linux_dsm_epyc7002/include/linux/trace_events.h

628 lines
19 KiB
C
Raw Normal View History

tracing: Add and use generic set_trigger_filter() implementation Add a generic event_command.set_trigger_filter() op implementation and have the current set of trigger commands use it - this essentially gives them all support for filters. Syntactically, filters are supported by adding 'if <filter>' just after the command, in which case only events matching the filter will invoke the trigger. For example, to add a filter to an enable/disable_event command: echo 'enable_event:system:event if common_pid == 999' > \ .../othersys/otherevent/trigger The above command will only enable the system:event event if the common_pid field in the othersys:otherevent event is 999. As another example, to add a filter to a stacktrace command: echo 'stacktrace if common_pid == 999' > \ .../somesys/someevent/trigger The above command will only trigger a stacktrace if the common_pid field in the event is 999. The filter syntax is the same as that described in the 'Event filtering' section of Documentation/trace/events.txt. Because triggers can now use filters, the trigger-invoking logic needs to be moved in those cases - e.g. for ftrace_raw_event_calls, if a trigger has a filter associated with it, the trigger invocation now needs to happen after the { assign; } part of the call, in order for the trigger condition to be tested. There's still a SOFT_DISABLED-only check at the top of e.g. the ftrace_raw_events function, so when an event is soft disabled but not because of the presence of a trigger, the original SOFT_DISABLED behavior remains unchanged. There's also a bit of trickiness in that some triggers need to avoid being invoked while an event is currently in the process of being logged, since the trigger may itself log data into the trace buffer. Thus we make sure the current event is committed before invoking those triggers. To do that, we split the trigger invocation in two - the first part (event_triggers_call()) checks the filter using the current trace record; if a command has the post_trigger flag set, it sets a bit for itself in the return value, otherwise it directly invoks the trigger. Once all commands have been either invoked or set their return flag, event_triggers_call() returns. The current record is then either committed or discarded; if any commands have deferred their triggers, those commands are finally invoked following the close of the current event by event_triggers_post_call(). To simplify the above and make it more efficient, the TRIGGER_COND bit is introduced, which is set only if a soft-disabled trigger needs to use the log record for filter testing or needs to wait until the current log record is closed. The syscall event invocation code is also changed in analogous ways. Because event triggers need to be able to create and free filters, this also adds a couple external wrappers for the existing create_filter and free_filter functions, which are too generic to be made extern functions themselves. Link: http://lkml.kernel.org/r/7164930759d8719ef460357f143d995406e4eead.1382622043.git.tom.zanussi@linux.intel.com Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 20:59:29 +07:00
#ifndef _LINUX_TRACE_EVENT_H
#define _LINUX_TRACE_EVENT_H
#include <linux/ring_buffer.h>
#include <linux/trace_seq.h>
#include <linux/percpu.h>
#include <linux/hardirq.h>
#include <linux/perf_event.h>
#include <linux/tracepoint.h>
struct trace_array;
struct trace_buffer;
struct tracer;
struct dentry;
tracing, perf: Implement BPF programs attached to kprobes BPF programs, attached to kprobes, provide a safe way to execute user-defined BPF byte-code programs without being able to crash or hang the kernel in any way. The BPF engine makes sure that such programs have a finite execution time and that they cannot break out of their sandbox. The user interface is to attach to a kprobe via the perf syscall: struct perf_event_attr attr = { .type = PERF_TYPE_TRACEPOINT, .config = event_id, ... }; event_fd = perf_event_open(&attr,...); ioctl(event_fd, PERF_EVENT_IOC_SET_BPF, prog_fd); 'prog_fd' is a file descriptor associated with BPF program previously loaded. 'event_id' is an ID of the kprobe created. Closing 'event_fd': close(event_fd); ... automatically detaches BPF program from it. BPF programs can call in-kernel helper functions to: - lookup/update/delete elements in maps - probe_read - wraper of probe_kernel_read() used to access any kernel data structures BPF programs receive 'struct pt_regs *' as an input ('struct pt_regs' is architecture dependent) and return 0 to ignore the event and 1 to store kprobe event into the ring buffer. Note, kprobes are a fundamentally _not_ a stable kernel ABI, so BPF programs attached to kprobes must be recompiled for every kernel version and user must supply correct LINUX_VERSION_CODE in attr.kern_version during bpf_prog_load() call. Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Reviewed-by: Steven Rostedt <rostedt@goodmis.org> Reviewed-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Arnaldo Carvalho de Melo <acme@infradead.org> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Daniel Borkmann <daniel@iogearbox.net> Cc: David S. Miller <davem@davemloft.net> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Peter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/1427312966-8434-4-git-send-email-ast@plumgrid.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-03-26 02:49:20 +07:00
struct bpf_prog;
struct trace_print_flags {
unsigned long mask;
const char *name;
};
struct trace_print_flags_u64 {
unsigned long long mask;
const char *name;
};
const char *trace_print_flags_seq(struct trace_seq *p, const char *delim,
unsigned long flags,
const struct trace_print_flags *flag_array);
const char *trace_print_symbols_seq(struct trace_seq *p, unsigned long val,
const struct trace_print_flags *symbol_array);
#if BITS_PER_LONG == 32
const char *trace_print_symbols_seq_u64(struct trace_seq *p,
unsigned long long val,
const struct trace_print_flags_u64
*symbol_array);
#endif
const char *trace_print_bitmask_seq(struct trace_seq *p, void *bitmask_ptr,
unsigned int bitmask_size);
tracing: Add __bitmask() macro to trace events to cpumasks and other bitmasks Being able to show a cpumask of events can be useful as some events may affect only some CPUs. There is no standard way to record the cpumask and converting it to a string is rather expensive during the trace as traces happen in hotpaths. It would be better to record the raw event mask and be able to parse it at print time. The following macros were added for use with the TRACE_EVENT() macro: __bitmask() __assign_bitmask() __get_bitmask() To test this, I added this to the sched_migrate_task event, which looked like this: TRACE_EVENT(sched_migrate_task, TP_PROTO(struct task_struct *p, int dest_cpu, const struct cpumask *cpus), TP_ARGS(p, dest_cpu, cpus), TP_STRUCT__entry( __array( char, comm, TASK_COMM_LEN ) __field( pid_t, pid ) __field( int, prio ) __field( int, orig_cpu ) __field( int, dest_cpu ) __bitmask( cpumask, num_possible_cpus() ) ), TP_fast_assign( memcpy(__entry->comm, p->comm, TASK_COMM_LEN); __entry->pid = p->pid; __entry->prio = p->prio; __entry->orig_cpu = task_cpu(p); __entry->dest_cpu = dest_cpu; __assign_bitmask(cpumask, cpumask_bits(cpus), num_possible_cpus()); ), TP_printk("comm=%s pid=%d prio=%d orig_cpu=%d dest_cpu=%d cpumask=%s", __entry->comm, __entry->pid, __entry->prio, __entry->orig_cpu, __entry->dest_cpu, __get_bitmask(cpumask)) ); With the output of: ksmtuned-3613 [003] d..2 485.220508: sched_migrate_task: comm=ksmtuned pid=3615 prio=120 orig_cpu=3 dest_cpu=2 cpumask=00000000,0000000f migration/1-13 [001] d..5 485.221202: sched_migrate_task: comm=ksmtuned pid=3614 prio=120 orig_cpu=1 dest_cpu=0 cpumask=00000000,0000000f awk-3615 [002] d.H5 485.221747: sched_migrate_task: comm=rcu_preempt pid=7 prio=120 orig_cpu=0 dest_cpu=1 cpumask=00000000,000000ff migration/2-18 [002] d..5 485.222062: sched_migrate_task: comm=ksmtuned pid=3615 prio=120 orig_cpu=2 dest_cpu=3 cpumask=00000000,0000000f Link: http://lkml.kernel.org/r/1399377998-14870-6-git-send-email-javi.merino@arm.com Link: http://lkml.kernel.org/r/20140506132238.22e136d1@gandalf.local.home Suggested-by: Javi Merino <javi.merino@arm.com> Tested-by: Javi Merino <javi.merino@arm.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2014-05-07 00:10:24 +07:00
const char *trace_print_hex_seq(struct trace_seq *p,
const unsigned char *buf, int len);
const char *trace_print_array_seq(struct trace_seq *p,
const void *buf, int count,
size_t el_size);
struct trace_iterator;
struct trace_event;
int trace_raw_output_prep(struct trace_iterator *iter,
struct trace_event *event);
/*
* The trace entry - the most basic unit of tracing. This is what
* is printed in the end as a single line in the trace output, such as:
*
* bash-15816 [01] 235.197585: idle_cpu <- irq_enter
*/
struct trace_entry {
unsigned short type;
unsigned char flags;
unsigned char preempt_count;
int pid;
};
#define TRACE_EVENT_TYPE_MAX \
((1 << (sizeof(((struct trace_entry *)0)->type) * 8)) - 1)
/*
* Trace iterator - used by printout routines who present trace
* results to users and which routines might sleep, etc:
*/
struct trace_iterator {
struct trace_array *tr;
struct tracer *trace;
struct trace_buffer *trace_buffer;
void *private;
int cpu_file;
struct mutex mutex;
struct ring_buffer_iter **buffer_iter;
unsigned long iter_flags;
/* trace_seq for __print_flags() and __print_symbolic() etc. */
struct trace_seq tmp_seq;
cpumask_var_t started;
/* it's true when current open file is snapshot */
bool snapshot;
/* The below is zeroed out in pipe_read */
struct trace_seq seq;
struct trace_entry *ent;
unsigned long lost_events;
tracing: Buffer the output of seq_file in case of filled buffer If the seq_read fills the buffer it will call s_start again on the next itertation with the same position. This causes a problem with the function_graph tracer because it consumes the iteration in order to determine leaf functions. What happens is that the iterator stores the entry, and the function graph plugin will look at the next entry. If that next entry is a return of the same function and task, then the function is a leaf and the function_graph plugin calls ring_buffer_read which moves the ring buffer iterator forward (the trace iterator still points to the function start entry). The copying of the trace_seq to the seq_file buffer will fail if the seq_file buffer is full. The seq_read will not show this entry. The next read by userspace will cause seq_read to again call s_start which will reuse the trace iterator entry (the function start entry). But the function return entry was already consumed. The function graph plugin will think that this entry is a nested function and not a leaf. To solve this, the trace code now checks the return status of the seq_printf (trace_print_seq). If the writing to the seq_file buffer fails, we set a flag in the iterator (leftover) and we do not reset the trace_seq buffer. On the next call to s_start, we check the leftover flag, and if it is set, we just reuse the trace_seq buffer and do not call into the plugin print functions. Before this patch: 2) | fput() { 2) | __fput() { 2) 0.550 us | inotify_inode_queue_event(); 2) | __fsnotify_parent() { 2) 0.540 us | inotify_dentry_parent_queue_event(); After the patch: 2) | fput() { 2) | __fput() { 2) 0.550 us | inotify_inode_queue_event(); 2) 0.548 us | __fsnotify_parent(); 2) 0.540 us | inotify_dentry_parent_queue_event(); [ Updated the patch to fix a missing return 0 from the trace_print_seq() stub when CONFIG_TRACING is disabled. Reported-by: Ingo Molnar <mingo@elte.hu> ] Reported-by: Jiri Olsa <jolsa@redhat.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2009-12-07 21:11:39 +07:00
int leftover;
int ent_size;
int cpu;
u64 ts;
loff_t pos;
long idx;
/* All new field here will be zeroed out in pipe_read */
};
tracing: Format non-nanosec times from tsc clock without a decimal point. With the addition of the "tsc" clock, formatting timestamps to look like fractional seconds is misleading. Mark clocks as either in nanoseconds or not, and format non-nanosecond timestamps as decimal integers. Tested: $ cd /sys/kernel/debug/tracing/ $ cat trace_clock [local] global tsc $ echo sched_switch > set_event $ echo 1 > tracing_on ; sleep 0.0005 ; echo 0 > tracing_on $ cat trace <idle>-0 [000] 6330.555552: sched_switch: prev_comm=swapper prev_pid=0 prev_prio=120 prev_state=R ==> next_comm=bash next_pid=29964 next_prio=120 sleep-29964 [000] 6330.555628: sched_switch: prev_comm=bash prev_pid=29964 prev_prio=120 prev_state=S ==> next_comm=swapper next_pid=0 next_prio=120 ... $ echo 1 > options/latency-format $ cat trace <idle>-0 0 4104553247us+: sched_switch: prev_comm=swapper prev_pid=0 prev_prio=120 prev_state=R ==> next_comm=bash next_pid=29964 next_prio=120 sleep-29964 0 4104553322us+: sched_switch: prev_comm=bash prev_pid=29964 prev_prio=120 prev_state=S ==> next_comm=swapper next_pid=0 next_prio=120 ... $ echo tsc > trace_clock $ cat trace $ echo 1 > tracing_on ; sleep 0.0005 ; echo 0 > tracing_on $ echo 0 > options/latency-format $ cat trace <idle>-0 [000] 16490053398357: sched_switch: prev_comm=swapper prev_pid=0 prev_prio=120 prev_state=R ==> next_comm=bash next_pid=31128 next_prio=120 sleep-31128 [000] 16490053588518: sched_switch: prev_comm=bash prev_pid=31128 prev_prio=120 prev_state=S ==> next_comm=swapper next_pid=0 next_prio=120 ... echo 1 > options/latency-format $ cat trace <idle>-0 0 91557653238+: sched_switch: prev_comm=swapper prev_pid=0 prev_prio=120 prev_state=R ==> next_comm=bash next_pid=31128 next_prio=120 sleep-31128 0 91557843399+: sched_switch: prev_comm=bash prev_pid=31128 prev_prio=120 prev_state=S ==> next_comm=swapper next_pid=0 next_prio=120 ... v2: Move arch-specific bits out of generic code. v4: Fix x86_32 build due to 64-bit division. Google-Bug-Id: 6980623 Link: http://lkml.kernel.org/r/1352837903-32191-2-git-send-email-dhsharp@google.com Cc: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com> Signed-off-by: David Sharp <dhsharp@google.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2012-11-14 03:18:22 +07:00
enum trace_iter_flags {
TRACE_FILE_LAT_FMT = 1,
TRACE_FILE_ANNOTATE = 2,
TRACE_FILE_TIME_IN_NS = 4,
};
typedef enum print_line_t (*trace_print_func)(struct trace_iterator *iter,
int flags, struct trace_event *event);
struct trace_event_functions {
trace_print_func trace;
trace_print_func raw;
trace_print_func hex;
trace_print_func binary;
};
struct trace_event {
struct hlist_node node;
struct list_head list;
int type;
struct trace_event_functions *funcs;
};
extern int register_trace_event(struct trace_event *event);
extern int unregister_trace_event(struct trace_event *event);
/* Return values for print_line callback */
enum print_line_t {
TRACE_TYPE_PARTIAL_LINE = 0, /* Retry after flushing the seq */
TRACE_TYPE_HANDLED = 1,
TRACE_TYPE_UNHANDLED = 2, /* Relay to other output functions */
TRACE_TYPE_NO_CONSUME = 3 /* Handled but ask to not consume */
};
/*
* Several functions return TRACE_TYPE_PARTIAL_LINE if the trace_seq
* overflowed, and TRACE_TYPE_HANDLED otherwise. This helper function
* simplifies those functions and keeps them in sync.
