linux_dsm_epyc7002/arch/x86/include/asm/barrier.h

89 lines
2.4 KiB
C
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 21:07:57 +07:00
/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _ASM_X86_BARRIER_H
#define _ASM_X86_BARRIER_H
#include <asm/alternative.h>
#include <asm/nops.h>
/*
* Force strict CPU ordering.
* And yes, this might be required on UP too when we're talking
* to devices.
*/
#ifdef CONFIG_X86_32
locking/x86: Use LOCK ADD for smp_mb() instead of MFENCE MFENCE appears to be way slower than a locked instruction - let's use LOCK ADD unconditionally, as we always did on old 32-bit. Performance testing results: perf stat -r 10 -- ./virtio_ring_0_9 --sleep --host-affinity 0 --guest-affinity 0 Before: 0.922565990 seconds time elapsed ( +- 1.15% ) After: 0.578667024 seconds time elapsed ( +- 1.21% ) i.e. about ~60% faster. Just poking at SP would be the most natural, but if we then read the value from SP, we get a false dependency which will slow us down. This was noted in this article: http://shipilev.net/blog/2014/on-the-fence-with-dependencies/ And is easy to reproduce by sticking a barrier in a small non-inline function. So let's use a negative offset - which avoids this problem since we build with the red zone disabled. For userspace, use an address just below the redzone. The one difference between LOCK ADD and MFENCE is that LOCK ADD does not affect CLFLUSH, previous patches converted all uses of CLFLUSH to call mb(), such that changes to smp_mb() won't affect it. Update mb/rmb/wmb() on 32-bit to use the negative offset, too, for consistency. As a follow-up, it might be worth considering switching users of CLFLUSH to another API (e.g. clflush_mb()?) - we will then be able to convert mb() to smp_mb() again. Also arguably, GCC should switch to use LOCK ADD for __sync_synchronize(). This might be worth pursuing separately. Suggested-by: Andy Lutomirski <luto@amacapital.net> Signed-off-by: Michael S. Tsirkin <mst@redhat.com> Acked-by: Peter Zijlstra <peterz@infradead.org> Acked-by: Thomas Gleixner <tglx@linutronix.de> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: qemu-devel@nongnu.org Cc: virtualization@lists.linux-foundation.org Link: http://lkml.kernel.org/r/1509118355-4890-1-git-send-email-mst@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-10-27 23:14:31 +07:00
#define mb() asm volatile(ALTERNATIVE("lock; addl $0,-4(%%esp)", "mfence", \
X86_FEATURE_XMM2) ::: "memory", "cc")
locking/x86: Use LOCK ADD for smp_mb() instead of MFENCE MFENCE appears to be way slower than a locked instruction - let's use LOCK ADD unconditionally, as we always did on old 32-bit. Performance testing results: perf stat -r 10 -- ./virtio_ring_0_9 --sleep --host-affinity 0 --guest-affinity 0 Before: 0.922565990 seconds time elapsed ( +- 1.15% ) After: 0.578667024 seconds time elapsed ( +- 1.21% ) i.e. about ~60% faster. Just poking at SP would be the most natural, but if we then read the value from SP, we get a false dependency which will slow us down. This was noted in this article: http://shipilev.net/blog/2014/on-the-fence-with-dependencies/ And is easy to reproduce by sticking a barrier in a small non-inline function. So let's use a negative offset - which avoids this problem since we build with the red zone disabled. For userspace, use an address just below the redzone. The one difference between LOCK ADD and MFENCE is that LOCK ADD does not affect CLFLUSH, previous patches converted all uses of CLFLUSH to call mb(), such that changes to smp_mb() won't affect it. Update mb/rmb/wmb() on 32-bit to use the negative offset, too, for consistency. As a follow-up, it might be worth considering switching users of CLFLUSH to another API (e.g. clflush_mb()?) - we will then be able to convert mb() to smp_mb() again. Also arguably, GCC should switch to use LOCK ADD for __sync_synchronize(). This might be worth pursuing separately. Suggested-by: Andy Lutomirski <luto@amacapital.net> Signed-off-by: Michael S. Tsirkin <mst@redhat.com> Acked-by: Peter Zijlstra <peterz@infradead.org> Acked-by: Thomas Gleixner <tglx@linutronix.de> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: qemu-devel@nongnu.org Cc: virtualization@lists.linux-foundation.org Link: http://lkml.kernel.org/r/1509118355-4890-1-git-send-email-mst@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-10-27 23:14:31 +07:00
#define rmb() asm volatile(ALTERNATIVE("lock; addl $0,-4(%%esp)", "lfence", \
X86_FEATURE_XMM2) ::: "memory", "cc")
