linux_dsm_epyc7002/include/linux/signal.h

471 lines
13 KiB
C
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 21:07:57 +07:00
/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _LINUX_SIGNAL_H
#define _LINUX_SIGNAL_H
#include <linux/bug.h>
#include <linux/signal_types.h>
#include <linux/string.h>
struct task_struct;
/* for sysctl */
extern int print_fatal_signals;
static inline void copy_siginfo(kernel_siginfo_t *to,
const kernel_siginfo_t *from)
SIGNAL: Move generic copy_siginfo() to signal.h The generic copy_siginfo() is currently defined in asm-generic/siginfo.h, after including uapi/asm-generic/siginfo.h which defines the generic struct siginfo. However this makes it awkward for an architecture to use it if it has to define its own struct siginfo (e.g. MIPS and potentially IA64), since it means that asm-generic/siginfo.h can only be included after defining the arch-specific siginfo, which may be problematic if the arch-specific definition needs definitions from uapi/asm-generic/siginfo.h. It is possible to work around this by first including uapi/asm-generic/siginfo.h to get the constants before defining the arch-specific siginfo, and include asm-generic/siginfo.h after. However uapi headers can't be included by other uapi headers, so that first include has to be in an ifdef __kernel__, with the non __kernel__ case including the non-UAPI header instead. Instead of that mess, move the generic copy_siginfo() definition into linux/signal.h, which allows an arch-specific uapi/asm/siginfo.h to include asm-generic/siginfo.h and define the arch-specific siginfo, and for the generic copy_siginfo() to see that arch-specific definition. Signed-off-by: James Hogan <james.hogan@imgtec.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Petr Malat <oss@malat.biz> Cc: Tony Luck <tony.luck@intel.com> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: Christopher Ferris <cferris@google.com> Cc: linux-arch@vger.kernel.org Cc: linux-mips@linux-mips.org Cc: linux-ia64@vger.kernel.org Cc: linux-kernel@vger.kernel.org Cc: <stable@vger.kernel.org> # 4.0- Patchwork: https://patchwork.linux-mips.org/patch/12478/ Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
2016-02-09 01:43:50 +07:00
{
memcpy(to, from, sizeof(*to));
SIGNAL: Move generic copy_siginfo() to signal.h The generic copy_siginfo() is currently defined in asm-generic/siginfo.h, after including uapi/asm-generic/siginfo.h which defines the generic struct siginfo. However this makes it awkward for an architecture to use it if it has to define its own struct siginfo (e.g. MIPS and potentially IA64), since it means that asm-generic/siginfo.h can only be included after defining the arch-specific siginfo, which may be problematic if the arch-specific definition needs definitions from uapi/asm-generic/siginfo.h. It is possible to work around this by first including uapi/asm-generic/siginfo.h to get the constants before defining the arch-specific siginfo, and include asm-generic/siginfo.h after. However uapi headers can't be included by other uapi headers, so that first include has to be in an ifdef __kernel__, with the non __kernel__ case including the non-UAPI header instead. Instead of that mess, move the generic copy_siginfo() definition into linux/signal.h, which allows an arch-specific uapi/asm/siginfo.h to include asm-generic/siginfo.h and define the arch-specific siginfo, and for the generic copy_siginfo() to see that arch-specific definition. Signed-off-by: James Hogan <james.hogan@imgtec.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Petr Malat <oss@malat.biz> Cc: Tony Luck <tony.luck@intel.com> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: Christopher Ferris <cferris@google.com> Cc: linux-arch@vger.kernel.org Cc: linux-mips@linux-mips.org Cc: linux-ia64@vger.kernel.org Cc: linux-kernel@vger.kernel.org Cc: <stable@vger.kernel.org> # 4.0- Patchwork: https://patchwork.linux-mips.org/patch/12478/ Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
2016-02-09 01:43:50 +07:00
}
static inline void clear_siginfo(kernel_siginfo_t *info)
{
memset(info, 0, sizeof(*info));
}
#define SI_EXPANSION_SIZE (sizeof(struct siginfo) - sizeof(struct kernel_siginfo))
static inline void copy_siginfo_to_external(siginfo_t *to,
const kernel_siginfo_t *from)
{
memcpy(to, from, sizeof(*from));
memset(((char *)to) + sizeof(struct kernel_siginfo), 0,
SI_EXPANSION_SIZE);
}
int copy_siginfo_to_user(siginfo_t __user *to, const kernel_siginfo_t *from);
int copy_siginfo_from_user(kernel_siginfo_t *to, const siginfo_t __user *from);
signal: Remove kernel interal si_code magic struct siginfo is a union and the kernel since 2.4 has been hiding a union tag in the high 16bits of si_code using the values: __SI_KILL __SI_TIMER __SI_POLL __SI_FAULT __SI_CHLD __SI_RT __SI_MESGQ __SI_SYS While this looks plausible on the surface, in practice this situation has not worked well. - Injected positive signals are not copied to user space properly unless they have these magic high bits set. - Injected positive signals are not reported properly by signalfd unless they have these magic high bits set. - These kernel internal values leaked to userspace via ptrace_peek_siginfo - It was possible to inject these kernel internal values and cause the the kernel to misbehave. - Kernel developers got confused and expected these kernel internal values in userspace in kernel self tests. - Kernel developers got confused and set si_code to __SI_FAULT which is SI_USER in userspace which causes userspace to think an ordinary user sent the signal and that it was not kernel generated. - The values make it impossible to reorganize the code to transform siginfo_copy_to_user into a plain copy_to_user. As si_code must be massaged before being passed to userspace. So remove these kernel internal si codes and make the kernel code simpler and more maintainable. To replace these kernel internal magic si_codes introduce the helper function siginfo_layout, that takes a signal number and an si_code and computes which union member of siginfo is being used. Have siginfo_layout return an enumeration so that gcc will have enough information to warn if a switch statement does not handle all of union members. A couple of architectures have a messed up ABI that defines signal specific duplications of SI_USER which causes more special cases in siginfo_layout than I would like. The good news is only problem architectures pay the cost. Update all of the code that used the previous magic __SI_ values to use the new SIL_ values and to call siginfo_layout to get those values. Escept where not all of the cases are handled remove the defaults in the switch statements so that if a new case is missed in the future the lack will show up at compile time. Modify the code that copies siginfo si_code to userspace to just copy the value and not cast si_code to a short first. The high bits are no longer used to hold a magic union member. Fixup the siginfo header files to stop including the __SI_ values in their constants and for the headers that were missing it to properly update the number of si_codes for each signal type. The fixes to copy_siginfo_from_user32 implementations has the interesting property that several of them perviously should never have worked as the __SI_ values they depended up where kernel internal. With that dependency gone those implementations should work much better. The idea of not passing the __SI_ values out to userspace and then not reinserting them has been tested with criu and criu worked without changes. Ref: 2.4.0-test1 Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2017-07-17 10:36:59 +07:00