*/
static inline enum print_line_t trace_handle_return(struct trace_seq *s)
{
return trace_seq_has_overflowed(s) ?
TRACE_TYPE_PARTIAL_LINE : TRACE_TYPE_HANDLED;
}
perf_counter: Fix/complete ftrace event records sampling This patch implements the kernel side support for ftrace event record sampling. A new counter sampling attribute is added: PERF_SAMPLE_TP_RECORD which requests ftrace events record sampling. In this case if a PERF_TYPE_TRACEPOINT counter is active and a tracepoint fires, we emit the tracepoint binary record to the perfcounter event buffer, as a sample. Result, after setting PERF_SAMPLE_TP_RECORD attribute from perf record: perf record -f -F 1 -a -e workqueue:workqueue_execution perf report -D 0x21e18 [0x48]: event: 9 . . ... raw event: size 72 bytes . 0000: 09 00 00 00 01 00 48 00 d0 c7 00 81 ff ff ff ff ......H........ . 0010: 0a 00 00 00 0a 00 00 00 21 00 00 00 00 00 00 00 ........!...... . 0020: 2b 00 01 02 0a 00 00 00 0a 00 00 00 65 76 65 6e +...........eve . 0030: 74 73 2f 31 00 00 00 00 00 00 00 00 0a 00 00 00 ts/1........... . 0040: e0 b1 31 81 ff ff ff ff ....... . 0x21e18 [0x48]: PERF_EVENT_SAMPLE (IP, 1): 10: 0xffffffff8100c7d0 period: 33 The raw ftrace binary record starts at offset 0020. Translation: struct trace_entry { type = 0x2b = 43; flags = 1; preempt_count = 2; pid = 0xa = 10; tgid = 0xa = 10; } thread_comm = "events/1" thread_pid = 0xa = 10; func = 0xffffffff8131b1e0 = flush_to_ldisc() What will come next? - Userspace support ('perf trace'), 'flight data recorder' mode for perf trace, etc. - The unconditional copy from the profiling callback brings some costs however if someone wants no such sampling to occur, and needs to be fixed in the future. For that we need to have an instant access to the perf counter attribute. This is a matter of a flag to add in the struct ftrace_event. - Take care of the events recursivity! Don't ever try to record a lock event for example, it seems some locking is used in the profiling fast path and lead to a tracing recursivity. That will be fixed using raw spinlock or recursivity protection. - [...] - Profit! :-) Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com> Cc: Li Zefan <lizf@cn.fujitsu.com> Cc: Tom Zanussi <tzanussi@gmail.com> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Mike Galbraith <efault@gmx.de> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Pekka Enberg <penberg@cs.helsinki.fi> Cc: Gabriel Munteanu <eduard.munteanu@linux360.ro> Cc: Lai Jiangshan <laijs@cn.fujitsu.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-08-07 06:25:54 +07:00
void tracing_generic_entry_update(struct trace_entry *entry,
unsigned long flags,
int pc);
struct trace_event_file;
struct ring_buffer_event *
trace_event_buffer_lock_reserve(struct ring_buffer **current_buffer,
struct trace_event_file *trace_file,
int type, unsigned long len,
unsigned long flags, int pc);
struct ring_buffer_event *
trace_current_buffer_lock_reserve(struct ring_buffer **current_buffer,
int type, unsigned long len,
unsigned long flags, int pc);
void trace_buffer_unlock_commit(struct trace_array *tr,
struct ring_buffer *buffer,
struct ring_buffer_event *event,
unsigned long flags, int pc);
void trace_buffer_unlock_commit_regs(struct trace_array *tr,
struct ring_buffer *buffer,
struct ring_buffer_event *event,
unsigned long flags, int pc,
struct pt_regs *regs);
void trace_current_buffer_discard_commit(struct ring_buffer *buffer,
struct ring_buffer_event *event);
void tracing_record_cmdline(struct task_struct *tsk);
int trace_output_call(struct trace_iterator *iter, char *name, char *fmt, ...);
struct event_filter;
tracing: Remove per event trace registering This patch removes the register functions of TRACE_EVENT() to enable and disable tracepoints. The registering of a event is now down directly in the trace_events.c file. The tracepoint_probe_register() is now called directly. The prototypes are no longer type checked, but this should not be an issue since the tracepoints are created automatically by the macros. If a prototype is incorrect in the TRACE_EVENT() macro, then other macros will catch it. The trace_event_class structure now holds the probes to be called by the callbacks. This removes needing to have each event have a separate pointer for the probe. To handle kprobes and syscalls, since they register probes in a different manner, a "reg" field is added to the ftrace_event_class structure. If the "reg" field is assigned, then it will be called for enabling and disabling of the probe for either ftrace or perf. To let the reg function know what is happening, a new enum (trace_reg) is created that has the type of control that is needed. With this new rework, the 82 kernel events and 618 syscall events has their footprint dramatically lowered: text data bss dec hex filename 4913961 1088356 861512 6863829 68bbd5 vmlinux.orig 4914025 1088868 861512 6864405 68be15 vmlinux.class 4918492 1084612 861512 6864616 68bee8 vmlinux.tracepoint 4900252 1057412 861512 6819176 680d68 vmlinux.regs The size went from 6863829 to 6819176, that's a total of 44K in savings. With tracepoints being continuously added, this is critical that the footprint becomes minimal. v5: Added #ifdef CONFIG_PERF_EVENTS around a reference to perf specific structure in trace_events.c. v4: Fixed trace self tests to check probe because regfunc no longer exists. v3: Updated to handle void *data in beginning of probe parameters. Also added the tracepoint: check_trace_callback_type_##call(). v2: Changed the callback probes to pass void * and typecast the value within the function. Acked-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Acked-by: Masami Hiramatsu <mhiramat@redhat.com> Acked-by: Frederic Weisbecker <fweisbec@gmail.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2010-04-21 23:27:06 +07:00
enum trace_reg {
TRACE_REG_REGISTER,
TRACE_REG_UNREGISTER,
#ifdef CONFIG_PERF_EVENTS
tracing: Remove per event trace registering This patch removes the register functions of TRACE_EVENT() to enable and disable tracepoints. The registering of a event is now down directly in the trace_events.c file. The tracepoint_probe_register() is now called directly. The prototypes are no longer type checked, but this should not be an issue since the tracepoints are created automatically by the macros. If a prototype is incorrect in the TRACE_EVENT() macro, then other macros will catch it. The trace_event_class structure now holds the probes to be called by the callbacks. This removes needing to have each event have a separate pointer for the probe. To handle kprobes and syscalls, since they register probes in a different manner, a "reg" field is added to the ftrace_event_class structure. If the "reg" field is assigned, then it will be called for enabling and disabling of the probe for either ftrace or perf. To let the reg function know what is happening, a new enum (trace_reg) is created that has the type of control that is needed. With this new rework, the 82 kernel events and 618 syscall events has their footprint dramatically lowered: text data bss dec hex filename 4913961 1088356 861512 6863829 68bbd5 vmlinux.orig 4914025 1088868 861512 6864405 68be15 vmlinux.class 4918492 1084612 861512 6864616 68bee8 vmlinux.tracepoint 4900252 1057412 861512 6819176 680d68 vmlinux.regs The size went from 6863829 to 6819176, that's a total of 44K in savings. With tracepoints being continuously added, this is critical that the footprint becomes minimal. v5: Added #ifdef CONFIG_PERF_EVENTS around a reference to perf specific structure in trace_events.c. v4: Fixed trace self tests to check probe because regfunc no longer exists. v3: Updated to handle void *data in beginning of probe parameters. Also added the tracepoint: check_trace_callback_type_##call(). v2: Changed the callback probes to pass void * and typecast the value within the function. Acked-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Acked-by: Masami Hiramatsu <mhiramat@redhat.com> Acked-by: Frederic Weisbecker <fweisbec@gmail.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2010-04-21 23:27:06 +07:00
TRACE_REG_PERF_REGISTER,
TRACE_REG_PERF_UNREGISTER,
TRACE_REG_PERF_OPEN,
TRACE_REG_PERF_CLOSE,
TRACE_REG_PERF_ADD,
TRACE_REG_PERF_DEL,
#endif
tracing: Remove per event trace registering This patch removes the register functions of TRACE_EVENT() to enable and disable tracepoints. The registering of a event is now down directly in the trace_events.c file. The tracepoint_probe_register() is now called directly. The prototypes are no longer type checked, but this should not be an issue since the tracepoints are created automatically by the macros. If a prototype is incorrect in the TRACE_EVENT() macro, then other macros will catch it. The trace_event_class structure now holds the probes to be called by the callbacks. This removes needing to have each event have a separate pointer for the probe. To handle kprobes and syscalls, since they register probes in a different manner, a "reg" field is added to the ftrace_event_class structure. If the "reg" field is assigned, then it will be called for enabling and disabling of the probe for either ftrace or perf. To let the reg function know what is happening, a new enum (trace_reg) is created that has the type of control that is needed. With this new rework, the 82 kernel events and 618 syscall events has their footprint dramatically lowered: text data bss dec hex filename 4913961 1088356 861512 6863829 68bbd5 vmlinux.orig 4914025 1088868 861512 6864405 68be15 vmlinux.class 4918492 1084612 861512 6864616 68bee8 vmlinux.tracepoint 4900252 1057412 861512 6819176 680d68 vmlinux.regs The size went from 6863829 to 6819176, that's a total of 44K in savings. With tracepoints being continuously added, this is critical that the footprint becomes minimal. v5: Added #ifdef CONFIG_PERF_EVENTS around a reference to perf specific structure in trace_events.c. v4: Fixed trace self tests to check probe because regfunc no longer exists. v3: Updated to handle void *data in beginning of probe parameters. Also added the tracepoint: check_trace_callback_type_##call(). v2: Changed the callback probes to pass void * and typecast the value within the function. Acked-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Acked-by: Masami Hiramatsu <mhiramat@redhat.com> Acked-by: Frederic Weisbecker <fweisbec@gmail.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2010-04-21 23:27:06 +07:00
};
struct trace_event_call;
tracing: Remove per event trace registering This patch removes the register functions of TRACE_EVENT() to enable and disable tracepoints. The registering of a event is now down directly in the trace_events.c file. The tracepoint_probe_register() is now called directly. The prototypes are no longer type checked, but this should not be an issue since the tracepoints are created automatically by the macros. If a prototype is incorrect in the TRACE_EVENT() macro, then other macros will catch it. The trace_event_class structure now holds the probes to be called by the callbacks. This removes needing to have each event have a separate pointer for the probe. To handle kprobes and syscalls, since they register probes in a different manner, a "reg" field is added to the ftrace_event_class structure. If the "reg" field is assigned, then it will be called for enabling and disabling of the probe for either ftrace or perf. To let the reg function know what is happening, a new enum (trace_reg) is created that has the type of control that is needed. With this new rework, the 82 kernel events and 618 syscall events has their footprint dramatically lowered: text data bss dec hex filename 4913961 1088356 861512 6863829 68bbd5 vmlinux.orig 4914025 1088868 861512 6864405 68be15 vmlinux.class 4918492 1084612 861512 6864616 68bee8 vmlinux.tracepoint 4900252 1057412 861512 6819176 680d68 vmlinux.regs The size went from 6863829 to 6819176, that's a total of 44K in savings. With tracepoints being continuously added, this is critical that the footprint becomes minimal. v5: Added #ifdef CONFIG_PERF_EVENTS around a reference to perf specific structure in trace_events.c. v4: Fixed trace self tests to check probe because regfunc no longer exists. v3: Updated to handle void *data in beginning of probe parameters. Also added the tracepoint: check_trace_callback_type_##call(). v2: Changed the callback probes to pass void * and typecast the value within the function. Acked-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Acked-by: Masami Hiramatsu <mhiramat@redhat.com> Acked-by: Frederic Weisbecker <fweisbec@gmail.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2010-04-21 23:27:06 +07:00
struct trace_event_class {
const char *system;
tracing: Remove per event trace registering This patch removes the register functions of TRACE_EVENT() to enable and disable tracepoints. The registering of a event is now down directly in the trace_events.c file. The tracepoint_probe_register() is now called directly. The prototypes are no longer type checked, but this should not be an issue since the tracepoints are created automatically by the macros. If a prototype is incorrect in the TRACE_EVENT() macro, then other macros will catch it. The trace_event_class structure now holds the probes to be called by the callbacks. This removes needing to have each event have a separate pointer for the probe. To handle kprobes and syscalls, since they register probes in a different manner, a "reg" field is added to the ftrace_event_class structure. If the "reg" field is assigned, then it will be called for enabling and disabling of the probe for either ftrace or perf. To let the reg function know what is happening, a new enum (trace_reg) is created that has the type of control that is needed. With this new rework, the 82 kernel events and 618 syscall events has their footprint dramatically lowered: text data bss dec hex filename 4913961 1088356 861512 6863829 68bbd5 vmlinux.orig 4914025 1088868 861512 6864405 68be15 vmlinux.class 4918492 1084612 861512 6864616 68bee8 vmlinux.tracepoint 4900252 1057412 861512 6819176 680d68 vmlinux.regs The size went from 6863829 to 6819176, that's a total of 44K in savings. With tracepoints being continuously added, this is critical that the footprint becomes minimal. v5: Added #ifdef CONFIG_PERF_EVENTS around a reference to perf specific structure in trace_events.c. v4: Fixed trace self tests to check probe because regfunc no longer exists. v3: Updated to handle void *data in beginning of probe parameters. Also added the tracepoint: check_trace_callback_type_##call(). v2: Changed the callback probes to pass void * and typecast the value within the function. Acked-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Acked-by: Masami Hiramatsu <mhiramat@redhat.com> Acked-by: Frederic Weisbecker <fweisbec@gmail.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2010-04-21 23:27:06 +07:00
void *probe;
#ifdef CONFIG_PERF_EVENTS
void *perf_probe;
#endif
int (*reg)(struct trace_event_call *event,
enum trace_reg type, void *data);
int (*define_fields)(struct trace_event_call *);
struct list_head *(*get_fields)(struct trace_event_call *);
