linux_dsm_epyc7002/arch/alpha/kernel/irq_alpha.c

226 lines
6.1 KiB
C
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 21:07:57 +07:00
// SPDX-License-Identifier: GPL-2.0
/*
* Alpha specific irq code.
*/
#include <linux/init.h>
#include <linux/sched.h>
#include <linux/irq.h>
#include <linux/kernel_stat.h>
#include <linux/module.h>
#include <asm/machvec.h>
#include <asm/dma.h>
#include <asm/perf_event.h>
#include <asm/mce.h>
#include "proto.h"
#include "irq_impl.h"
/* Hack minimum IPL during interrupt processing for broken hardware. */
#ifdef CONFIG_ALPHA_BROKEN_IRQ_MASK
int __min_ipl;
EXPORT_SYMBOL(__min_ipl);
#endif
/*
* Performance counter hook. A module can override this to
* do something useful.
*/
static void
dummy_perf(unsigned long vector, struct pt_regs *regs)
{
irq_err_count++;
printk(KERN_CRIT "Performance counter interrupt!\n");
}
void (*perf_irq)(unsigned long, struct pt_regs *) = dummy_perf;
EXPORT_SYMBOL(perf_irq);
/*
* The main interrupt entry point.
*/
asmlinkage void
do_entInt(unsigned long type, unsigned long vector,
unsigned long la_ptr, struct pt_regs *regs)
{
struct pt_regs *old_regs;
/*
* Disable interrupts during IRQ handling.
* Note that there is no matching local_irq_enable() due to
* severe problems with RTI at IPL0 and some MILO PALcode
* (namely LX164).
*/
local_irq_disable();
switch (type) {
case 0:
#ifdef CONFIG_SMP
handle_ipi(regs);
return;
#else
irq_err_count++;
printk(KERN_CRIT "Interprocessor interrupt? "
"You must be kidding!\n");
#endif
break;
case 1:
old_regs = set_irq_regs(regs);
handle_irq(RTC_IRQ);
set_irq_regs(old_regs);
return;
case 2:
old_regs = set_irq_regs(regs);
alpha_mv.machine_check(vector, la_ptr);
set_irq_regs(old_regs);
return;
case 3:
old_regs = set_irq_regs(regs);
alpha_mv.device_interrupt(vector);
set_irq_regs(old_regs);
return;
case 4:
perf_irq(la_ptr, regs);
return;
default:
printk(KERN_CRIT "Hardware intr %ld %lx? Huh?\n",
type, vector);
}
printk(KERN_CRIT "PC = %016lx PS=%04lx\n", regs->pc, regs->ps);
}
void __init
common_init_isa_dma(void)
{
outb(0, DMA1_RESET_REG);
outb(0, DMA2_RESET_REG);
outb(0, DMA1_CLR_MASK_REG);
outb(0, DMA2_CLR_MASK_REG);
}
void __init
init_IRQ(void)
{
/* Just in case the platform init_irq() causes interrupts/mchecks
(as is the case with RAWHIDE, at least). */
wrent(entInt, 0);
alpha_mv.init_irq();
}
/*
* machine error checks
*/
#define MCHK_K_TPERR 0x0080
#define MCHK_K_TCPERR 0x0082
#define MCHK_K_HERR 0x0084
#define MCHK_K_ECC_C 0x0086
#define MCHK_K_ECC_NC 0x0088
#define MCHK_K_OS_BUGCHECK 0x008A
#define MCHK_K_PAL_BUGCHECK 0x0090
#ifndef CONFIG_SMP
struct mcheck_info __mcheck_info;
#endif
void
process_mcheck_info(unsigned long vector, unsigned long la_ptr,
const char *machine, int expected)
{
struct el_common *mchk_header;
const char *reason;
/*
* See if the machine check is due to a badaddr() and if so,
* ignore it.
*/
#ifdef CONFIG_VERBOSE_MCHECK
if (alpha_verbose_mcheck > 1) {
printk(KERN_CRIT "%s machine check %s\n", machine,
expected ? "expected." : "NOT expected!!!");
}
#endif
if (expected) {
int cpu = smp_processor_id();
mcheck_expected(cpu) = 0;
mcheck_taken(cpu) = 1;
return;
}
mchk_header = (struct el_common *)la_ptr;
printk(KERN_CRIT "%s machine check: vector=0x%lx pc=0x%lx code=0x%x\n",
machine, vector, get_irq_regs()->pc, mchk_header->code);
switch (mchk_header->code) {
/* Machine check reasons. Defined according to PALcode sources. */
case 0x80: reason = "tag parity error"; break;
case 0x82: reason = "tag control parity error"; break;
case 0x84: reason = "generic hard error"; break;
case 0x86: reason = "correctable ECC error"; break;
case 0x88: reason = "uncorrectable ECC error"; break;
case 0x8A: reason = "OS-specific PAL bugcheck"; break;
case 0x90: reason = "callsys in kernel mode"; break;
case 0x96: reason = "i-cache read retryable error"; break;
case 0x98: reason = "processor detected hard error"; break;
/* System specific (these are for Alcor, at least): */
case 0x202: reason = "system detected hard error"; break;
case 0x203: reason = "system detected uncorrectable ECC error"; break;
case 0x204: reason = "SIO SERR occurred on PCI bus"; break;
case 0x205: reason = "parity error detected by core logic"; break;
case 0x206: reason = "SIO IOCHK occurred on ISA bus"; break;
case 0x207: reason = "non-existent memory error"; break;
case 0x208: reason = "MCHK_K_DCSR"; break;
case 0x209: reason = "PCI SERR detected"; break;
case 0x20b: reason = "PCI data parity error detected"; break;
case 0x20d: reason = "PCI address parity error detected"; break;
case 0x20f: reason = "PCI master abort error"; break;
case 0x211: reason = "PCI target abort error"; break;
case 0x213: reason = "scatter/gather PTE invalid error"; break;
case 0x215: reason = "flash ROM write error"; break;
case 0x217: reason = "IOA timeout detected"; break;
case 0x219: reason = "IOCHK#, EISA add-in board parity or other catastrophic error"; break;
case 0x21b: reason = "EISA fail-safe timer timeout"; break;
case 0x21d: reason = "EISA bus time-out"; break;
case 0x21f: reason = "EISA software generated NMI"; break;
case 0x221: reason = "unexpected ev5 IRQ[3] interrupt"; break;
default: reason = "unknown"; break;
}
printk(KERN_CRIT "machine check type: %s%s\n",
reason, mchk_header->retry ? " (retryable)" : "");
dik_show_regs(get_irq_regs(), NULL);
#ifdef CONFIG_VERBOSE_MCHECK
if (alpha_verbose_mcheck > 1) {
/* Dump the logout area to give all info. */
unsigned long *ptr = (unsigned long *)la_ptr;
long i;
for (i = 0; i < mchk_header->size / sizeof(long); i += 2) {
printk(KERN_CRIT " +%8lx %016lx %016lx\n",
i*sizeof(long), ptr[i], ptr[i+1]);
}
}
#endif /* CONFIG_VERBOSE_MCHECK */
}
/*
* The special RTC interrupt type. The interrupt itself was
* processed by PALcode, and comes in via entInt vector 1.
*/
void __init
init_rtc_irq(irq_handler_t handler)
{
irq_set_chip_and_handler_name(RTC_IRQ, &dummy_irq_chip,
handle_percpu_irq, "RTC");
if (!handler)
handler = rtc_timer_interrupt;
if (request_irq(RTC_IRQ, handler, 0, "timer", NULL))
pr_err("Failed to register timer interrupt\n");
}