linux_dsm_epyc7002/drivers/input/rmi4/rmi_f12.c

533 lines
14 KiB
C
Raw Normal View History

/*
* Copyright (c) 2012-2016 Synaptics Incorporated
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published by
* the Free Software Foundation.
*/
#include <linux/input.h>
#include <linux/input/mt.h>
#include <linux/rmi.h>
#include "rmi_driver.h"
#include "rmi_2d_sensor.h"
enum rmi_f12_object_type {
RMI_F12_OBJECT_NONE = 0x00,
RMI_F12_OBJECT_FINGER = 0x01,
RMI_F12_OBJECT_STYLUS = 0x02,
RMI_F12_OBJECT_PALM = 0x03,
RMI_F12_OBJECT_UNCLASSIFIED = 0x04,
RMI_F12_OBJECT_GLOVED_FINGER = 0x06,
RMI_F12_OBJECT_NARROW_OBJECT = 0x07,
RMI_F12_OBJECT_HAND_EDGE = 0x08,
RMI_F12_OBJECT_COVER = 0x0A,
RMI_F12_OBJECT_STYLUS_2 = 0x0B,
RMI_F12_OBJECT_ERASER = 0x0C,
RMI_F12_OBJECT_SMALL_OBJECT = 0x0D,
};
#define F12_DATA1_BYTES_PER_OBJ 8
struct f12_data {
struct rmi_2d_sensor sensor;
struct rmi_2d_sensor_platform_data sensor_pdata;
bool has_dribble;
u16 data_addr;
struct rmi_register_descriptor query_reg_desc;
struct rmi_register_descriptor control_reg_desc;
struct rmi_register_descriptor data_reg_desc;
/* F12 Data1 describes sensed objects */
const struct rmi_register_desc_item *data1;
u16 data1_offset;
/* F12 Data5 describes finger ACM */
const struct rmi_register_desc_item *data5;
u16 data5_offset;
/* F12 Data5 describes Pen */
const struct rmi_register_desc_item *data6;
u16 data6_offset;
/* F12 Data9 reports relative data */
const struct rmi_register_desc_item *data9;
u16 data9_offset;
const struct rmi_register_desc_item *data15;
u16 data15_offset;
};
static int rmi_f12_read_sensor_tuning(struct f12_data *f12)
{
const struct rmi_register_desc_item *item;
struct rmi_2d_sensor *sensor = &f12->sensor;
struct rmi_function *fn = sensor->fn;
struct rmi_device *rmi_dev = fn->rmi_dev;
int ret;
int offset;
u8 buf[15];
int pitch_x = 0;
int pitch_y = 0;
int rx_receivers = 0;
int tx_receivers = 0;
int sensor_flags = 0;
item = rmi_get_register_desc_item(&f12->control_reg_desc, 8);
if (!item) {
dev_err(&fn->dev,
"F12 does not have the sensor tuning control register\n");
return -ENODEV;
}
offset = rmi_register_desc_calc_reg_offset(&f12->control_reg_desc, 8);
if (item->reg_size > sizeof(buf)) {
dev_err(&fn->dev,
"F12 control8 should be no bigger than %zd bytes, not: %ld\n",
sizeof(buf), item->reg_size);
return -ENODEV;
}
ret = rmi_read_block(rmi_dev, fn->fd.control_base_addr + offset, buf,
item->reg_size);
if (ret)
return ret;
offset = 0;
if (rmi_register_desc_has_subpacket(item, 0)) {
sensor->max_x = (buf[offset + 1] << 8) | buf[offset];
sensor->max_y = (buf[offset + 3] << 8) | buf[offset + 2];
offset += 4;
}
rmi_dbg(RMI_DEBUG_FN, &fn->dev, "%s: max_x: %d max_y: %d\n", __func__,
sensor->max_x, sensor->max_y);
if (rmi_register_desc_has_subpacket(item, 1)) {
pitch_x = (buf[offset + 1] << 8) | buf[offset];
pitch_y = (buf[offset + 3] << 8) | buf[offset + 2];
offset += 4;
}
if (rmi_register_desc_has_subpacket(item, 2)) {
/* Units 1/128 sensor pitch */
rmi_dbg(RMI_DEBUG_FN, &fn->dev,
"%s: Inactive Border xlo:%d xhi:%d ylo:%d yhi:%d\n",
__func__,
buf[offset], buf[offset + 1],
buf[offset + 2], buf[offset + 3]);
offset += 4;
}
if (rmi_register_desc_has_subpacket(item, 3)) {
rx_receivers = buf[offset];
tx_receivers = buf[offset + 1];
offset += 2;
}