enum siginfo_layout {
SIL_KILL,
SIL_TIMER,
SIL_POLL,
SIL_FAULT,
SIL_FAULT_MCEERR,
SIL_FAULT_BNDERR,
SIL_FAULT_PKUERR,
signal: Remove kernel interal si_code magic struct siginfo is a union and the kernel since 2.4 has been hiding a union tag in the high 16bits of si_code using the values: __SI_KILL __SI_TIMER __SI_POLL __SI_FAULT __SI_CHLD __SI_RT __SI_MESGQ __SI_SYS While this looks plausible on the surface, in practice this situation has not worked well. - Injected positive signals are not copied to user space properly unless they have these magic high bits set. - Injected positive signals are not reported properly by signalfd unless they have these magic high bits set. - These kernel internal values leaked to userspace via ptrace_peek_siginfo - It was possible to inject these kernel internal values and cause the the kernel to misbehave. - Kernel developers got confused and expected these kernel internal values in userspace in kernel self tests. - Kernel developers got confused and set si_code to __SI_FAULT which is SI_USER in userspace which causes userspace to think an ordinary user sent the signal and that it was not kernel generated. - The values make it impossible to reorganize the code to transform siginfo_copy_to_user into a plain copy_to_user. As si_code must be massaged before being passed to userspace. So remove these kernel internal si codes and make the kernel code simpler and more maintainable. To replace these kernel internal magic si_codes introduce the helper function siginfo_layout, that takes a signal number and an si_code and computes which union member of siginfo is being used. Have siginfo_layout return an enumeration so that gcc will have enough information to warn if a switch statement does not handle all of union members. A couple of architectures have a messed up ABI that defines signal specific duplications of SI_USER which causes more special cases in siginfo_layout than I would like. The good news is only problem architectures pay the cost. Update all of the code that used the previous magic __SI_ values to use the new SIL_ values and to call siginfo_layout to get those values. Escept where not all of the cases are handled remove the defaults in the switch statements so that if a new case is missed in the future the lack will show up at compile time. Modify the code that copies siginfo si_code to userspace to just copy the value and not cast si_code to a short first. The high bits are no longer used to hold a magic union member. Fixup the siginfo header files to stop including the __SI_ values in their constants and for the headers that were missing it to properly update the number of si_codes for each signal type. The fixes to copy_siginfo_from_user32 implementations has the interesting property that several of them perviously should never have worked as the __SI_ values they depended up where kernel internal. With that dependency gone those implementations should work much better. The idea of not passing the __SI_ values out to userspace and then not reinserting them has been tested with criu and criu worked without changes. Ref: 2.4.0-test1 Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2017-07-17 10:36:59 +07:00
SIL_CHLD,
SIL_RT,
SIL_SYS,
};
enum siginfo_layout siginfo_layout(unsigned sig, int si_code);
signal: Remove kernel interal si_code magic struct siginfo is a union and the kernel since 2.4 has been hiding a union tag in the high 16bits of si_code using the values: __SI_KILL __SI_TIMER __SI_POLL __SI_FAULT __SI_CHLD __SI_RT __SI_MESGQ __SI_SYS While this looks plausible on the surface, in practice this situation has not worked well. - Injected positive signals are not copied to user space properly unless they have these magic high bits set. - Injected positive signals are not reported properly by signalfd unless they have these magic high bits set. - These kernel internal values leaked to userspace via ptrace_peek_siginfo - It was possible to inject these kernel internal values and cause the the kernel to misbehave. - Kernel developers got confused and expected these kernel internal values in userspace in kernel self tests. - Kernel developers got confused and set si_code to __SI_FAULT which is SI_USER in userspace which causes userspace to think an ordinary user sent the signal and that it was not kernel generated. - The values make it impossible to reorganize the code to transform siginfo_copy_to_user into a plain copy_to_user. As si_code must be massaged before being passed to userspace. So remove these kernel internal si codes and make the kernel code simpler and more maintainable. To replace these kernel internal magic si_codes introduce the helper function siginfo_layout, that takes a signal number and an si_code and computes which union member of siginfo is being used. Have siginfo_layout return an enumeration so that gcc will have enough information to warn if a switch statement does not handle all of union members. A couple of architectures have a messed up ABI that defines signal specific duplications of SI_USER which causes more special cases in siginfo_layout than I would like. The good news is only problem architectures pay the cost. Update all of the code that used the previous magic __SI_ values to use the new SIL_ values and to call siginfo_layout to get those values. Escept where not all of the cases are handled remove the defaults in the switch statements so that if a new case is missed in the future the lack will show up at compile time. Modify the code that copies siginfo si_code to userspace to just copy the value and not cast si_code to a short first. The high bits are no longer used to hold a magic union member. Fixup the siginfo header files to stop including the __SI_ values in their constants and for the headers that were missing it to properly update the number of si_codes for each signal type. The fixes to copy_siginfo_from_user32 implementations has the interesting property that several of them perviously should never have worked as the __SI_ values they depended up where kernel internal. With that dependency gone those implementations should work much better. The idea of not passing the __SI_ values out to userspace and then not reinserting them has been tested with criu and criu worked without changes. Ref: 2.4.0-test1 Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2017-07-17 10:36:59 +07:00
/*
* Define some primitives to manipulate sigset_t.
