space_4[1]);
hdmi_reg_writeb(hdata, HDMI_VACT_SPACE_5_0, core->vact_space_5[0]);
hdmi_reg_writeb(hdata, HDMI_VACT_SPACE_5_1, core->vact_space_5[1]);
hdmi_reg_writeb(hdata, HDMI_VACT_SPACE_6_0, core->vact_space_6[0]);
hdmi_reg_writeb(hdata, HDMI_VACT_SPACE_6_1, core->vact_space_6[1]);
drm/exynos: added hdmi display support This patch is hdmi display support for exynos drm driver. There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv and some low level code is already in s5p-tv and even headers for register define are almost same. but in this patch, we decide not to consider separated common code with s5p-tv. Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc. 1. mixer. The piece of hardware responsible for mixing and blending multiple data inputs before passing it to an output device. The mixer is capable of handling up to three image layers. One is the output of VP. Other two are images in RGB format. The blending factor, and layers' priority are controlled by mixer's registers. The output is passed to HDMI. 2. vp (video processor). It is used for processing of NV12/NV21 data. An image stored in RAM is accessed by DMA. The output in YCbCr444 format is send to mixer. 3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes pixel data from mixer and transforms it into data frames. The output is send to HDMIPHY interface. 4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to HDMI connector. Basically, it contains a PLL that produces source clock for mixer, vp and hdmi. 5. ddc (display data channel). It is dedicated i2c channel to exchange display information as edid with display monitor. With plane support, exynos hdmi driver fully supports two mixer layes and vp layer. Also vp layer supports multi buffer plane pixel formats having non contigus memory spaces. In exynos drm driver, common drm_hdmi driver to interface with drm framework has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls them. mixer controls all overlay layers in both mixer and vp. Vblank interrupts for hdmi are handled by mixer internally because drm framework cannot support multiple irq id. And pipe number is used to check which display device irq happens. History v2: this version - drm plane feature support to handle overlay layers. - multi buffer plane pixel format support for vp layer. - vp layer support RFCv1: original - at https://lkml.org/lkml/2011/11/4/164 Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com> Signed-off-by: Inki Dae <inki.dae@samsung.com> Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com> Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 15:39:39 +07:00
/* Timing generator registers */
hdmi_reg_writeb(hdata, HDMI_TG_H_FSZ_L, tg->h_fsz_l);
hdmi_reg_writeb(hdata, HDMI_TG_H_FSZ_H, tg->h_fsz_h);
hdmi_reg_writeb(hdata, HDMI_TG_HACT_ST_L, tg->hact_st_l);
hdmi_reg_writeb(hdata, HDMI_TG_HACT_ST_H, tg->hact_st_h);
hdmi_reg_writeb(hdata, HDMI_TG_HACT_SZ_L, tg->hact_sz_l);
hdmi_reg_writeb(hdata, HDMI_TG_HACT_SZ_H, tg->hact_sz_h);
hdmi_reg_writeb(hdata, HDMI_TG_V_FSZ_L, tg->v_fsz_l);
hdmi_reg_writeb(hdata, HDMI_TG_V_FSZ_H, tg->v_fsz_h);
hdmi_reg_writeb(hdata, HDMI_TG_VSYNC_L, tg->vsync_l);
hdmi_reg_writeb(hdata, HDMI_TG_VSYNC_H, tg->vsync_h);
hdmi_reg_writeb(hdata, HDMI_TG_VSYNC2_L, tg->vsync2_l);
hdmi_reg_writeb(hdata, HDMI_TG_VSYNC2_H, tg->vsync2_h);
hdmi_reg_writeb(hdata, HDMI_TG_VACT_ST_L, tg->vact_st_l);
hdmi_reg_writeb(hdata, HDMI_TG_VACT_ST_H, tg->vact_st_h);
hdmi_reg_writeb(hdata, HDMI_TG_VACT_SZ_L, tg->vact_sz_l);
hdmi_reg_writeb(hdata, HDMI_TG_VACT_SZ_H, tg->vact_sz_h);
hdmi_reg_writeb(hdata, HDMI_TG_FIELD_CHG_L, tg->field_chg_l);
hdmi_reg_writeb(hdata, HDMI_TG_FIELD_CHG_H, tg->field_chg_h);
hdmi_reg_writeb(hdata, HDMI_TG_VACT_ST2_L, tg->vact_st2_l);
hdmi_reg_writeb(hdata, HDMI_TG_VACT_ST2_H, tg->vact_st2_h);
hdmi_reg_writeb(hdata, HDMI_TG_VACT_ST3_L, tg->vact_st3_l);
hdmi_reg_writeb(hdata, HDMI_TG_VACT_ST3_H, tg->vact_st3_h);
hdmi_reg_writeb(hdata, HDMI_TG_VACT_ST4_L, tg->vact_st4_l);
hdmi_reg_writeb(hdata, HDMI_TG_VACT_ST4_H, tg->vact_st4_h);
drm/exynos: added hdmi display support This patch is hdmi display support for exynos drm driver. There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv and some low level code is already in s5p-tv and even headers for register define are almost same. but in this patch, we decide not to consider separated common code with s5p-tv. Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc. 1. mixer. The piece of hardware responsible for mixing and blending multiple data inputs before passing it to an output device. The mixer is capable of handling up to three image layers. One is the output of VP. Other two are images in RGB format. The blending factor, and layers' priority are controlled by mixer's registers. The output is passed to HDMI. 2. vp (video processor). It is used for processing of NV12/NV21 data. An image stored in RAM is accessed by DMA. The output in YCbCr444 format is send to mixer. 3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes pixel data from mixer and transforms it into data frames. The output is send to HDMIPHY interface. 4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to HDMI connector. Basically, it contains a PLL that produces source clock for mixer, vp and hdmi. 5. ddc (display data channel). It is dedicated i2c channel to exchange display information as edid with display monitor. With plane support, exynos hdmi driver fully supports two mixer layes and vp layer. Also vp layer supports multi buffer plane pixel formats having non contigus memory spaces. In exynos drm driver, common drm_hdmi driver to interface with drm framework has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls them. mixer controls all overlay layers in both mixer and vp. Vblank interrupts for hdmi are handled by mixer internally because drm framework cannot support multiple irq id. And pipe number is used to check which display device irq happens. History v2: this version - drm plane feature support to handle overlay layers. - multi buffer plane pixel format support for vp layer. - vp layer support RFCv1: original - at https://lkml.org/lkml/2011/11/4/164 Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com> Signed-off-by: Inki Dae <inki.dae@samsung.com> Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com> Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 15:39:39 +07:00
hdmi_reg_writeb(hdata, HDMI_TG_VSYNC_TOP_HDMI_L, tg->vsync_top_hdmi_l);
hdmi_reg_writeb(hdata, HDMI_TG_VSYNC_TOP_HDMI_H, tg->vsync_top_hdmi_h);
hdmi_reg_writeb(hdata, HDMI_TG_VSYNC_BOT_HDMI_L, tg->vsync_bot_hdmi_l);
hdmi_reg_writeb(hdata, HDMI_TG_VSYNC_BOT_HDMI_H, tg->vsync_bot_hdmi_h);
hdmi_reg_writeb(hdata, HDMI_TG_FIELD_TOP_HDMI_L, tg->field_top_hdmi_l);
hdmi_reg_writeb(hdata, HDMI_TG_FIELD_TOP_HDMI_H, tg->field_top_hdmi_h);
hdmi_reg_writeb(hdata, HDMI_TG_FIELD_BOT_HDMI_L, tg->field_bot_hdmi_l);
hdmi_reg_writeb(hdata, HDMI_TG_FIELD_BOT_HDMI_H, tg->field_bot_hdmi_h);
hdmi_reg_writeb(hdata, HDMI_TG_3D, tg->tg_3d);
drm/exynos: added hdmi display support This patch is hdmi display support for exynos drm driver. There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv and some low level code is already in s5p-tv and even headers for register define are almost same. but in this patch, we decide not to consider separated common code with s5p-tv. Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc. 1. mixer. The piece of hardware responsible for mixing and blending multiple data inputs before passing it to an output device. The mixer is capable of handling up to three image layers. One is the output of VP. Other two are images in RGB format. The blending factor, and layers' priority are controlled by mixer's registers. The output is passed to HDMI. 2. vp (video processor). It is used for processing of NV12/NV21 data. An image stored in RAM is accessed by DMA. The output in YCbCr444 format is send to mixer. 3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes pixel data from mixer and transforms it into data frames. The output is send to HDMIPHY interface. 4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to HDMI connector. Basically, it contains a PLL that produces source clock for mixer, vp and hdmi. 5. ddc (display data channel). It is dedicated i2c channel to exchange display information as edid with display monitor. With plane support, exynos hdmi driver fully supports two mixer layes and vp layer. Also vp layer supports multi buffer plane pixel formats having non contigus memory spaces. In exynos drm driver, common drm_hdmi driver to interface with drm framework has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls them. mixer controls all overlay layers in both mixer and vp. Vblank interrupts for hdmi are handled by mixer internally because drm framework cannot support multiple irq id. And pipe number is used to check which display device irq happens. History v2: this version - drm plane feature support to handle overlay layers. - multi buffer plane pixel format support for vp layer. - vp layer support RFCv1: original - at https://lkml.org/lkml/2011/11/4/164 Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com> Signed-off-by: Inki Dae <inki.dae@samsung.com> Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com> Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 15:39:39 +07:00
/* waiting for HDMIPHY's PLL to get to steady state */
for (tries = 100; tries; --tries) {
u32 val = hdmi_reg_read(hdata, HDMI_PHY_STATUS_0);
drm/exynos: added hdmi display support This patch is hdmi display support for exynos drm driver. There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv and some low level code is already in s5p-tv and even headers for register define are almost same. but in this patch, we decide not to consider separated common code with s5p-tv. Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc. 1. mixer. The piece of hardware responsible for mixing and blending multiple data inputs before passing it to an output device. The mixer is capable of handling up to three image layers. One is the output of VP. Other two are images in RGB format. The blending factor, and layers' priority are controlled by mixer's registers. The output is passed to HDMI. 2. vp (video processor). It is used for processing of NV12/NV21 data. An image stored in RAM is accessed by DMA. The output in YCbCr444 format is send to mixer. 3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes pixel data from mixer and transforms it into data frames. The output is send to HDMIPHY interface. 4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to HDMI connector. Basically, it contains a PLL that produces source clock for mixer, vp and hdmi. 5. ddc (display data channel). It is dedicated i2c channel to exchange display information as edid with display monitor. With plane support, exynos hdmi driver fully supports two mixer layes and vp layer. Also vp layer supports multi buffer plane pixel formats having non contigus memory spaces. In exynos drm driver, common drm_hdmi driver to interface with drm framework has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls them. mixer controls all overlay layers in both mixer and vp. Vblank interrupts for hdmi are handled by mixer internally because drm framework cannot support multiple irq id. And pipe number is used to check which display device irq happens. History v2: this version - drm plane feature support to handle overlay layers. - multi buffer plane pixel format support for vp layer. - vp layer support RFCv1: original - at https://lkml.org/lkml/2011/11/4/164 Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com> Signed-off-by: Inki Dae <inki.dae@samsung.com> Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com> Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 15:39:39 +07:00
if (val & HDMI_PHY_STATUS_READY)
break;
mdelay(1);
}
/* steady state not achieved */
if (tries == 0) {
DRM_ERROR("hdmiphy's pll could not reach steady state.\n");
hdmi_regs_dump(hdata, "timing apply");
}
clk_disable(hdata->res.sclk_hdmi);
clk_set_parent(hdata->res.sclk_hdmi, hdata->res.sclk_hdmiphy);
clk_enable(hdata->res.sclk_hdmi);
/* enable HDMI and timing generator */
hdmi_reg_writemask(hdata, HDMI_CON_0, ~0, HDMI_EN);
if (core->int_pro_mode[0])
hdmi_reg_writemask(hdata, HDMI_TG_CMD, ~0, HDMI_TG_EN |
HDMI_FIELD_EN);
else
hdmi_reg_writemask(hdata, HDMI_TG_CMD, ~0, HDMI_TG_EN);
}
static void hdmi_timing_apply(struct hdmi_context *hdata)
{
if (hdata->is_v13)
hdmi_v13_timing_apply(hdata);
else
hdmi_v14_timing_apply(hdata);
}
drm/exynos: added hdmi display support This patch is hdmi display support for exynos drm driver. There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv and some low level code is already in s5p-tv and even headers for register define are almost same. but in this patch, we decide not to consider separated common code with s5p-tv. Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc. 1. mixer. The piece of hardware responsible for mixing and blending multiple data inputs before passing it to an output device. The mixer is capable of handling up to three image layers. One is the output of VP. Other two are images in RGB format. The blending factor, and layers' priority are controlled by mixer's registers. The output is passed to HDMI. 2. vp (video processor). It is used for processing of NV12/NV21 data. An image stored in RAM is accessed by DMA. The output in YCbCr444 format is send to mixer. 3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes pixel data from mixer and transforms it into data frames. The output is send to HDMIPHY interface. 4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to HDMI connector. Basically, it contains a PLL that produces source clock for mixer, vp and hdmi. 5. ddc (display data channel). It is dedicated i2c channel to exchange display information as edid with display monitor. With plane support, exynos hdmi driver fully supports two mixer layes and vp layer. Also vp layer supports multi buffer plane pixel formats having non contigus memory spaces. In exynos drm driver, common drm_hdmi driver to interface with drm framework has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls them. mixer controls all overlay layers in both mixer and vp. Vblank interrupts for hdmi are handled by mixer internally because drm framework cannot support multiple irq id. And pipe number is used to check which display device irq happens. History v2: this version - drm plane feature support to handle overlay layers. - multi buffer plane pixel format support for vp layer. - vp layer support RFCv1: original - at https://lkml.org/lkml/2011/11/4/164 Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com> Signed-off-by: Inki Dae <inki.dae@samsung.com> Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com> Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 15:39:39 +07:00
static void hdmiphy_conf_reset(struct hdmi_context *hdata)
{
u8 buffer[2];
u32 reg;
drm/exynos: added hdmi display support This patch is hdmi display support for exynos drm driver. There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv and some low level code is already in s5p-tv and even headers for register define are almost same. but in this patch, we decide not to consider separated common code with s5p-tv. Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc. 1. mixer. The piece of hardware responsible for mixing and blending multiple data inputs before passing it to an output device. The mixer is capable of handling up to three image layers. One is the output of VP. Other two are images in RGB format. The blending factor, and layers' priority are controlled by mixer's registers. The output is passed to HDMI. 2. vp (video processor). It is used for processing of NV12/NV21 data. An image stored in RAM is accessed by DMA. The output in YCbCr444 format is send to mixer. 3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes pixel data from mixer and transforms it into data frames. The output is send to HDMIPHY interface. 4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to HDMI connector. Basically, it contains a PLL that produces source clock for mixer, vp and hdmi. 5. ddc (display data channel). It is dedicated i2c channel to exchange display information as edid with display monitor. With plane support, exynos hdmi driver fully supports two mixer layes and vp layer. Also vp layer supports multi buffer plane pixel formats having non contigus memory spaces. In exynos drm driver, common drm_hdmi driver to interface with drm framework has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls them. mixer controls all overlay layers in both mixer and vp. Vblank interrupts for hdmi are handled by mixer internally because drm framework cannot support multiple irq id. And pipe number is used to check which display device irq happens. History v2: this version - drm plane feature support to handle overlay layers. - multi buffer plane pixel format support for vp layer. - vp layer support RFCv1: original - at https://lkml.org/lkml/2011/11/4/164 Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com> Signed-off-by: Inki Dae <inki.dae@samsung.com> Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com> Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 15:39:39 +07:00