locking/x86: Use LOCK ADD for smp_mb() instead of MFENCE MFENCE appears to be way slower than a locked instruction - let's use LOCK ADD unconditionally, as we always did on old 32-bit. Performance testing results: perf stat -r 10 -- ./virtio_ring_0_9 --sleep --host-affinity 0 --guest-affinity 0 Before: 0.922565990 seconds time elapsed ( +- 1.15% ) After: 0.578667024 seconds time elapsed ( +- 1.21% ) i.e. about ~60% faster. Just poking at SP would be the most natural, but if we then read the value from SP, we get a false dependency which will slow us down. This was noted in this article: http://shipilev.net/blog/2014/on-the-fence-with-dependencies/ And is easy to reproduce by sticking a barrier in a small non-inline function. So let's use a negative offset - which avoids this problem since we build with the red zone disabled. For userspace, use an address just below the redzone. The one difference between LOCK ADD and MFENCE is that LOCK ADD does not affect CLFLUSH, previous patches converted all uses of CLFLUSH to call mb(), such that changes to smp_mb() won't affect it. Update mb/rmb/wmb() on 32-bit to use the negative offset, too, for consistency. As a follow-up, it might be worth considering switching users of CLFLUSH to another API (e.g. clflush_mb()?) - we will then be able to convert mb() to smp_mb() again. Also arguably, GCC should switch to use LOCK ADD for __sync_synchronize(). This might be worth pursuing separately. Suggested-by: Andy Lutomirski <luto@amacapital.net> Signed-off-by: Michael S. Tsirkin <mst@redhat.com> Acked-by: Peter Zijlstra <peterz@infradead.org> Acked-by: Thomas Gleixner <tglx@linutronix.de> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: qemu-devel@nongnu.org Cc: virtualization@lists.linux-foundation.org Link: http://lkml.kernel.org/r/1509118355-4890-1-git-send-email-mst@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-10-27 23:14:31 +07:00
#define wmb() asm volatile(ALTERNATIVE("lock; addl $0,-4(%%esp)", "sfence", \
X86_FEATURE_XMM2) ::: "memory", "cc")
#else
#define mb() asm volatile("mfence":::"memory")
#define rmb() asm volatile("lfence":::"memory")
#define wmb() asm volatile("sfence" ::: "memory")
#endif
/**
* array_index_mask_nospec() - generate a mask that is ~0UL when the
* bounds check succeeds and 0 otherwise
* @index: array element index
* @size: number of elements in array
*
* Returns:
* 0 - (index < size)
*/
static inline unsigned long array_index_mask_nospec(unsigned long index,
unsigned long size)
{
unsigned long mask;
x86/spectre_v1: Disable compiler optimizations over array_index_mask_nospec() Mark Rutland noticed that GCC optimization passes have the potential to elide necessary invocations of the array_index_mask_nospec() instruction sequence, so mark the asm() volatile. Mark explains: "The volatile will inhibit *some* cases where the compiler could lift the array_index_nospec() call out of a branch, e.g. where there are multiple invocations of array_index_nospec() with the same arguments: if (idx < foo) { idx1 = array_idx_nospec(idx, foo) do_something(idx1); } < some other code > if (idx < foo) { idx2 = array_idx_nospec(idx, foo); do_something_else(idx2); } ... since the compiler can determine that the two invocations yield the same result, and reuse the first result (likely the same register as idx was in originally) for the second branch, effectively re-writing the above as: if (idx < foo) { idx = array_idx_nospec(idx, foo); do_something(idx); } < some other code > if (idx < foo) { do_something_else(idx); } ... if we don't take the first branch, then speculatively take the second, we lose the nospec protection. There's more info on volatile asm in the GCC docs: https://gcc.gnu.org/onlinedocs/gcc/Extended-Asm.html#Volatile " Reported-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com> Acked-by: Mark Rutland <mark.rutland@arm.com> Acked-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Linus Torvalds <torvalds@linux-foundation.org> Cc: <stable@vger.kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Fixes: babdde2698d4 ("x86: Implement array_index_mask_nospec") Link: https://lkml.kernel.org/lkml/152838798950.14521.4893346294059739135.stgit@dwillia2-desk3.amr.corp.intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-06-07 23:13:48 +07:00
asm volatile ("cmp %1,%2; sbb %0,%0;"
:"=r" (mask)
:"g"(size),"r" (index)
:"cc");
return mask;
}
/* Override the default implementation from linux/nospec.h. */
#define array_index_mask_nospec array_index_mask_nospec
/* Prevent speculative execution past this barrier. */
#define barrier_nospec() alternative_2("", "mfence", X86_FEATURE_MFENCE_RDTSC, \
"lfence", X86_FEATURE_LFENCE_RDTSC)