*/
#ifndef __HAVE_ARCH_SIG_BITOPS
#include <linux/bitops.h>
/* We don't use <linux/bitops.h> for these because there is no need to
be atomic. */
static inline void sigaddset(sigset_t *set, int _sig)
{
unsigned long sig = _sig - 1;
if (_NSIG_WORDS == 1)
set->sig[0] |= 1UL << sig;
else
set->sig[sig / _NSIG_BPW] |= 1UL << (sig % _NSIG_BPW);
}
static inline void sigdelset(sigset_t *set, int _sig)
{
unsigned long sig = _sig - 1;
if (_NSIG_WORDS == 1)
set->sig[0] &= ~(1UL << sig);
else
set->sig[sig / _NSIG_BPW] &= ~(1UL << (sig % _NSIG_BPW));
}
static inline int sigismember(sigset_t *set, int _sig)
{
unsigned long sig = _sig - 1;
if (_NSIG_WORDS == 1)
return 1 & (set->sig[0] >> sig);
else
return 1 & (set->sig[sig / _NSIG_BPW] >> (sig % _NSIG_BPW));
}
#endif /* __HAVE_ARCH_SIG_BITOPS */
static inline int sigisemptyset(sigset_t *set)
{
switch (_NSIG_WORDS) {
case 4:
return (set->sig[3] | set->sig[2] |
set->sig[1] | set->sig[0]) == 0;
case 2:
return (set->sig[1] | set->sig[0]) == 0;
case 1:
return set->sig[0] == 0;
default:
BUILD_BUG();
return 0;
}
}
signals: avoid unnecessary taking of sighand->siglock When running certain database workload on a high-end system with many CPUs, it was found that spinlock contention in the sigprocmask syscalls became a significant portion of the overall CPU cycles as shown below. 9.30% 9.30% 905387 dataserver /proc/kcore 0x7fff8163f4d2 [k] _raw_spin_lock_irq | ---_raw_spin_lock_irq | |--99.34%-- __set_current_blocked | sigprocmask | sys_rt_sigprocmask | system_call_fastpath | | | |--50.63%-- __swapcontext | | | | | |--99.91%-- upsleepgeneric | | | |--49.36%-- __setcontext | | ktskRun Looking further into the swapcontext function in glibc, it was found that the function always call sigprocmask() without checking if there are changes in the signal mask. A check was added to the __set_current_blocked() function to avoid taking the sighand->siglock spinlock if there is no change in the signal mask. This will prevent unneeded spinlock contention when many threads are trying to call sigprocmask(). With this patch applied, the spinlock contention in sigprocmask() was gone. Link: http://lkml.kernel.org/r/1474979209-11867-1-git-send-email-Waiman.Long@hpe.com Signed-off-by: Waiman Long <Waiman.Long@hpe.com> Acked-by: Oleg Nesterov <oleg@redhat.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Stas Sergeev <stsp@list.ru> Cc: Scott J Norton <scott.norton@hpe.com> Cc: Douglas Hatch <doug.hatch@hpe.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-12-15 06:04:10 +07:00
static inline int sigequalsets(const sigset_t *set1, const sigset_t *set2)
{
switch (_NSIG_WORDS) {
case 4:
return (set1->sig[3] == set2->sig[3]) &&
(set1->sig[2] == set2->sig[2]) &&
(set1->sig[1] == set2->sig[1]) &&
(set1->sig[0] == set2->sig[0]);
case 2:
return (set1->sig[1] == set2->sig[1]) &&
(set1->sig[0] == set2->sig[0]);
case 1:
return set1->sig[0] == set2->sig[0];
}
return 0;
}
#define sigmask(sig) (1UL << ((sig) - 1))
#ifndef __HAVE_ARCH_SIG_SETOPS
#include <linux/string.h>
#define _SIG_SET_BINOP(name, op) \
static inline void name(sigset_t *r, const sigset_t *a, const sigset_t *b) \
{ \
unsigned long a0, a1, a2, a3, b0, b1, b2, b3; \
\
switch (_NSIG_WORDS) { \
case 4: \
a3 = a->sig[3]; a2 = a->sig[2]; \
b3 = b->sig[3]; b2 = b->sig[2]; \
r->sig[3] = op(a3, b3); \
r->sig[2] = op(a2, b2); \
fallthrough; \
case 2: \
a1 = a->sig[1]; b1 = b->sig[1]; \
r->sig[1] = op(a1, b1); \
fallthrough; \
case 1: \
a0 = a->sig[0]; b0 = b->sig[0]; \
r->sig[0] = op(a0, b0); \
break; \
default: \
BUILD_BUG(); \
} \
}
#define _sig_or(x,y) ((x) | (y))
_SIG_SET_BINOP(sigorsets, _sig_or)
#define _sig_and(x,y) ((x) & (y))
_SIG_SET_BINOP(sigandsets, _sig_and)
#define _sig_andn(x,y) ((x) & ~(y))
_SIG_SET_BINOP(sigandnsets, _sig_andn)
#undef _SIG_SET_BINOP
#undef _sig_or
#undef _sig_and
#undef _sig_andn
#define _SIG_SET_OP(name, op) \
static inline void name(sigset_t *set) \
{ \
switch (_NSIG_WORDS) { \
case 4: set->sig[3] = op(set->sig[3]); \
set->sig[2] = op(set->sig[2]); \
fallthrough; \
case 2: set->sig[1] = op(set->sig[1]); \
fallthrough; \
case 1: set->sig[0] = op(set->sig[0]); \
break; \
default: \
BUILD_BUG(); \
} \
}
#define _sig_not(x) (~(x))
_SIG_SET_OP(signotset, _sig_not)
#undef _SIG_SET_OP
#undef _sig_not
static inline void sigemptyset(sigset_t *set)
{
switch (_NSIG_WORDS) {
default:
memset(set, 0, sizeof(sigset_t));
break;
case 2: set->sig[1] = 0;
fallthrough;
case 1: set->sig[0] = 0;
break;
}
}
static inline void sigfillset(sigset_t *set)
{
switch (_NSIG_WORDS) {
default:
memset(set, -1, sizeof(sigset_t));
break;
case 2: set->sig[1] = -1;
fallthrough;
case 1: set->sig[0] = -1;
break;
}
}
/* Some extensions for manipulating the low 32 signals in particular. */
static inline void sigaddsetmask(sigset_t *set, unsigned long mask)