if (rmi_register_desc_has_subpacket(item, 4)) {
sensor_flags = buf[offset];
offset += 1;
}
sensor->x_mm = (pitch_x * rx_receivers) >> 12;
sensor->y_mm = (pitch_y * tx_receivers) >> 12;
rmi_dbg(RMI_DEBUG_FN, &fn->dev, "%s: x_mm: %d y_mm: %d\n", __func__,
sensor->x_mm, sensor->y_mm);
return 0;
}
static void rmi_f12_process_objects(struct f12_data *f12, u8 *data1, int size)
{
int i;
struct rmi_2d_sensor *sensor = &f12->sensor;
int objects = f12->data1->num_subpackets;
if ((f12->data1->num_subpackets * F12_DATA1_BYTES_PER_OBJ) > size)
objects = size / F12_DATA1_BYTES_PER_OBJ;
for (i = 0; i < objects; i++) {
struct rmi_2d_sensor_abs_object *obj = &sensor->objs[i];
obj->type = RMI_2D_OBJECT_NONE;
obj->mt_tool = MT_TOOL_FINGER;
switch (data1[0]) {
case RMI_F12_OBJECT_FINGER:
obj->type = RMI_2D_OBJECT_FINGER;
break;
case RMI_F12_OBJECT_STYLUS:
obj->type = RMI_2D_OBJECT_STYLUS;
obj->mt_tool = MT_TOOL_PEN;
break;
case RMI_F12_OBJECT_PALM:
obj->type = RMI_2D_OBJECT_PALM;
obj->mt_tool = MT_TOOL_PALM;
break;
case RMI_F12_OBJECT_UNCLASSIFIED:
obj->type = RMI_2D_OBJECT_UNCLASSIFIED;
break;
}
obj->x = (data1[2] << 8) | data1[1];
obj->y = (data1[4] << 8) | data1[3];
obj->z = data1[5];
obj->wx = data1[6];
obj->wy = data1[7];
rmi_2d_sensor_abs_process(sensor, obj, i);
data1 += F12_DATA1_BYTES_PER_OBJ;
}
if (sensor->kernel_tracking)
input_mt_assign_slots(sensor->input,
sensor->tracking_slots,
sensor->tracking_pos,
sensor->nbr_fingers,
sensor->dmax);
for (i = 0; i < objects; i++)
rmi_2d_sensor_abs_report(sensor, &sensor->objs[i], i);
}
static irqreturn_t rmi_f12_attention(int irq, void *ctx)
{
int retval;
struct rmi_function *fn = ctx;
struct rmi_device *rmi_dev = fn->rmi_dev;
struct rmi_driver_data *drvdata = dev_get_drvdata(&rmi_dev->dev);
struct f12_data *f12 = dev_get_drvdata(&fn->dev);
struct rmi_2d_sensor *sensor = &f12->sensor;
int valid_bytes = sensor->pkt_size;
if (drvdata->attn_data.data) {
if (sensor->attn_size > drvdata->attn_data.size)
valid_bytes = drvdata->attn_data.size;
else
valid_bytes = sensor->attn_size;
memcpy(sensor->data_pkt, drvdata->attn_data.data,
valid_bytes);
drvdata->attn_data.data += sensor->attn_size;
drvdata->attn_data.size -= sensor->attn_size;
} else {
retval = rmi_read_block(rmi_dev, f12->data_addr,
sensor->data_pkt, sensor->pkt_size);
if (retval < 0) {
dev_err(&fn->dev, "Failed to read object data. Code: %d.\n",
retval);
return IRQ_RETVAL(retval);
}
}
if (f12->data1)
rmi_f12_process_objects(f12,
&sensor->data_pkt[f12->data1_offset], valid_bytes);
input_mt_sync_frame(sensor->input);
return IRQ_HANDLED;
}
static int rmi_f12_write_control_regs(struct rmi_function *fn)
{
int ret;
const struct rmi_register_desc_item *item;
struct rmi_device *rmi_dev = fn->rmi_dev;
struct f12_data *f12 = dev_get_drvdata(&fn->dev);
int control_size;
char buf[3];
u16 control_offset = 0;
u8 subpacket_offset = 0;
if (f12->has_dribble
&& (f12->sensor.dribble != RMI_REG_STATE_DEFAULT)) {
item = rmi_get_register_desc_item(&f12->control_reg_desc, 20);
if (item) {
control_offset = rmi_register_desc_calc_reg_offset(
&f12->control_reg_desc, 20);
/*
* The byte containing the EnableDribble bit will be
* in either byte 0 or byte 2 of control 20. Depending
* on the existence of subpacket 0. If control 20 is
* larger then 3 bytes, just read the first 3.