tracing: Move fields from event to class structure Move the defined fields from the event to the class structure. Since the fields of the event are defined by the class they belong to, it makes sense to have the class hold the information instead of the individual events. The events of the same class would just hold duplicate information. After this change the size of the kernel dropped another 3K: text data bss dec hex filename 4913961 1088356 861512 6863829 68bbd5 vmlinux.orig 4900252 1057412 861512 6819176 680d68 vmlinux.regs 4900375 1053380 861512 6815267 67fe23 vmlinux.fields Although the text increased, this was mainly due to the C files having to adapt to the change. This is a constant increase, where new tracepoints will not increase the Text. But the big drop is in the data size (as well as needed allocations to hold the fields). This will give even more savings as more tracepoints are created. Note, if just TRACE_EVENT()s are used and not DECLARE_EVENT_CLASS() with several DEFINE_EVENT()s, then the savings will be lost. But we are pushing developers to consolidate events with DEFINE_EVENT() so this should not be an issue. The kprobes define a unique class to every new event, but are dynamic so it should not be a issue. The syscalls however have a single class but the fields for the individual events are different. The syscalls use a metadata to define the fields. I moved the fields list from the event to the metadata and added a "get_fields()" function to the class. This function is used to find the fields. For normal events and kprobes, get_fields() just returns a pointer to the fields list_head in the class. For syscall events, it returns the fields list_head in the metadata for the event. v2: Fixed the syscall fields. The syscall metadata needs a list of fields for both enter and exit. Acked-by: Frederic Weisbecker <fweisbec@gmail.com> Acked-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Acked-by: Masami Hiramatsu <mhiramat@redhat.com> Cc: Tom Zanussi <tzanussi@gmail.com> Cc: Peter Zijlstra <peterz@infradead.org> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2010-04-22 21:35:55 +07:00
struct list_head fields;
int (*raw_init)(struct trace_event_call *);
};
extern int trace_event_reg(struct trace_event_call *event,
enum trace_reg type, void *data);
struct trace_event_buffer {
struct ring_buffer *buffer;
struct ring_buffer_event *event;
struct trace_event_file *trace_file;
void *entry;
unsigned long flags;
int pc;
};
void *trace_event_buffer_reserve(struct trace_event_buffer *fbuffer,
struct trace_event_file *trace_file,
unsigned long len);
void trace_event_buffer_commit(struct trace_event_buffer *fbuffer);
enum {
TRACE_EVENT_FL_FILTERED_BIT,
TRACE_EVENT_FL_CAP_ANY_BIT,
TRACE_EVENT_FL_NO_SET_FILTER_BIT,
TRACE_EVENT_FL_IGNORE_ENABLE_BIT,
TRACE_EVENT_FL_WAS_ENABLED_BIT,
tracing: Update event filters for multibuffer The trace event filters are still tied to event calls rather than event files, which means you don't get what you'd expect when using filters in the multibuffer case: Before: # echo 'bytes_alloc > 8192' > /sys/kernel/debug/tracing/events/kmem/kmalloc/filter # cat /sys/kernel/debug/tracing/events/kmem/kmalloc/filter bytes_alloc > 8192 # mkdir /sys/kernel/debug/tracing/instances/test1 # echo 'bytes_alloc > 2048' > /sys/kernel/debug/tracing/instances/test1/events/kmem/kmalloc/filter # cat /sys/kernel/debug/tracing/events/kmem/kmalloc/filter bytes_alloc > 2048 # cat /sys/kernel/debug/tracing/instances/test1/events/kmem/kmalloc/filter bytes_alloc > 2048 Setting the filter in tracing/instances/test1/events shouldn't affect the same event in tracing/events as it does above. After: # echo 'bytes_alloc > 8192' > /sys/kernel/debug/tracing/events/kmem/kmalloc/filter # cat /sys/kernel/debug/tracing/events/kmem/kmalloc/filter bytes_alloc > 8192 # mkdir /sys/kernel/debug/tracing/instances/test1 # echo 'bytes_alloc > 2048' > /sys/kernel/debug/tracing/instances/test1/events/kmem/kmalloc/filter # cat /sys/kernel/debug/tracing/events/kmem/kmalloc/filter bytes_alloc > 8192 # cat /sys/kernel/debug/tracing/instances/test1/events/kmem/kmalloc/filter bytes_alloc > 2048 We'd like to just move the filter directly from ftrace_event_call to ftrace_event_file, but there are a couple cases that don't yet have multibuffer support and therefore have to continue using the current event_call-based filters. For those cases, a new USE_CALL_FILTER bit is added to the event_call flags, whose main purpose is to keep the old behavior for those cases until they can be updated with multibuffer support; at that point, the USE_CALL_FILTER flag (and the new associated call_filter_check_discard() function) can go away. The multibuffer support also made filter_current_check_discard() redundant, so this change removes that function as well and replaces it with filter_check_discard() (or call_filter_check_discard() as appropriate). Link: http://lkml.kernel.org/r/f16e9ce4270c62f46b2e966119225e1c3cca7e60.1382620672.git.tom.zanussi@linux.intel.com Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 20:34:17 +07:00
TRACE_EVENT_FL_USE_CALL_FILTER_BIT,
TRACE_EVENT_FL_TRACEPOINT_BIT,
TRACE_EVENT_FL_KPROBE_BIT,
TRACE_EVENT_FL_UPROBE_BIT,
};
/*
* Event flags:
* FILTERED - The event has a filter attached
* CAP_ANY - Any user can enable for perf
* NO_SET_FILTER - Set when filter has error and is to be ignored
* IGNORE_ENABLE - For trace internal events, do not enable with debugfs file
* WAS_ENABLED - Set and stays set when an event was ever enabled
* (used for module unloading, if a module event is enabled,
* it is best to clear the buffers that used it).
* USE_CALL_FILTER - For trace internal events, don't use file filter
* TRACEPOINT - Event is a tracepoint
* KPROBE - Event is a kprobe
* UPROBE - Event is a uprobe
*/
enum {
TRACE_EVENT_FL_FILTERED = (1 << TRACE_EVENT_FL_FILTERED_BIT),
TRACE_EVENT_FL_CAP_ANY = (1 << TRACE_EVENT_FL_CAP_ANY_BIT),
TRACE_EVENT_FL_NO_SET_FILTER = (1 << TRACE_EVENT_FL_NO_SET_FILTER_BIT),
TRACE_EVENT_FL_IGNORE_ENABLE = (1 << TRACE_EVENT_FL_IGNORE_ENABLE_BIT),
TRACE_EVENT_FL_WAS_ENABLED = (1 << TRACE_EVENT_FL_WAS_ENABLED_BIT),
tracing: Update event filters for multibuffer The trace event filters are still tied to event calls rather than event files, which means you don't get what you'd expect when using filters in the multibuffer case: Before: # echo 'bytes_alloc > 8192' > /sys/kernel/debug/tracing/events/kmem/kmalloc/filter # cat /sys/kernel/debug/tracing/events/kmem/kmalloc/filter bytes_alloc > 8192 # mkdir /sys/kernel/debug/tracing/instances/test1 # echo 'bytes_alloc > 2048' > /sys/kernel/debug/tracing/instances/test1/events/kmem/kmalloc/filter # cat /sys/kernel/debug/tracing/events/kmem/kmalloc/filter bytes_alloc > 2048 # cat /sys/kernel/debug/tracing/instances/test1/events/kmem/kmalloc/filter bytes_alloc > 2048 Setting the filter in tracing/instances/test1/events shouldn't affect the same event in tracing/events as it does above. After: # echo 'bytes_alloc > 8192' > /sys/kernel/debug/tracing/events/kmem/kmalloc/filter # cat /sys/kernel/debug/tracing/events/kmem/kmalloc/filter bytes_alloc > 8192 # mkdir /sys/kernel/debug/tracing/instances/test1 # echo 'bytes_alloc > 2048' > /sys/kernel/debug/tracing/instances/test1/events/kmem/kmalloc/filter # cat /sys/kernel/debug/tracing/events/kmem/kmalloc/filter bytes_alloc > 8192 # cat /sys/kernel/debug/tracing/instances/test1/events/kmem/kmalloc/filter bytes_alloc > 2048 We'd like to just move the filter directly from ftrace_event_call to ftrace_event_file, but there are a couple cases that don't yet have multibuffer support and therefore have to continue using the current event_call-based filters. For those cases, a new USE_CALL_FILTER bit is added to the event_call flags, whose main purpose is to keep the old behavior for those cases until they can be updated with multibuffer support; at that point, the USE_CALL_FILTER flag (and the new associated call_filter_check_discard() function) can go away. The multibuffer support also made filter_current_check_discard() redundant, so this change removes that function as well and replaces it with filter_check_discard() (or call_filter_check_discard() as appropriate). Link: http://lkml.kernel.org/r/f16e9ce4270c62f46b2e966119225e1c3cca7e60.1382620672.git.tom.zanussi@linux.intel.com Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 20:34:17 +07:00
TRACE_EVENT_FL_USE_CALL_FILTER = (1 << TRACE_EVENT_FL_USE_CALL_FILTER_BIT),
TRACE_EVENT_FL_TRACEPOINT = (1 << TRACE_EVENT_FL_TRACEPOINT_BIT),
TRACE_EVENT_FL_KPROBE = (1 << TRACE_EVENT_FL_KPROBE_BIT),
TRACE_EVENT_FL_UPROBE = (1 << TRACE_EVENT_FL_UPROBE_BIT),
};
#define TRACE_EVENT_FL_UKPROBE (TRACE_EVENT_FL_KPROBE | TRACE_EVENT_FL_UPROBE)
struct trace_event_call {
struct list_head list;
struct trace_event_class *class;
union {
char *name;
/* Set TRACE_EVENT_FL_TRACEPOINT flag when using "tp" */
struct tracepoint *tp;
};
struct trace_event event;
tracing: Add TRACE_DEFINE_ENUM() macro to map enums to their values Several tracepoints use the helper functions __print_symbolic() or __print_flags() and pass in enums that do the mapping between the binary data stored and the value to print. This works well for reading the ASCII trace files, but when the data is read via userspace tools such as perf and trace-cmd, the conversion of the binary value to a human string format is lost if an enum is used, as userspace does not have access to what the ENUM is. For example, the tracepoint trace_tlb_flush() has: __print_symbolic(REC->reason, { TLB_FLUSH_ON_TASK_SWITCH, "flush on task switch" }, { TLB_REMOTE_SHOOTDOWN, "remote shootdown" }, { TLB_LOCAL_SHOOTDOWN, "local shootdown" }, { TLB_LOCAL_MM_SHOOTDOWN, "local mm shootdown" }) Which maps the enum values to the strings they represent. But perf and trace-cmd do no know what value TLB_LOCAL_MM_SHOOTDOWN is, and would not be able to map it. With TRACE_DEFINE_ENUM(), developers can place these in the event header files and ftrace will convert the enums to their values: By adding: TRACE_DEFINE_ENUM(TLB_FLUSH_ON_TASK_SWITCH); TRACE_DEFINE_ENUM(TLB_REMOTE_SHOOTDOWN); TRACE_DEFINE_ENUM(TLB_LOCAL_SHOOTDOWN); TRACE_DEFINE_ENUM(TLB_LOCAL_MM_SHOOTDOWN); $ cat /sys/kernel/debug/tracing/events/tlb/tlb_flush/format [...] __print_symbolic(REC->reason, { 0, "flush on task switch" }, { 1, "remote shootdown" }, { 2, "local shootdown" }, { 3, "local mm shootdown" }) The above is what userspace expects to see, and tools do not need to be modified to parse them. Link: http://lkml.kernel.org/r/20150403013802.220157513@goodmis.org Cc: Guilherme Cox <cox@computer.org> Cc: Tony Luck <tony.luck@gmail.com> Cc: Xie XiuQi <xiexiuqi@huawei.com> Acked-by: Namhyung Kim <namhyung@kernel.org> Reviewed-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com> Tested-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2015-03-25 04:58:09 +07:00
char *print_fmt;
struct event_filter *filter;
void *mod;
void *data;
/*
* bit 0: filter_active
* bit 1: allow trace by non root (cap any)
* bit 2: failed to apply filter
* bit 3: trace internal event (do not enable)
* bit 4: Event was enabled by module
tracing: Update event filters for multibuffer The trace event filters are still tied to event calls rather than event files, which means you don't get what you'd expect when using filters in the multibuffer case: Before: # echo 'bytes_alloc > 8192' > /sys/kernel/debug/tracing/events/kmem/kmalloc/filter # cat /sys/kernel/debug/tracing/events/kmem/kmalloc/filter bytes_alloc > 8192 # mkdir /sys/kernel/debug/tracing/instances/test1 # echo 'bytes_alloc > 2048' > /sys/kernel/debug/tracing/instances/test1/events/kmem/kmalloc/filter # cat /sys/kernel/debug/tracing/events/kmem/kmalloc/filter bytes_alloc > 2048 # cat /sys/kernel/debug/tracing/instances/test1/events/kmem/kmalloc/filter bytes_alloc > 2048 Setting the filter in tracing/instances/test1/events shouldn't affect the same event in tracing/events as it does above. After: # echo 'bytes_alloc > 8192' > /sys/kernel/debug/tracing/events/kmem/kmalloc/filter # cat /sys/kernel/debug/tracing/events/kmem/kmalloc/filter bytes_alloc > 8192 # mkdir /sys/kernel/debug/tracing/instances/test1 # echo 'bytes_alloc > 2048' > /sys/kernel/debug/tracing/instances/test1/events/kmem/kmalloc/filter # cat /sys/kernel/debug/tracing/events/kmem/kmalloc/filter bytes_alloc > 8192 # cat /sys/kernel/debug/tracing/instances/test1/events/kmem/kmalloc/filter bytes_alloc > 2048 We'd like to just move the filter directly from ftrace_event_call to ftrace_event_file, but there are a couple cases that don't yet have multibuffer support and therefore have to continue using the current event_call-based filters. For those cases, a new USE_CALL_FILTER bit is added to the event_call flags, whose main purpose is to keep the old behavior for those cases until they can be updated with multibuffer support; at that point, the USE_CALL_FILTER flag (and the new associated call_filter_check_discard() function) can go away. The multibuffer support also made filter_current_check_discard() redundant, so this change removes that function as well and replaces it with filter_check_discard() (or call_filter_check_discard() as appropriate). Link: http://lkml.kernel.org/r/f16e9ce4270c62f46b2e966119225e1c3cca7e60.1382620672.git.tom.zanussi@linux.intel.com Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 20:34:17 +07:00
* bit 5: use call filter rather than file filter
* bit 6: Event is a tracepoint
*/
int flags; /* static flags of different events */
#ifdef CONFIG_PERF_EVENTS
int perf_refcount;
struct hlist_head __percpu *perf_events;
tracing, perf: Implement BPF programs attached to kprobes BPF programs, attached to kprobes, provide a safe way to execute user-defined BPF byte-code programs without being able to crash or hang the kernel in any way. The BPF engine makes sure that such programs have a finite execution time and that they cannot break out of their sandbox. The user interface is to attach to a kprobe via the perf syscall: struct perf_event_attr attr = { .type = PERF_TYPE_TRACEPOINT, .config = event_id, ... }; event_fd = perf_event_open(&attr,...); ioctl(event_fd, PERF_EVENT_IOC_SET_BPF, prog_fd); 'prog_fd' is a file descriptor associated with BPF program previously loaded. 'event_id' is an ID of the kprobe created. Closing 'event_fd': close(event_fd); ... automatically detaches BPF program from it. BPF programs can call in-kernel helper functions to: - lookup/update/delete elements in maps - probe_read - wraper of probe_kernel_read() used to access any kernel data structures BPF programs receive 'struct pt_regs *' as an input ('struct pt_regs' is architecture dependent) and return 0 to ignore the event and 1 to store kprobe event into the ring buffer. Note, kprobes are a fundamentally _not_ a stable kernel ABI, so BPF programs attached to kprobes must be recompiled for every kernel version and user must supply correct LINUX_VERSION_CODE in attr.kern_version during bpf_prog_load() call. Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Reviewed-by: Steven Rostedt <rostedt@goodmis.org> Reviewed-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Arnaldo Carvalho de Melo <acme@infradead.org> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Daniel Borkmann <daniel@iogearbox.net> Cc: David S. Miller <davem@davemloft.net> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Peter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/1427312966-8434-4-git-send-email-ast@plumgrid.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-03-26 02:49:20 +07:00
struct bpf_prog *prog;
int (*perf_perm)(struct trace_event_call *,
struct perf_event *);
#endif
};
static inline const char *
trace_event_name(struct trace_event_call *call)
{
if (call->flags & TRACE_EVENT_FL_TRACEPOINT)
return call->tp ? call->tp->name : NULL;
else
return call->name;
}
struct trace_array;
struct trace_subsystem_dir;
enum {
EVENT_FILE_FL_ENABLED_BIT,
EVENT_FILE_FL_RECORDED_CMD_BIT,
EVENT_FILE_FL_FILTERED_BIT,
EVENT_FILE_FL_NO_SET_FILTER_BIT,
EVENT_FILE_FL_SOFT_MODE_BIT,
EVENT_FILE_FL_SOFT_DISABLED_BIT,
EVENT_FILE_FL_TRIGGER_MODE_BIT,
EVENT_FILE_FL_TRIGGER_COND_BIT,
EVENT_FILE_FL_PID_FILTER_BIT,
};
/*
* Event file flags:
* ENABLED - The event is enabled
* RECORDED_CMD - The comms should be recorded at sched_switch