{
set->sig[0] |= mask;
}
static inline void sigdelsetmask(sigset_t *set, unsigned long mask)
{
set->sig[0] &= ~mask;
}
static inline int sigtestsetmask(sigset_t *set, unsigned long mask)
{
return (set->sig[0] & mask) != 0;
}
static inline void siginitset(sigset_t *set, unsigned long mask)
{
set->sig[0] = mask;
switch (_NSIG_WORDS) {
default:
memset(&set->sig[1], 0, sizeof(long)*(_NSIG_WORDS-1));
break;
case 2: set->sig[1] = 0;
case 1: ;
}
}
static inline void siginitsetinv(sigset_t *set, unsigned long mask)
{
set->sig[0] = ~mask;
switch (_NSIG_WORDS) {
default:
memset(&set->sig[1], -1, sizeof(long)*(_NSIG_WORDS-1));
break;
case 2: set->sig[1] = -1;
case 1: ;
}
}
#endif /* __HAVE_ARCH_SIG_SETOPS */
static inline void init_sigpending(struct sigpending *sig)
{
sigemptyset(&sig->signal);
INIT_LIST_HEAD(&sig->list);
}
extern void flush_sigqueue(struct sigpending *queue);
/* Test if 'sig' is valid signal. Use this instead of testing _NSIG directly */
static inline int valid_signal(unsigned long sig)
{
return sig <= _NSIG ? 1 : 0;
}
struct timespec;
struct pt_regs;
enum pid_type;
signal/timer/event: signalfd core This patch series implements the new signalfd() system call. I took part of the original Linus code (and you know how badly it can be broken :), and I added even more breakage ;) Signals are fetched from the same signal queue used by the process, so signalfd will compete with standard kernel delivery in dequeue_signal(). If you want to reliably fetch signals on the signalfd file, you need to block them with sigprocmask(SIG_BLOCK). This seems to be working fine on my Dual Opteron machine. I made a quick test program for it: http://www.xmailserver.org/signafd-test.c The signalfd() system call implements signal delivery into a file descriptor receiver. The signalfd file descriptor if created with the following API: int signalfd(int ufd, const sigset_t *mask, size_t masksize); The "ufd" parameter allows to change an existing signalfd sigmask, w/out going to close/create cycle (Linus idea). Use "ufd" == -1 if you want a brand new signalfd file. The "mask" allows to specify the signal mask of signals that we are interested in. The "masksize" parameter is the size of "mask". The signalfd fd supports the poll(2) and read(2) system calls. The poll(2) will return POLLIN when signals are available to be dequeued. As a direct consequence of supporting the Linux poll subsystem, the signalfd fd can use used together with epoll(2) too. The read(2) system call will return a "struct signalfd_siginfo" structure in the userspace supplied buffer. The return value is the number of bytes copied in the supplied buffer, or -1 in case of error. The read(2) call can also return 0, in case the sighand structure to which the signalfd was attached, has been orphaned. The O_NONBLOCK flag is also supported, and read(2) will return -EAGAIN in case no signal is available. If the size of the buffer passed to read(2) is lower than sizeof(struct signalfd_siginfo), -EINVAL is returned. A read from the signalfd can also return -ERESTARTSYS in case a signal hits the process. The format of the struct signalfd_siginfo is, and the valid fields depends of the (->code & __SI_MASK) value, in the same way a struct siginfo would: struct signalfd_siginfo { __u32 signo; /* si_signo */ __s32 err; /* si_errno */ __s32 code; /* si_code */ __u32 pid; /* si_pid */ __u32 uid; /* si_uid */ __s32 fd; /* si_fd */ __u32 tid; /* si_fd */ __u32 band; /* si_band */ __u32 overrun; /* si_overrun */ __u32 trapno; /* si_trapno */ __s32 status; /* si_status */ __s32 svint; /* si_int */ __u64 svptr; /* si_ptr */ __u64 utime; /* si_utime */ __u64 stime; /* si_stime */ __u64 addr; /* si_addr */ }; [akpm@linux-foundation.org: fix signalfd_copyinfo() on i386] Signed-off-by: Davide Libenzi <davidel@xmailserver.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-11 12:23:13 +07:00
extern int next_signal(struct sigpending *pending, sigset_t *mask);
extern int do_send_sig_info(int sig, struct kernel_siginfo *info,
struct task_struct *p, enum pid_type type);
extern int group_send_sig_info(int sig, struct kernel_siginfo *info,
struct task_struct *p, enum pid_type type);
extern int __group_send_sig_info(int, struct kernel_siginfo *, struct task_struct *);
extern int sigprocmask(int, sigset_t *, sigset_t *);
extern void set_current_blocked(sigset_t *);
extern void __set_current_blocked(const sigset_t *);
extern int show_unhandled_signals;
extern bool get_signal(struct ksignal *ksig);
extern void signal_setup_done(int failed, struct ksignal *ksig, int stepping);
extern void exit_signals(struct task_struct *tsk);
extern void kernel_sigaction(int, __sighandler_t);
