linux_dsm_epyc7002/security/commoncap.c

345 lines
9.4 KiB
C
Raw Normal View History

/* Common capabilities, needed by capability.o and root_plug.o
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
*/
#include <linux/capability.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/security.h>
#include <linux/file.h>
#include <linux/mm.h>
#include <linux/mman.h>
#include <linux/pagemap.h>
#include <linux/swap.h>
#include <linux/skbuff.h>
#include <linux/netlink.h>
#include <linux/ptrace.h>
#include <linux/xattr.h>
#include <linux/hugetlb.h>
int cap_netlink_send(struct sock *sk, struct sk_buff *skb)
{
NETLINK_CB(skb).eff_cap = current->cap_effective;
return 0;
}
EXPORT_SYMBOL(cap_netlink_send);
int cap_netlink_recv(struct sk_buff *skb, int cap)
{
if (!cap_raised(NETLINK_CB(skb).eff_cap, cap))
return -EPERM;
return 0;
}
EXPORT_SYMBOL(cap_netlink_recv);
int cap_capable (struct task_struct *tsk, int cap)
{
/* Derived from include/linux/sched.h:capable. */
if (cap_raised(tsk->cap_effective, cap))
return 0;
return -EPERM;
}
int cap_settime(struct timespec *ts, struct timezone *tz)
{
if (!capable(CAP_SYS_TIME))
return -EPERM;
return 0;
}
int cap_ptrace (struct task_struct *parent, struct task_struct *child)
{
/* Derived from arch/i386/kernel/ptrace.c:sys_ptrace. */
if (!cap_issubset(child->cap_permitted, parent->cap_permitted) &&
!__capable(parent, CAP_SYS_PTRACE))
return -EPERM;
return 0;
}
int cap_capget (struct task_struct *target, kernel_cap_t *effective,
kernel_cap_t *inheritable, kernel_cap_t *permitted)
{
/* Derived from kernel/capability.c:sys_capget. */
*effective = cap_t (target->cap_effective);
*inheritable = cap_t (target->cap_inheritable);
*permitted = cap_t (target->cap_permitted);
return 0;
}
int cap_capset_check (struct task_struct *target, kernel_cap_t *effective,
kernel_cap_t *inheritable, kernel_cap_t *permitted)
{
/* Derived from kernel/capability.c:sys_capset. */
/* verify restrictions on target's new Inheritable set */
if (!cap_issubset (*inheritable,
cap_combine (target->cap_inheritable,
current->cap_permitted))) {
return -EPERM;
}
/* verify restrictions on target's new Permitted set */
if (!cap_issubset (*permitted,
cap_combine (target->cap_permitted,
current->cap_permitted))) {
return -EPERM;
}
/* verify the _new_Effective_ is a subset of the _new_Permitted_ */
if (!cap_issubset (*effective, *permitted)) {
return -EPERM;
}
return 0;
}
void cap_capset_set (struct task_struct *target, kernel_cap_t *effective,
kernel_cap_t *inheritable, kernel_cap_t *permitted)
{
target->cap_effective = *effective;
target->cap_inheritable = *inheritable;
target->cap_permitted = *permitted;
}
int cap_bprm_set_security (struct linux_binprm *bprm)
{
/* Copied from fs/exec.c:prepare_binprm. */
/* We don't have VFS support for capabilities yet */
cap_clear (bprm->cap_inheritable);
cap_clear (bprm->cap_permitted);
cap_clear (bprm->cap_effective);
/* To support inheritance of root-permissions and suid-root
* executables under compatibility mode, we raise all three
* capability sets for the file.
*
* If only the real uid is 0, we only raise the inheritable
* and permitted sets of the executable file.