tracing: Update event filters for multibuffer The trace event filters are still tied to event calls rather than event files, which means you don't get what you'd expect when using filters in the multibuffer case: Before: # echo 'bytes_alloc > 8192' > /sys/kernel/debug/tracing/events/kmem/kmalloc/filter # cat /sys/kernel/debug/tracing/events/kmem/kmalloc/filter bytes_alloc > 8192 # mkdir /sys/kernel/debug/tracing/instances/test1 # echo 'bytes_alloc > 2048' > /sys/kernel/debug/tracing/instances/test1/events/kmem/kmalloc/filter # cat /sys/kernel/debug/tracing/events/kmem/kmalloc/filter bytes_alloc > 2048 # cat /sys/kernel/debug/tracing/instances/test1/events/kmem/kmalloc/filter bytes_alloc > 2048 Setting the filter in tracing/instances/test1/events shouldn't affect the same event in tracing/events as it does above. After: # echo 'bytes_alloc > 8192' > /sys/kernel/debug/tracing/events/kmem/kmalloc/filter # cat /sys/kernel/debug/tracing/events/kmem/kmalloc/filter bytes_alloc > 8192 # mkdir /sys/kernel/debug/tracing/instances/test1 # echo 'bytes_alloc > 2048' > /sys/kernel/debug/tracing/instances/test1/events/kmem/kmalloc/filter # cat /sys/kernel/debug/tracing/events/kmem/kmalloc/filter bytes_alloc > 8192 # cat /sys/kernel/debug/tracing/instances/test1/events/kmem/kmalloc/filter bytes_alloc > 2048 We'd like to just move the filter directly from ftrace_event_call to ftrace_event_file, but there are a couple cases that don't yet have multibuffer support and therefore have to continue using the current event_call-based filters. For those cases, a new USE_CALL_FILTER bit is added to the event_call flags, whose main purpose is to keep the old behavior for those cases until they can be updated with multibuffer support; at that point, the USE_CALL_FILTER flag (and the new associated call_filter_check_discard() function) can go away. The multibuffer support also made filter_current_check_discard() redundant, so this change removes that function as well and replaces it with filter_check_discard() (or call_filter_check_discard() as appropriate). Link: http://lkml.kernel.org/r/f16e9ce4270c62f46b2e966119225e1c3cca7e60.1382620672.git.tom.zanussi@linux.intel.com Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 20:34:17 +07:00
* FILTERED - The event has a filter attached
* NO_SET_FILTER - Set when filter has error and is to be ignored
* SOFT_MODE - The event is enabled/disabled by SOFT_DISABLED
* SOFT_DISABLED - When set, do not trace the event (even though its
* tracepoint may be enabled)
tracing: Add basic event trigger framework Add a 'trigger' file for each trace event, enabling 'trace event triggers' to be set for trace events. 'trace event triggers' are patterned after the existing 'ftrace function triggers' implementation except that triggers are written to per-event 'trigger' files instead of to a single file such as the 'set_ftrace_filter' used for ftrace function triggers. The implementation is meant to be entirely separate from ftrace function triggers, in order to keep the respective implementations relatively simple and to allow them to diverge. The event trigger functionality is built on top of SOFT_DISABLE functionality. It adds a TRIGGER_MODE bit to the ftrace_event_file flags which is checked when any trace event fires. Triggers set for a particular event need to be checked regardless of whether that event is actually enabled or not - getting an event to fire even if it's not enabled is what's already implemented by SOFT_DISABLE mode, so trigger mode directly reuses that. Event trigger essentially inherit the soft disable logic in __ftrace_event_enable_disable() while adding a bit of logic and trigger reference counting via tm_ref on top of that in a new trace_event_trigger_enable_disable() function. Because the base __ftrace_event_enable_disable() code now needs to be invoked from outside trace_events.c, a wrapper is also added for those usages. The triggers for an event are actually invoked via a new function, event_triggers_call(), and code is also added to invoke them for ftrace_raw_event calls as well as syscall events. The main part of the patch creates a new trace_events_trigger.c file to contain the trace event triggers implementation. The standard open, read, and release file operations are implemented here. The open() implementation sets up for the various open modes of the 'trigger' file. It creates and attaches the trigger iterator and sets up the command parser. If opened for reading set up the trigger seq_ops. The read() implementation parses the event trigger written to the 'trigger' file, looks up the trigger command, and passes it along to that event_command's func() implementation for command-specific processing. The release() implementation does whatever cleanup is needed to release the 'trigger' file, like releasing the parser and trigger iterator, etc. A couple of functions for event command registration and unregistration are added, along with a list to add them to and a mutex to protect them, as well as an (initially empty) registration function to add the set of commands that will be added by future commits, and call to it from the trace event initialization code. also added are a couple trigger-specific data structures needed for these implementations such as a trigger iterator and a struct for trigger-specific data. A couple structs consisting mostly of function meant to be implemented in command-specific ways, event_command and event_trigger_ops, are used by the generic event trigger command implementations. They're being put into trace.h alongside the other trace_event data structures and functions, in the expectation that they'll be needed in several trace_event-related files such as trace_events_trigger.c and trace_events.c. The event_command.func() function is meant to be called by the trigger parsing code in order to add a trigger instance to the corresponding event. It essentially coordinates adding a live trigger instance to the event, and arming the triggering the event. Every event_command func() implementation essentially does the same thing for any command: - choose ops - use the value of param to choose either a number or count version of event_trigger_ops specific to the command - do the register or unregister of those ops - associate a filter, if specified, with the triggering event The reg() and unreg() ops allow command-specific implementations for event_trigger_op registration and unregistration, and the get_trigger_ops() op allows command-specific event_trigger_ops selection to be parameterized. When a trigger instance is added, the reg() op essentially adds that trigger to the triggering event and arms it, while unreg() does the opposite. The set_filter() function is used to associate a filter with the trigger - if the command doesn't specify a set_filter() implementation, the command will ignore filters. Each command has an associated trigger_type, which serves double duty, both as a unique identifier for the command as well as a value that can be used for setting a trigger mode bit during trigger invocation. The signature of func() adds a pointer to the event_command struct, used to invoke those functions, along with a command_data param that can be passed to the reg/unreg functions. This allows func() implementations to use command-specific blobs and supports code re-use. The event_trigger_ops.func() command corrsponds to the trigger 'probe' function that gets called when the triggering event is actually invoked. The other functions are used to list the trigger when needed, along with a couple mundane book-keeping functions. This also moves event_file_data() into trace.h so it can be used outside of trace_events.c. Link: http://lkml.kernel.org/r/316d95061accdee070aac8e5750afba0192fa5b9.1382622043.git.tom.zanussi@linux.intel.com Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> Idea-by: Steve Rostedt <rostedt@goodmis.org> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 20:59:24 +07:00
* TRIGGER_MODE - When set, invoke the triggers associated with the event
tracing: Add and use generic set_trigger_filter() implementation Add a generic event_command.set_trigger_filter() op implementation and have the current set of trigger commands use it - this essentially gives them all support for filters. Syntactically, filters are supported by adding 'if <filter>' just after the command, in which case only events matching the filter will invoke the trigger. For example, to add a filter to an enable/disable_event command: echo 'enable_event:system:event if common_pid == 999' > \ .../othersys/otherevent/trigger The above command will only enable the system:event event if the common_pid field in the othersys:otherevent event is 999. As another example, to add a filter to a stacktrace command: echo 'stacktrace if common_pid == 999' > \ .../somesys/someevent/trigger The above command will only trigger a stacktrace if the common_pid field in the event is 999. The filter syntax is the same as that described in the 'Event filtering' section of Documentation/trace/events.txt. Because triggers can now use filters, the trigger-invoking logic needs to be moved in those cases - e.g. for ftrace_raw_event_calls, if a trigger has a filter associated with it, the trigger invocation now needs to happen after the { assign; } part of the call, in order for the trigger condition to be tested. There's still a SOFT_DISABLED-only check at the top of e.g. the ftrace_raw_events function, so when an event is soft disabled but not because of the presence of a trigger, the original SOFT_DISABLED behavior remains unchanged. There's also a bit of trickiness in that some triggers need to avoid being invoked while an event is currently in the process of being logged, since the trigger may itself log data into the trace buffer. Thus we make sure the current event is committed before invoking those triggers. To do that, we split the trigger invocation in two - the first part (event_triggers_call()) checks the filter using the current trace record; if a command has the post_trigger flag set, it sets a bit for itself in the return value, otherwise it directly invoks the trigger. Once all commands have been either invoked or set their return flag, event_triggers_call() returns. The current record is then either committed or discarded; if any commands have deferred their triggers, those commands are finally invoked following the close of the current event by event_triggers_post_call(). To simplify the above and make it more efficient, the TRIGGER_COND bit is introduced, which is set only if a soft-disabled trigger needs to use the log record for filter testing or needs to wait until the current log record is closed. The syscall event invocation code is also changed in analogous ways. Because event triggers need to be able to create and free filters, this also adds a couple external wrappers for the existing create_filter and free_filter functions, which are too generic to be made extern functions themselves. Link: http://lkml.kernel.org/r/7164930759d8719ef460357f143d995406e4eead.1382622043.git.tom.zanussi@linux.intel.com Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 20:59:29 +07:00
* TRIGGER_COND - When set, one or more triggers has an associated filter
* PID_FILTER - When set, the event is filtered based on pid
*/
enum {
EVENT_FILE_FL_ENABLED = (1 << EVENT_FILE_FL_ENABLED_BIT),
EVENT_FILE_FL_RECORDED_CMD = (1 << EVENT_FILE_FL_RECORDED_CMD_BIT),
EVENT_FILE_FL_FILTERED = (1 << EVENT_FILE_FL_FILTERED_BIT),
EVENT_FILE_FL_NO_SET_FILTER = (1 << EVENT_FILE_FL_NO_SET_FILTER_BIT),
EVENT_FILE_FL_SOFT_MODE = (1 << EVENT_FILE_FL_SOFT_MODE_BIT),
EVENT_FILE_FL_SOFT_DISABLED = (1 << EVENT_FILE_FL_SOFT_DISABLED_BIT),
EVENT_FILE_FL_TRIGGER_MODE = (1 << EVENT_FILE_FL_TRIGGER_MODE_BIT),
EVENT_FILE_FL_TRIGGER_COND = (1 << EVENT_FILE_FL_TRIGGER_COND_BIT),
EVENT_FILE_FL_PID_FILTER = (1 << EVENT_FILE_FL_PID_FILTER_BIT),
};
struct trace_event_file {
struct list_head list;
struct trace_event_call *event_call;
tracing: Update event filters for multibuffer The trace event filters are still tied to event calls rather than event files, which means you don't get what you'd expect when using filters in the multibuffer case: Before: # echo 'bytes_alloc > 8192' > /sys/kernel/debug/tracing/events/kmem/kmalloc/filter # cat /sys/kernel/debug/tracing/events/kmem/kmalloc/filter bytes_alloc > 8192 # mkdir /sys/kernel/debug/tracing/instances/test1 # echo 'bytes_alloc > 2048' > /sys/kernel/debug/tracing/instances/test1/events/kmem/kmalloc/filter # cat /sys/kernel/debug/tracing/events/kmem/kmalloc/filter bytes_alloc > 2048 # cat /sys/kernel/debug/tracing/instances/test1/events/kmem/kmalloc/filter bytes_alloc > 2048 Setting the filter in tracing/instances/test1/events shouldn't affect the same event in tracing/events as it does above. After: # echo 'bytes_alloc > 8192' > /sys/kernel/debug/tracing/events/kmem/kmalloc/filter # cat /sys/kernel/debug/tracing/events/kmem/kmalloc/filter bytes_alloc > 8192 # mkdir /sys/kernel/debug/tracing/instances/test1 # echo 'bytes_alloc > 2048' > /sys/kernel/debug/tracing/instances/test1/events/kmem/kmalloc/filter # cat /sys/kernel/debug/tracing/events/kmem/kmalloc/filter bytes_alloc > 8192 # cat /sys/kernel/debug/tracing/instances/test1/events/kmem/kmalloc/filter bytes_alloc > 2048 We'd like to just move the filter directly from ftrace_event_call to ftrace_event_file, but there are a couple cases that don't yet have multibuffer support and therefore have to continue using the current event_call-based filters. For those cases, a new USE_CALL_FILTER bit is added to the event_call flags, whose main purpose is to keep the old behavior for those cases until they can be updated with multibuffer support; at that point, the USE_CALL_FILTER flag (and the new associated call_filter_check_discard() function) can go away. The multibuffer support also made filter_current_check_discard() redundant, so this change removes that function as well and replaces it with filter_check_discard() (or call_filter_check_discard() as appropriate). Link: http://lkml.kernel.org/r/f16e9ce4270c62f46b2e966119225e1c3cca7e60.1382620672.git.tom.zanussi@linux.intel.com Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 20:34:17 +07:00
struct event_filter *filter;
struct dentry *dir;
struct trace_array *tr;
struct trace_subsystem_dir *system;