signal: Allow cifs and drbd to receive their terminating signals My recent to change to only use force_sig for a synchronous events wound up breaking signal reception cifs and drbd. I had overlooked the fact that by default kthreads start out with all signals set to SIG_IGN. So a change I thought was safe turned out to have made it impossible for those kernel thread to catch their signals. Reverting the work on force_sig is a bad idea because what the code was doing was very much a misuse of force_sig. As the way force_sig ultimately allowed the signal to happen was to change the signal handler to SIG_DFL. Which after the first signal will allow userspace to send signals to these kernel threads. At least for wake_ack_receiver in drbd that does not appear actively wrong. So correct this problem by adding allow_kernel_signal that will allow signals whose siginfo reports they were sent by the kernel through, but will not allow userspace generated signals, and update cifs and drbd to call allow_kernel_signal in an appropriate place so that their thread can receive this signal. Fixing things this way ensures that userspace won't be able to send signals and cause problems, that it is clear which signals the threads are expecting to receive, and it guarantees that nothing else in the system will be affected. This change was partly inspired by similar cifs and drbd patches that added allow_signal. Reported-by: ronnie sahlberg <ronniesahlberg@gmail.com> Reported-by: Christoph Böhmwalder <christoph.boehmwalder@linbit.com> Tested-by: Christoph Böhmwalder <christoph.boehmwalder@linbit.com> Cc: Steve French <smfrench@gmail.com> Cc: Philipp Reisner <philipp.reisner@linbit.com> Cc: David Laight <David.Laight@ACULAB.COM> Fixes: 247bc9470b1e ("cifs: fix rmmod regression in cifs.ko caused by force_sig changes") Fixes: 72abe3bcf091 ("signal/cifs: Fix cifs_put_tcp_session to call send_sig instead of force_sig") Fixes: fee109901f39 ("signal/drbd: Use send_sig not force_sig") Fixes: 3cf5d076fb4d ("signal: Remove task parameter from force_sig") Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2019-08-17 00:33:54 +07:00
#define SIG_KTHREAD ((__force __sighandler_t)2)
#define SIG_KTHREAD_KERNEL ((__force __sighandler_t)3)
static inline void allow_signal(int sig)
{
/*
* Kernel threads handle their own signals. Let the signal code
* know it'll be handled, so that they don't get converted to
* SIGKILL or just silently dropped.
*/
signal: Allow cifs and drbd to receive their terminating signals My recent to change to only use force_sig for a synchronous events wound up breaking signal reception cifs and drbd. I had overlooked the fact that by default kthreads start out with all signals set to SIG_IGN. So a change I thought was safe turned out to have made it impossible for those kernel thread to catch their signals. Reverting the work on force_sig is a bad idea because what the code was doing was very much a misuse of force_sig. As the way force_sig ultimately allowed the signal to happen was to change the signal handler to SIG_DFL. Which after the first signal will allow userspace to send signals to these kernel threads. At least for wake_ack_receiver in drbd that does not appear actively wrong. So correct this problem by adding allow_kernel_signal that will allow signals whose siginfo reports they were sent by the kernel through, but will not allow userspace generated signals, and update cifs and drbd to call allow_kernel_signal in an appropriate place so that their thread can receive this signal. Fixing things this way ensures that userspace won't be able to send signals and cause problems, that it is clear which signals the threads are expecting to receive, and it guarantees that nothing else in the system will be affected. This change was partly inspired by similar cifs and drbd patches that added allow_signal. Reported-by: ronnie sahlberg <ronniesahlberg@gmail.com> Reported-by: Christoph Böhmwalder <christoph.boehmwalder@linbit.com> Tested-by: Christoph Böhmwalder <christoph.boehmwalder@linbit.com> Cc: Steve French <smfrench@gmail.com> Cc: Philipp Reisner <philipp.reisner@linbit.com> Cc: David Laight <David.Laight@ACULAB.COM> Fixes: 247bc9470b1e ("cifs: fix rmmod regression in cifs.ko caused by force_sig changes") Fixes: 72abe3bcf091 ("signal/cifs: Fix cifs_put_tcp_session to call send_sig instead of force_sig") Fixes: fee109901f39 ("signal/drbd: Use send_sig not force_sig") Fixes: 3cf5d076fb4d ("signal: Remove task parameter from force_sig") Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2019-08-17 00:33:54 +07:00
kernel_sigaction(sig, SIG_KTHREAD);
}
static inline void allow_kernel_signal(int sig)
{
/*
* Kernel threads handle their own signals. Let the signal code
* know signals sent by the kernel will be handled, so that they
* don't get silently dropped.