clk_disable(hdata->res.sclk_hdmi);
clk_set_parent(hdata->res.sclk_hdmi, hdata->res.sclk_pixel);
clk_enable(hdata->res.sclk_hdmi);
/* operation mode */
buffer[0] = 0x1f;
buffer[1] = 0x00;
if (hdata->hdmiphy_port)
i2c_master_send(hdata->hdmiphy_port, buffer, 2);
if (hdata->is_v13)
reg = HDMI_V13_PHY_RSTOUT;
else
reg = HDMI_PHY_RSTOUT;
drm/exynos: added hdmi display support This patch is hdmi display support for exynos drm driver. There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv and some low level code is already in s5p-tv and even headers for register define are almost same. but in this patch, we decide not to consider separated common code with s5p-tv. Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc. 1. mixer. The piece of hardware responsible for mixing and blending multiple data inputs before passing it to an output device. The mixer is capable of handling up to three image layers. One is the output of VP. Other two are images in RGB format. The blending factor, and layers' priority are controlled by mixer's registers. The output is passed to HDMI. 2. vp (video processor). It is used for processing of NV12/NV21 data. An image stored in RAM is accessed by DMA. The output in YCbCr444 format is send to mixer. 3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes pixel data from mixer and transforms it into data frames. The output is send to HDMIPHY interface. 4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to HDMI connector. Basically, it contains a PLL that produces source clock for mixer, vp and hdmi. 5. ddc (display data channel). It is dedicated i2c channel to exchange display information as edid with display monitor. With plane support, exynos hdmi driver fully supports two mixer layes and vp layer. Also vp layer supports multi buffer plane pixel formats having non contigus memory spaces. In exynos drm driver, common drm_hdmi driver to interface with drm framework has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls them. mixer controls all overlay layers in both mixer and vp. Vblank interrupts for hdmi are handled by mixer internally because drm framework cannot support multiple irq id. And pipe number is used to check which display device irq happens. History v2: this version - drm plane feature support to handle overlay layers. - multi buffer plane pixel format support for vp layer. - vp layer support RFCv1: original - at https://lkml.org/lkml/2011/11/4/164 Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com> Signed-off-by: Inki Dae <inki.dae@samsung.com> Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com> Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 15:39:39 +07:00
/* reset hdmiphy */
hdmi_reg_writemask(hdata, reg, ~0, HDMI_PHY_SW_RSTOUT);
drm/exynos: added hdmi display support This patch is hdmi display support for exynos drm driver. There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv and some low level code is already in s5p-tv and even headers for register define are almost same. but in this patch, we decide not to consider separated common code with s5p-tv. Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc. 1. mixer. The piece of hardware responsible for mixing and blending multiple data inputs before passing it to an output device. The mixer is capable of handling up to three image layers. One is the output of VP. Other two are images in RGB format. The blending factor, and layers' priority are controlled by mixer's registers. The output is passed to HDMI. 2. vp (video processor). It is used for processing of NV12/NV21 data. An image stored in RAM is accessed by DMA. The output in YCbCr444 format is send to mixer. 3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes pixel data from mixer and transforms it into data frames. The output is send to HDMIPHY interface. 4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to HDMI connector. Basically, it contains a PLL that produces source clock for mixer, vp and hdmi. 5. ddc (display data channel). It is dedicated i2c channel to exchange display information as edid with display monitor. With plane support, exynos hdmi driver fully supports two mixer layes and vp layer. Also vp layer supports multi buffer plane pixel formats having non contigus memory spaces. In exynos drm driver, common drm_hdmi driver to interface with drm framework has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls them. mixer controls all overlay layers in both mixer and vp. Vblank interrupts for hdmi are handled by mixer internally because drm framework cannot support multiple irq id. And pipe number is used to check which display device irq happens. History v2: this version - drm plane feature support to handle overlay layers. - multi buffer plane pixel format support for vp layer. - vp layer support RFCv1: original - at https://lkml.org/lkml/2011/11/4/164 Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com> Signed-off-by: Inki Dae <inki.dae@samsung.com> Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com> Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 15:39:39 +07:00
mdelay(10);
hdmi_reg_writemask(hdata, reg, 0, HDMI_PHY_SW_RSTOUT);
drm/exynos: added hdmi display support This patch is hdmi display support for exynos drm driver. There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv and some low level code is already in s5p-tv and even headers for register define are almost same. but in this patch, we decide not to consider separated common code with s5p-tv. Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc. 1. mixer. The piece of hardware responsible for mixing and blending multiple data inputs before passing it to an output device. The mixer is capable of handling up to three image layers. One is the output of VP. Other two are images in RGB format. The blending factor, and layers' priority are controlled by mixer's registers. The output is passed to HDMI. 2. vp (video processor). It is used for processing of NV12/NV21 data. An image stored in RAM is accessed by DMA. The output in YCbCr444 format is send to mixer. 3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes pixel data from mixer and transforms it into data frames. The output is send to HDMIPHY interface. 4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to HDMI connector. Basically, it contains a PLL that produces source clock for mixer, vp and hdmi. 5. ddc (display data channel). It is dedicated i2c channel to exchange display information as edid with display monitor. With plane support, exynos hdmi driver fully supports two mixer layes and vp layer. Also vp layer supports multi buffer plane pixel formats having non contigus memory spaces. In exynos drm driver, common drm_hdmi driver to interface with drm framework has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls them. mixer controls all overlay layers in both mixer and vp. Vblank interrupts for hdmi are handled by mixer internally because drm framework cannot support multiple irq id. And pipe number is used to check which display device irq happens. History v2: this version - drm plane feature support to handle overlay layers. - multi buffer plane pixel format support for vp layer. - vp layer support RFCv1: original - at https://lkml.org/lkml/2011/11/4/164 Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com> Signed-off-by: Inki Dae <inki.dae@samsung.com> Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com> Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 15:39:39 +07:00
mdelay(10);
}
static void hdmiphy_conf_apply(struct hdmi_context *hdata)
{
const u8 *hdmiphy_data;
drm/exynos: added hdmi display support This patch is hdmi display support for exynos drm driver. There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv and some low level code is already in s5p-tv and even headers for register define are almost same. but in this patch, we decide not to consider separated common code with s5p-tv. Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc. 1. mixer. The piece of hardware responsible for mixing and blending multiple data inputs before passing it to an output device. The mixer is capable of handling up to three image layers. One is the output of VP. Other two are images in RGB format. The blending factor, and layers' priority are controlled by mixer's registers. The output is passed to HDMI. 2. vp (video processor). It is used for processing of NV12/NV21 data. An image stored in RAM is accessed by DMA. The output in YCbCr444 format is send to mixer. 3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes pixel data from mixer and transforms it into data frames. The output is send to HDMIPHY interface. 4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to HDMI connector. Basically, it contains a PLL that produces source clock for mixer, vp and hdmi. 5. ddc (display data channel). It is dedicated i2c channel to exchange display information as edid with display monitor. With plane support, exynos hdmi driver fully supports two mixer layes and vp layer. Also vp layer supports multi buffer plane pixel formats having non contigus memory spaces. In exynos drm driver, common drm_hdmi driver to interface with drm framework has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls them. mixer controls all overlay layers in both mixer and vp. Vblank interrupts for hdmi are handled by mixer internally because drm framework cannot support multiple irq id. And pipe number is used to check which display device irq happens. History v2: this version - drm plane feature support to handle overlay layers. - multi buffer plane pixel format support for vp layer. - vp layer support RFCv1: original - at https://lkml.org/lkml/2011/11/4/164 Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com> Signed-off-by: Inki Dae <inki.dae@samsung.com> Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com> Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 15:39:39 +07:00
u8 buffer[32];
u8 operation[2];
u8 read_buffer[32] = {0, };
int ret;
int i;
if (!hdata->hdmiphy_port) {
DRM_ERROR("hdmiphy is not attached\n");
return;
}
/* pixel clock */
if (hdata->is_v13)
hdmiphy_data = hdmi_v13_confs[hdata->cur_conf].hdmiphy_data;
else
hdmiphy_data = hdmi_confs[hdata->cur_conf].hdmiphy_data;
memcpy(buffer, hdmiphy_data, 32);
drm/exynos: added hdmi display support This patch is hdmi display support for exynos drm driver. There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv and some low level code is already in s5p-tv and even headers for register define are almost same. but in this patch, we decide not to consider separated common code with s5p-tv. Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc. 1. mixer. The piece of hardware responsible for mixing and blending multiple data inputs before passing it to an output device. The mixer is capable of handling up to three image layers. One is the output of VP. Other two are images in RGB format. The blending factor, and layers' priority are controlled by mixer's registers. The output is passed to HDMI. 2. vp (video processor). It is used for processing of NV12/NV21 data. An image stored in RAM is accessed by DMA. The output in YCbCr444 format is send to mixer. 3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes pixel data from mixer and transforms it into data frames. The output is send to HDMIPHY interface. 4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to HDMI connector. Basically, it contains a PLL that produces source clock for mixer, vp and hdmi. 5. ddc (display data channel). It is dedicated i2c channel to exchange display information as edid with display monitor. With plane support, exynos hdmi driver fully supports two mixer layes and vp layer. Also vp layer supports multi buffer plane pixel formats having non contigus memory spaces. In exynos drm driver, common drm_hdmi driver to interface with drm framework has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls them. mixer controls all overlay layers in both mixer and vp. Vblank interrupts for hdmi are handled by mixer internally because drm framework cannot support multiple irq id. And pipe number is used to check which display device irq happens. History v2: this version - drm plane feature support to handle overlay layers. - multi buffer plane pixel format support for vp layer. - vp layer support RFCv1: original - at https://lkml.org/lkml/2011/11/4/164 Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com> Signed-off-by: Inki Dae <inki.dae@samsung.com> Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com> Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 15:39:39 +07:00
ret = i2c_master_send(hdata->hdmiphy_port, buffer, 32);
if (ret != 32) {
DRM_ERROR("failed to configure HDMIPHY via I2C\n");
return;
}
mdelay(10);
/* operation mode */
operation[0] = 0x1f;
operation[1] = 0x80;
ret = i2c_master_send(hdata->hdmiphy_port, operation, 2);
if (ret != 2) {
DRM_ERROR("failed to enable hdmiphy\n");
return;
}
ret = i2c_master_recv(hdata->hdmiphy_port, read_buffer, 32);
if (ret < 0) {
DRM_ERROR("failed to read hdmiphy config\n");
return;
}
for (i = 0; i < ret; i++)
DRM_DEBUG_KMS("hdmiphy[0x%02x] write[0x%02x] - "
"recv [0x%02x]\n", i, buffer[i], read_buffer[i]);
}
static void hdmi_conf_apply(struct hdmi_context *hdata)
{
DRM_DEBUG_KMS("[%d] %s\n", __LINE__, __func__);
hdmiphy_conf_reset(hdata);
hdmiphy_conf_apply(hdata);
mutex_lock(&hdata->hdmi_mutex);
drm/exynos: added hdmi display support This patch is hdmi display support for exynos drm driver. There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv and some low level code is already in s5p-tv and even headers for register define are almost same. but in this patch, we decide not to consider separated common code with s5p-tv. Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc. 1. mixer. The piece of hardware responsible for mixing and blending multiple data inputs before passing it to an output device. The mixer is capable of handling up to three image layers. One is the output of VP. Other two are images in RGB format. The blending factor, and layers' priority are controlled by mixer's registers. The output is passed to HDMI. 2. vp (video processor). It is used for processing of NV12/NV21 data. An image stored in RAM is accessed by DMA. The output in YCbCr444 format is send to mixer. 3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes pixel data from mixer and transforms it into data frames. The output is send to HDMIPHY interface. 4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to HDMI connector. Basically, it contains a PLL that produces source clock for mixer, vp and hdmi. 5. ddc (display data channel). It is dedicated i2c channel to exchange display information as edid with display monitor. With plane support, exynos hdmi driver fully supports two mixer layes and vp layer. Also vp layer supports multi buffer plane pixel formats having non contigus memory spaces. In exynos drm driver, common drm_hdmi driver to interface with drm framework has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls them. mixer controls all overlay layers in both mixer and vp. Vblank interrupts for hdmi are handled by mixer internally because drm framework cannot support multiple irq id. And pipe number is used to check which display device irq happens. History v2: this version - drm plane feature support to handle overlay layers. - multi buffer plane pixel format support for vp layer. - vp layer support RFCv1: original - at https://lkml.org/lkml/2011/11/4/164 Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com> Signed-off-by: Inki Dae <inki.dae@samsung.com> Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com> Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 15:39:39 +07:00
hdmi_conf_reset(hdata);
hdmi_conf_init(hdata);
mutex_unlock(&hdata->hdmi_mutex);
hdmi_audio_init(hdata);