*/
control_size = min(item->reg_size, 3UL);
ret = rmi_read_block(rmi_dev, fn->fd.control_base_addr
+ control_offset, buf, control_size);
if (ret)
return ret;
if (rmi_register_desc_has_subpacket(item, 0))
subpacket_offset += 1;
switch (f12->sensor.dribble) {
case RMI_REG_STATE_OFF:
buf[subpacket_offset] &= ~BIT(2);
break;
case RMI_REG_STATE_ON:
buf[subpacket_offset] |= BIT(2);
break;
case RMI_REG_STATE_DEFAULT:
default:
break;
}
ret = rmi_write_block(rmi_dev,
fn->fd.control_base_addr + control_offset,
buf, control_size);
if (ret)
return ret;
}
}
return 0;
}
static int rmi_f12_config(struct rmi_function *fn)
{
struct rmi_driver *drv = fn->rmi_dev->driver;
int ret;
drv->set_irq_bits(fn->rmi_dev, fn->irq_mask);
ret = rmi_f12_write_control_regs(fn);
if (ret)
dev_warn(&fn->dev,
"Failed to write F12 control registers: %d\n", ret);
return 0;
}
static int rmi_f12_probe(struct rmi_function *fn)
{
struct f12_data *f12;
int ret;
struct rmi_device *rmi_dev = fn->rmi_dev;
char buf;
u16 query_addr = fn->fd.query_base_addr;
const struct rmi_register_desc_item *item;
struct rmi_2d_sensor *sensor;
struct rmi_device_platform_data *pdata = rmi_get_platform_data(rmi_dev);
struct rmi_driver_data *drvdata = dev_get_drvdata(&rmi_dev->dev);
u16 data_offset = 0;
rmi_dbg(RMI_DEBUG_FN, &fn->dev, "%s\n", __func__);
ret = rmi_read(fn->rmi_dev, query_addr, &buf);
if (ret < 0) {
dev_err(&fn->dev, "Failed to read general info register: %d\n",
ret);
return -ENODEV;
}
++query_addr;
if (!(buf & BIT(0))) {
dev_err(&fn->dev,
"Behavior of F12 without register descriptors is undefined.\n");
return -ENODEV;
}
f12 = devm_kzalloc(&fn->dev, sizeof(struct f12_data), GFP_KERNEL);
if (!f12)
return -ENOMEM;
f12->has_dribble = !!(buf & BIT(3));
if (fn->dev.of_node) {
ret = rmi_2d_sensor_of_probe(&fn->dev, &f12->sensor_pdata);
if (ret)
return ret;
} else {
f12->sensor_pdata = pdata->sensor_pdata;
}
ret = rmi_read_register_desc(rmi_dev, query_addr,
&f12->query_reg_desc);
if (ret) {
dev_err(&fn->dev,
"Failed to read the Query Register Descriptor: %d\n",
ret);
return ret;
}
query_addr += 3;
ret = rmi_read_register_desc(rmi_dev, query_addr,
&f12->control_reg_desc);
if (ret) {
dev_err(&fn->dev,
"Failed to read the Control Register Descriptor: %d\n",
ret);
return ret;
}
query_addr += 3;
ret = rmi_read_register_desc(rmi_dev, query_addr,
&f12->data_reg_desc);
if (ret) {
dev_err(&fn->dev,
"Failed to read the Data Register Descriptor: %d\n",
ret);
return ret;
}
query_addr += 3;
sensor = &f12->sensor;
sensor->fn = fn;
f12->data_addr = fn->fd.data_base_addr;
sensor->pkt_size = rmi_register_desc_calc_size(&f12->data_reg_desc);
sensor->axis_align =
f12->sensor_pdata.axis_align;
sensor->x_mm = f12->sensor_pdata.x_mm;
sensor->y_mm = f12->sensor_pdata.y_mm;
sensor->dribble = f12->sensor_pdata.dribble;
if (sensor->sensor_type == rmi_sensor_default)
sensor->sensor_type =
f12->sensor_pdata.sensor_type;
rmi_dbg(RMI_DEBUG_FN, &fn->dev, "%s: data packet size: %d\n", __func__,
sensor->pkt_size);
sensor->data_pkt = devm_kzalloc(&fn->dev, sensor->pkt_size, GFP_KERNEL);
if (!sensor->data_pkt)
return -ENOMEM;
dev_set_drvdata(&fn->dev, f12);
ret = rmi_f12_read_sensor_tuning(f12);
if (ret)
return ret;
/*
* Figure out what data is contained in the data registers. HID devices
* may have registers defined, but their data is not reported in the
* HID attention report. Registers which are not reported in the HID
* attention report check to see if the device is receiving data from
* HID attention reports.