tracing: Add basic event trigger framework Add a 'trigger' file for each trace event, enabling 'trace event triggers' to be set for trace events. 'trace event triggers' are patterned after the existing 'ftrace function triggers' implementation except that triggers are written to per-event 'trigger' files instead of to a single file such as the 'set_ftrace_filter' used for ftrace function triggers. The implementation is meant to be entirely separate from ftrace function triggers, in order to keep the respective implementations relatively simple and to allow them to diverge. The event trigger functionality is built on top of SOFT_DISABLE functionality. It adds a TRIGGER_MODE bit to the ftrace_event_file flags which is checked when any trace event fires. Triggers set for a particular event need to be checked regardless of whether that event is actually enabled or not - getting an event to fire even if it's not enabled is what's already implemented by SOFT_DISABLE mode, so trigger mode directly reuses that. Event trigger essentially inherit the soft disable logic in __ftrace_event_enable_disable() while adding a bit of logic and trigger reference counting via tm_ref on top of that in a new trace_event_trigger_enable_disable() function. Because the base __ftrace_event_enable_disable() code now needs to be invoked from outside trace_events.c, a wrapper is also added for those usages. The triggers for an event are actually invoked via a new function, event_triggers_call(), and code is also added to invoke them for ftrace_raw_event calls as well as syscall events. The main part of the patch creates a new trace_events_trigger.c file to contain the trace event triggers implementation. The standard open, read, and release file operations are implemented here. The open() implementation sets up for the various open modes of the 'trigger' file. It creates and attaches the trigger iterator and sets up the command parser. If opened for reading set up the trigger seq_ops. The read() implementation parses the event trigger written to the 'trigger' file, looks up the trigger command, and passes it along to that event_command's func() implementation for command-specific processing. The release() implementation does whatever cleanup is needed to release the 'trigger' file, like releasing the parser and trigger iterator, etc. A couple of functions for event command registration and unregistration are added, along with a list to add them to and a mutex to protect them, as well as an (initially empty) registration function to add the set of commands that will be added by future commits, and call to it from the trace event initialization code. also added are a couple trigger-specific data structures needed for these implementations such as a trigger iterator and a struct for trigger-specific data. A couple structs consisting mostly of function meant to be implemented in command-specific ways, event_command and event_trigger_ops, are used by the generic event trigger command implementations. They're being put into trace.h alongside the other trace_event data structures and functions, in the expectation that they'll be needed in several trace_event-related files such as trace_events_trigger.c and trace_events.c. The event_command.func() function is meant to be called by the trigger parsing code in order to add a trigger instance to the corresponding event. It essentially coordinates adding a live trigger instance to the event, and arming the triggering the event. Every event_command func() implementation essentially does the same thing for any command: - choose ops - use the value of param to choose either a number or count version of event_trigger_ops specific to the command - do the register or unregister of those ops - associate a filter, if specified, with the triggering event The reg() and unreg() ops allow command-specific implementations for event_trigger_op registration and unregistration, and the get_trigger_ops() op allows command-specific event_trigger_ops selection to be parameterized. When a trigger instance is added, the reg() op essentially adds that trigger to the triggering event and arms it, while unreg() does the opposite. The set_filter() function is used to associate a filter with the trigger - if the command doesn't specify a set_filter() implementation, the command will ignore filters. Each command has an associated trigger_type, which serves double duty, both as a unique identifier for the command as well as a value that can be used for setting a trigger mode bit during trigger invocation. The signature of func() adds a pointer to the event_command struct, used to invoke those functions, along with a command_data param that can be passed to the reg/unreg functions. This allows func() implementations to use command-specific blobs and supports code re-use. The event_trigger_ops.func() command corrsponds to the trigger 'probe' function that gets called when the triggering event is actually invoked. The other functions are used to list the trigger when needed, along with a couple mundane book-keeping functions. This also moves event_file_data() into trace.h so it can be used outside of trace_events.c. Link: http://lkml.kernel.org/r/316d95061accdee070aac8e5750afba0192fa5b9.1382622043.git.tom.zanussi@linux.intel.com Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> Idea-by: Steve Rostedt <rostedt@goodmis.org> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 20:59:24 +07:00
struct list_head triggers;
/*
* 32 bit flags:
* bit 0: enabled
* bit 1: enabled cmd record
* bit 2: enable/disable with the soft disable bit
* bit 3: soft disabled
tracing: Add basic event trigger framework Add a 'trigger' file for each trace event, enabling 'trace event triggers' to be set for trace events. 'trace event triggers' are patterned after the existing 'ftrace function triggers' implementation except that triggers are written to per-event 'trigger' files instead of to a single file such as the 'set_ftrace_filter' used for ftrace function triggers. The implementation is meant to be entirely separate from ftrace function triggers, in order to keep the respective implementations relatively simple and to allow them to diverge. The event trigger functionality is built on top of SOFT_DISABLE functionality. It adds a TRIGGER_MODE bit to the ftrace_event_file flags which is checked when any trace event fires. Triggers set for a particular event need to be checked regardless of whether that event is actually enabled or not - getting an event to fire even if it's not enabled is what's already implemented by SOFT_DISABLE mode, so trigger mode directly reuses that. Event trigger essentially inherit the soft disable logic in __ftrace_event_enable_disable() while adding a bit of logic and trigger reference counting via tm_ref on top of that in a new trace_event_trigger_enable_disable() function. Because the base __ftrace_event_enable_disable() code now needs to be invoked from outside trace_events.c, a wrapper is also added for those usages. The triggers for an event are actually invoked via a new function, event_triggers_call(), and code is also added to invoke them for ftrace_raw_event calls as well as syscall events. The main part of the patch creates a new trace_events_trigger.c file to contain the trace event triggers implementation. The standard open, read, and release file operations are implemented here. The open() implementation sets up for the various open modes of the 'trigger' file. It creates and attaches the trigger iterator and sets up the command parser. If opened for reading set up the trigger seq_ops. The read() implementation parses the event trigger written to the 'trigger' file, looks up the trigger command, and passes it along to that event_command's func() implementation for command-specific processing. The release() implementation does whatever cleanup is needed to release the 'trigger' file, like releasing the parser and trigger iterator, etc. A couple of functions for event command registration and unregistration are added, along with a list to add them to and a mutex to protect them, as well as an (initially empty) registration function to add the set of commands that will be added by future commits, and call to it from the trace event initialization code. also added are a couple trigger-specific data structures needed for these implementations such as a trigger iterator and a struct for trigger-specific data. A couple structs consisting mostly of function meant to be implemented in command-specific ways, event_command and event_trigger_ops, are used by the generic event trigger command implementations. They're being put into trace.h alongside the other trace_event data structures and functions, in the expectation that they'll be needed in several trace_event-related files such as trace_events_trigger.c and trace_events.c. The event_command.func() function is meant to be called by the trigger parsing code in order to add a trigger instance to the corresponding event. It essentially coordinates adding a live trigger instance to the event, and arming the triggering the event. Every event_command func() implementation essentially does the same thing for any command: - choose ops - use the value of param to choose either a number or count version of event_trigger_ops specific to the command - do the register or unregister of those ops - associate a filter, if specified, with the triggering event The reg() and unreg() ops allow command-specific implementations for event_trigger_op registration and unregistration, and the get_trigger_ops() op allows command-specific event_trigger_ops selection to be parameterized. When a trigger instance is added, the reg() op essentially adds that trigger to the triggering event and arms it, while unreg() does the opposite. The set_filter() function is used to associate a filter with the trigger - if the command doesn't specify a set_filter() implementation, the command will ignore filters. Each command has an associated trigger_type, which serves double duty, both as a unique identifier for the command as well as a value that can be used for setting a trigger mode bit during trigger invocation. The signature of func() adds a pointer to the event_command struct, used to invoke those functions, along with a command_data param that can be passed to the reg/unreg functions. This allows func() implementations to use command-specific blobs and supports code re-use. The event_trigger_ops.func() command corrsponds to the trigger 'probe' function that gets called when the triggering event is actually invoked. The other functions are used to list the trigger when needed, along with a couple mundane book-keeping functions. This also moves event_file_data() into trace.h so it can be used outside of trace_events.c. Link: http://lkml.kernel.org/r/316d95061accdee070aac8e5750afba0192fa5b9.1382622043.git.tom.zanussi@linux.intel.com Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> Idea-by: Steve Rostedt <rostedt@goodmis.org> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 20:59:24 +07:00
* bit 4: trigger enabled
*
* Note: The bits must be set atomically to prevent races
* from other writers. Reads of flags do not need to be in
* sync as they occur in critical sections. But the way flags
* is currently used, these changes do not affect the code
tracing: Comment the use of event_mutex with trace event flags The flags variable is protected by the event_mutex when modifying, but the event_mutex is not held when reading the variable. This is due to the fact that the reads occur in critical sections where taking a mutex (or even a spinlock) is not wanted. But the two flags that exist (enable and filter_active) have the code written as such to handle the reads to not need a lock. The enable flag is used just to know if the event is enabled or not and its use is always under the event_mutex. Whether or not the event is actually enabled is really determined by the tracepoint being registered. The flag is just a way to let the code know if the tracepoint is registered. The filter_active is different. It is read without the lock. If it is set, then the event probes jump to the filter code. There can be a slight mismatch between filters available and filter_active. If the flag is set but no filters are available, the code safely jumps to a filter nop. If the flag is not set and the filters are available, then the filters are skipped. This is acceptable since filters are usually set before tracing or they are set by humans, which would not notice the slight delay that this causes. v2: Fixed typo: "cacheing" -> "caching" Reported-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Acked-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Cc: Tom Zanussi <tzanussi@gmail.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2010-05-14 21:19:13 +07:00
* except that when a change is made, it may have a slight
* delay in propagating the changes to other CPUs due to
* caching and such. Which is mostly OK ;-)
*/
unsigned long flags;
atomic_t sm_ref; /* soft-mode reference counter */
tracing: Add basic event trigger framework Add a 'trigger' file for each trace event, enabling 'trace event triggers' to be set for trace events. 'trace event triggers' are patterned after the existing 'ftrace function triggers' implementation except that triggers are written to per-event 'trigger' files instead of to a single file such as the 'set_ftrace_filter' used for ftrace function triggers. The implementation is meant to be entirely separate from ftrace function triggers, in order to keep the respective implementations relatively simple and to allow them to diverge. The event trigger functionality is built on top of SOFT_DISABLE functionality. It adds a TRIGGER_MODE bit to the ftrace_event_file flags which is checked when any trace event fires. Triggers set for a particular event need to be checked regardless of whether that event is actually enabled or not - getting an event to fire even if it's not enabled is what's already implemented by SOFT_DISABLE mode, so trigger mode directly reuses that. Event trigger essentially inherit the soft disable logic in __ftrace_event_enable_disable() while adding a bit of logic and trigger reference counting via tm_ref on top of that in a new trace_event_trigger_enable_disable() function. Because the base __ftrace_event_enable_disable() code now needs to be invoked from outside trace_events.c, a wrapper is also added for those usages. The triggers for an event are actually invoked via a new function, event_triggers_call(), and code is also added to invoke them for ftrace_raw_event calls as well as syscall events. The main part of the patch creates a new trace_events_trigger.c file to contain the trace event triggers implementation. The standard open, read, and release file operations are implemented here. The open() implementation sets up for the various open modes of the 'trigger' file. It creates and attaches the trigger iterator and sets up the command parser. If opened for reading set up the trigger seq_ops. The read() implementation parses the event trigger written to the 'trigger' file, looks up the trigger command, and passes it along to that event_command's func() implementation for command-specific processing. The release() implementation does whatever cleanup is needed to release the 'trigger' file, like releasing the parser and trigger iterator, etc. A couple of functions for event command registration and unregistration are added, along with a list to add them to and a mutex to protect them, as well as an (initially empty) registration function to add the set of commands that will be added by future commits, and call to it from the trace event initialization code. also added are a couple trigger-specific data structures needed for these implementations such as a trigger iterator and a struct for trigger-specific data. A couple structs consisting mostly of function meant to be implemented in command-specific ways, event_command and event_trigger_ops, are used by the generic event trigger command implementations. They're being put into trace.h alongside the other trace_event data structures and functions, in the expectation that they'll be needed in several trace_event-related files such as trace_events_trigger.c and trace_events.c. The event_command.func() function is meant to be called by the trigger parsing code in order to add a trigger instance to the corresponding event. It essentially coordinates adding a live trigger instance to the event, and arming the triggering the event. Every event_command func() implementation essentially does the same thing for any command: - choose ops - use the value of param to choose either a number or count version of event_trigger_ops specific to the command - do the register or unregister of those ops - associate a filter, if specified, with the triggering event The reg() and unreg() ops allow command-specific implementations for event_trigger_op registration and unregistration, and the get_trigger_ops() op allows command-specific event_trigger_ops selection to be parameterized. When a trigger instance is added, the reg() op essentially adds that trigger to the triggering event and arms it, while unreg() does the opposite. The set_filter() function is used to associate a filter with the trigger - if the command doesn't specify a set_filter() implementation, the command will ignore filters. Each command has an associated trigger_type, which serves double duty, both as a unique identifier for the command as well as a value that can be used for setting a trigger mode bit during trigger invocation. The signature of func() adds a pointer to the event_command struct, used to invoke those functions, along with a command_data param that can be passed to the reg/unreg functions. This allows func() implementations to use command-specific blobs and supports code re-use. The event_trigger_ops.func() command corrsponds to the trigger 'probe' function that gets called when the triggering event is actually invoked. The other functions are used to list the trigger when needed, along with a couple mundane book-keeping functions. This also moves event_file_data() into trace.h so it can be used outside of trace_events.c. Link: http://lkml.kernel.org/r/316d95061accdee070aac8e5750afba0192fa5b9.1382622043.git.tom.zanussi@linux.intel.com Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> Idea-by: Steve Rostedt <rostedt@goodmis.org> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 20:59:24 +07:00