drm/exynos: added hdmi display support This patch is hdmi display support for exynos drm driver. There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv and some low level code is already in s5p-tv and even headers for register define are almost same. but in this patch, we decide not to consider separated common code with s5p-tv. Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc. 1. mixer. The piece of hardware responsible for mixing and blending multiple data inputs before passing it to an output device. The mixer is capable of handling up to three image layers. One is the output of VP. Other two are images in RGB format. The blending factor, and layers' priority are controlled by mixer's registers. The output is passed to HDMI. 2. vp (video processor). It is used for processing of NV12/NV21 data. An image stored in RAM is accessed by DMA. The output in YCbCr444 format is send to mixer. 3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes pixel data from mixer and transforms it into data frames. The output is send to HDMIPHY interface. 4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to HDMI connector. Basically, it contains a PLL that produces source clock for mixer, vp and hdmi. 5. ddc (display data channel). It is dedicated i2c channel to exchange display information as edid with display monitor. With plane support, exynos hdmi driver fully supports two mixer layes and vp layer. Also vp layer supports multi buffer plane pixel formats having non contigus memory spaces. In exynos drm driver, common drm_hdmi driver to interface with drm framework has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls them. mixer controls all overlay layers in both mixer and vp. Vblank interrupts for hdmi are handled by mixer internally because drm framework cannot support multiple irq id. And pipe number is used to check which display device irq happens. History v2: this version - drm plane feature support to handle overlay layers. - multi buffer plane pixel format support for vp layer. - vp layer support RFCv1: original - at https://lkml.org/lkml/2011/11/4/164 Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com> Signed-off-by: Inki Dae <inki.dae@samsung.com> Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com> Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 15:39:39 +07:00
/* setting core registers */
hdmi_timing_apply(hdata);
hdmi_audio_control(hdata, true);
drm/exynos: added hdmi display support This patch is hdmi display support for exynos drm driver. There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv and some low level code is already in s5p-tv and even headers for register define are almost same. but in this patch, we decide not to consider separated common code with s5p-tv. Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc. 1. mixer. The piece of hardware responsible for mixing and blending multiple data inputs before passing it to an output device. The mixer is capable of handling up to three image layers. One is the output of VP. Other two are images in RGB format. The blending factor, and layers' priority are controlled by mixer's registers. The output is passed to HDMI. 2. vp (video processor). It is used for processing of NV12/NV21 data. An image stored in RAM is accessed by DMA. The output in YCbCr444 format is send to mixer. 3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes pixel data from mixer and transforms it into data frames. The output is send to HDMIPHY interface. 4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to HDMI connector. Basically, it contains a PLL that produces source clock for mixer, vp and hdmi. 5. ddc (display data channel). It is dedicated i2c channel to exchange display information as edid with display monitor. With plane support, exynos hdmi driver fully supports two mixer layes and vp layer. Also vp layer supports multi buffer plane pixel formats having non contigus memory spaces. In exynos drm driver, common drm_hdmi driver to interface with drm framework has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls them. mixer controls all overlay layers in both mixer and vp. Vblank interrupts for hdmi are handled by mixer internally because drm framework cannot support multiple irq id. And pipe number is used to check which display device irq happens. History v2: this version - drm plane feature support to handle overlay layers. - multi buffer plane pixel format support for vp layer. - vp layer support RFCv1: original - at https://lkml.org/lkml/2011/11/4/164 Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com> Signed-off-by: Inki Dae <inki.dae@samsung.com> Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com> Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 15:39:39 +07:00
hdmi_regs_dump(hdata, "start");
}
static void hdmi_mode_fixup(void *ctx, struct drm_connector *connector,
struct drm_display_mode *mode,
struct drm_display_mode *adjusted_mode)
{
struct drm_display_mode *m;
struct hdmi_context *hdata = ctx;
int index;
DRM_DEBUG_KMS("[%d] %s\n", __LINE__, __func__);
drm_mode_set_crtcinfo(adjusted_mode, 0);
if (hdata->is_v13)
index = hdmi_v13_conf_index(adjusted_mode);
else
index = hdmi_v14_conf_index(adjusted_mode);
/* just return if user desired mode exists. */
if (index >= 0)
return;
/*
* otherwise, find the most suitable mode among modes and change it
* to adjusted_mode.
*/
list_for_each_entry(m, &connector->modes, head) {
if (hdata->is_v13)
index = hdmi_v13_conf_index(m);
else
index = hdmi_v14_conf_index(m);
if (index >= 0) {
DRM_INFO("desired mode doesn't exist so\n");
DRM_INFO("use the most suitable mode among modes.\n");
memcpy(adjusted_mode, m, sizeof(*m));
break;
}
}
}
drm/exynos: added hdmi display support This patch is hdmi display support for exynos drm driver. There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv and some low level code is already in s5p-tv and even headers for register define are almost same. but in this patch, we decide not to consider separated common code with s5p-tv. Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc. 1. mixer. The piece of hardware responsible for mixing and blending multiple data inputs before passing it to an output device. The mixer is capable of handling up to three image layers. One is the output of VP. Other two are images in RGB format. The blending factor, and layers' priority are controlled by mixer's registers. The output is passed to HDMI. 2. vp (video processor). It is used for processing of NV12/NV21 data. An image stored in RAM is accessed by DMA. The output in YCbCr444 format is send to mixer. 3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes pixel data from mixer and transforms it into data frames. The output is send to HDMIPHY interface. 4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to HDMI connector. Basically, it contains a PLL that produces source clock for mixer, vp and hdmi. 5. ddc (display data channel). It is dedicated i2c channel to exchange display information as edid with display monitor. With plane support, exynos hdmi driver fully supports two mixer layes and vp layer. Also vp layer supports multi buffer plane pixel formats having non contigus memory spaces. In exynos drm driver, common drm_hdmi driver to interface with drm framework has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls them. mixer controls all overlay layers in both mixer and vp. Vblank interrupts for hdmi are handled by mixer internally because drm framework cannot support multiple irq id. And pipe number is used to check which display device irq happens. History v2: this version - drm plane feature support to handle overlay layers. - multi buffer plane pixel format support for vp layer. - vp layer support RFCv1: original - at https://lkml.org/lkml/2011/11/4/164 Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com> Signed-off-by: Inki Dae <inki.dae@samsung.com> Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com> Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 15:39:39 +07:00
static void hdmi_mode_set(void *ctx, void *mode)
{
struct hdmi_context *hdata = ctx;
drm/exynos: added hdmi display support This patch is hdmi display support for exynos drm driver. There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv and some low level code is already in s5p-tv and even headers for register define are almost same. but in this patch, we decide not to consider separated common code with s5p-tv. Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc. 1. mixer. The piece of hardware responsible for mixing and blending multiple data inputs before passing it to an output device. The mixer is capable of handling up to three image layers. One is the output of VP. Other two are images in RGB format. The blending factor, and layers' priority are controlled by mixer's registers. The output is passed to HDMI. 2. vp (video processor). It is used for processing of NV12/NV21 data. An image stored in RAM is accessed by DMA. The output in YCbCr444 format is send to mixer. 3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes pixel data from mixer and transforms it into data frames. The output is send to HDMIPHY interface. 4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to HDMI connector. Basically, it contains a PLL that produces source clock for mixer, vp and hdmi. 5. ddc (display data channel). It is dedicated i2c channel to exchange display information as edid with display monitor. With plane support, exynos hdmi driver fully supports two mixer layes and vp layer. Also vp layer supports multi buffer plane pixel formats having non contigus memory spaces. In exynos drm driver, common drm_hdmi driver to interface with drm framework has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls them. mixer controls all overlay layers in both mixer and vp. Vblank interrupts for hdmi are handled by mixer internally because drm framework cannot support multiple irq id. And pipe number is used to check which display device irq happens. History v2: this version - drm plane feature support to handle overlay layers. - multi buffer plane pixel format support for vp layer. - vp layer support RFCv1: original - at https://lkml.org/lkml/2011/11/4/164 Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com> Signed-off-by: Inki Dae <inki.dae@samsung.com> Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com> Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 15:39:39 +07:00
int conf_idx;
DRM_DEBUG_KMS("[%d] %s\n", __LINE__, __func__);
conf_idx = hdmi_conf_index(hdata, mode);
if (conf_idx >= 0)
drm/exynos: added hdmi display support This patch is hdmi display support for exynos drm driver. There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv and some low level code is already in s5p-tv and even headers for register define are almost same. but in this patch, we decide not to consider separated common code with s5p-tv. Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc. 1. mixer. The piece of hardware responsible for mixing and blending multiple data inputs before passing it to an output device. The mixer is capable of handling up to three image layers. One is the output of VP. Other two are images in RGB format. The blending factor, and layers' priority are controlled by mixer's registers. The output is passed to HDMI. 2. vp (video processor). It is used for processing of NV12/NV21 data. An image stored in RAM is accessed by DMA. The output in YCbCr444 format is send to mixer. 3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes pixel data from mixer and transforms it into data frames. The output is send to HDMIPHY interface. 4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to HDMI connector. Basically, it contains a PLL that produces source clock for mixer, vp and hdmi. 5. ddc (display data channel). It is dedicated i2c channel to exchange display information as edid with display monitor. With plane support, exynos hdmi driver fully supports two mixer layes and vp layer. Also vp layer supports multi buffer plane pixel formats having non contigus memory spaces. In exynos drm driver, common drm_hdmi driver to interface with drm framework has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls them. mixer controls all overlay layers in both mixer and vp. Vblank interrupts for hdmi are handled by mixer internally because drm framework cannot support multiple irq id. And pipe number is used to check which display device irq happens. History v2: this version - drm plane feature support to handle overlay layers. - multi buffer plane pixel format support for vp layer. - vp layer support RFCv1: original - at https://lkml.org/lkml/2011/11/4/164 Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com> Signed-off-by: Inki Dae <inki.dae@samsung.com> Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com> Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 15:39:39 +07:00
hdata->cur_conf = conf_idx;
else
DRM_DEBUG_KMS("not supported mode\n");
}
static void hdmi_get_max_resol(void *ctx, unsigned int *width,
unsigned int *height)
{
DRM_DEBUG_KMS("[%d] %s\n", __LINE__, __func__);
*width = MAX_WIDTH;
*height = MAX_HEIGHT;
}
drm/exynos: added hdmi display support This patch is hdmi display support for exynos drm driver. There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv and some low level code is already in s5p-tv and even headers for register define are almost same. but in this patch, we decide not to consider separated common code with s5p-tv. Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc. 1. mixer. The piece of hardware responsible for mixing and blending multiple data inputs before passing it to an output device. The mixer is capable of handling up to three image layers. One is the output of VP. Other two are images in RGB format. The blending factor, and layers' priority are controlled by mixer's registers. The output is passed to HDMI. 2. vp (video processor). It is used for processing of NV12/NV21 data. An image stored in RAM is accessed by DMA. The output in YCbCr444 format is send to mixer. 3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes pixel data from mixer and transforms it into data frames. The output is send to HDMIPHY interface. 4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to HDMI connector. Basically, it contains a PLL that produces source clock for mixer, vp and hdmi. 5. ddc (display data channel). It is dedicated i2c channel to exchange display information as edid with display monitor. With plane support, exynos hdmi driver fully supports two mixer layes and vp layer. Also vp layer supports multi buffer plane pixel formats having non contigus memory spaces. In exynos drm driver, common drm_hdmi driver to interface with drm framework has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls them. mixer controls all overlay layers in both mixer and vp. Vblank interrupts for hdmi are handled by mixer internally because drm framework cannot support multiple irq id. And pipe number is used to check which display device irq happens. History v2: this version - drm plane feature support to handle overlay layers. - multi buffer plane pixel format support for vp layer. - vp layer support RFCv1: original - at https://lkml.org/lkml/2011/11/4/164 Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com> Signed-off-by: Inki Dae <inki.dae@samsung.com> Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com> Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 15:39:39 +07:00
static void hdmi_commit(void *ctx)
{
struct hdmi_context *hdata = ctx;
drm/exynos: added hdmi display support This patch is hdmi display support for exynos drm driver. There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv and some low level code is already in s5p-tv and even headers for register define are almost same. but in this patch, we decide not to consider separated common code with s5p-tv. Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc. 1. mixer. The piece of hardware responsible for mixing and blending multiple data inputs before passing it to an output device. The mixer is capable of handling up to three image layers. One is the output of VP. Other two are images in RGB format. The blending factor, and layers' priority are controlled by mixer's registers. The output is passed to HDMI. 2. vp (video processor). It is used for processing of NV12/NV21 data. An image stored in RAM is accessed by DMA. The output in YCbCr444 format is send to mixer. 3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes pixel data from mixer and transforms it into data frames. The output is send to HDMIPHY interface. 4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to HDMI connector. Basically, it contains a PLL that produces source clock for mixer, vp and hdmi. 5. ddc (display data channel). It is dedicated i2c channel to exchange display information as edid with display monitor. With plane support, exynos hdmi driver fully supports two mixer layes and vp layer. Also vp layer supports multi buffer plane pixel formats having non contigus memory spaces. In exynos drm driver, common drm_hdmi driver to interface with drm framework has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls them. mixer controls all overlay layers in both mixer and vp. Vblank interrupts for hdmi are handled by mixer internally because drm framework cannot support multiple irq id. And pipe number is used to check which display device irq happens. History v2: this version - drm plane feature support to handle overlay layers. - multi buffer plane pixel format support for vp layer. - vp layer support RFCv1: original - at https://lkml.org/lkml/2011/11/4/164 Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com> Signed-off-by: Inki Dae <inki.dae@samsung.com> Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com> Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 15:39:39 +07:00