arch: Add lightweight memory barriers dma_rmb() and dma_wmb() There are a number of situations where the mandatory barriers rmb() and wmb() are used to order memory/memory operations in the device drivers and those barriers are much heavier than they actually need to be. For example in the case of PowerPC wmb() calls the heavy-weight sync instruction when for coherent memory operations all that is really needed is an lsync or eieio instruction. This commit adds a coherent only version of the mandatory memory barriers rmb() and wmb(). In most cases this should result in the barrier being the same as the SMP barriers for the SMP case, however in some cases we use a barrier that is somewhere in between rmb() and smp_rmb(). For example on ARM the rmb barriers break down as follows: Barrier Call Explanation --------- -------- ---------------------------------- rmb() dsb() Data synchronization barrier - system dma_rmb() dmb(osh) data memory barrier - outer sharable smp_rmb() dmb(ish) data memory barrier - inner sharable These new barriers are not as safe as the standard rmb() and wmb(). Specifically they do not guarantee ordering between coherent and incoherent memories. The primary use case for these would be to enforce ordering of reads and writes when accessing coherent memory that is shared between the CPU and a device. It may also be noted that there is no dma_mb(). Most architectures don't provide a good mechanism for performing a coherent only full barrier without resorting to the same mechanism used in mb(). As such there isn't much to be gained in trying to define such a function. Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Mathieu Desnoyers <mathieu.desnoyers@polymtl.ca> Cc: Michael Ellerman <michael@ellerman.id.au> Cc: Michael Neuling <mikey@neuling.org> Cc: Russell King <linux@arm.linux.org.uk> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Tony Luck <tony.luck@intel.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ingo Molnar <mingo@kernel.org> Cc: David Miller <davem@davemloft.net> Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org> Acked-by: Will Deacon <will.deacon@arm.com> Signed-off-by: Alexander Duyck <alexander.h.duyck@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-12-12 06:02:06 +07:00
#define dma_rmb() barrier()
#define dma_wmb() barrier()
locking/x86: Use LOCK ADD for smp_mb() instead of MFENCE MFENCE appears to be way slower than a locked instruction - let's use LOCK ADD unconditionally, as we always did on old 32-bit. Performance testing results: perf stat -r 10 -- ./virtio_ring_0_9 --sleep --host-affinity 0 --guest-affinity 0 Before: 0.922565990 seconds time elapsed ( +- 1.15% ) After: 0.578667024 seconds time elapsed ( +- 1.21% ) i.e. about ~60% faster. Just poking at SP would be the most natural, but if we then read the value from SP, we get a false dependency which will slow us down. This was noted in this article: http://shipilev.net/blog/2014/on-the-fence-with-dependencies/ And is easy to reproduce by sticking a barrier in a small non-inline function. So let's use a negative offset - which avoids this problem since we build with the red zone disabled. For userspace, use an address just below the redzone. The one difference between LOCK ADD and MFENCE is that LOCK ADD does not affect CLFLUSH, previous patches converted all uses of CLFLUSH to call mb(), such that changes to smp_mb() won't affect it. Update mb/rmb/wmb() on 32-bit to use the negative offset, too, for consistency. As a follow-up, it might be worth considering switching users of CLFLUSH to another API (e.g. clflush_mb()?) - we will then be able to convert mb() to smp_mb() again. Also arguably, GCC should switch to use LOCK ADD for __sync_synchronize(). This might be worth pursuing separately. Suggested-by: Andy Lutomirski <luto@amacapital.net> Signed-off-by: Michael S. Tsirkin <mst@redhat.com> Acked-by: Peter Zijlstra <peterz@infradead.org> Acked-by: Thomas Gleixner <tglx@linutronix.de> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: qemu-devel@nongnu.org Cc: virtualization@lists.linux-foundation.org Link: http://lkml.kernel.org/r/1509118355-4890-1-git-send-email-mst@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-10-27 23:14:31 +07:00
#ifdef CONFIG_X86_32
#define __smp_mb() asm volatile("lock; addl $0,-4(%%esp)" ::: "memory", "cc")
#else
#define __smp_mb() asm volatile("lock; addl $0,-4(%%rsp)" ::: "memory", "cc")
#endif
#define __smp_rmb() dma_rmb()
#define __smp_wmb() barrier()
#define __smp_store_mb(var, value) do { (void)xchg(&var, value); } while (0)