*/
kernel_sigaction(sig, SIG_KTHREAD_KERNEL);
}
static inline void disallow_signal(int sig)
{
kernel_sigaction(sig, SIG_IGN);
}
extern struct kmem_cache *sighand_cachep;
extern bool unhandled_signal(struct task_struct *tsk, int sig);
/*
* In POSIX a signal is sent either to a specific thread (Linux task)
* or to the process as a whole (Linux thread group). How the signal
* is sent determines whether it's to one thread or the whole group,
* which determines which signal mask(s) are involved in blocking it
* from being delivered until later. When the signal is delivered,
* either it's caught or ignored by a user handler or it has a default
* effect that applies to the whole thread group (POSIX process).
*
* The possible effects an unblocked signal set to SIG_DFL can have are:
* ignore - Nothing Happens
* terminate - kill the process, i.e. all threads in the group,
* similar to exit_group. The group leader (only) reports
* WIFSIGNALED status to its parent.
* coredump - write a core dump file describing all threads using
* the same mm and then kill all those threads
* stop - stop all the threads in the group, i.e. TASK_STOPPED state
*
* SIGKILL and SIGSTOP cannot be caught, blocked, or ignored.
* Other signals when not blocked and set to SIG_DFL behaves as follows.
* The job control signals also have other special effects.
*
* +--------------------+------------------+
* | POSIX signal | default action |
* +--------------------+------------------+
* | SIGHUP | terminate |
* | SIGINT | terminate |
* | SIGQUIT | coredump |
* | SIGILL | coredump |
* | SIGTRAP | coredump |
* | SIGABRT/SIGIOT | coredump |
* | SIGBUS | coredump |
* | SIGFPE | coredump |
* | SIGKILL | terminate(+) |
* | SIGUSR1 | terminate |
* | SIGSEGV | coredump |
* | SIGUSR2 | terminate |
* | SIGPIPE | terminate |
* | SIGALRM | terminate |
* | SIGTERM | terminate |
* | SIGCHLD | ignore |
* | SIGCONT | ignore(*) |
* | SIGSTOP | stop(*)(+) |
* | SIGTSTP | stop(*) |
* | SIGTTIN | stop(*) |
* | SIGTTOU | stop(*) |
* | SIGURG | ignore |
* | SIGXCPU | coredump |
* | SIGXFSZ | coredump |
* | SIGVTALRM | terminate |
* | SIGPROF | terminate |
* | SIGPOLL/SIGIO | terminate |
* | SIGSYS/SIGUNUSED | coredump |
* | SIGSTKFLT | terminate |
* | SIGWINCH | ignore |
* | SIGPWR | terminate |
* | SIGRTMIN-SIGRTMAX | terminate |
* +--------------------+------------------+
* | non-POSIX signal | default action |
* +--------------------+------------------+
* | SIGEMT | coredump |
* +--------------------+------------------+
*
* (+) For SIGKILL and SIGSTOP the action is "always", not just "default".
* (*) Special job control effects:
* When SIGCONT is sent, it resumes the process (all threads in the group)
* from TASK_STOPPED state and also clears any pending/queued stop signals
* (any of those marked with "stop(*)"). This happens regardless of blocking,
* catching, or ignoring SIGCONT. When any stop signal is sent, it clears
* any pending/queued SIGCONT signals; this happens regardless of blocking,
* catching, or ignored the stop signal, though (except for SIGSTOP) the
* default action of stopping the process may happen later or never.