DRM_DEBUG_KMS("[%d] %s\n", __LINE__, __func__);
hdmi_conf_apply(hdata);
}
static void hdmi_poweron(struct hdmi_context *hdata)
{
struct hdmi_resources *res = &hdata->res;
DRM_DEBUG_KMS("[%d] %s\n", __LINE__, __func__);
mutex_lock(&hdata->hdmi_mutex);
if (hdata->powered) {
mutex_unlock(&hdata->hdmi_mutex);
return;
}
drm/exynos: added hdmi display support This patch is hdmi display support for exynos drm driver. There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv and some low level code is already in s5p-tv and even headers for register define are almost same. but in this patch, we decide not to consider separated common code with s5p-tv. Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc. 1. mixer. The piece of hardware responsible for mixing and blending multiple data inputs before passing it to an output device. The mixer is capable of handling up to three image layers. One is the output of VP. Other two are images in RGB format. The blending factor, and layers' priority are controlled by mixer's registers. The output is passed to HDMI. 2. vp (video processor). It is used for processing of NV12/NV21 data. An image stored in RAM is accessed by DMA. The output in YCbCr444 format is send to mixer. 3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes pixel data from mixer and transforms it into data frames. The output is send to HDMIPHY interface. 4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to HDMI connector. Basically, it contains a PLL that produces source clock for mixer, vp and hdmi. 5. ddc (display data channel). It is dedicated i2c channel to exchange display information as edid with display monitor. With plane support, exynos hdmi driver fully supports two mixer layes and vp layer. Also vp layer supports multi buffer plane pixel formats having non contigus memory spaces. In exynos drm driver, common drm_hdmi driver to interface with drm framework has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls them. mixer controls all overlay layers in both mixer and vp. Vblank interrupts for hdmi are handled by mixer internally because drm framework cannot support multiple irq id. And pipe number is used to check which display device irq happens. History v2: this version - drm plane feature support to handle overlay layers. - multi buffer plane pixel format support for vp layer. - vp layer support RFCv1: original - at https://lkml.org/lkml/2011/11/4/164 Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com> Signed-off-by: Inki Dae <inki.dae@samsung.com> Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com> Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 15:39:39 +07:00
hdata->powered = true;
if (hdata->cfg_hpd)
hdata->cfg_hpd(true);
mutex_unlock(&hdata->hdmi_mutex);
pm_runtime_get_sync(hdata->dev);
regulator_bulk_enable(res->regul_count, res->regul_bulk);
clk_enable(res->hdmiphy);
clk_enable(res->hdmi);
clk_enable(res->sclk_hdmi);
}
static void hdmi_poweroff(struct hdmi_context *hdata)
{
struct hdmi_resources *res = &hdata->res;
DRM_DEBUG_KMS("[%d] %s\n", __LINE__, __func__);
mutex_lock(&hdata->hdmi_mutex);
if (!hdata->powered)
goto out;
mutex_unlock(&hdata->hdmi_mutex);
/*
* The TV power domain needs any condition of hdmiphy to turn off and
* its reset state seems to meet the condition.
*/
hdmiphy_conf_reset(hdata);
clk_disable(res->sclk_hdmi);
clk_disable(res->hdmi);
clk_disable(res->hdmiphy);
regulator_bulk_disable(res->regul_count, res->regul_bulk);
pm_runtime_put_sync(hdata->dev);
mutex_lock(&hdata->hdmi_mutex);
if (hdata->cfg_hpd)
hdata->cfg_hpd(false);
hdata->powered = false;
out:
mutex_unlock(&hdata->hdmi_mutex);
drm/exynos: added hdmi display support This patch is hdmi display support for exynos drm driver. There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv and some low level code is already in s5p-tv and even headers for register define are almost same. but in this patch, we decide not to consider separated common code with s5p-tv. Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc. 1. mixer. The piece of hardware responsible for mixing and blending multiple data inputs before passing it to an output device. The mixer is capable of handling up to three image layers. One is the output of VP. Other two are images in RGB format. The blending factor, and layers' priority are controlled by mixer's registers. The output is passed to HDMI. 2. vp (video processor). It is used for processing of NV12/NV21 data. An image stored in RAM is accessed by DMA. The output in YCbCr444 format is send to mixer. 3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes pixel data from mixer and transforms it into data frames. The output is send to HDMIPHY interface. 4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to HDMI connector. Basically, it contains a PLL that produces source clock for mixer, vp and hdmi. 5. ddc (display data channel). It is dedicated i2c channel to exchange display information as edid with display monitor. With plane support, exynos hdmi driver fully supports two mixer layes and vp layer. Also vp layer supports multi buffer plane pixel formats having non contigus memory spaces. In exynos drm driver, common drm_hdmi driver to interface with drm framework has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls them. mixer controls all overlay layers in both mixer and vp. Vblank interrupts for hdmi are handled by mixer internally because drm framework cannot support multiple irq id. And pipe number is used to check which display device irq happens. History v2: this version - drm plane feature support to handle overlay layers. - multi buffer plane pixel format support for vp layer. - vp layer support RFCv1: original - at https://lkml.org/lkml/2011/11/4/164 Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com> Signed-off-by: Inki Dae <inki.dae@samsung.com> Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com> Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 15:39:39 +07:00
}
static void hdmi_dpms(void *ctx, int mode)
drm/exynos: added hdmi display support This patch is hdmi display support for exynos drm driver. There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv and some low level code is already in s5p-tv and even headers for register define are almost same. but in this patch, we decide not to consider separated common code with s5p-tv. Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc. 1. mixer. The piece of hardware responsible for mixing and blending multiple data inputs before passing it to an output device. The mixer is capable of handling up to three image layers. One is the output of VP. Other two are images in RGB format. The blending factor, and layers' priority are controlled by mixer's registers. The output is passed to HDMI. 2. vp (video processor). It is used for processing of NV12/NV21 data. An image stored in RAM is accessed by DMA. The output in YCbCr444 format is send to mixer. 3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes pixel data from mixer and transforms it into data frames. The output is send to HDMIPHY interface. 4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to HDMI connector. Basically, it contains a PLL that produces source clock for mixer, vp and hdmi. 5. ddc (display data channel). It is dedicated i2c channel to exchange display information as edid with display monitor. With plane support, exynos hdmi driver fully supports two mixer layes and vp layer. Also vp layer supports multi buffer plane pixel formats having non contigus memory spaces. In exynos drm driver, common drm_hdmi driver to interface with drm framework has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls them. mixer controls all overlay layers in both mixer and vp. Vblank interrupts for hdmi are handled by mixer internally because drm framework cannot support multiple irq id. And pipe number is used to check which display device irq happens. History v2: this version - drm plane feature support to handle overlay layers. - multi buffer plane pixel format support for vp layer. - vp layer support RFCv1: original - at https://lkml.org/lkml/2011/11/4/164 Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com> Signed-off-by: Inki Dae <inki.dae@samsung.com> Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com> Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 15:39:39 +07:00
{
struct hdmi_context *hdata = ctx;
drm/exynos: added hdmi display support This patch is hdmi display support for exynos drm driver. There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv and some low level code is already in s5p-tv and even headers for register define are almost same. but in this patch, we decide not to consider separated common code with s5p-tv. Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc. 1. mixer. The piece of hardware responsible for mixing and blending multiple data inputs before passing it to an output device. The mixer is capable of handling up to three image layers. One is the output of VP. Other two are images in RGB format. The blending factor, and layers' priority are controlled by mixer's registers. The output is passed to HDMI. 2. vp (video processor). It is used for processing of NV12/NV21 data. An image stored in RAM is accessed by DMA. The output in YCbCr444 format is send to mixer. 3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes pixel data from mixer and transforms it into data frames. The output is send to HDMIPHY interface. 4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to HDMI connector. Basically, it contains a PLL that produces source clock for mixer, vp and hdmi. 5. ddc (display data channel). It is dedicated i2c channel to exchange display information as edid with display monitor. With plane support, exynos hdmi driver fully supports two mixer layes and vp layer. Also vp layer supports multi buffer plane pixel formats having non contigus memory spaces. In exynos drm driver, common drm_hdmi driver to interface with drm framework has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls them. mixer controls all overlay layers in both mixer and vp. Vblank interrupts for hdmi are handled by mixer internally because drm framework cannot support multiple irq id. And pipe number is used to check which display device irq happens. History v2: this version - drm plane feature support to handle overlay layers. - multi buffer plane pixel format support for vp layer. - vp layer support RFCv1: original - at https://lkml.org/lkml/2011/11/4/164 Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com> Signed-off-by: Inki Dae <inki.dae@samsung.com> Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com> Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 15:39:39 +07:00
DRM_DEBUG_KMS("[%d] %s\n", __LINE__, __func__);
switch (mode) {
case DRM_MODE_DPMS_ON:
hdmi_poweron(hdata);
break;
case DRM_MODE_DPMS_STANDBY:
case DRM_MODE_DPMS_SUSPEND:
case DRM_MODE_DPMS_OFF:
hdmi_poweroff(hdata);
break;
default:
DRM_DEBUG_KMS("unknown dpms mode: %d\n", mode);
break;
drm/exynos: added hdmi display support This patch is hdmi display support for exynos drm driver. There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv and some low level code is already in s5p-tv and even headers for register define are almost same. but in this patch, we decide not to consider separated common code with s5p-tv. Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc. 1. mixer. The piece of hardware responsible for mixing and blending multiple data inputs before passing it to an output device. The mixer is capable of handling up to three image layers. One is the output of VP. Other two are images in RGB format. The blending factor, and layers' priority are controlled by mixer's registers. The output is passed to HDMI. 2. vp (video processor). It is used for processing of NV12/NV21 data. An image stored in RAM is accessed by DMA. The output in YCbCr444 format is send to mixer. 3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes pixel data from mixer and transforms it into data frames. The output is send to HDMIPHY interface. 4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to HDMI connector. Basically, it contains a PLL that produces source clock for mixer, vp and hdmi. 5. ddc (display data channel). It is dedicated i2c channel to exchange display information as edid with display monitor. With plane support, exynos hdmi driver fully supports two mixer layes and vp layer. Also vp layer supports multi buffer plane pixel formats having non contigus memory spaces. In exynos drm driver, common drm_hdmi driver to interface with drm framework has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls them. mixer controls all overlay layers in both mixer and vp. Vblank interrupts for hdmi are handled by mixer internally because drm framework cannot support multiple irq id. And pipe number is used to check which display device irq happens. History v2: this version - drm plane feature support to handle overlay layers. - multi buffer plane pixel format support for vp layer. - vp layer support RFCv1: original - at https://lkml.org/lkml/2011/11/4/164 Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com> Signed-off-by: Inki Dae <inki.dae@samsung.com> Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com> Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 15:39:39 +07:00
}
}
static struct exynos_hdmi_ops hdmi_ops = {
/* display */
.is_connected = hdmi_is_connected,
.get_edid = hdmi_get_edid,
.check_timing = hdmi_check_timing,
/* manager */
.mode_fixup = hdmi_mode_fixup,
drm/exynos: added hdmi display support This patch is hdmi display support for exynos drm driver. There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv and some low level code is already in s5p-tv and even headers for register define are almost same. but in this patch, we decide not to consider separated common code with s5p-tv. Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc. 1. mixer. The piece of hardware responsible for mixing and blending multiple data inputs before passing it to an output device. The mixer is capable of handling up to three image layers. One is the output of VP. Other two are images in RGB format. The blending factor, and layers' priority are controlled by mixer's registers. The output is passed to HDMI. 2. vp (video processor). It is used for processing of NV12/NV21 data. An image stored in RAM is accessed by DMA. The output in YCbCr444 format is send to mixer. 3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes pixel data from mixer and transforms it into data frames. The output is send to HDMIPHY interface. 4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to HDMI connector. Basically, it contains a PLL that produces source clock for mixer, vp and hdmi. 5. ddc (display data channel). It is dedicated i2c channel to exchange display information as edid with display monitor. With plane support, exynos hdmi driver fully supports two mixer layes and vp layer. Also vp layer supports multi buffer plane pixel formats having non contigus memory spaces. In exynos drm driver, common drm_hdmi driver to interface with drm framework has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls them. mixer controls all overlay layers in both mixer and vp. Vblank interrupts for hdmi are handled by mixer internally because drm framework cannot support multiple irq id. And pipe number is used to check which display device irq happens. History v2: this version - drm plane feature support to handle overlay layers. - multi buffer plane pixel format support for vp layer. - vp layer support RFCv1: original - at https://lkml.org/lkml/2011/11/4/164 Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com> Signed-off-by: Inki Dae <inki.dae@samsung.com> Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com> Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 15:39:39 +07:00