arch: Introduce smp_load_acquire(), smp_store_release() A number of situations currently require the heavyweight smp_mb(), even though there is no need to order prior stores against later loads. Many architectures have much cheaper ways to handle these situations, but the Linux kernel currently has no portable way to make use of them. This commit therefore supplies smp_load_acquire() and smp_store_release() to remedy this situation. The new smp_load_acquire() primitive orders the specified load against any subsequent reads or writes, while the new smp_store_release() primitive orders the specifed store against any prior reads or writes. These primitives allow array-based circular FIFOs to be implemented without an smp_mb(), and also allow a theoretical hole in rcu_assign_pointer() to be closed at no additional expense on most architectures. In addition, the RCU experience transitioning from explicit smp_read_barrier_depends() and smp_wmb() to rcu_dereference() and rcu_assign_pointer(), respectively resulted in substantial improvements in readability. It therefore seems likely that replacing other explicit barriers with smp_load_acquire() and smp_store_release() will provide similar benefits. It appears that roughly half of the explicit barriers in core kernel code might be so replaced. [Changelog by PaulMck] Reviewed-by: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com> Signed-off-by: Peter Zijlstra <peterz@infradead.org> Acked-by: Will Deacon <will.deacon@arm.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Mathieu Desnoyers <mathieu.desnoyers@polymtl.ca> Cc: Michael Ellerman <michael@ellerman.id.au> Cc: Michael Neuling <mikey@neuling.org> Cc: Russell King <linux@arm.linux.org.uk> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Victor Kaplansky <VICTORK@il.ibm.com> Cc: Tony Luck <tony.luck@intel.com> Cc: Oleg Nesterov <oleg@redhat.com> Link: http://lkml.kernel.org/r/20131213150640.908486364@infradead.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-11-06 20:57:36 +07:00
#define __smp_store_release(p, v) \
arch: Introduce smp_load_acquire(), smp_store_release() A number of situations currently require the heavyweight smp_mb(), even though there is no need to order prior stores against later loads. Many architectures have much cheaper ways to handle these situations, but the Linux kernel currently has no portable way to make use of them. This commit therefore supplies smp_load_acquire() and smp_store_release() to remedy this situation. The new smp_load_acquire() primitive orders the specified load against any subsequent reads or writes, while the new smp_store_release() primitive orders the specifed store against any prior reads or writes. These primitives allow array-based circular FIFOs to be implemented without an smp_mb(), and also allow a theoretical hole in rcu_assign_pointer() to be closed at no additional expense on most architectures. In addition, the RCU experience transitioning from explicit smp_read_barrier_depends() and smp_wmb() to rcu_dereference() and rcu_assign_pointer(), respectively resulted in substantial improvements in readability. It therefore seems likely that replacing other explicit barriers with smp_load_acquire() and smp_store_release() will provide similar benefits. It appears that roughly half of the explicit barriers in core kernel code might be so replaced. [Changelog by PaulMck] Reviewed-by: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com> Signed-off-by: Peter Zijlstra <peterz@infradead.org> Acked-by: Will Deacon <will.deacon@arm.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Mathieu Desnoyers <mathieu.desnoyers@polymtl.ca> Cc: Michael Ellerman <michael@ellerman.id.au> Cc: Michael Neuling <mikey@neuling.org> Cc: Russell King <linux@arm.linux.org.uk> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Victor Kaplansky <VICTORK@il.ibm.com> Cc: Tony Luck <tony.luck@intel.com> Cc: Oleg Nesterov <oleg@redhat.com> Link: http://lkml.kernel.org/r/20131213150640.908486364@infradead.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-11-06 20:57:36 +07:00
do { \
compiletime_assert_atomic_type(*p); \
barrier(); \