*/
if (!issecure (SECURE_NOROOT)) {
if (bprm->e_uid == 0 || current->uid == 0) {
cap_set_full (bprm->cap_inheritable);
cap_set_full (bprm->cap_permitted);
}
if (bprm->e_uid == 0)
cap_set_full (bprm->cap_effective);
}
return 0;
}
void cap_bprm_apply_creds (struct linux_binprm *bprm, int unsafe)
{
/* Derived from fs/exec.c:compute_creds. */
kernel_cap_t new_permitted, working;
new_permitted = cap_intersect (bprm->cap_permitted, cap_bset);
working = cap_intersect (bprm->cap_inheritable,
current->cap_inheritable);
new_permitted = cap_combine (new_permitted, working);
if (bprm->e_uid != current->uid || bprm->e_gid != current->gid ||
!cap_issubset (new_permitted, current->cap_permitted)) {
[PATCH] setuid core dump Add a new `suid_dumpable' sysctl: This value can be used to query and set the core dump mode for setuid or otherwise protected/tainted binaries. The modes are 0 - (default) - traditional behaviour. Any process which has changed privilege levels or is execute only will not be dumped 1 - (debug) - all processes dump core when possible. The core dump is owned by the current user and no security is applied. This is intended for system debugging situations only. Ptrace is unchecked. 2 - (suidsafe) - any binary which normally would not be dumped is dumped readable by root only. This allows the end user to remove such a dump but not access it directly. For security reasons core dumps in this mode will not overwrite one another or other files. This mode is appropriate when adminstrators are attempting to debug problems in a normal environment. (akpm: > > +EXPORT_SYMBOL(suid_dumpable); > > EXPORT_SYMBOL_GPL? No problem to me. > > if (current->euid == current->uid && current->egid == current->gid) > > current->mm->dumpable = 1; > > Should this be SUID_DUMP_USER? Actually the feedback I had from last time was that the SUID_ defines should go because its clearer to follow the numbers. They can go everywhere (and there are lots of places where dumpable is tested/used as a bool in untouched code) > Maybe this should be renamed to `dump_policy' or something. Doing that > would help us catch any code which isn't using the #defines, too. Fair comment. The patch was designed to be easy to maintain for Red Hat rather than for merging. Changing that field would create a gigantic diff because it is used all over the place. ) Signed-off-by: Alan Cox <alan@redhat.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 14:09:43 +07:00
current->mm->dumpable = suid_dumpable;
if (unsafe & ~LSM_UNSAFE_PTRACE_CAP) {
if (!capable(CAP_SETUID)) {
bprm->e_uid = current->uid;
bprm->e_gid = current->gid;
}
if (!capable (CAP_SETPCAP)) {
new_permitted = cap_intersect (new_permitted,
current->cap_permitted);
}
}
}
current->suid = current->euid = current->fsuid = bprm->e_uid;
current->sgid = current->egid = current->fsgid = bprm->e_gid;
/* For init, we want to retain the capabilities set
* in the init_task struct. Thus we skip the usual
* capability rules */
if (!is_init(current)) {
current->cap_permitted = new_permitted;
current->cap_effective =
cap_intersect (new_permitted, bprm->cap_effective);
}
/* AUD: Audit candidate if current->cap_effective is set */
current->keep_capabilities = 0;
}
int cap_bprm_secureexec (struct linux_binprm *bprm)
{
/* If/when this module is enhanced to incorporate capability
bits on files, the test below should be extended to also perform a
test between the old and new capability sets. For now,
it simply preserves the legacy decision algorithm used by
the old userland. */
return (current->euid != current->uid ||
current->egid != current->gid);
}
int cap_inode_setxattr(struct dentry *dentry, char *name, void *value,
size_t size, int flags)
{
if (!strncmp(name, XATTR_SECURITY_PREFIX,
sizeof(XATTR_SECURITY_PREFIX) - 1) &&
!capable(CAP_SYS_ADMIN))
return -EPERM;
return 0;
}
int cap_inode_removexattr(struct dentry *dentry, char *name)
{
if (!strncmp(name, XATTR_SECURITY_PREFIX,
sizeof(XATTR_SECURITY_PREFIX) - 1) &&
!capable(CAP_SYS_ADMIN))
return -EPERM;
return 0;
}
/* moved from kernel/sys.c. */
/*
* cap_emulate_setxuid() fixes the effective / permitted capabilities of
* a process after a call to setuid, setreuid, or setresuid.
*
* 1) When set*uiding _from_ one of {r,e,s}uid == 0 _to_ all of
* {r,e,s}uid != 0, the permitted and effective capabilities are
* cleared.
*
* 2) When set*uiding _from_ euid == 0 _to_ euid != 0, the effective
* capabilities of the process are cleared.