.mode_set = hdmi_mode_set,
.get_max_resol = hdmi_get_max_resol,
drm/exynos: added hdmi display support This patch is hdmi display support for exynos drm driver. There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv and some low level code is already in s5p-tv and even headers for register define are almost same. but in this patch, we decide not to consider separated common code with s5p-tv. Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc. 1. mixer. The piece of hardware responsible for mixing and blending multiple data inputs before passing it to an output device. The mixer is capable of handling up to three image layers. One is the output of VP. Other two are images in RGB format. The blending factor, and layers' priority are controlled by mixer's registers. The output is passed to HDMI. 2. vp (video processor). It is used for processing of NV12/NV21 data. An image stored in RAM is accessed by DMA. The output in YCbCr444 format is send to mixer. 3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes pixel data from mixer and transforms it into data frames. The output is send to HDMIPHY interface. 4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to HDMI connector. Basically, it contains a PLL that produces source clock for mixer, vp and hdmi. 5. ddc (display data channel). It is dedicated i2c channel to exchange display information as edid with display monitor. With plane support, exynos hdmi driver fully supports two mixer layes and vp layer. Also vp layer supports multi buffer plane pixel formats having non contigus memory spaces. In exynos drm driver, common drm_hdmi driver to interface with drm framework has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls them. mixer controls all overlay layers in both mixer and vp. Vblank interrupts for hdmi are handled by mixer internally because drm framework cannot support multiple irq id. And pipe number is used to check which display device irq happens. History v2: this version - drm plane feature support to handle overlay layers. - multi buffer plane pixel format support for vp layer. - vp layer support RFCv1: original - at https://lkml.org/lkml/2011/11/4/164 Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com> Signed-off-by: Inki Dae <inki.dae@samsung.com> Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com> Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 15:39:39 +07:00
.commit = hdmi_commit,
.dpms = hdmi_dpms,
drm/exynos: added hdmi display support This patch is hdmi display support for exynos drm driver. There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv and some low level code is already in s5p-tv and even headers for register define are almost same. but in this patch, we decide not to consider separated common code with s5p-tv. Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc. 1. mixer. The piece of hardware responsible for mixing and blending multiple data inputs before passing it to an output device. The mixer is capable of handling up to three image layers. One is the output of VP. Other two are images in RGB format. The blending factor, and layers' priority are controlled by mixer's registers. The output is passed to HDMI. 2. vp (video processor). It is used for processing of NV12/NV21 data. An image stored in RAM is accessed by DMA. The output in YCbCr444 format is send to mixer. 3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes pixel data from mixer and transforms it into data frames. The output is send to HDMIPHY interface. 4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to HDMI connector. Basically, it contains a PLL that produces source clock for mixer, vp and hdmi. 5. ddc (display data channel). It is dedicated i2c channel to exchange display information as edid with display monitor. With plane support, exynos hdmi driver fully supports two mixer layes and vp layer. Also vp layer supports multi buffer plane pixel formats having non contigus memory spaces. In exynos drm driver, common drm_hdmi driver to interface with drm framework has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls them. mixer controls all overlay layers in both mixer and vp. Vblank interrupts for hdmi are handled by mixer internally because drm framework cannot support multiple irq id. And pipe number is used to check which display device irq happens. History v2: this version - drm plane feature support to handle overlay layers. - multi buffer plane pixel format support for vp layer. - vp layer support RFCv1: original - at https://lkml.org/lkml/2011/11/4/164 Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com> Signed-off-by: Inki Dae <inki.dae@samsung.com> Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com> Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 15:39:39 +07:00
};
static irqreturn_t hdmi_external_irq_thread(int irq, void *arg)
{
struct exynos_drm_hdmi_context *ctx = arg;
struct hdmi_context *hdata = ctx->ctx;
if (!hdata->get_hpd)
goto out;
mutex_lock(&hdata->hdmi_mutex);
hdata->hpd = hdata->get_hpd();
mutex_unlock(&hdata->hdmi_mutex);
if (ctx->drm_dev)
drm_helper_hpd_irq_event(ctx->drm_dev);
out:
return IRQ_HANDLED;
}
static irqreturn_t hdmi_internal_irq_thread(int irq, void *arg)
drm/exynos: added hdmi display support This patch is hdmi display support for exynos drm driver. There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv and some low level code is already in s5p-tv and even headers for register define are almost same. but in this patch, we decide not to consider separated common code with s5p-tv. Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc. 1. mixer. The piece of hardware responsible for mixing and blending multiple data inputs before passing it to an output device. The mixer is capable of handling up to three image layers. One is the output of VP. Other two are images in RGB format. The blending factor, and layers' priority are controlled by mixer's registers. The output is passed to HDMI. 2. vp (video processor). It is used for processing of NV12/NV21 data. An image stored in RAM is accessed by DMA. The output in YCbCr444 format is send to mixer. 3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes pixel data from mixer and transforms it into data frames. The output is send to HDMIPHY interface. 4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to HDMI connector. Basically, it contains a PLL that produces source clock for mixer, vp and hdmi. 5. ddc (display data channel). It is dedicated i2c channel to exchange display information as edid with display monitor. With plane support, exynos hdmi driver fully supports two mixer layes and vp layer. Also vp layer supports multi buffer plane pixel formats having non contigus memory spaces. In exynos drm driver, common drm_hdmi driver to interface with drm framework has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls them. mixer controls all overlay layers in both mixer and vp. Vblank interrupts for hdmi are handled by mixer internally because drm framework cannot support multiple irq id. And pipe number is used to check which display device irq happens. History v2: this version - drm plane feature support to handle overlay layers. - multi buffer plane pixel format support for vp layer. - vp layer support RFCv1: original - at https://lkml.org/lkml/2011/11/4/164 Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com> Signed-off-by: Inki Dae <inki.dae@samsung.com> Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com> Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 15:39:39 +07:00
{
struct exynos_drm_hdmi_context *ctx = arg;
struct hdmi_context *hdata = ctx->ctx;
drm/exynos: added hdmi display support This patch is hdmi display support for exynos drm driver. There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv and some low level code is already in s5p-tv and even headers for register define are almost same. but in this patch, we decide not to consider separated common code with s5p-tv. Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc. 1. mixer. The piece of hardware responsible for mixing and blending multiple data inputs before passing it to an output device. The mixer is capable of handling up to three image layers. One is the output of VP. Other two are images in RGB format. The blending factor, and layers' priority are controlled by mixer's registers. The output is passed to HDMI. 2. vp (video processor). It is used for processing of NV12/NV21 data. An image stored in RAM is accessed by DMA. The output in YCbCr444 format is send to mixer. 3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes pixel data from mixer and transforms it into data frames. The output is send to HDMIPHY interface. 4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to HDMI connector. Basically, it contains a PLL that produces source clock for mixer, vp and hdmi. 5. ddc (display data channel). It is dedicated i2c channel to exchange display information as edid with display monitor. With plane support, exynos hdmi driver fully supports two mixer layes and vp layer. Also vp layer supports multi buffer plane pixel formats having non contigus memory spaces. In exynos drm driver, common drm_hdmi driver to interface with drm framework has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls them. mixer controls all overlay layers in both mixer and vp. Vblank interrupts for hdmi are handled by mixer internally because drm framework cannot support multiple irq id. And pipe number is used to check which display device irq happens. History v2: this version - drm plane feature support to handle overlay layers. - multi buffer plane pixel format support for vp layer. - vp layer support RFCv1: original - at https://lkml.org/lkml/2011/11/4/164 Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com> Signed-off-by: Inki Dae <inki.dae@samsung.com> Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com> Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 15:39:39 +07:00
u32 intc_flag;
intc_flag = hdmi_reg_read(hdata, HDMI_INTC_FLAG);
/* clearing flags for HPD plug/unplug */
if (intc_flag & HDMI_INTC_FLAG_HPD_UNPLUG) {
DRM_DEBUG_KMS("unplugged\n");
drm/exynos: added hdmi display support This patch is hdmi display support for exynos drm driver. There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv and some low level code is already in s5p-tv and even headers for register define are almost same. but in this patch, we decide not to consider separated common code with s5p-tv. Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc. 1. mixer. The piece of hardware responsible for mixing and blending multiple data inputs before passing it to an output device. The mixer is capable of handling up to three image layers. One is the output of VP. Other two are images in RGB format. The blending factor, and layers' priority are controlled by mixer's registers. The output is passed to HDMI. 2. vp (video processor). It is used for processing of NV12/NV21 data. An image stored in RAM is accessed by DMA. The output in YCbCr444 format is send to mixer. 3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes pixel data from mixer and transforms it into data frames. The output is send to HDMIPHY interface. 4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to HDMI connector. Basically, it contains a PLL that produces source clock for mixer, vp and hdmi. 5. ddc (display data channel). It is dedicated i2c channel to exchange display information as edid with display monitor. With plane support, exynos hdmi driver fully supports two mixer layes and vp layer. Also vp layer supports multi buffer plane pixel formats having non contigus memory spaces. In exynos drm driver, common drm_hdmi driver to interface with drm framework has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls them. mixer controls all overlay layers in both mixer and vp. Vblank interrupts for hdmi are handled by mixer internally because drm framework cannot support multiple irq id. And pipe number is used to check which display device irq happens. History v2: this version - drm plane feature support to handle overlay layers. - multi buffer plane pixel format support for vp layer. - vp layer support RFCv1: original - at https://lkml.org/lkml/2011/11/4/164 Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com> Signed-off-by: Inki Dae <inki.dae@samsung.com> Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com> Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 15:39:39 +07:00
hdmi_reg_writemask(hdata, HDMI_INTC_FLAG, ~0,
HDMI_INTC_FLAG_HPD_UNPLUG);
}
if (intc_flag & HDMI_INTC_FLAG_HPD_PLUG) {
DRM_DEBUG_KMS("plugged\n");
drm/exynos: added hdmi display support This patch is hdmi display support for exynos drm driver. There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv and some low level code is already in s5p-tv and even headers for register define are almost same. but in this patch, we decide not to consider separated common code with s5p-tv. Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc. 1. mixer. The piece of hardware responsible for mixing and blending multiple data inputs before passing it to an output device. The mixer is capable of handling up to three image layers. One is the output of VP. Other two are images in RGB format. The blending factor, and layers' priority are controlled by mixer's registers. The output is passed to HDMI. 2. vp (video processor). It is used for processing of NV12/NV21 data. An image stored in RAM is accessed by DMA. The output in YCbCr444 format is send to mixer. 3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes pixel data from mixer and transforms it into data frames. The output is send to HDMIPHY interface. 4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to HDMI connector. Basically, it contains a PLL that produces source clock for mixer, vp and hdmi. 5. ddc (display data channel). It is dedicated i2c channel to exchange display information as edid with display monitor. With plane support, exynos hdmi driver fully supports two mixer layes and vp layer. Also vp layer supports multi buffer plane pixel formats having non contigus memory spaces. In exynos drm driver, common drm_hdmi driver to interface with drm framework has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls them. mixer controls all overlay layers in both mixer and vp. Vblank interrupts for hdmi are handled by mixer internally because drm framework cannot support multiple irq id. And pipe number is used to check which display device irq happens. History v2: this version - drm plane feature support to handle overlay layers. - multi buffer plane pixel format support for vp layer. - vp layer support RFCv1: original - at https://lkml.org/lkml/2011/11/4/164 Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com> Signed-off-by: Inki Dae <inki.dae@samsung.com> Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com> Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 15:39:39 +07:00
hdmi_reg_writemask(hdata, HDMI_INTC_FLAG, ~0,
HDMI_INTC_FLAG_HPD_PLUG);
}
mutex_lock(&hdata->hdmi_mutex);
hdata->hpd = hdmi_reg_read(hdata, HDMI_HPD_STATUS);
if (hdata->powered && hdata->hpd) {
mutex_unlock(&hdata->hdmi_mutex);
goto out;
}
mutex_unlock(&hdata->hdmi_mutex);
if (ctx->drm_dev)
drm_helper_hpd_irq_event(ctx->drm_dev);
drm/exynos: added hdmi display support This patch is hdmi display support for exynos drm driver. There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv and some low level code is already in s5p-tv and even headers for register define are almost same. but in this patch, we decide not to consider separated common code with s5p-tv. Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc. 1. mixer. The piece of hardware responsible for mixing and blending multiple data inputs before passing it to an output device. The mixer is capable of handling up to three image layers. One is the output of VP. Other two are images in RGB format. The blending factor, and layers' priority are controlled by mixer's registers. The output is passed to HDMI. 2. vp (video processor). It is used for processing of NV12/NV21 data. An image stored in RAM is accessed by DMA. The output in YCbCr444 format is send to mixer. 3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes pixel data from mixer and transforms it into data frames. The output is send to HDMIPHY interface. 4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to HDMI connector. Basically, it contains a PLL that produces source clock for mixer, vp and hdmi. 5. ddc (display data channel). It is dedicated i2c channel to exchange display information as edid with display monitor. With plane support, exynos hdmi driver fully supports two mixer layes and vp layer. Also vp layer supports multi buffer plane pixel formats having non contigus memory spaces. In exynos drm driver, common drm_hdmi driver to interface with drm framework has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls them. mixer controls all overlay layers in both mixer and vp. Vblank interrupts for hdmi are handled by mixer internally because drm framework cannot support multiple irq id. And pipe number is used to check which display device irq happens. History v2: this version - drm plane feature support to handle overlay layers. - multi buffer plane pixel format support for vp layer. - vp layer support RFCv1: original - at https://lkml.org/lkml/2011/11/4/164 Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com> Signed-off-by: Inki Dae <inki.dae@samsung.com> Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com> Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 15:39:39 +07:00