*/
#ifdef SIGEMT
#define SIGEMT_MASK rt_sigmask(SIGEMT)
#else
#define SIGEMT_MASK 0
#endif
#if SIGRTMIN > BITS_PER_LONG
#define rt_sigmask(sig) (1ULL << ((sig)-1))
#else
#define rt_sigmask(sig) sigmask(sig)
#endif
#define siginmask(sig, mask) \
signal: Make siginmask safe when passed a signal of 0 Eric Biggers reported: > The following commit, which went into v4.20, introduced undefined behavior when > sys_rt_sigqueueinfo() is called with sig=0: > > commit 4ce5f9c9e7546915c559ffae594e6d73f918db00 > Author: Eric W. Biederman <ebiederm@xmission.com> > Date: Tue Sep 25 12:59:31 2018 +0200 > > signal: Use a smaller struct siginfo in the kernel > > In sig_specific_sicodes(), used from known_siginfo_layout(), the expression > '1ULL << ((sig)-1)' is undefined as it evaluates to 1ULL << 4294967295. > > Reproducer: > > #include <signal.h> > #include <sys/syscall.h> > #include <unistd.h> > > int main(void) > { > siginfo_t si = { .si_code = 1 }; > syscall(__NR_rt_sigqueueinfo, 0, 0, &si); > } > > UBSAN report for v5.0-rc1: > > UBSAN: Undefined behaviour in kernel/signal.c:2946:7 > shift exponent 4294967295 is too large for 64-bit type 'long unsigned int' > CPU: 2 PID: 346 Comm: syz_signal Not tainted 5.0.0-rc1 #25 > Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.10.2-1 04/01/2014 > Call Trace: > __dump_stack lib/dump_stack.c:77 [inline] > dump_stack+0x70/0xa5 lib/dump_stack.c:113 > ubsan_epilogue+0xd/0x40 lib/ubsan.c:159 > __ubsan_handle_shift_out_of_bounds+0x12c/0x170 lib/ubsan.c:425 > known_siginfo_layout+0xae/0xe0 kernel/signal.c:2946 > post_copy_siginfo_from_user kernel/signal.c:3009 [inline] > __copy_siginfo_from_user+0x35/0x60 kernel/signal.c:3035 > __do_sys_rt_sigqueueinfo kernel/signal.c:3553 [inline] > __se_sys_rt_sigqueueinfo kernel/signal.c:3549 [inline] > __x64_sys_rt_sigqueueinfo+0x31/0x70 kernel/signal.c:3549 > do_syscall_64+0x4c/0x1b0 arch/x86/entry/common.c:290 > entry_SYSCALL_64_after_hwframe+0x49/0xbe > RIP: 0033:0x433639 > Code: c4 18 c3 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 40 00 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 0f 83 7b 27 00 00 c3 66 2e 0f 1f 84 00 00 00 00 > RSP: 002b:00007fffcb289fc8 EFLAGS: 00000246 ORIG_RAX: 0000000000000081 > RAX: ffffffffffffffda RBX: 00000000004002e0 RCX: 0000000000433639 > RDX: 00007fffcb289fd0 RSI: 0000000000000000 RDI: 0000000000000000 > RBP: 00000000006b2018 R08: 000000000000004d R09: 0000000000000000 > R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000401560 > R13: 00000000004015f0 R14: 0000000000000000 R15: 0000000000000000 I have looked at the other callers of siginmask and they all appear to in locations where sig can not be zero. I have looked at the code generation of adding an extra test against zero and gcc was able with a simple decrement instruction to combine the two tests together. So the at most adding this test cost a single cpu cycle. In practice that decrement instruction was already present as part of the mask comparison, so the only change was when the instruction was executed. So given that it is cheap, and obviously correct to update siginmask to verify the signal is not zero. Fix this issue there to avoid any future problems. Reported-by: Eric Biggers <ebiggers@kernel.org> Fixes: 4ce5f9c9e754 ("signal: Use a smaller struct siginfo in the kernel") Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2019-01-13 00:48:20 +07:00
((sig) > 0 && (sig) < SIGRTMIN && (rt_sigmask(sig) & (mask)))
#define SIG_KERNEL_ONLY_MASK (\
rt_sigmask(SIGKILL) | rt_sigmask(SIGSTOP))
#define SIG_KERNEL_STOP_MASK (\
rt_sigmask(SIGSTOP) | rt_sigmask(SIGTSTP) | \
rt_sigmask(SIGTTIN) | rt_sigmask(SIGTTOU) )
#define SIG_KERNEL_COREDUMP_MASK (\
rt_sigmask(SIGQUIT) | rt_sigmask(SIGILL) | \
rt_sigmask(SIGTRAP) | rt_sigmask(SIGABRT) | \
rt_sigmask(SIGFPE) | rt_sigmask(SIGSEGV) | \
rt_sigmask(SIGBUS) | rt_sigmask(SIGSYS) | \
rt_sigmask(SIGXCPU) | rt_sigmask(SIGXFSZ) | \
SIGEMT_MASK )
#define SIG_KERNEL_IGNORE_MASK (\
rt_sigmask(SIGCONT) | rt_sigmask(SIGCHLD) | \
rt_sigmask(SIGWINCH) | rt_sigmask(SIGURG) )
fcntl: Don't use ambiguous SIG_POLL si_codes We have a weird and problematic intersection of features that when they all come together result in ambiguous siginfo values, that we can not support properly. - Supporting fcntl(F_SETSIG,...) with arbitrary valid signals. - Using positive values for POLL_IN, POLL_OUT, POLL_MSG, ..., etc that imply they are signal specific si_codes and using the aforementioned arbitrary signal to deliver them. - Supporting injection of arbitrary siginfo values for debugging and checkpoint/restore. The result is that just looking at siginfo si_codes of 1 to 6 are ambigious. It could either be a signal specific si_code or it could be a generic si_code. For most of the kernel this is a non-issue but for sending signals with siginfo it is impossible to play back the kernel signals and get the same result. Strictly speaking when the si_code was changed from SI_SIGIO to POLL_IN and friends between 2.2 and 2.4 this functionality was not ambiguous, as only real time signals were supported. Before 2.4 was released the kernel began supporting siginfo with non realtime signals so they could give details of why the signal was sent. The result is that if F_SETSIG is set to one of the signals with signal specific si_codes then user space can not know why the signal was sent. I grepped through a bunch of userspace programs using debian code search to get a feel for how often people choose a signal that results in an ambiguous si_code. I only found one program doing so and it was using SIGCHLD to test the F_SETSIG functionality, and did not appear to be a real world usage. Therefore the ambiguity does not appears to be a real world problem in practice. Remove the ambiguity while introducing the smallest chance of breakage by changing the si_code to SI_SIGIO when signals with signal specific si_codes are targeted. Fixes: v2.3.40 -- Added support for queueing non-rt signals Fixes: v2.3.21 -- Changed the si_code from SI_SIGIO Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2017-06-29 21:28:50 +07:00