*
* 3) When set*uiding _from_ euid != 0 _to_ euid == 0, the effective
* capabilities are set to the permitted capabilities.
*
* fsuid is handled elsewhere. fsuid == 0 and {r,e,s}uid!= 0 should
* never happen.
*
* -astor
*
* cevans - New behaviour, Oct '99
* A process may, via prctl(), elect to keep its capabilities when it
* calls setuid() and switches away from uid==0. Both permitted and
* effective sets will be retained.
* Without this change, it was impossible for a daemon to drop only some
* of its privilege. The call to setuid(!=0) would drop all privileges!
* Keeping uid 0 is not an option because uid 0 owns too many vital
* files..
* Thanks to Olaf Kirch and Peter Benie for spotting this.
*/
static inline void cap_emulate_setxuid (int old_ruid, int old_euid,
int old_suid)
{
if ((old_ruid == 0 || old_euid == 0 || old_suid == 0) &&
(current->uid != 0 && current->euid != 0 && current->suid != 0) &&
!current->keep_capabilities) {
cap_clear (current->cap_permitted);
cap_clear (current->cap_effective);
}
if (old_euid == 0 && current->euid != 0) {
cap_clear (current->cap_effective);
}
if (old_euid != 0 && current->euid == 0) {
current->cap_effective = current->cap_permitted;
}
}
int cap_task_post_setuid (uid_t old_ruid, uid_t old_euid, uid_t old_suid,
int flags)
{
switch (flags) {
case LSM_SETID_RE:
case LSM_SETID_ID:
case LSM_SETID_RES:
/* Copied from kernel/sys.c:setreuid/setuid/setresuid. */
if (!issecure (SECURE_NO_SETUID_FIXUP)) {
cap_emulate_setxuid (old_ruid, old_euid, old_suid);
}
break;
case LSM_SETID_FS:
{
uid_t old_fsuid = old_ruid;
/* Copied from kernel/sys.c:setfsuid. */
/*
* FIXME - is fsuser used for all CAP_FS_MASK capabilities?
* if not, we might be a bit too harsh here.
*/
if (!issecure (SECURE_NO_SETUID_FIXUP)) {
if (old_fsuid == 0 && current->fsuid != 0) {
cap_t (current->cap_effective) &=
~CAP_FS_MASK;
}
if (old_fsuid != 0 && current->fsuid == 0) {
cap_t (current->cap_effective) |=
(cap_t (current->cap_permitted) &
CAP_FS_MASK);
}
}
break;
}
default:
return -EINVAL;
}
return 0;
}
void cap_task_reparent_to_init (struct task_struct *p)
{
p->cap_effective = CAP_INIT_EFF_SET;
p->cap_inheritable = CAP_INIT_INH_SET;
p->cap_permitted = CAP_FULL_SET;
p->keep_capabilities = 0;
return;
}
int cap_syslog (int type)
{
if ((type != 3 && type != 10) && !capable(CAP_SYS_ADMIN))
return -EPERM;
return 0;
}
int cap_vm_enough_memory(long pages)
{
int cap_sys_admin = 0;
if (cap_capable(current, CAP_SYS_ADMIN) == 0)
cap_sys_admin = 1;
return __vm_enough_memory(pages, cap_sys_admin);
}
EXPORT_SYMBOL(cap_capable);
EXPORT_SYMBOL(cap_settime);
EXPORT_SYMBOL(cap_ptrace);
EXPORT_SYMBOL(cap_capget);
EXPORT_SYMBOL(cap_capset_check);
EXPORT_SYMBOL(cap_capset_set);
EXPORT_SYMBOL(cap_bprm_set_security);
EXPORT_SYMBOL(cap_bprm_apply_creds);
EXPORT_SYMBOL(cap_bprm_secureexec);
EXPORT_SYMBOL(cap_inode_setxattr);
EXPORT_SYMBOL(cap_inode_removexattr);
EXPORT_SYMBOL(cap_task_post_setuid);
EXPORT_SYMBOL(cap_task_reparent_to_init);
EXPORT_SYMBOL(cap_syslog);
EXPORT_SYMBOL(cap_vm_enough_memory);
MODULE_DESCRIPTION("Standard Linux Common Capabilities Security Module");
MODULE_LICENSE("GPL");