out:
drm/exynos: added hdmi display support This patch is hdmi display support for exynos drm driver. There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv and some low level code is already in s5p-tv and even headers for register define are almost same. but in this patch, we decide not to consider separated common code with s5p-tv. Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc. 1. mixer. The piece of hardware responsible for mixing and blending multiple data inputs before passing it to an output device. The mixer is capable of handling up to three image layers. One is the output of VP. Other two are images in RGB format. The blending factor, and layers' priority are controlled by mixer's registers. The output is passed to HDMI. 2. vp (video processor). It is used for processing of NV12/NV21 data. An image stored in RAM is accessed by DMA. The output in YCbCr444 format is send to mixer. 3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes pixel data from mixer and transforms it into data frames. The output is send to HDMIPHY interface. 4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to HDMI connector. Basically, it contains a PLL that produces source clock for mixer, vp and hdmi. 5. ddc (display data channel). It is dedicated i2c channel to exchange display information as edid with display monitor. With plane support, exynos hdmi driver fully supports two mixer layes and vp layer. Also vp layer supports multi buffer plane pixel formats having non contigus memory spaces. In exynos drm driver, common drm_hdmi driver to interface with drm framework has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls them. mixer controls all overlay layers in both mixer and vp. Vblank interrupts for hdmi are handled by mixer internally because drm framework cannot support multiple irq id. And pipe number is used to check which display device irq happens. History v2: this version - drm plane feature support to handle overlay layers. - multi buffer plane pixel format support for vp layer. - vp layer support RFCv1: original - at https://lkml.org/lkml/2011/11/4/164 Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com> Signed-off-by: Inki Dae <inki.dae@samsung.com> Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com> Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 15:39:39 +07:00
return IRQ_HANDLED;
}
static int __devinit hdmi_resources_init(struct hdmi_context *hdata)
{
struct device *dev = hdata->dev;
struct hdmi_resources *res = &hdata->res;
static char *supply[] = {
"hdmi-en",
"vdd",
"vdd_osc",
"vdd_pll",
};
int i, ret;
DRM_DEBUG_KMS("HDMI resource init\n");
memset(res, 0, sizeof *res);
/* get clocks, power */
res->hdmi = clk_get(dev, "hdmi");
if (IS_ERR_OR_NULL(res->hdmi)) {
DRM_ERROR("failed to get clock 'hdmi'\n");
goto fail;
}
res->sclk_hdmi = clk_get(dev, "sclk_hdmi");
if (IS_ERR_OR_NULL(res->sclk_hdmi)) {
DRM_ERROR("failed to get clock 'sclk_hdmi'\n");
goto fail;
}
res->sclk_pixel = clk_get(dev, "sclk_pixel");
if (IS_ERR_OR_NULL(res->sclk_pixel)) {
DRM_ERROR("failed to get clock 'sclk_pixel'\n");
goto fail;
}
res->sclk_hdmiphy = clk_get(dev, "sclk_hdmiphy");
if (IS_ERR_OR_NULL(res->sclk_hdmiphy)) {
DRM_ERROR("failed to get clock 'sclk_hdmiphy'\n");
goto fail;
}
res->hdmiphy = clk_get(dev, "hdmiphy");
if (IS_ERR_OR_NULL(res->hdmiphy)) {
DRM_ERROR("failed to get clock 'hdmiphy'\n");
goto fail;
}
clk_set_parent(res->sclk_hdmi, res->sclk_pixel);
res->regul_bulk = kzalloc(ARRAY_SIZE(supply) *
sizeof res->regul_bulk[0], GFP_KERNEL);
if (!res->regul_bulk) {
DRM_ERROR("failed to get memory for regulators\n");
goto fail;
}
for (i = 0; i < ARRAY_SIZE(supply); ++i) {
res->regul_bulk[i].supply = supply[i];
res->regul_bulk[i].consumer = NULL;
}
ret = regulator_bulk_get(dev, ARRAY_SIZE(supply), res->regul_bulk);
if (ret) {
DRM_ERROR("failed to get regulators\n");
goto fail;
}
res->regul_count = ARRAY_SIZE(supply);
return 0;
fail:
DRM_ERROR("HDMI resource init - failed\n");
return -ENODEV;
}
static int hdmi_resources_cleanup(struct hdmi_context *hdata)
{
struct hdmi_resources *res = &hdata->res;
regulator_bulk_free(res->regul_count, res->regul_bulk);
/* kfree is NULL-safe */
kfree(res->regul_bulk);
if (!IS_ERR_OR_NULL(res->hdmiphy))
clk_put(res->hdmiphy);
if (!IS_ERR_OR_NULL(res->sclk_hdmiphy))
clk_put(res->sclk_hdmiphy);
if (!IS_ERR_OR_NULL(res->sclk_pixel))
clk_put(res->sclk_pixel);
if (!IS_ERR_OR_NULL(res->sclk_hdmi))
clk_put(res->sclk_hdmi);
if (!IS_ERR_OR_NULL(res->hdmi))
clk_put(res->hdmi);
memset(res, 0, sizeof *res);
return 0;
}
static struct i2c_client *hdmi_ddc, *hdmi_hdmiphy;
void hdmi_attach_ddc_client(struct i2c_client *ddc)
{
if (ddc)
hdmi_ddc = ddc;
}
void hdmi_attach_hdmiphy_client(struct i2c_client *hdmiphy)
{
if (hdmiphy)
hdmi_hdmiphy = hdmiphy;
}
static int __devinit hdmi_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct exynos_drm_hdmi_context *drm_hdmi_ctx;
struct hdmi_context *hdata;
struct exynos_drm_hdmi_pdata *pdata;
struct resource *res;
int ret;
DRM_DEBUG_KMS("[%d]\n", __LINE__);
pdata = pdev->dev.platform_data;
if (!pdata) {
DRM_ERROR("no platform data specified\n");
return -EINVAL;
}
drm_hdmi_ctx = kzalloc(sizeof(*drm_hdmi_ctx), GFP_KERNEL);
if (!drm_hdmi_ctx) {
DRM_ERROR("failed to allocate common hdmi context.\n");
return -ENOMEM;
}
hdata = kzalloc(sizeof(struct hdmi_context), GFP_KERNEL);
if (!hdata) {
DRM_ERROR("out of memory\n");
kfree(drm_hdmi_ctx);
return -ENOMEM;
}
mutex_init(&hdata->hdmi_mutex);
drm/exynos: added hdmi display support This patch is hdmi display support for exynos drm driver. There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv and some low level code is already in s5p-tv and even headers for register define are almost same. but in this patch, we decide not to consider separated common code with s5p-tv. Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc. 1. mixer. The piece of hardware responsible for mixing and blending multiple data inputs before passing it to an output device. The mixer is capable of handling up to three image layers. One is the output of VP. Other two are images in RGB format. The blending factor, and layers' priority are controlled by mixer's registers. The output is passed to HDMI. 2. vp (video processor). It is used for processing of NV12/NV21 data. An image stored in RAM is accessed by DMA. The output in YCbCr444 format is send to mixer. 3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes pixel data from mixer and transforms it into data frames. The output is send to HDMIPHY interface. 4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to HDMI connector. Basically, it contains a PLL that produces source clock for mixer, vp and hdmi. 5. ddc (display data channel). It is dedicated i2c channel to exchange display information as edid with display monitor. With plane support, exynos hdmi driver fully supports two mixer layes and vp layer. Also vp layer supports multi buffer plane pixel formats having non contigus memory spaces. In exynos drm driver, common drm_hdmi driver to interface with drm framework has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls them. mixer controls all overlay layers in both mixer and vp. Vblank interrupts for hdmi are handled by mixer internally because drm framework cannot support multiple irq id. And pipe number is used to check which display device irq happens. History v2: this version - drm plane feature support to handle overlay layers. - multi buffer plane pixel format support for vp layer. - vp layer support RFCv1: original - at https://lkml.org/lkml/2011/11/4/164 Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com> Signed-off-by: Inki Dae <inki.dae@samsung.com> Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com> Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 15:39:39 +07:00
drm_hdmi_ctx->ctx = (void *)hdata;
hdata->parent_ctx = (void *)drm_hdmi_ctx;
platform_set_drvdata(pdev, drm_hdmi_ctx);
hdata->is_v13 = pdata->is_v13;
hdata->cfg_hpd = pdata->cfg_hpd;
hdata->get_hpd = pdata->get_hpd;
drm/exynos: added hdmi display support This patch is hdmi display support for exynos drm driver. There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv and some low level code is already in s5p-tv and even headers for register define are almost same. but in this patch, we decide not to consider separated common code with s5p-tv. Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc. 1. mixer. The piece of hardware responsible for mixing and blending multiple data inputs before passing it to an output device. The mixer is capable of handling up to three image layers. One is the output of VP. Other two are images in RGB format. The blending factor, and layers' priority are controlled by mixer's registers. The output is passed to HDMI. 2. vp (video processor). It is used for processing of NV12/NV21 data. An image stored in RAM is accessed by DMA. The output in YCbCr444 format is send to mixer. 3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes pixel data from mixer and transforms it into data frames. The output is send to HDMIPHY interface. 4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to HDMI connector. Basically, it contains a PLL that produces source clock for mixer, vp and hdmi. 5. ddc (display data channel). It is dedicated i2c channel to exchange display information as edid with display monitor. With plane support, exynos hdmi driver fully supports two mixer layes and vp layer. Also vp layer supports multi buffer plane pixel formats having non contigus memory spaces. In exynos drm driver, common drm_hdmi driver to interface with drm framework has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls them. mixer controls all overlay layers in both mixer and vp. Vblank interrupts for hdmi are handled by mixer internally because drm framework cannot support multiple irq id. And pipe number is used to check which display device irq happens. History v2: this version - drm plane feature support to handle overlay layers. - multi buffer plane pixel format support for vp layer. - vp layer support RFCv1: original - at https://lkml.org/lkml/2011/11/4/164 Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com> Signed-off-by: Inki Dae <inki.dae@samsung.com> Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com> Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 15:39:39 +07:00
hdata->dev = dev;
ret = hdmi_resources_init(hdata);
if (ret) {
ret = -EINVAL;
goto err_data;
}
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!res) {
DRM_ERROR("failed to find registers\n");
ret = -ENOENT;
goto err_resource;
}
hdata->regs_res = request_mem_region(res->start, resource_size(res),
dev_name(dev));
if (!hdata->regs_res) {
DRM_ERROR("failed to claim register region\n");
ret = -ENOENT;
goto err_resource;
}
hdata->regs = ioremap(res->start, resource_size(res));
if (!hdata->regs) {
DRM_ERROR("failed to map registers\n");
ret = -ENXIO;
goto err_req_region;
}
/* DDC i2c driver */
if (i2c_add_driver(&ddc_driver)) {
DRM_ERROR("failed to register ddc i2c driver\n");
ret = -ENOENT;
goto err_iomap;
}
hdata->ddc_port = hdmi_ddc;
/* hdmiphy i2c driver */
if (i2c_add_driver(&hdmiphy_driver)) {
DRM_ERROR("failed to register hdmiphy i2c driver\n");
ret = -ENOENT;
goto err_ddc;
}
hdata->hdmiphy_port = hdmi_hdmiphy;
hdata->external_irq = platform_get_irq_byname(pdev, "external_irq");
if (hdata->external_irq < 0) {
DRM_ERROR("failed to get platform irq\n");
ret = hdata->external_irq;
drm/exynos: added hdmi display support This patch is hdmi display support for exynos drm driver. There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv and some low level code is already in s5p-tv and even headers for register define are almost same. but in this patch, we decide not to consider separated common code with s5p-tv. Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc. 1. mixer. The piece of hardware responsible for mixing and blending multiple data inputs before passing it to an output device. The mixer is capable of handling up to three image layers. One is the output of VP. Other two are images in RGB format. The blending factor, and layers' priority are controlled by mixer's registers. The output is passed to HDMI. 2. vp (video processor). It is used for processing of NV12/NV21 data. An image stored in RAM is accessed by DMA. The output in YCbCr444 format is send to mixer. 3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes pixel data from mixer and transforms it into data frames. The output is send to HDMIPHY interface. 4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to HDMI connector. Basically, it contains a PLL that produces source clock for mixer, vp and hdmi. 5. ddc (display data channel). It is dedicated i2c channel to exchange display information as edid with display monitor. With plane support, exynos hdmi driver fully supports two mixer layes and vp layer. Also vp layer supports multi buffer plane pixel formats having non contigus memory spaces. In exynos drm driver, common drm_hdmi driver to interface with drm framework has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls them. mixer controls all overlay layers in both mixer and vp. Vblank interrupts for hdmi are handled by mixer internally because drm framework cannot support multiple irq id. And pipe number is used to check which display device irq happens. History v2: this version - drm plane feature support to handle overlay layers. - multi buffer plane pixel format support for vp layer. - vp layer support RFCv1: original - at https://lkml.org/lkml/2011/11/4/164 Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com> Signed-off-by: Inki Dae <inki.dae@samsung.com> Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com> Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 15:39:39 +07:00
goto err_hdmiphy;
}
hdata->internal_irq = platform_get_irq_byname(pdev, "internal_irq");
if (hdata->internal_irq < 0) {
DRM_ERROR("failed to get platform internal irq\n");
ret = hdata->internal_irq;
goto err_hdmiphy;
}
ret = request_threaded_irq(hdata->external_irq, NULL,
hdmi_external_irq_thread, IRQF_TRIGGER_RISING |
IRQF_TRIGGER_FALLING | IRQF_ONESHOT,
"hdmi_external", drm_hdmi_ctx);
drm/exynos: added hdmi display support This patch is hdmi display support for exynos drm driver. There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv and some low level code is already in s5p-tv and even headers for register define are almost same. but in this patch, we decide not to consider separated common code with s5p-tv. Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc. 1. mixer. The piece of hardware responsible for mixing and blending multiple data inputs before passing it to an output device. The mixer is capable of handling up to three image layers. One is the output of VP. Other two are images in RGB format. The blending factor, and layers' priority are controlled by mixer's registers. The output is passed to HDMI. 2. vp (video processor). It is used for processing of NV12/NV21 data. An image stored in RAM is accessed by DMA. The output in YCbCr444 format is send to mixer. 3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes pixel data from mixer and transforms it into data frames. The output is send to HDMIPHY interface. 4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to HDMI connector. Basically, it contains a PLL that produces source clock for mixer, vp and hdmi. 5. ddc (display data channel). It is dedicated i2c channel to exchange display information as edid with display monitor. With plane support, exynos hdmi driver fully supports two mixer layes and vp layer. Also vp layer supports multi buffer plane pixel formats having non contigus memory spaces. In exynos drm driver, common drm_hdmi driver to interface with drm framework has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls them. mixer controls all overlay layers in both mixer and vp. Vblank interrupts for hdmi are handled by mixer internally because drm framework cannot support multiple irq id. And pipe number is used to check which display device irq happens. History v2: this version - drm plane feature support to handle overlay layers. - multi buffer plane pixel format support for vp layer. - vp layer support RFCv1: original - at https://lkml.org/lkml/2011/11/4/164 Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com> Signed-off-by: Inki Dae <inki.dae@samsung.com> Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com> Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 15:39:39 +07:00