*/
item = rmi_get_register_desc_item(&f12->data_reg_desc, 0);
if (item && !drvdata->attn_data.data)
data_offset += item->reg_size;
item = rmi_get_register_desc_item(&f12->data_reg_desc, 1);
if (item) {
f12->data1 = item;
f12->data1_offset = data_offset;
data_offset += item->reg_size;
sensor->nbr_fingers = item->num_subpackets;
sensor->report_abs = 1;
sensor->attn_size += item->reg_size;
}
item = rmi_get_register_desc_item(&f12->data_reg_desc, 2);
if (item && !drvdata->attn_data.data)
data_offset += item->reg_size;
item = rmi_get_register_desc_item(&f12->data_reg_desc, 3);
if (item && !drvdata->attn_data.data)
data_offset += item->reg_size;
item = rmi_get_register_desc_item(&f12->data_reg_desc, 4);
if (item && !drvdata->attn_data.data)
data_offset += item->reg_size;
item = rmi_get_register_desc_item(&f12->data_reg_desc, 5);
if (item) {
f12->data5 = item;
f12->data5_offset = data_offset;
data_offset += item->reg_size;
sensor->attn_size += item->reg_size;
}
item = rmi_get_register_desc_item(&f12->data_reg_desc, 6);
if (item && !drvdata->attn_data.data) {
f12->data6 = item;
f12->data6_offset = data_offset;
data_offset += item->reg_size;
}
item = rmi_get_register_desc_item(&f12->data_reg_desc, 7);
if (item && !drvdata->attn_data.data)
data_offset += item->reg_size;
item = rmi_get_register_desc_item(&f12->data_reg_desc, 8);
if (item && !drvdata->attn_data.data)
data_offset += item->reg_size;
item = rmi_get_register_desc_item(&f12->data_reg_desc, 9);
if (item && !drvdata->attn_data.data) {
f12->data9 = item;
f12->data9_offset = data_offset;
data_offset += item->reg_size;
if (!sensor->report_abs)
sensor->report_rel = 1;
}
item = rmi_get_register_desc_item(&f12->data_reg_desc, 10);
if (item && !drvdata->attn_data.data)
data_offset += item->reg_size;
item = rmi_get_register_desc_item(&f12->data_reg_desc, 11);
if (item && !drvdata->attn_data.data)
data_offset += item->reg_size;
item = rmi_get_register_desc_item(&f12->data_reg_desc, 12);
if (item && !drvdata->attn_data.data)
data_offset += item->reg_size;
item = rmi_get_register_desc_item(&f12->data_reg_desc, 13);
if (item && !drvdata->attn_data.data)
data_offset += item->reg_size;
item = rmi_get_register_desc_item(&f12->data_reg_desc, 14);
if (item && !drvdata->attn_data.data)
data_offset += item->reg_size;
item = rmi_get_register_desc_item(&f12->data_reg_desc, 15);
if (item && !drvdata->attn_data.data) {
f12->data15 = item;
f12->data15_offset = data_offset;
data_offset += item->reg_size;
}
/* allocate the in-kernel tracking buffers */
treewide: devm_kzalloc() -> devm_kcalloc() The devm_kzalloc() function has a 2-factor argument form, devm_kcalloc(). This patch replaces cases of: devm_kzalloc(handle, a * b, gfp) with: devm_kcalloc(handle, a * b, gfp) as well as handling cases of: devm_kzalloc(handle, a * b * c, gfp) with: devm_kzalloc(handle, array3_size(a, b, c), gfp) as it's slightly less ugly than: devm_kcalloc(handle, array_size(a, b), c, gfp) This does, however, attempt to ignore constant size factors like: devm_kzalloc(handle, 4 * 1024, gfp) though any constants defined via macros get caught up in the conversion. Any factors with a sizeof() of "unsigned char", "char", and "u8" were dropped, since they're redundant. Some manual whitespace fixes were needed in this patch, as Coccinelle really liked to write "=devm_kcalloc..." instead of "= devm_kcalloc...". The