locking, arch: use WRITE_ONCE()/READ_ONCE() in smp_store_release()/smp_load_acquire() Replace ACCESS_ONCE() macro in smp_store_release() and smp_load_acquire() with WRITE_ONCE() and READ_ONCE() on x86, arm, arm64, ia64, metag, mips, powerpc, s390, sparc and asm-generic since ACCESS_ONCE() does not work reliably on non-scalar types. WRITE_ONCE() and READ_ONCE() were introduced in the following commits: 230fa253df63 ("kernel: Provide READ_ONCE and ASSIGN_ONCE") 43239cbe79fc ("kernel: Change ASSIGN_ONCE(val, x) to WRITE_ONCE(x, val)") Signed-off-by: Andrey Konovalov <andreyknvl@google.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Davidlohr Bueso <dbueso@suse.de> Acked-by: Michael Ellerman <mpe@ellerman.id.au> (powerpc) Acked-by: Ralf Baechle <ralf@linux-mips.org> Cc: Alexander Duyck <alexander.h.duyck@redhat.com> Cc: Andre Przywara <andre.przywara@arm.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Borislav Petkov <bp@suse.de> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Christian Borntraeger <borntraeger@de.ibm.com> Cc: David S. Miller <davem@davemloft.net> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: James Hogan <james.hogan@imgtec.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Paul Mackerras <paulus@samba.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Russell King <linux@arm.linux.org.uk> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Tony Luck <tony.luck@intel.com> Cc: Will Deacon <will.deacon@arm.com> Cc: linux-arch@vger.kernel.org Link: http://lkml.kernel.org/r/1438528264-714-1-git-send-email-andreyknvl@google.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-08-02 22:11:04 +07:00
WRITE_ONCE(*p, v); \
arch: Introduce smp_load_acquire(), smp_store_release() A number of situations currently require the heavyweight smp_mb(), even though there is no need to order prior stores against later loads. Many architectures have much cheaper ways to handle these situations, but the Linux kernel currently has no portable way to make use of them. This commit therefore supplies smp_load_acquire() and smp_store_release() to remedy this situation. The new smp_load_acquire() primitive orders the specified load against any subsequent reads or writes, while the new smp_store_release() primitive orders the specifed store against any prior reads or writes. These primitives allow array-based circular FIFOs to be implemented without an smp_mb(), and also allow a theoretical hole in rcu_assign_pointer() to be closed at no additional expense on most architectures. In addition, the RCU experience transitioning from explicit smp_read_barrier_depends() and smp_wmb() to rcu_dereference() and rcu_assign_pointer(), respectively resulted in substantial improvements in readability. It therefore seems likely that replacing other explicit barriers with smp_load_acquire() and smp_store_release() will provide similar benefits. It appears that roughly half of the explicit barriers in core kernel code might be so replaced. [Changelog by PaulMck] Reviewed-by: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com> Signed-off-by: Peter Zijlstra <peterz@infradead.org> Acked-by: Will Deacon <will.deacon@arm.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Mathieu Desnoyers <mathieu.desnoyers@polymtl.ca> Cc: Michael Ellerman <michael@ellerman.id.au> Cc: Michael Neuling <mikey@neuling.org> Cc: Russell King <linux@arm.linux.org.uk> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Victor Kaplansky <VICTORK@il.ibm.com> Cc: Tony Luck <tony.luck@intel.com> Cc: Oleg Nesterov <oleg@redhat.com> Link: http://lkml.kernel.org/r/20131213150640.908486364@infradead.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-11-06 20:57:36 +07:00
} while (0)
#define __smp_load_acquire(p) \
arch: Introduce smp_load_acquire(), smp_store_release() A number of situations currently require the heavyweight smp_mb(), even though there is no need to order prior stores against later loads. Many architectures have much cheaper ways to handle these situations, but the Linux kernel currently has no portable way to make use of them. This commit therefore supplies smp_load_acquire() and smp_store_release() to remedy this situation. The new smp_load_acquire() primitive orders the specified load against any subsequent reads or writes, while the new smp_store_release() primitive orders the specifed store against any prior reads or writes. These primitives allow array-based circular FIFOs to be implemented without an smp_mb(), and also allow a theoretical hole in rcu_assign_pointer() to be closed at no additional expense on most architectures. In addition, the RCU experience transitioning from explicit smp_read_barrier_depends() and smp_wmb() to rcu_dereference() and rcu_assign_pointer(), respectively resulted in substantial improvements in readability. It therefore seems likely that replacing other explicit barriers with smp_load_acquire() and smp_store_release() will provide similar benefits. It appears that roughly half of the explicit barriers in core kernel code might be so replaced. [Changelog by PaulMck] Reviewed-by: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com> Signed-off-by: Peter Zijlstra <peterz@infradead.org> Acked-by: Will Deacon <will.deacon@arm.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Mathieu Desnoyers <mathieu.desnoyers@polymtl.ca> Cc: Michael Ellerman <michael@ellerman.id.au> Cc: Michael Neuling <mikey@neuling.org> Cc: Russell King <linux@arm.linux.org.uk> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Victor Kaplansky <VICTORK@il.ibm.com> Cc: Tony Luck <tony.luck@intel.com> Cc: Oleg Nesterov <oleg@redhat.com> Link: http://lkml.kernel.org/r/20131213150640.908486364@infradead.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-11-06 20:57:36 +07:00