if (ret) {
DRM_ERROR("failed to register hdmi internal interrupt\n");
goto err_hdmiphy;
drm/exynos: added hdmi display support This patch is hdmi display support for exynos drm driver. There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv and some low level code is already in s5p-tv and even headers for register define are almost same. but in this patch, we decide not to consider separated common code with s5p-tv. Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc. 1. mixer. The piece of hardware responsible for mixing and blending multiple data inputs before passing it to an output device. The mixer is capable of handling up to three image layers. One is the output of VP. Other two are images in RGB format. The blending factor, and layers' priority are controlled by mixer's registers. The output is passed to HDMI. 2. vp (video processor). It is used for processing of NV12/NV21 data. An image stored in RAM is accessed by DMA. The output in YCbCr444 format is send to mixer. 3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes pixel data from mixer and transforms it into data frames. The output is send to HDMIPHY interface. 4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to HDMI connector. Basically, it contains a PLL that produces source clock for mixer, vp and hdmi. 5. ddc (display data channel). It is dedicated i2c channel to exchange display information as edid with display monitor. With plane support, exynos hdmi driver fully supports two mixer layes and vp layer. Also vp layer supports multi buffer plane pixel formats having non contigus memory spaces. In exynos drm driver, common drm_hdmi driver to interface with drm framework has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls them. mixer controls all overlay layers in both mixer and vp. Vblank interrupts for hdmi are handled by mixer internally because drm framework cannot support multiple irq id. And pipe number is used to check which display device irq happens. History v2: this version - drm plane feature support to handle overlay layers. - multi buffer plane pixel format support for vp layer. - vp layer support RFCv1: original - at https://lkml.org/lkml/2011/11/4/164 Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com> Signed-off-by: Inki Dae <inki.dae@samsung.com> Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com> Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 15:39:39 +07:00
}
if (hdata->cfg_hpd)
hdata->cfg_hpd(false);
ret = request_threaded_irq(hdata->internal_irq, NULL,
hdmi_internal_irq_thread, IRQF_ONESHOT,
"hdmi_internal", drm_hdmi_ctx);
if (ret) {
DRM_ERROR("failed to register hdmi internal interrupt\n");
goto err_free_irq;
}
drm/exynos: added hdmi display support This patch is hdmi display support for exynos drm driver. There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv and some low level code is already in s5p-tv and even headers for register define are almost same. but in this patch, we decide not to consider separated common code with s5p-tv. Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc. 1. mixer. The piece of hardware responsible for mixing and blending multiple data inputs before passing it to an output device. The mixer is capable of handling up to three image layers. One is the output of VP. Other two are images in RGB format. The blending factor, and layers' priority are controlled by mixer's registers. The output is passed to HDMI. 2. vp (video processor). It is used for processing of NV12/NV21 data. An image stored in RAM is accessed by DMA. The output in YCbCr444 format is send to mixer. 3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes pixel data from mixer and transforms it into data frames. The output is send to HDMIPHY interface. 4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to HDMI connector. Basically, it contains a PLL that produces source clock for mixer, vp and hdmi. 5. ddc (display data channel). It is dedicated i2c channel to exchange display information as edid with display monitor. With plane support, exynos hdmi driver fully supports two mixer layes and vp layer. Also vp layer supports multi buffer plane pixel formats having non contigus memory spaces. In exynos drm driver, common drm_hdmi driver to interface with drm framework has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls them. mixer controls all overlay layers in both mixer and vp. Vblank interrupts for hdmi are handled by mixer internally because drm framework cannot support multiple irq id. And pipe number is used to check which display device irq happens. History v2: this version - drm plane feature support to handle overlay layers. - multi buffer plane pixel format support for vp layer. - vp layer support RFCv1: original - at https://lkml.org/lkml/2011/11/4/164 Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com> Signed-off-by: Inki Dae <inki.dae@samsung.com> Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com> Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 15:39:39 +07:00
/* register specific callbacks to common hdmi. */
exynos_hdmi_ops_register(&hdmi_ops);
drm/exynos: added hdmi display support This patch is hdmi display support for exynos drm driver. There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv and some low level code is already in s5p-tv and even headers for register define are almost same. but in this patch, we decide not to consider separated common code with s5p-tv. Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc. 1. mixer. The piece of hardware responsible for mixing and blending multiple data inputs before passing it to an output device. The mixer is capable of handling up to three image layers. One is the output of VP. Other two are images in RGB format. The blending factor, and layers' priority are controlled by mixer's registers. The output is passed to HDMI. 2. vp (video processor). It is used for processing of NV12/NV21 data. An image stored in RAM is accessed by DMA. The output in YCbCr444 format is send to mixer. 3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes pixel data from mixer and transforms it into data frames. The output is send to HDMIPHY interface. 4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to HDMI connector. Basically, it contains a PLL that produces source clock for mixer, vp and hdmi. 5. ddc (display data channel). It is dedicated i2c channel to exchange display information as edid with display monitor. With plane support, exynos hdmi driver fully supports two mixer layes and vp layer. Also vp layer supports multi buffer plane pixel formats having non contigus memory spaces. In exynos drm driver, common drm_hdmi driver to interface with drm framework has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls them. mixer controls all overlay layers in both mixer and vp. Vblank interrupts for hdmi are handled by mixer internally because drm framework cannot support multiple irq id. And pipe number is used to check which display device irq happens. History v2: this version - drm plane feature support to handle overlay layers. - multi buffer plane pixel format support for vp layer. - vp layer support RFCv1: original - at https://lkml.org/lkml/2011/11/4/164 Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com> Signed-off-by: Inki Dae <inki.dae@samsung.com> Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com> Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 15:39:39 +07:00
pm_runtime_enable(dev);
drm/exynos: added hdmi display support This patch is hdmi display support for exynos drm driver. There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv and some low level code is already in s5p-tv and even headers for register define are almost same. but in this patch, we decide not to consider separated common code with s5p-tv. Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc. 1. mixer. The piece of hardware responsible for mixing and blending multiple data inputs before passing it to an output device. The mixer is capable of handling up to three image layers. One is the output of VP. Other two are images in RGB format. The blending factor, and layers' priority are controlled by mixer's registers. The output is passed to HDMI. 2. vp (video processor). It is used for processing of NV12/NV21 data. An image stored in RAM is accessed by DMA. The output in YCbCr444 format is send to mixer. 3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes pixel data from mixer and transforms it into data frames. The output is send to HDMIPHY interface. 4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to HDMI connector. Basically, it contains a PLL that produces source clock for mixer, vp and hdmi. 5. ddc (display data channel). It is dedicated i2c channel to exchange display information as edid with display monitor. With plane support, exynos hdmi driver fully supports two mixer layes and vp layer. Also vp layer supports multi buffer plane pixel formats having non contigus memory spaces. In exynos drm driver, common drm_hdmi driver to interface with drm framework has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls them. mixer controls all overlay layers in both mixer and vp. Vblank interrupts for hdmi are handled by mixer internally because drm framework cannot support multiple irq id. And pipe number is used to check which display device irq happens. History v2: this version - drm plane feature support to handle overlay layers. - multi buffer plane pixel format support for vp layer. - vp layer support RFCv1: original - at https://lkml.org/lkml/2011/11/4/164 Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com> Signed-off-by: Inki Dae <inki.dae@samsung.com> Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com> Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 15:39:39 +07:00
return 0;
err_free_irq:
free_irq(hdata->external_irq, drm_hdmi_ctx);
drm/exynos: added hdmi display support This patch is hdmi display support for exynos drm driver. There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv and some low level code is already in s5p-tv and even headers for register define are almost same. but in this patch, we decide not to consider separated common code with s5p-tv. Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc. 1. mixer. The piece of hardware responsible for mixing and blending multiple data inputs before passing it to an output device. The mixer is capable of handling up to three image layers. One is the output of VP. Other two are images in RGB format. The blending factor, and layers' priority are controlled by mixer's registers. The output is passed to HDMI. 2. vp (video processor). It is used for processing of NV12/NV21 data. An image stored in RAM is accessed by DMA. The output in YCbCr444 format is send to mixer. 3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes pixel data from mixer and transforms it into data frames. The output is send to HDMIPHY interface. 4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to HDMI connector. Basically, it contains a PLL that produces source clock for mixer, vp and hdmi. 5. ddc (display data channel). It is dedicated i2c channel to exchange display information as edid with display monitor. With plane support, exynos hdmi driver fully supports two mixer layes and vp layer. Also vp layer supports multi buffer plane pixel formats having non contigus memory spaces. In exynos drm driver, common drm_hdmi driver to interface with drm framework has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls them. mixer controls all overlay layers in both mixer and vp. Vblank interrupts for hdmi are handled by mixer internally because drm framework cannot support multiple irq id. And pipe number is used to check which display device irq happens. History v2: this version - drm plane feature support to handle overlay layers. - multi buffer plane pixel format support for vp layer. - vp layer support RFCv1: original - at https://lkml.org/lkml/2011/11/4/164 Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com> Signed-off-by: Inki Dae <inki.dae@samsung.com> Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com> Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 15:39:39 +07:00
err_hdmiphy:
i2c_del_driver(&hdmiphy_driver);
err_ddc:
i2c_del_driver(&ddc_driver);
err_iomap:
iounmap(hdata->regs);
err_req_region:
release_mem_region(hdata->regs_res->start,
resource_size(hdata->regs_res));
drm/exynos: added hdmi display support This patch is hdmi display support for exynos drm driver. There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv and some low level code is already in s5p-tv and even headers for register define are almost same. but in this patch, we decide not to consider separated common code with s5p-tv. Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc. 1. mixer. The piece of hardware responsible for mixing and blending multiple data inputs before passing it to an output device. The mixer is capable of handling up to three image layers. One is the output of VP. Other two are images in RGB format. The blending factor, and layers' priority are controlled by mixer's registers. The output is passed to HDMI. 2. vp (video processor). It is used for processing of NV12/NV21 data. An image stored in RAM is accessed by DMA. The output in YCbCr444 format is send to mixer. 3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes pixel data from mixer and transforms it into data frames. The output is send to HDMIPHY interface. 4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to HDMI connector. Basically, it contains a PLL that produces source clock for mixer, vp and hdmi. 5. ddc (display data channel). It is dedicated i2c channel to exchange display information as edid with display monitor. With plane support, exynos hdmi driver fully supports two mixer layes and vp layer. Also vp layer supports multi buffer plane pixel formats having non contigus memory spaces. In exynos drm driver, common drm_hdmi driver to interface with drm framework has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls them. mixer controls all overlay layers in both mixer and vp. Vblank interrupts for hdmi are handled by mixer internally because drm framework cannot support multiple irq id. And pipe number is used to check which display device irq happens. History v2: this version - drm plane feature support to handle overlay layers. - multi buffer plane pixel format support for vp layer. - vp layer support RFCv1: original - at https://lkml.org/lkml/2011/11/4/164 Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com> Signed-off-by: Inki Dae <inki.dae@samsung.com> Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com> Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 15:39:39 +07:00
err_resource:
hdmi_resources_cleanup(hdata);
err_data:
kfree(hdata);
kfree(drm_hdmi_ctx);
return ret;
}
static int __devexit hdmi_remove(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