atomic_t tm_ref; /* trigger-mode reference counter */
};
#define __TRACE_EVENT_FLAGS(name, value) \
static int __init trace_init_flags_##name(void) \
{ \
event_##name.flags |= value; \
return 0; \
} \
early_initcall(trace_init_flags_##name);
#define __TRACE_EVENT_PERF_PERM(name, expr...) \
static int perf_perm_##name(struct trace_event_call *tp_event, \
struct perf_event *p_event) \
{ \
return ({ expr; }); \
} \
static int __init trace_init_perf_perm_##name(void) \
{ \
event_##name.perf_perm = &perf_perm_##name; \
return 0; \
} \
early_initcall(trace_init_perf_perm_##name);
#define PERF_MAX_TRACE_SIZE 2048
#define MAX_FILTER_STR_VAL 256 /* Should handle KSYM_SYMBOL_LEN */
tracing: Add basic event trigger framework Add a 'trigger' file for each trace event, enabling 'trace event triggers' to be set for trace events. 'trace event triggers' are patterned after the existing 'ftrace function triggers' implementation except that triggers are written to per-event 'trigger' files instead of to a single file such as the 'set_ftrace_filter' used for ftrace function triggers. The implementation is meant to be entirely separate from ftrace function triggers, in order to keep the respective implementations relatively simple and to allow them to diverge. The event trigger functionality is built on top of SOFT_DISABLE functionality. It adds a TRIGGER_MODE bit to the ftrace_event_file flags which is checked when any trace event fires. Triggers set for a particular event need to be checked regardless of whether that event is actually enabled or not - getting an event to fire even if it's not enabled is what's already implemented by SOFT_DISABLE mode, so trigger mode directly reuses that. Event trigger essentially inherit the soft disable logic in __ftrace_event_enable_disable() while adding a bit of logic and trigger reference counting via tm_ref on top of that in a new trace_event_trigger_enable_disable() function. Because the base __ftrace_event_enable_disable() code now needs to be invoked from outside trace_events.c, a wrapper is also added for those usages. The triggers for an event are actually invoked via a new function, event_triggers_call(), and code is also added to invoke them for ftrace_raw_event calls as well as syscall events. The main part of the patch creates a new trace_events_trigger.c file to contain the trace event triggers implementation. The standard open, read, and release file operations are implemented here. The open() implementation sets up for the various open modes of the 'trigger' file. It creates and attaches the trigger iterator and sets up the command parser. If opened for reading set up the trigger seq_ops. The read() implementation parses the event trigger written to the 'trigger' file, looks up the trigger command, and passes it along to that event_command's func() implementation for command-specific processing. The release() implementation does whatever cleanup is needed to release the 'trigger' file, like releasing the parser and trigger iterator, etc. A couple of functions for event command registration and unregistration are added, along with a list to add them to and a mutex to protect them, as well as an (initially empty) registration function to add the set of commands that will be added by future commits, and call to it from the trace event initialization code. also added are a couple trigger-specific data structures needed for these implementations such as a trigger iterator and a struct for trigger-specific data. A couple structs consisting mostly of function meant to be implemented in command-specific ways, event_command and event_trigger_ops, are used by the generic event trigger command implementations. They're being put into trace.h alongside the other trace_event data structures and functions, in the expectation that they'll be needed in several trace_event-related files such as trace_events_trigger.c and trace_events.c. The event_command.func() function is meant to be called by the trigger parsing code in order to add a trigger instance to the corresponding event. It essentially coordinates adding a live trigger instance to the event, and arming the triggering the event. Every event_command func() implementation essentially does the same thing for any command: - choose ops - use the value of param to choose either a number or count version of event_trigger_ops specific to the command - do the register or unregister of those ops - associate a filter, if specified, with the triggering event The reg() and unreg() ops allow command-specific implementations for event_trigger_op registration and unregistration, and the get_trigger_ops() op allows command-specific event_trigger_ops selection to be parameterized. When a trigger instance is added, the reg() op essentially adds that trigger to the triggering event and arms it, while unreg() does the opposite. The set_filter() function is used to associate a filter with the trigger - if the command doesn't specify a set_filter() implementation, the command will ignore filters. Each command has an associated trigger_type, which serves double duty, both as a unique identifier for the command as well as a value that can be used for setting a trigger mode bit during trigger invocation. The signature of func() adds a pointer to the event_command struct, used to invoke those functions, along with a command_data param that can be passed to the reg/unreg functions. This allows func() implementations to use command-specific blobs and supports code re-use. The event_trigger_ops.func() command corrsponds to the trigger 'probe' function that gets called when the triggering event is actually invoked. The other functions are used to list the trigger when needed, along with a couple mundane book-keeping functions. This also moves event_file_data() into trace.h so it can be used outside of trace_events.c. Link: http://lkml.kernel.org/r/316d95061accdee070aac8e5750afba0192fa5b9.1382622043.git.tom.zanussi@linux.intel.com Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> Idea-by: Steve Rostedt <rostedt@goodmis.org> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 20:59:24 +07:00
enum event_trigger_type {
ETT_NONE = (0),
tracing: Add 'traceon' and 'traceoff' event trigger commands Add 'traceon' and 'traceoff' event_command commands. traceon and traceoff event triggers are added by the user via these commands in a similar way and using practically the same syntax as the analagous 'traceon' and 'traceoff' ftrace function commands, but instead of writing to the set_ftrace_filter file, the traceon and traceoff triggers are written to the per-event 'trigger' files: echo 'traceon' > .../tracing/events/somesys/someevent/trigger echo 'traceoff' > .../tracing/events/somesys/someevent/trigger The above command will turn tracing on or off whenever someevent is hit. This also adds a 'count' version that limits the number of times the command will be invoked: echo 'traceon:N' > .../tracing/events/somesys/someevent/trigger echo 'traceoff:N' > .../tracing/events/somesys/someevent/trigger Where N is the number of times the command will be invoked. The above commands will will turn tracing on or off whenever someevent is hit, but only N times. Some common register/unregister_trigger() implementations of the event_command reg()/unreg() callbacks are also provided, which add and remove trigger instances to the per-event list of triggers, and arm/disarm them as appropriate. event_trigger_callback() is a general-purpose event_command func() implementation that orchestrates command parsing and registration for most normal commands. Most event commands will use these, but some will override and possibly reuse them. The event_trigger_init(), event_trigger_free(), and event_trigger_print() functions are meant to be common implementations of the event_trigger_ops init(), free(), and print() ops, respectively. Most trigger_ops implementations will use these, but some will override and possibly reuse them. Link: http://lkml.kernel.org/r/00a52816703b98d2072947478dd6e2d70cde5197.1382622043.git.tom.zanussi@linux.intel.com Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 20:59:25 +07:00
ETT_TRACE_ONOFF = (1 << 0),
tracing: Add 'snapshot' event trigger command Add 'snapshot' event_command. snapshot event triggers are added by the user via this command in a similar way and using practically the same syntax as the analogous 'snapshot' ftrace function command, but instead of writing to the set_ftrace_filter file, the snapshot event trigger is written to the per-event 'trigger' files: echo 'snapshot' > .../somesys/someevent/trigger The above command will turn on snapshots for someevent i.e. whenever someevent is hit, a snapshot will be done. This also adds a 'count' version that limits the number of times the command will be invoked: echo 'snapshot:N' > .../somesys/someevent/trigger Where N is the number of times the command will be invoked. The above command will snapshot N times for someevent i.e. whenever someevent is hit N times, a snapshot will be done. Also adds a new tracing_alloc_snapshot() function - the existing tracing_snapshot_alloc() function is a special version of tracing_snapshot() that also does the snapshot allocation - the snapshot triggers would like to be able to do just the allocation but not take a snapshot; the existing tracing_snapshot_alloc() in turn now also calls tracing_alloc_snapshot() underneath to do that allocation. Link: http://lkml.kernel.org/r/c9524dd07ce01f9dcbd59011290e0a8d5b47d7ad.1382622043.git.tom.zanussi@linux.intel.com Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> [ fix up from kbuild test robot <fengguang.wu@intel.com report ] Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 20:59:26 +07:00
ETT_SNAPSHOT = (1 << 1),
ETT_STACKTRACE = (1 << 2),
tracing: Add 'enable_event' and 'disable_event' event trigger commands Add 'enable_event' and 'disable_event' event_command commands. enable_event and disable_event event triggers are added by the user via these commands in a similar way and using practically the same syntax as the analagous 'enable_event' and 'disable_event' ftrace function commands, but instead of writing to the set_ftrace_filter file, the enable_event and disable_event triggers are written to the per-event 'trigger' files: echo 'enable_event:system:event' > .../othersys/otherevent/trigger echo 'disable_event:system:event' > .../othersys/otherevent/trigger The above commands will enable or disable the 'system:event' trace events whenever the othersys:otherevent events are hit. This also adds a 'count' version that limits the number of times the command will be invoked: echo 'enable_event:system:event:N' > .../othersys/otherevent/trigger echo 'disable_event:system:event:N' > .../othersys/otherevent/trigger Where N is the number of times the command will be invoked. The above commands will will enable or disable the 'system:event' trace events whenever the othersys:otherevent events are hit, but only N times. This also makes the find_event_file() helper function extern, since it's useful to use from other places, such as the event triggers code, so make it accessible. Link: http://lkml.kernel.org/r/f825f3048c3f6b026ee37ae5825f9fc373451828.1382622043.git.tom.zanussi@linux.intel.com Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 20:59:28 +07:00
ETT_EVENT_ENABLE = (1 << 3),
tracing: Add basic event trigger framework Add a 'trigger' file for each trace event, enabling 'trace event triggers' to be set for trace events. 'trace event triggers' are patterned after the existing 'ftrace function triggers' implementation except that triggers are written to per-event 'trigger' files instead of to a single file such as the 'set_ftrace_filter' used for ftrace function triggers. The implementation is meant to be entirely separate from ftrace function triggers, in order to keep the respective implementations relatively simple and to allow them to diverge. The event trigger functionality is built on top of SOFT_DISABLE functionality. It adds a TRIGGER_MODE bit to the ftrace_event_file flags which is checked when any trace event fires. Triggers set for a particular event need to be checked regardless of whether that event is actually enabled or not - getting an event to fire even if it's not enabled is what's already implemented by SOFT_DISABLE mode, so trigger mode directly reuses that. Event trigger essentially inherit the soft disable logic in __ftrace_event_enable_disable() while adding a bit of logic and trigger reference counting via tm_ref on top of that in a new trace_event_trigger_enable_disable() function. Because the base __ftrace_event_enable_disable() code now needs to be invoked from outside trace_events.c, a wrapper is also added for those usages. The triggers for an event are actually invoked via a new function, event_triggers_call(), and code is also added to invoke them for ftrace_raw_event calls as well as syscall events. The main part of the patch creates a new trace_events_trigger.c file to contain the trace event triggers implementation. The standard open, read, and release file operations are implemented here. The open() implementation sets up for the various open modes of the 'trigger' file. It creates and attaches the trigger iterator and sets up the command parser. If opened for reading set up the trigger seq_ops. The read() implementation parses the event trigger written to the 'trigger' file, looks up the trigger command, and passes it along to that event_command's func() implementation for command-specific processing. The release() implementation does whatever cleanup is needed to release the 'trigger' file, like releasing the parser and trigger iterator, etc. A couple of functions for event command registration and unregistration are added, along with a list to add them to and a mutex to protect them, as well as an (initially empty) registration function to add the set of commands that will be added by future commits, and call to it from the trace event initialization code. also added are a couple trigger-specific data structures needed for these implementations such as a trigger iterator and a struct for trigger-specific data. A couple structs consisting mostly of function meant to be implemented in command-specific ways, event_command and event_trigger_ops, are used by the generic event trigger command implementations. They're being put into trace.h alongside the other trace_event data structures and functions, in the expectation that they'll be needed in several trace_event-related files such as trace_events_trigger.c and trace_events.c. The event_command.func() function is meant to be called by the trigger parsing code in order to add a trigger instance to the corresponding event. It essentially coordinates adding a live trigger instance to the event, and arming the triggering the event. Every event_command func() implementation essentially does the same thing for any command: - choose ops - use the value of param to choose either a number or count version of event_trigger_ops specific to the command - do the register or unregister of those ops - associate a filter, if specified, with the triggering event The reg() and unreg() ops allow command-specific implementations for event_trigger_op registration and unregistration, and the get_trigger_ops() op allows command-specific event_trigger_ops selection to be parameterized. When a trigger instance is added, the reg() op essentially adds that trigger to the triggering event and arms it, while unreg() does the opposite. The set_filter() function is used to associate a filter with the trigger - if the command doesn't specify a set_filter() implementation, the command will ignore filters. Each command has an associated trigger_type, which serves double duty, both as a unique identifier for the command as well as a value that can be used for setting a trigger mode bit during trigger invocation. The signature of func() adds a pointer to the event_command struct, used to invoke those functions, along with a command_data param that can be passed to the reg/unreg functions. This allows func() implementations to use command-specific blobs and supports code re-use. The event_trigger_ops.func() command corrsponds to the trigger 'probe' function that gets called when the triggering event is actually invoked. The other functions are used to list the trigger when needed, along with a couple mundane book-keeping functions. This also moves event_file_data() into trace.h so it can be used outside of trace_events.c. Link: http://lkml.kernel.org/r/316d95061accdee070aac8e5750afba0192fa5b9.1382622043.git.tom.zanussi@linux.intel.com Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> Idea-by: Steve Rostedt <rostedt@goodmis.org> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 20:59:24 +07:00