({ \
locking, arch: use WRITE_ONCE()/READ_ONCE() in smp_store_release()/smp_load_acquire() Replace ACCESS_ONCE() macro in smp_store_release() and smp_load_acquire() with WRITE_ONCE() and READ_ONCE() on x86, arm, arm64, ia64, metag, mips, powerpc, s390, sparc and asm-generic since ACCESS_ONCE() does not work reliably on non-scalar types. WRITE_ONCE() and READ_ONCE() were introduced in the following commits: 230fa253df63 ("kernel: Provide READ_ONCE and ASSIGN_ONCE") 43239cbe79fc ("kernel: Change ASSIGN_ONCE(val, x) to WRITE_ONCE(x, val)") Signed-off-by: Andrey Konovalov <andreyknvl@google.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Davidlohr Bueso <dbueso@suse.de> Acked-by: Michael Ellerman <mpe@ellerman.id.au> (powerpc) Acked-by: Ralf Baechle <ralf@linux-mips.org> Cc: Alexander Duyck <alexander.h.duyck@redhat.com> Cc: Andre Przywara <andre.przywara@arm.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Borislav Petkov <bp@suse.de> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Christian Borntraeger <borntraeger@de.ibm.com> Cc: David S. Miller <davem@davemloft.net> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: James Hogan <james.hogan@imgtec.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Paul Mackerras <paulus@samba.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Russell King <linux@arm.linux.org.uk> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Tony Luck <tony.luck@intel.com> Cc: Will Deacon <will.deacon@arm.com> Cc: linux-arch@vger.kernel.org Link: http://lkml.kernel.org/r/1438528264-714-1-git-send-email-andreyknvl@google.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-08-02 22:11:04 +07:00
typeof(*p) ___p1 = READ_ONCE(*p); \
arch: Introduce smp_load_acquire(), smp_store_release() A number of situations currently require the heavyweight smp_mb(), even though there is no need to order prior stores against later loads. Many architectures have much cheaper ways to handle these situations, but the Linux kernel currently has no portable way to make use of them. This commit therefore supplies smp_load_acquire() and smp_store_release() to remedy this situation. The new smp_load_acquire() primitive orders the specified load against any subsequent reads or writes, while the new smp_store_release() primitive orders the specifed store against any prior reads or writes. These primitives allow array-based circular FIFOs to be implemented without an smp_mb(), and also allow a theoretical hole in rcu_assign_pointer() to be closed at no additional expense on most architectures. In addition, the RCU experience transitioning from explicit smp_read_barrier_depends() and smp_wmb() to rcu_dereference() and rcu_assign_pointer(), respectively resulted in substantial improvements in readability. It therefore seems likely that replacing other explicit barriers with smp_load_acquire() and smp_store_release() will provide similar benefits. It appears that roughly half of the explicit barriers in core kernel code might be so replaced. [Changelog by PaulMck] Reviewed-by: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com> Signed-off-by: Peter Zijlstra <peterz@infradead.org> Acked-by: Will Deacon <will.deacon@arm.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Mathieu Desnoyers <mathieu.desnoyers@polymtl.ca> Cc: Michael Ellerman <michael@ellerman.id.au> Cc: Michael Neuling <mikey@neuling.org> Cc: Russell King <linux@arm.linux.org.uk> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Victor Kaplansky <VICTORK@il.ibm.com> Cc: Tony Luck <tony.luck@intel.com> Cc: Oleg Nesterov <oleg@redhat.com> Link: http://lkml.kernel.org/r/20131213150640.908486364@infradead.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-11-06 20:57:36 +07:00
compiletime_assert_atomic_type(*p); \
barrier(); \
___p1; \
})
/* Atomic operations are already serializing on x86 */
#define __smp_mb__before_atomic() barrier()
#define __smp_mb__after_atomic() barrier()
#include <asm-generic/barrier.h>
#endif /* _ASM_X86_BARRIER_H */