linux_dsm_epyc7002/arch/powerpc/mm/pgtable_64.c

161 lines
3.8 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* This file contains pgtable related functions for 64-bit machines.
*
* Derived from arch/ppc64/mm/init.c
* Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
*
* Modifications by Paul Mackerras (PowerMac) (paulus@samba.org)
* and Cort Dougan (PReP) (cort@cs.nmt.edu)
* Copyright (C) 1996 Paul Mackerras
*
* Derived from "arch/i386/mm/init.c"
* Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
*
* Dave Engebretsen <engebret@us.ibm.com>
* Rework for PPC64 port.
*/
#include <linux/signal.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/string.h>
#include <linux/export.h>
#include <linux/types.h>
#include <linux/mman.h>
#include <linux/mm.h>
#include <linux/swap.h>
#include <linux/stddef.h>
#include <linux/vmalloc.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 15:04:11 +07:00
#include <linux/slab.h>
#include <linux/hugetlb.h>
#include <asm/pgalloc.h>
#include <asm/page.h>
#include <asm/prom.h>
#include <asm/mmu_context.h>
#include <asm/pgtable.h>
#include <asm/mmu.h>
#include <asm/smp.h>
#include <asm/machdep.h>
#include <asm/tlb.h>
#include <asm/processor.h>
#include <asm/cputable.h>
#include <asm/sections.h>
#include <asm/firmware.h>
#include <asm/dma.h>
#include <mm/mmu_decl.h>
#ifdef CONFIG_PPC_BOOK3S_64
/*
* partition table and process table for ISA 3.0
*/
struct prtb_entry *process_tb;
struct patb_entry *partition_tb;
/*
* page table size
*/
unsigned long __pte_index_size;
EXPORT_SYMBOL(__pte_index_size);
unsigned long __pmd_index_size;
EXPORT_SYMBOL(__pmd_index_size);
unsigned long __pud_index_size;
EXPORT_SYMBOL(__pud_index_size);
unsigned long __pgd_index_size;
EXPORT_SYMBOL(__pgd_index_size);
unsigned long __pud_cache_index;
EXPORT_SYMBOL(__pud_cache_index);
unsigned long __pte_table_size;
EXPORT_SYMBOL(__pte_table_size);
unsigned long __pmd_table_size;
EXPORT_SYMBOL(__pmd_table_size);
unsigned long __pud_table_size;
EXPORT_SYMBOL(__pud_table_size);
unsigned long __pgd_table_size;
EXPORT_SYMBOL(__pgd_table_size);
unsigned long __pmd_val_bits;
EXPORT_SYMBOL(__pmd_val_bits);
unsigned long __pud_val_bits;
EXPORT_SYMBOL(__pud_val_bits);
unsigned long __pgd_val_bits;
EXPORT_SYMBOL(__pgd_val_bits);
unsigned long __kernel_virt_start;
EXPORT_SYMBOL(__kernel_virt_start);
unsigned long __vmalloc_start;
EXPORT_SYMBOL(__vmalloc_start);
unsigned long __vmalloc_end;
EXPORT_SYMBOL(__vmalloc_end);
unsigned long __kernel_io_start;
EXPORT_SYMBOL(__kernel_io_start);
unsigned long __kernel_io_end;
struct page *vmemmap;
EXPORT_SYMBOL(vmemmap);
unsigned long __pte_frag_nr;
EXPORT_SYMBOL(__pte_frag_nr);
unsigned long __pte_frag_size_shift;
EXPORT_SYMBOL(__pte_frag_size_shift);
#endif
#ifndef __PAGETABLE_PUD_FOLDED
/* 4 level page table */
struct page *pgd_page(pgd_t pgd)
{
if (pgd_is_leaf(pgd)) {
VM_WARN_ON(!pgd_huge(pgd));
return pte_page(pgd_pte(pgd));
}
return virt_to_page(pgd_page_vaddr(pgd));
}
#endif
struct page *pud_page(pud_t pud)
{
if (pud_is_leaf(pud)) {
VM_WARN_ON(!pud_huge(pud));
return pte_page(pud_pte(pud));
}
return virt_to_page(pud_page_vaddr(pud));
}
/*
* For hugepage we have pfn in the pmd, we use PTE_RPN_SHIFT bits for flags
* For PTE page, we have a PTE_FRAG_SIZE (4K) aligned virtual address.
*/
struct page *pmd_page(pmd_t pmd)
{
if (pmd_is_leaf(pmd)) {
VM_WARN_ON(!(pmd_large(pmd) || pmd_huge(pmd)));
return pte_page(pmd_pte(pmd));
}
return virt_to_page(pmd_page_vaddr(pmd));
}
#ifdef CONFIG_STRICT_KERNEL_RWX
void mark_rodata_ro(void)
{
if (!mmu_has_feature(MMU_FTR_KERNEL_RO)) {
pr_warn("Warning: Unable to mark rodata read only on this CPU.\n");
return;
}
if (radix_enabled())
radix__mark_rodata_ro();
else
hash__mark_rodata_ro();
// mark_initmem_nx() should have already run by now
ptdump_check_wx();
}
void mark_initmem_nx(void)
{
if (radix_enabled())
radix__mark_initmem_nx();
else
hash__mark_initmem_nx();
}
#endif