};
extern int filter_match_preds(struct event_filter *filter, void *rec);
tracing: Update event filters for multibuffer The trace event filters are still tied to event calls rather than event files, which means you don't get what you'd expect when using filters in the multibuffer case: Before: # echo 'bytes_alloc > 8192' > /sys/kernel/debug/tracing/events/kmem/kmalloc/filter # cat /sys/kernel/debug/tracing/events/kmem/kmalloc/filter bytes_alloc > 8192 # mkdir /sys/kernel/debug/tracing/instances/test1 # echo 'bytes_alloc > 2048' > /sys/kernel/debug/tracing/instances/test1/events/kmem/kmalloc/filter # cat /sys/kernel/debug/tracing/events/kmem/kmalloc/filter bytes_alloc > 2048 # cat /sys/kernel/debug/tracing/instances/test1/events/kmem/kmalloc/filter bytes_alloc > 2048 Setting the filter in tracing/instances/test1/events shouldn't affect the same event in tracing/events as it does above. After: # echo 'bytes_alloc > 8192' > /sys/kernel/debug/tracing/events/kmem/kmalloc/filter # cat /sys/kernel/debug/tracing/events/kmem/kmalloc/filter bytes_alloc > 8192 # mkdir /sys/kernel/debug/tracing/instances/test1 # echo 'bytes_alloc > 2048' > /sys/kernel/debug/tracing/instances/test1/events/kmem/kmalloc/filter # cat /sys/kernel/debug/tracing/events/kmem/kmalloc/filter bytes_alloc > 8192 # cat /sys/kernel/debug/tracing/instances/test1/events/kmem/kmalloc/filter bytes_alloc > 2048 We'd like to just move the filter directly from ftrace_event_call to ftrace_event_file, but there are a couple cases that don't yet have multibuffer support and therefore have to continue using the current event_call-based filters. For those cases, a new USE_CALL_FILTER bit is added to the event_call flags, whose main purpose is to keep the old behavior for those cases until they can be updated with multibuffer support; at that point, the USE_CALL_FILTER flag (and the new associated call_filter_check_discard() function) can go away. The multibuffer support also made filter_current_check_discard() redundant, so this change removes that function as well and replaces it with filter_check_discard() (or call_filter_check_discard() as appropriate). Link: http://lkml.kernel.org/r/f16e9ce4270c62f46b2e966119225e1c3cca7e60.1382620672.git.tom.zanussi@linux.intel.com Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 20:34:17 +07:00
extern int filter_check_discard(struct trace_event_file *file, void *rec,
tracing: Update event filters for multibuffer The trace event filters are still tied to event calls rather than event files, which means you don't get what you'd expect when using filters in the multibuffer case: Before: # echo 'bytes_alloc > 8192' > /sys/kernel/debug/tracing/events/kmem/kmalloc/filter # cat /sys/kernel/debug/tracing/events/kmem/kmalloc/filter bytes_alloc > 8192 # mkdir /sys/kernel/debug/tracing/instances/test1 # echo 'bytes_alloc > 2048' > /sys/kernel/debug/tracing/instances/test1/events/kmem/kmalloc/filter # cat /sys/kernel/debug/tracing/events/kmem/kmalloc/filter bytes_alloc > 2048 # cat /sys/kernel/debug/tracing/instances/test1/events/kmem/kmalloc/filter bytes_alloc > 2048 Setting the filter in tracing/instances/test1/events shouldn't affect the same event in tracing/events as it does above. After: # echo 'bytes_alloc > 8192' > /sys/kernel/debug/tracing/events/kmem/kmalloc/filter # cat /sys/kernel/debug/tracing/events/kmem/kmalloc/filter bytes_alloc > 8192 # mkdir /sys/kernel/debug/tracing/instances/test1 # echo 'bytes_alloc > 2048' > /sys/kernel/debug/tracing/instances/test1/events/kmem/kmalloc/filter # cat /sys/kernel/debug/tracing/events/kmem/kmalloc/filter bytes_alloc > 8192 # cat /sys/kernel/debug/tracing/instances/test1/events/kmem/kmalloc/filter bytes_alloc > 2048 We'd like to just move the filter directly from ftrace_event_call to ftrace_event_file, but there are a couple cases that don't yet have multibuffer support and therefore have to continue using the current event_call-based filters. For those cases, a new USE_CALL_FILTER bit is added to the event_call flags, whose main purpose is to keep the old behavior for those cases until they can be updated with multibuffer support; at that point, the USE_CALL_FILTER flag (and the new associated call_filter_check_discard() function) can go away. The multibuffer support also made filter_current_check_discard() redundant, so this change removes that function as well and replaces it with filter_check_discard() (or call_filter_check_discard() as appropriate). Link: http://lkml.kernel.org/r/f16e9ce4270c62f46b2e966119225e1c3cca7e60.1382620672.git.tom.zanussi@linux.intel.com Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 20:34:17 +07:00
struct ring_buffer *buffer,
struct ring_buffer_event *event);
extern int call_filter_check_discard(struct trace_event_call *call, void *rec,
tracing: Update event filters for multibuffer The trace event filters are still tied to event calls rather than event files, which means you don't get what you'd expect when using filters in the multibuffer case: Before: # echo 'bytes_alloc > 8192' > /sys/kernel/debug/tracing/events/kmem/kmalloc/filter # cat /sys/kernel/debug/tracing/events/kmem/kmalloc/filter bytes_alloc > 8192 # mkdir /sys/kernel/debug/tracing/instances/test1 # echo 'bytes_alloc > 2048' > /sys/kernel/debug/tracing/instances/test1/events/kmem/kmalloc/filter # cat /sys/kernel/debug/tracing/events/kmem/kmalloc/filter bytes_alloc > 2048 # cat /sys/kernel/debug/tracing/instances/test1/events/kmem/kmalloc/filter bytes_alloc > 2048 Setting the filter in tracing/instances/test1/events shouldn't affect the same event in tracing/events as it does above. After: # echo 'bytes_alloc > 8192' > /sys/kernel/debug/tracing/events/kmem/kmalloc/filter # cat /sys/kernel/debug/tracing/events/kmem/kmalloc/filter bytes_alloc > 8192 # mkdir /sys/kernel/debug/tracing/instances/test1 # echo 'bytes_alloc > 2048' > /sys/kernel/debug/tracing/instances/test1/events/kmem/kmalloc/filter # cat /sys/kernel/debug/tracing/events/kmem/kmalloc/filter bytes_alloc > 8192 # cat /sys/kernel/debug/tracing/instances/test1/events/kmem/kmalloc/filter bytes_alloc > 2048 We'd like to just move the filter directly from ftrace_event_call to ftrace_event_file, but there are a couple cases that don't yet have multibuffer support and therefore have to continue using the current event_call-based filters. For those cases, a new USE_CALL_FILTER bit is added to the event_call flags, whose main purpose is to keep the old behavior for those cases until they can be updated with multibuffer support; at that point, the USE_CALL_FILTER flag (and the new associated call_filter_check_discard() function) can go away. The multibuffer support also made filter_current_check_discard() redundant, so this change removes that function as well and replaces it with filter_check_discard() (or call_filter_check_discard() as appropriate). Link: http://lkml.kernel.org/r/f16e9ce4270c62f46b2e966119225e1c3cca7e60.1382620672.git.tom.zanussi@linux.intel.com Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 20:34:17 +07:00
struct ring_buffer *buffer,
struct ring_buffer_event *event);
extern enum event_trigger_type event_triggers_call(struct trace_event_file *file,
tracing: Add and use generic set_trigger_filter() implementation Add a generic event_command.set_trigger_filter() op implementation and have the current set of trigger commands use it - this essentially gives them all support for filters. Syntactically, filters are supported by adding 'if <filter>' just after the command, in which case only events matching the filter will invoke the trigger. For example, to add a filter to an enable/disable_event command: echo 'enable_event:system:event if common_pid == 999' > \ .../othersys/otherevent/trigger The above command will only enable the system:event event if the common_pid field in the othersys:otherevent event is 999. As another example, to add a filter to a stacktrace command: echo 'stacktrace if common_pid == 999' > \ .../somesys/someevent/trigger The above command will only trigger a stacktrace if the common_pid field in the event is 999. The filter syntax is the same as that described in the 'Event filtering' section of Documentation/trace/events.txt. Because triggers can now use filters, the trigger-invoking logic needs to be moved in those cases - e.g. for ftrace_raw_event_calls, if a trigger has a filter associated with it, the trigger invocation now needs to happen after the { assign; } part of the call, in order for the trigger condition to be tested. There's still a SOFT_DISABLED-only check at the top of e.g. the ftrace_raw_events function, so when an event is soft disabled but not because of the presence of a trigger, the original SOFT_DISABLED behavior remains unchanged. There's also a bit of trickiness in that some triggers need to avoid being invoked while an event is currently in the process of being logged, since the trigger may itself log data into the trace buffer. Thus we make sure the current event is committed before invoking those triggers. To do that, we split the trigger invocation in two - the first part (event_triggers_call()) checks the filter using the current trace record; if a command has the post_trigger flag set, it sets a bit for itself in the return value, otherwise it directly invoks the trigger. Once all commands have been either invoked or set their return flag, event_triggers_call() returns. The current record is then either committed or discarded; if any commands have deferred their triggers, those commands are finally invoked following the close of the current event by event_triggers_post_call(). To simplify the above and make it more efficient, the TRIGGER_COND bit is introduced, which is set only if a soft-disabled trigger needs to use the log record for filter testing or needs to wait until the current log record is closed. The syscall event invocation code is also changed in analogous ways. Because event triggers need to be able to create and free filters, this also adds a couple external wrappers for the existing create_filter and free_filter functions, which are too generic to be made extern functions themselves. Link: http://lkml.kernel.org/r/7164930759d8719ef460357f143d995406e4eead.1382622043.git.tom.zanussi@linux.intel.com Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 20:59:29 +07:00
void *rec);
extern void event_triggers_post_call(struct trace_event_file *file,
tracing: Add and use generic set_trigger_filter() implementation Add a generic event_command.set_trigger_filter() op implementation and have the current set of trigger commands use it - this essentially gives them all support for filters. Syntactically, filters are supported by adding 'if <filter>' just after the command, in which case only events matching the filter will invoke the trigger. For example, to add a filter to an enable/disable_event command: echo 'enable_event:system:event if common_pid == 999' > \ .../othersys/otherevent/trigger The above command will only enable the system:event event if the common_pid field in the othersys:otherevent event is 999. As another example, to add a filter to a stacktrace command: echo 'stacktrace if common_pid == 999' > \ .../somesys/someevent/trigger The above command will only trigger a stacktrace if the common_pid field in the event is 999. The filter syntax is the same as that described in the 'Event filtering' section of Documentation/trace/events.txt. Because triggers can now use filters, the trigger-invoking logic needs to be moved in those cases - e.g. for ftrace_raw_event_calls, if a trigger has a filter associated with it, the trigger invocation now needs to happen after the { assign; } part of the call, in order for the trigger condition to be tested. There's still a SOFT_DISABLED-only check at the top of e.g. the ftrace_raw_events function, so when an event is soft disabled but not because of the presence of a trigger, the original SOFT_DISABLED behavior remains unchanged. There's also a bit of trickiness in that some triggers need to avoid being invoked while an event is currently in the process of being logged, since the trigger may itself log data into the trace buffer. Thus we make sure the current event is committed before invoking those triggers. To do that, we split the trigger invocation in two - the first part (event_triggers_call()) checks the filter using the current trace record; if a command has the post_trigger flag set, it sets a bit for itself in the return value, otherwise it directly invoks the trigger. Once all commands have been either invoked or set their return flag, event_triggers_call() returns. The current record is then either committed or discarded; if any commands have deferred their triggers, those commands are finally invoked following the close of the current event by event_triggers_post_call(). To simplify the above and make it more efficient, the TRIGGER_COND bit is introduced, which is set only if a soft-disabled trigger needs to use the log record for filter testing or needs to wait until the current log record is closed. The syscall event invocation code is also changed in analogous ways. Because event triggers need to be able to create and free filters, this also adds a couple external wrappers for the existing create_filter and free_filter functions, which are too generic to be made extern functions themselves. Link: http://lkml.kernel.org/r/7164930759d8719ef460357f143d995406e4eead.1382622043.git.tom.zanussi@linux.intel.com Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-10-24 20:59:29 +07:00
enum event_trigger_type tt);
bool trace_event_ignore_this_pid(struct trace_event_file *trace_file);
/**
* trace_trigger_soft_disabled - do triggers and test if soft disabled
* @file: The file pointer of the event to test
*
* If any triggers without filters are attached to this event, they
* will be called here. If the event is soft disabled and has no
* triggers that require testing the fields, it will return true,
* otherwise false.