drm/exynos: added hdmi display support This patch is hdmi display support for exynos drm driver. There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv and some low level code is already in s5p-tv and even headers for register define are almost same. but in this patch, we decide not to consider separated common code with s5p-tv. Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc. 1. mixer. The piece of hardware responsible for mixing and blending multiple data inputs before passing it to an output device. The mixer is capable of handling up to three image layers. One is the output of VP. Other two are images in RGB format. The blending factor, and layers' priority are controlled by mixer's registers. The output is passed to HDMI. 2. vp (video processor). It is used for processing of NV12/NV21 data. An image stored in RAM is accessed by DMA. The output in YCbCr444 format is send to mixer. 3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes pixel data from mixer and transforms it into data frames. The output is send to HDMIPHY interface. 4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to HDMI connector. Basically, it contains a PLL that produces source clock for mixer, vp and hdmi. 5. ddc (display data channel). It is dedicated i2c channel to exchange display information as edid with display monitor. With plane support, exynos hdmi driver fully supports two mixer layes and vp layer. Also vp layer supports multi buffer plane pixel formats having non contigus memory spaces. In exynos drm driver, common drm_hdmi driver to interface with drm framework has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls them. mixer controls all overlay layers in both mixer and vp. Vblank interrupts for hdmi are handled by mixer internally because drm framework cannot support multiple irq id. And pipe number is used to check which display device irq happens. History v2: this version - drm plane feature support to handle overlay layers. - multi buffer plane pixel format support for vp layer. - vp layer support RFCv1: original - at https://lkml.org/lkml/2011/11/4/164 Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com> Signed-off-by: Inki Dae <inki.dae@samsung.com> Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com> Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 15:39:39 +07:00
struct exynos_drm_hdmi_context *ctx = platform_get_drvdata(pdev);
struct hdmi_context *hdata = ctx->ctx;
drm/exynos: added hdmi display support This patch is hdmi display support for exynos drm driver. There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv and some low level code is already in s5p-tv and even headers for register define are almost same. but in this patch, we decide not to consider separated common code with s5p-tv. Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc. 1. mixer. The piece of hardware responsible for mixing and blending multiple data inputs before passing it to an output device. The mixer is capable of handling up to three image layers. One is the output of VP. Other two are images in RGB format. The blending factor, and layers' priority are controlled by mixer's registers. The output is passed to HDMI. 2. vp (video processor). It is used for processing of NV12/NV21 data. An image stored in RAM is accessed by DMA. The output in YCbCr444 format is send to mixer. 3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes pixel data from mixer and transforms it into data frames. The output is send to HDMIPHY interface. 4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to HDMI connector. Basically, it contains a PLL that produces source clock for mixer, vp and hdmi. 5. ddc (display data channel). It is dedicated i2c channel to exchange display information as edid with display monitor. With plane support, exynos hdmi driver fully supports two mixer layes and vp layer. Also vp layer supports multi buffer plane pixel formats having non contigus memory spaces. In exynos drm driver, common drm_hdmi driver to interface with drm framework has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls them. mixer controls all overlay layers in both mixer and vp. Vblank interrupts for hdmi are handled by mixer internally because drm framework cannot support multiple irq id. And pipe number is used to check which display device irq happens. History v2: this version - drm plane feature support to handle overlay layers. - multi buffer plane pixel format support for vp layer. - vp layer support RFCv1: original - at https://lkml.org/lkml/2011/11/4/164 Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com> Signed-off-by: Inki Dae <inki.dae@samsung.com> Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com> Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 15:39:39 +07:00
DRM_DEBUG_KMS("[%d] %s\n", __LINE__, __func__);
pm_runtime_disable(dev);
drm/exynos: added hdmi display support This patch is hdmi display support for exynos drm driver. There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv and some low level code is already in s5p-tv and even headers for register define are almost same. but in this patch, we decide not to consider separated common code with s5p-tv. Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc. 1. mixer. The piece of hardware responsible for mixing and blending multiple data inputs before passing it to an output device. The mixer is capable of handling up to three image layers. One is the output of VP. Other two are images in RGB format. The blending factor, and layers' priority are controlled by mixer's registers. The output is passed to HDMI. 2. vp (video processor). It is used for processing of NV12/NV21 data. An image stored in RAM is accessed by DMA. The output in YCbCr444 format is send to mixer. 3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes pixel data from mixer and transforms it into data frames. The output is send to HDMIPHY interface. 4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to HDMI connector. Basically, it contains a PLL that produces source clock for mixer, vp and hdmi. 5. ddc (display data channel). It is dedicated i2c channel to exchange display information as edid with display monitor. With plane support, exynos hdmi driver fully supports two mixer layes and vp layer. Also vp layer supports multi buffer plane pixel formats having non contigus memory spaces. In exynos drm driver, common drm_hdmi driver to interface with drm framework has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls them. mixer controls all overlay layers in both mixer and vp. Vblank interrupts for hdmi are handled by mixer internally because drm framework cannot support multiple irq id. And pipe number is used to check which display device irq happens. History v2: this version - drm plane feature support to handle overlay layers. - multi buffer plane pixel format support for vp layer. - vp layer support RFCv1: original - at https://lkml.org/lkml/2011/11/4/164 Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com> Signed-off-by: Inki Dae <inki.dae@samsung.com> Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com> Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 15:39:39 +07:00
free_irq(hdata->internal_irq, hdata);
drm/exynos: added hdmi display support This patch is hdmi display support for exynos drm driver. There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv and some low level code is already in s5p-tv and even headers for register define are almost same. but in this patch, we decide not to consider separated common code with s5p-tv. Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc. 1. mixer. The piece of hardware responsible for mixing and blending multiple data inputs before passing it to an output device. The mixer is capable of handling up to three image layers. One is the output of VP. Other two are images in RGB format. The blending factor, and layers' priority are controlled by mixer's registers. The output is passed to HDMI. 2. vp (video processor). It is used for processing of NV12/NV21 data. An image stored in RAM is accessed by DMA. The output in YCbCr444 format is send to mixer. 3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes pixel data from mixer and transforms it into data frames. The output is send to HDMIPHY interface. 4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to HDMI connector. Basically, it contains a PLL that produces source clock for mixer, vp and hdmi. 5. ddc (display data channel). It is dedicated i2c channel to exchange display information as edid with display monitor. With plane support, exynos hdmi driver fully supports two mixer layes and vp layer. Also vp layer supports multi buffer plane pixel formats having non contigus memory spaces. In exynos drm driver, common drm_hdmi driver to interface with drm framework has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls them. mixer controls all overlay layers in both mixer and vp. Vblank interrupts for hdmi are handled by mixer internally because drm framework cannot support multiple irq id. And pipe number is used to check which display device irq happens. History v2: this version - drm plane feature support to handle overlay layers. - multi buffer plane pixel format support for vp layer. - vp layer support RFCv1: original - at https://lkml.org/lkml/2011/11/4/164 Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com> Signed-off-by: Inki Dae <inki.dae@samsung.com> Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com> Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 15:39:39 +07:00
hdmi_resources_cleanup(hdata);
iounmap(hdata->regs);
release_mem_region(hdata->regs_res->start,
resource_size(hdata->regs_res));
drm/exynos: added hdmi display support This patch is hdmi display support for exynos drm driver. There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv and some low level code is already in s5p-tv and even headers for register define are almost same. but in this patch, we decide not to consider separated common code with s5p-tv. Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc. 1. mixer. The piece of hardware responsible for mixing and blending multiple data inputs before passing it to an output device. The mixer is capable of handling up to three image layers. One is the output of VP. Other two are images in RGB format. The blending factor, and layers' priority are controlled by mixer's registers. The output is passed to HDMI. 2. vp (video processor). It is used for processing of NV12/NV21 data. An image stored in RAM is accessed by DMA. The output in YCbCr444 format is send to mixer. 3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes pixel data from mixer and transforms it into data frames. The output is send to HDMIPHY interface. 4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to HDMI connector. Basically, it contains a PLL that produces source clock for mixer, vp and hdmi. 5. ddc (display data channel). It is dedicated i2c channel to exchange display information as edid with display monitor. With plane support, exynos hdmi driver fully supports two mixer layes and vp layer. Also vp layer supports multi buffer plane pixel formats having non contigus memory spaces. In exynos drm driver, common drm_hdmi driver to interface with drm framework has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls them. mixer controls all overlay layers in both mixer and vp. Vblank interrupts for hdmi are handled by mixer internally because drm framework cannot support multiple irq id. And pipe number is used to check which display device irq happens. History v2: this version - drm plane feature support to handle overlay layers. - multi buffer plane pixel format support for vp layer. - vp layer support RFCv1: original - at https://lkml.org/lkml/2011/11/4/164 Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com> Signed-off-by: Inki Dae <inki.dae@samsung.com> Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com> Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 15:39:39 +07:00
/* hdmiphy i2c driver */
i2c_del_driver(&hdmiphy_driver);
/* DDC i2c driver */
i2c_del_driver(&ddc_driver);
kfree(hdata);
return 0;
}
#ifdef CONFIG_PM_SLEEP
static int hdmi_suspend(struct device *dev)
{
struct exynos_drm_hdmi_context *ctx = get_hdmi_context(dev);
struct hdmi_context *hdata = ctx->ctx;
disable_irq(hdata->internal_irq);
disable_irq(hdata->external_irq);
hdata->hpd = false;
if (ctx->drm_dev)
drm_helper_hpd_irq_event(ctx->drm_dev);
hdmi_poweroff(hdata);
return 0;
}
static int hdmi_resume(struct device *dev)
{
struct exynos_drm_hdmi_context *ctx = get_hdmi_context(dev);
struct hdmi_context *hdata = ctx->ctx;
enable_irq(hdata->external_irq);
enable_irq(hdata->internal_irq);
return 0;
}
#endif
static SIMPLE_DEV_PM_OPS(hdmi_pm_ops, hdmi_suspend, hdmi_resume);
drm/exynos: added hdmi display support This patch is hdmi display support for exynos drm driver. There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv and some low level code is already in s5p-tv and even headers for register define are almost same. but in this patch, we decide not to consider separated common code with s5p-tv. Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc. 1. mixer. The piece of hardware responsible for mixing and blending multiple data inputs before passing it to an output device. The mixer is capable of handling up to three image layers. One is the output of VP. Other two are images in RGB format. The blending factor, and layers' priority are controlled by mixer's registers. The output is passed to HDMI. 2. vp (video processor). It is used for processing of NV12/NV21 data. An image stored in RAM is accessed by DMA. The output in YCbCr444 format is send to mixer. 3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes pixel data from mixer and transforms it into data frames. The output is send to HDMIPHY interface. 4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to HDMI connector. Basically, it contains a PLL that produces source clock for mixer, vp and hdmi. 5. ddc (display data channel). It is dedicated i2c channel to exchange display information as edid with display monitor. With plane support, exynos hdmi driver fully supports two mixer layes and vp layer. Also vp layer supports multi buffer plane pixel formats having non contigus memory spaces. In exynos drm driver, common drm_hdmi driver to interface with drm framework has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls them. mixer controls all overlay layers in both mixer and vp. Vblank interrupts for hdmi are handled by mixer internally because drm framework cannot support multiple irq id. And pipe number is used to check which display device irq happens. History v2: this version - drm plane feature support to handle overlay layers. - multi buffer plane pixel format support for vp layer. - vp layer support RFCv1: original - at https://lkml.org/lkml/2011/11/4/164 Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com> Signed-off-by: Inki Dae <inki.dae@samsung.com> Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com> Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 15:39:39 +07:00
struct platform_driver hdmi_driver = {
.probe = hdmi_probe,
.remove = __devexit_p(hdmi_remove),
.driver = {
.name = "exynos4-hdmi",
.owner = THIS_MODULE,
.pm = &hdmi_pm_ops,
drm/exynos: added hdmi display support This patch is hdmi display support for exynos drm driver. There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv and some low level code is already in s5p-tv and even headers for register define are almost same. but in this patch, we decide not to consider separated common code with s5p-tv. Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc. 1. mixer. The piece of hardware responsible for mixing and blending multiple data inputs before passing it to an output device. The mixer is capable of handling up to three image layers. One is the output of VP. Other two are images in RGB format. The blending factor, and layers' priority are controlled by mixer's registers. The output is passed to HDMI. 2. vp (video processor). It is used for processing of NV12/NV21 data. An image stored in RAM is accessed by DMA. The output in YCbCr444 format is send to mixer. 3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes pixel data from mixer and transforms it into data frames. The output is send to HDMIPHY interface. 4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to HDMI connector. Basically, it contains a PLL that produces source clock for mixer, vp and hdmi. 5. ddc (display data channel). It is dedicated i2c channel to exchange display information as edid with display monitor. With plane support, exynos hdmi driver fully supports two mixer layes and vp layer. Also vp layer supports multi buffer plane pixel formats having non contigus memory spaces. In exynos drm driver, common drm_hdmi driver to interface with drm framework has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls them. mixer controls all overlay layers in both mixer and vp. Vblank interrupts for hdmi are handled by mixer internally because drm framework cannot support multiple irq id. And pipe number is used to check which display device irq happens. History v2: this version - drm plane feature support to handle overlay layers. - multi buffer plane pixel format support for vp layer. - vp layer support RFCv1: original - at https://lkml.org/lkml/2011/11/4/164 Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com> Signed-off-by: Inki Dae <inki.dae@samsung.com> Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com> Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 15:39:39 +07:00
},
};