Coccinelle script used for this was: // Fix redundant parens around sizeof(). @@ expression HANDLE; type TYPE; expression THING, E; @@ ( devm_kzalloc(HANDLE, - (sizeof(TYPE)) * E + sizeof(TYPE) * E , ...) | devm_kzalloc(HANDLE, - (sizeof(THING)) * E + sizeof(THING) * E , ...) ) // Drop single-byte sizes and redundant parens. @@ expression HANDLE; expression COUNT; typedef u8; typedef __u8; @@ ( devm_kzalloc(HANDLE, - sizeof(u8) * (COUNT) + COUNT , ...) | devm_kzalloc(HANDLE, - sizeof(__u8) * (COUNT) + COUNT , ...) | devm_kzalloc(HANDLE, - sizeof(char) * (COUNT) + COUNT , ...) | devm_kzalloc(HANDLE, - sizeof(unsigned char) * (COUNT) + COUNT , ...) | devm_kzalloc(HANDLE, - sizeof(u8) * COUNT + COUNT , ...) | devm_kzalloc(HANDLE, - sizeof(__u8) * COUNT + COUNT , ...) | devm_kzalloc(HANDLE, - sizeof(char) * COUNT + COUNT , ...) | devm_kzalloc(HANDLE, - sizeof(unsigned char) * COUNT + COUNT , ...) ) // 2-factor product with sizeof(type/expression) and identifier or constant. @@ expression HANDLE; type TYPE; expression THING; identifier COUNT_ID; constant COUNT_CONST; @@ ( - devm_kzalloc + devm_kcalloc (HANDLE, - sizeof(TYPE) * (COUNT_ID) + COUNT_ID, sizeof(TYPE) , ...) | - devm_kzalloc + devm_kcalloc (HANDLE, - sizeof(TYPE) * COUNT_ID + COUNT_ID, sizeof(TYPE) , ...) | - devm_kzalloc + devm_kcalloc (HANDLE, - sizeof(TYPE) * (COUNT_CONST) + COUNT_CONST, sizeof(TYPE) , ...) | - devm_kzalloc + devm_kcalloc (HANDLE, - sizeof(TYPE) * COUNT_CONST + COUNT_CONST, sizeof(TYPE) , ...) | - devm_kzalloc + devm_kcalloc (HANDLE, - sizeof(THING) * (COUNT_ID) + COUNT_ID, sizeof(THING) , ...) | - devm_kzalloc + devm_kcalloc (HANDLE, - sizeof(THING) * COUNT_ID + COUNT_ID, sizeof(THING) , ...) | - devm_kzalloc + devm_kcalloc (HANDLE, - sizeof(THING) * (COUNT_CONST) + COUNT_CONST, sizeof(THING) , ...) | - devm_kzalloc + devm_kcalloc (HANDLE, - sizeof(THING) * COUNT_CONST + COUNT_CONST, sizeof(THING) , ...) ) // 2-factor product, only identifiers. @@ expression HANDLE; identifier SIZE, COUNT; @@ - devm_kzalloc + devm_kcalloc (HANDLE, - SIZE * COUNT + COUNT, SIZE , ...) // 3-factor product with 1 sizeof(type) or sizeof(expression), with // redundant parens removed. @@ expression HANDLE; expression THING; identifier STRIDE, COUNT; type TYPE; @@ ( devm_kzalloc(HANDLE, - sizeof(TYPE) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | devm_kzalloc(HANDLE, - sizeof(TYPE) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | devm_kzalloc(HANDLE, - sizeof(TYPE) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | devm_kzalloc(HANDLE, - sizeof(TYPE) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | devm_kzalloc(HANDLE, - sizeof(THING) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | devm_kzalloc(HANDLE, - sizeof(THING) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | devm_kzalloc(HANDLE, - sizeof(THING) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | devm_kzalloc(HANDLE, - sizeof(THING) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) ) // 3-factor product with 2 sizeof(variable), with redundant parens removed. @@ expression HANDLE; expression THING1, THING2; identifier COUNT; type TYPE1, TYPE2; @@ ( devm_kzalloc(HANDLE, - sizeof(TYPE1) * sizeof(TYPE2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | devm_kzalloc(HANDLE, - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | devm_kzalloc(HANDLE, - sizeof(THING1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | devm_kzalloc(HANDLE, - sizeof(THING1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | devm_kzalloc(HANDLE, - sizeof(TYPE1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) | devm_kzalloc(HANDLE, - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) ) // 3-factor product, only identifiers, with redundant parens removed. @@ expression HANDLE; identifier STRIDE, SIZE, COUNT; @@ ( devm_kzalloc(HANDLE, - (COUNT) * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | devm_kzalloc(HANDLE, - COUNT * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | devm_kzalloc(HANDLE, - COUNT * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | devm_kzalloc(HANDLE, - (COUNT) * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | devm_kzalloc(HANDLE, - COUNT * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | devm_kzalloc(HANDLE, - (COUNT) * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | devm_kzalloc(HANDLE, - (COUNT) * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | devm_kzalloc(HANDLE, - COUNT * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) ) // Any remaining multi-factor products, first at least 3-factor products, // when they're not all constants... @@ expression HANDLE; expression E1, E2, E3; constant C1, C2, C3; @@ ( devm_kzalloc(HANDLE, C1 * C2 * C3, ...) | devm_kzalloc(HANDLE, - (E1) * E2 * E3 + array3_size(E1, E2, E3) , ...) | devm_kzalloc(HANDLE, - (E1) * (E2) * E3 + array3_size(E1, E2, E3) , ...) | devm_kzalloc(HANDLE, - (E1) * (E2) * (E3) + array3_size(E1, E2, E3) , ...) | devm_kzalloc(HANDLE, - E1 * E2 * E3 + array3_size(E1, E2, E3) , ...) ) // And then all remaining 2 factors products when they're not all constants, // keeping sizeof() as the second factor argument. @@ expression HANDLE; expression THING, E1, E2; type TYPE; constant C1, C2, C3; @@ ( devm_kzalloc(HANDLE, sizeof(THING) * C2, ...) | devm_kzalloc(HANDLE, sizeof(TYPE) * C2, ...) | devm_kzalloc(HANDLE, C1 * C2 * C3, ...) | devm_kzalloc(HANDLE, C1 * C2, ...) | - devm_kzalloc + devm_kcalloc (HANDLE, - sizeof(TYPE) * (E2) + E2, sizeof(TYPE) , ...) | - devm_kzalloc + devm_kcalloc (HANDLE, - sizeof(TYPE) * E2 + E2, sizeof(TYPE) , ...) | - devm_kzalloc + devm_kcalloc (HANDLE, - sizeof(THING) * (E2) + E2, sizeof(THING) , ...) | - devm_kzalloc + devm_kcalloc (HANDLE, - sizeof(THING) * E2 + E2, sizeof(THING) , ...) | - devm_kzalloc + devm_kcalloc (HANDLE, - (E1) * E2 + E1, E2 , ...) | - devm_kzalloc + devm_kcalloc (HANDLE, - (E1) * (E2) + E1, E2 , ...) | - devm_kzalloc + devm_kcalloc (HANDLE, - E1 * E2 + E1, E2 , ...) ) Signed-off-by: Kees Cook <keescook@chromium.org>
2018-06-13 04:07:58 +07:00
sensor->tracking_pos = devm_kcalloc(&fn->dev,
sensor->nbr_fingers, sizeof(struct input_mt_pos),
GFP_KERNEL);
sensor->tracking_slots = devm_kcalloc(&fn->dev,
sensor->nbr_fingers, sizeof(int), GFP_KERNEL);
sensor->objs = devm_kcalloc(&fn->dev,
sensor->nbr_fingers,
sizeof(struct rmi_2d_sensor_abs_object),
GFP_KERNEL);
if (!sensor->tracking_pos || !sensor->tracking_slots || !sensor->objs)
return -ENOMEM;
ret = rmi_2d_sensor_configure_input(fn, sensor);
if (ret)
return ret;
return 0;
}
struct rmi_function_handler rmi_f12_handler = {
.driver = {
.name = "rmi4_f12",
},
.func = 0x12,
.probe = rmi_f12_probe,
.config = rmi_f12_config,
.attention = rmi_f12_attention,
};