*/
static inline bool
trace_trigger_soft_disabled(struct trace_event_file *file)
{
unsigned long eflags = file->flags;
if (!(eflags & EVENT_FILE_FL_TRIGGER_COND)) {
if (eflags & EVENT_FILE_FL_TRIGGER_MODE)
event_triggers_call(file, NULL);
if (eflags & EVENT_FILE_FL_SOFT_DISABLED)
return true;
if (eflags & EVENT_FILE_FL_PID_FILTER)
return trace_event_ignore_this_pid(file);
}
return false;
}
/*
* Helper function for event_trigger_unlock_commit{_regs}().
* If there are event triggers attached to this event that requires
* filtering against its fields, then they wil be called as the
* entry already holds the field information of the current event.
*
* It also checks if the event should be discarded or not.
* It is to be discarded if the event is soft disabled and the
* event was only recorded to process triggers, or if the event
* filter is active and this event did not match the filters.
*
* Returns true if the event is discarded, false otherwise.
*/
static inline bool
__event_trigger_test_discard(struct trace_event_file *file,
struct ring_buffer *buffer,
struct ring_buffer_event *event,
void *entry,
enum event_trigger_type *tt)
{
unsigned long eflags = file->flags;
if (eflags & EVENT_FILE_FL_TRIGGER_COND)
*tt = event_triggers_call(file, entry);
if (test_bit(EVENT_FILE_FL_SOFT_DISABLED_BIT, &file->flags))
ring_buffer_discard_commit(buffer, event);
else if (!filter_check_discard(file, entry, buffer, event))
return false;
return true;
}
/**
* event_trigger_unlock_commit - handle triggers and finish event commit
* @file: The file pointer assoctiated to the event
* @buffer: The ring buffer that the event is being written to
* @event: The event meta data in the ring buffer
* @entry: The event itself
* @irq_flags: The state of the interrupts at the start of the event
* @pc: The state of the preempt count at the start of the event.
*
* This is a helper function to handle triggers that require data
* from the event itself. It also tests the event against filters and
* if the event is soft disabled and should be discarded.
*/
static inline void
event_trigger_unlock_commit(struct trace_event_file *file,
struct ring_buffer *buffer,
struct ring_buffer_event *event,
void *entry, unsigned long irq_flags, int pc)
{
enum event_trigger_type tt = ETT_NONE;
if (!__event_trigger_test_discard(file, buffer, event, entry, &tt))
trace_buffer_unlock_commit(file->tr, buffer, event, irq_flags, pc);
if (tt)
event_triggers_post_call(file, tt);
}
/**
* event_trigger_unlock_commit_regs - handle triggers and finish event commit
* @file: The file pointer assoctiated to the event
* @buffer: The ring buffer that the event is being written to
* @event: The event meta data in the ring buffer
* @entry: The event itself
* @irq_flags: The state of the interrupts at the start of the event
* @pc: The state of the preempt count at the start of the event.
*
* This is a helper function to handle triggers that require data
* from the event itself. It also tests the event against filters and
* if the event is soft disabled and should be discarded.
*
* Same as event_trigger_unlock_commit() but calls
* trace_buffer_unlock_commit_regs() instead of trace_buffer_unlock_commit().
*/
static inline void
event_trigger_unlock_commit_regs(struct trace_event_file *file,
struct ring_buffer *buffer,
struct ring_buffer_event *event,
void *entry, unsigned long irq_flags, int pc,
struct pt_regs *regs)
{
enum event_trigger_type tt = ETT_NONE;
if (!__event_trigger_test_discard(file, buffer, event, entry, &tt))
trace_buffer_unlock_commit_regs(file->tr, buffer, event,
irq_flags, pc, regs);
if (tt)
event_triggers_post_call(file, tt);
}
bpf: Use correct #ifdef controller for trace_call_bpf() Commit e1abf2cc8d5d80b41c4419368ec743ccadbb131e ("bpf: Fix the build on BPF_SYSCALL=y && !CONFIG_TRACING kernels, make it more configurable") updated the building condition of bpf_trace.o from CONFIG_BPF_SYSCALL to CONFIG_BPF_EVENTS, but the corresponding #ifdef controller in trace_events.h for trace_call_bpf() was not changed. Which, in theory, is incorrect. With current Kconfigs, we can create a .config with CONFIG_BPF_SYSCALL=y and CONFIG_BPF_EVENTS=n by unselecting CONFIG_KPROBE_EVENT and selecting CONFIG_BPF_SYSCALL. With these options, trace_call_bpf() will be defined as an extern function, but if anyone calls it a symbol missing error will be triggered since bpf_trace.o was not built. This patch changes the #ifdef controller for trace_call_bpf() from CONFIG_BPF_SYSCALL to CONFIG_BPF_EVENTS. I'll show its correctness: Before this patch: BPF_SYSCALL BPF_EVENTS trace_call_bpf bpf_trace.o y y normal compiled n n inline not compiled y n normal not compiled (incorrect) n y impossible (BPF_EVENTS depends on BPF_SYSCALL) After this patch: BPF_SYSCALL BPF_EVENTS trace_call_bpf bpf_trace.o y y normal compiled n n inline not compiled y n inline not compiled (fixed) n y impossible (BPF_EVENTS depends on BPF_SYSCALL) So this patch doesn't break anything. QED. Signed-off-by: Wang Nan <wangnan0@huawei.com> Cc: Alexei Starovoitov <ast@plumgrid.com> Cc: Brendan Gregg <brendan.d.gregg@gmail.com> Cc: Daniel Borkmann <daniel@iogearbox.net> Cc: David Ahern <dsahern@gmail.com> Cc: He Kuang <hekuang@huawei.com> Cc: Jiri Olsa <jolsa@kernel.org> Cc: Kaixu Xia <xiakaixu@huawei.com> Cc: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Zefan Li <lizefan@huawei.com> Cc: pi3orama@163.com Link: http://lkml.kernel.org/r/1435716878-189507-2-git-send-email-wangnan0@huawei.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2015-07-01 09:13:49 +07:00
#ifdef CONFIG_BPF_EVENTS
tracing, perf: Implement BPF programs attached to kprobes BPF programs, attached to kprobes, provide a safe way to execute user-defined BPF byte-code programs without being able to crash or hang the kernel in any way. The BPF engine makes sure that such programs have a finite execution time and that they cannot break out of their sandbox. The user interface is to attach to a kprobe via the perf syscall: struct perf_event_attr attr = { .type = PERF_TYPE_TRACEPOINT, .config = event_id, ... }; event_fd = perf_event_open(&attr,...); ioctl(event_fd, PERF_EVENT_IOC_SET_BPF, prog_fd); 'prog_fd' is a file descriptor associated with BPF program previously loaded. 'event_id' is an ID of the kprobe created. Closing 'event_fd': close(event_fd); ... automatically detaches BPF program from it. BPF programs can call in-kernel helper functions to: - lookup/update/delete elements in maps - probe_read - wraper of probe_kernel_read() used to access any kernel data structures BPF programs receive 'struct pt_regs *' as an input ('struct pt_regs' is architecture dependent) and return 0 to ignore the event and 1 to store kprobe event into the ring buffer. Note, kprobes are a fundamentally _not_ a stable kernel ABI, so BPF programs attached to kprobes must be recompiled for every kernel version and user must supply correct LINUX_VERSION_CODE in attr.kern_version during bpf_prog_load() call. Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Reviewed-by: Steven Rostedt <rostedt@goodmis.org> Reviewed-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Arnaldo Carvalho de Melo <acme@infradead.org> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Daniel Borkmann <daniel@iogearbox.net> Cc: David S. Miller <davem@davemloft.net> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Peter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/1427312966-8434-4-git-send-email-ast@plumgrid.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-03-26 02:49:20 +07:00
unsigned int trace_call_bpf(struct bpf_prog *prog, void *ctx);
#else
static inline unsigned int trace_call_bpf(struct bpf_prog *prog, void *ctx)
{
return 1;
}
#endif
enum {
FILTER_OTHER = 0,
FILTER_STATIC_STRING,
FILTER_DYN_STRING,
FILTER_PTR_STRING,
FILTER_TRACE_FN,
};
extern int trace_event_raw_init(struct trace_event_call *call);
extern int trace_define_field(struct trace_event_call *call, const char *type,
const char *name, int offset, int size,
int is_signed, int filter_type);
extern int trace_add_event_call(struct trace_event_call *call);
extern int trace_remove_event_call(struct trace_event_call *call);
#define is_signed_type(type) (((type)(-1)) < (type)1)
int trace_set_clr_event(const char *system, const char *event, int set);
/*
* The double __builtin_constant_p is because gcc will give us an error
* if we try to allocate the static variable to fmt if it is not a
* constant. Even with the outer if statement optimizing out.
*/
#define event_trace_printk(ip, fmt, args...) \
do { \
__trace_printk_check_format(fmt, ##args); \
tracing_record_cmdline(current); \
if (__builtin_constant_p(fmt)) { \
static const char *trace_printk_fmt \
__attribute__((section("__trace_printk_fmt"))) = \
__builtin_constant_p(fmt) ? fmt : NULL; \
\
__trace_bprintk(ip, trace_printk_fmt, ##args); \
} else \
__trace_printk(ip, fmt, ##args); \
} while (0)
#ifdef CONFIG_PERF_EVENTS
struct perf_event;
perf: Take a hot regs snapshot for trace events We are taking a wrong regs snapshot when a trace event triggers. Either we use get_irq_regs(), which gives us the interrupted registers if we are in an interrupt, or we use task_pt_regs() which gives us the state before we entered the kernel, assuming we are lucky enough to be no kernel thread, in which case task_pt_regs() returns the initial set of regs when the kernel thread was started. What we want is different. We need a hot snapshot of the regs, so that we can get the instruction pointer to record in the sample, the frame pointer for the callchain, and some other things. Let's use the new perf_fetch_caller_regs() for that. Comparison with perf record -e lock: -R -a -f -g Before: perf [kernel] [k] __do_softirq | --- __do_softirq | |--55.16%-- __open | --44.84%-- __write_nocancel After: perf [kernel] [k] perf_tp_event | --- perf_tp_event | |--41.07%-- lock_acquire | | | |--39.36%-- _raw_spin_lock | | | | | |--7.81%-- hrtimer_interrupt | | | smp_apic_timer_interrupt | | | apic_timer_interrupt The old case was producing unreliable callchains. Now having right frame and instruction pointers, we have the trace we want. Also syscalls and kprobe events already have the right regs, let's use them instead of wasting a retrieval. v2: Follow the rename perf_save_regs() -> perf_fetch_caller_regs() Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Masami Hiramatsu <mhiramat@redhat.com> Cc: Jason Baron <jbaron@redhat.com> Cc: Archs <linux-arch@vger.kernel.org>
2010-03-03 13:16:16 +07:00
DECLARE_PER_CPU(struct pt_regs, perf_trace_regs);
extern int perf_trace_init(struct perf_event *event);
extern void perf_trace_destroy(struct perf_event *event);
2010-06-16 19:37:10 +07:00
extern int perf_trace_add(struct perf_event *event, int flags);
extern void perf_trace_del(struct perf_event *event, int flags);
extern int ftrace_profile_set_filter(struct perf_event *event, int event_id,
char *filter_str);
extern void ftrace_profile_free_filter(struct perf_event *event);
extern void *perf_trace_buf_prepare(int size, unsigned short type,
perf: Avoid horrible stack usage Both Linus (most recent) and Steve (a while ago) reported that perf related callbacks have massive stack bloat. The problem is that software events need a pt_regs in order to properly report the event location and unwind stack. And because we could not assume one was present we allocated one on stack and filled it with minimal bits required for operation. Now, pt_regs is quite large, so this is undesirable. Furthermore it turns out that most sites actually have a pt_regs pointer available, making this even more onerous, as the stack space is pointless waste. This patch addresses the problem by observing that software events have well defined nesting semantics, therefore we can use static per-cpu storage instead of on-stack. Linus made the further observation that all but the scheduler callers of perf_sw_event() have a pt_regs available, so we change the regular perf_sw_event() to require a valid pt_regs (where it used to be optional) and add perf_sw_event_sched() for the scheduler. We have a scheduler specific call instead of a more generic _noregs() like construct because we can assume non-recursion from the scheduler and thereby simplify the code further (_noregs would have to put the recursion context call inline in order to assertain which __perf_regs element to use). One last note on the implementation of perf_trace_buf_prepare(); we allow .regs = NULL for those cases where we already have a pt_regs pointer available and do not need another. Reported-by: Linus Torvalds <torvalds@linux-foundation.org> Reported-by: Steven Rostedt <rostedt@goodmis.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Arnaldo Carvalho de Melo <acme@kernel.org> Cc: Javi Merino <javi.merino@arm.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Paul Mackerras <paulus@samba.org> Cc: Petr Mladek <pmladek@suse.cz> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Tom Zanussi <tom.zanussi@linux.intel.com> Cc: Vaibhav Nagarnaik <vnagarnaik@google.com> Link: http://lkml.kernel.org/r/20141216115041.GW3337@twins.programming.kicks-ass.net Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-12-16 18:47:34 +07:00
struct pt_regs **regs, int *rctxp);
static inline void
perf_trace_buf_submit(void *raw_data, int size, int rctx, u64 addr,
u64 count, struct pt_regs *regs, void *head,
struct task_struct *task)
{
perf_tp_event(addr, count, raw_data, size, regs, head, rctx, task);
}
#endif
#endif /* _LINUX_TRACE_EVENT_H */