#define SIG_SPECIFIC_SICODES_MASK (\
rt_sigmask(SIGILL) | rt_sigmask(SIGFPE) | \
rt_sigmask(SIGSEGV) | rt_sigmask(SIGBUS) | \
rt_sigmask(SIGTRAP) | rt_sigmask(SIGCHLD) | \
rt_sigmask(SIGPOLL) | rt_sigmask(SIGSYS) | \
SIGEMT_MASK )
#define sig_kernel_only(sig) siginmask(sig, SIG_KERNEL_ONLY_MASK)
#define sig_kernel_coredump(sig) siginmask(sig, SIG_KERNEL_COREDUMP_MASK)
#define sig_kernel_ignore(sig) siginmask(sig, SIG_KERNEL_IGNORE_MASK)
#define sig_kernel_stop(sig) siginmask(sig, SIG_KERNEL_STOP_MASK)
fcntl: Don't use ambiguous SIG_POLL si_codes We have a weird and problematic intersection of features that when they all come together result in ambiguous siginfo values, that we can not support properly. - Supporting fcntl(F_SETSIG,...) with arbitrary valid signals. - Using positive values for POLL_IN, POLL_OUT, POLL_MSG, ..., etc that imply they are signal specific si_codes and using the aforementioned arbitrary signal to deliver them. - Supporting injection of arbitrary siginfo values for debugging and checkpoint/restore. The result is that just looking at siginfo si_codes of 1 to 6 are ambigious. It could either be a signal specific si_code or it could be a generic si_code. For most of the kernel this is a non-issue but for sending signals with siginfo it is impossible to play back the kernel signals and get the same result. Strictly speaking when the si_code was changed from SI_SIGIO to POLL_IN and friends between 2.2 and 2.4 this functionality was not ambiguous, as only real time signals were supported. Before 2.4 was released the kernel began supporting siginfo with non realtime signals so they could give details of why the signal was sent. The result is that if F_SETSIG is set to one of the signals with signal specific si_codes then user space can not know why the signal was sent. I grepped through a bunch of userspace programs using debian code search to get a feel for how often people choose a signal that results in an ambiguous si_code. I only found one program doing so and it was using SIGCHLD to test the F_SETSIG functionality, and did not appear to be a real world usage. Therefore the ambiguity does not appears to be a real world problem in practice. Remove the ambiguity while introducing the smallest chance of breakage by changing the si_code to SI_SIGIO when signals with signal specific si_codes are targeted. Fixes: v2.3.40 -- Added support for queueing non-rt signals Fixes: v2.3.21 -- Changed the si_code from SI_SIGIO Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2017-06-29 21:28:50 +07:00
#define sig_specific_sicodes(sig) siginmask(sig, SIG_SPECIFIC_SICODES_MASK)
#define sig_fatal(t, signr) \
(!siginmask(signr, SIG_KERNEL_IGNORE_MASK|SIG_KERNEL_STOP_MASK) && \
(t)->sighand->action[(signr)-1].sa.sa_handler == SIG_DFL)
void signals_init(void);
int restore_altstack(const stack_t __user *);
int __save_altstack(stack_t __user *, unsigned long);
#define unsafe_save_altstack(uss, sp, label) do { \
stack_t __user *__uss = uss; \
struct task_struct *t = current; \
unsafe_put_user((void __user *)t->sas_ss_sp, &__uss->ss_sp, label); \
unsafe_put_user(t->sas_ss_flags, &__uss->ss_flags, label); \
unsafe_put_user(t->sas_ss_size, &__uss->ss_size, label); \
signals/sigaltstack: Implement SS_AUTODISARM flag This patch implements the SS_AUTODISARM flag that can be OR-ed with SS_ONSTACK when forming ss_flags. When this flag is set, sigaltstack will be disabled when entering the signal handler; more precisely, after saving sas to uc_stack. When leaving the signal handler, the sigaltstack is restored by uc_stack. When this flag is used, it is safe to switch from sighandler with swapcontext(). Without this flag, the subsequent signal will corrupt the state of the switched-away sighandler. To detect the support of this functionality, one can do: err = sigaltstack(SS_DISABLE | SS_AUTODISARM); if (err && errno == EINVAL) unsupported(); Signed-off-by: Stas Sergeev <stsp@list.ru> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Aleksa Sarai <cyphar@cyphar.com> Cc: Amanieu d'Antras <amanieu@gmail.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Eric W. Biederman <ebiederm@xmission.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Heinrich Schuchardt <xypron.glpk@gmx.de> Cc: Jason Low <jason.low2@hp.com> Cc: Josh Triplett <josh@joshtriplett.org> Cc: Konstantin Khlebnikov <khlebnikov@yandex-team.ru> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Palmer Dabbelt <palmer@dabbelt.com> Cc: Paul Moore <pmoore@redhat.com> Cc: Pavel Emelyanov <xemul@parallels.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Richard Weinberger <richard@nod.at> Cc: Sasha Levin <sasha.levin@oracle.com> Cc: Shuah Khan <shuahkh@osg.samsung.com> Cc: Tejun Heo <tj@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vladimir Davydov <vdavydov@parallels.com> Cc: linux-api@vger.kernel.org Cc: linux-kernel@vger.kernel.org Link: http://lkml.kernel.org/r/1460665206-13646-4-git-send-email-stsp@list.ru Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-04-15 03:20:04 +07:00
if (t->sas_ss_flags & SS_AUTODISARM) \
sas_ss_reset(t); \
} while (0);
#ifdef CONFIG_PROC_FS
struct seq_file;
extern void render_sigset_t(struct seq_file *, const char *, sigset_t *);
#endif
#endif /* _LINUX_SIGNAL_H */