linux_dsm_epyc7002/fs/sysfs/sysfs.h

256 lines
6.7 KiB
C
Raw Normal View History

/*
* fs/sysfs/sysfs.h - sysfs internal header file
*
* Copyright (c) 2001-3 Patrick Mochel
* Copyright (c) 2007 SUSE Linux Products GmbH
* Copyright (c) 2007 Tejun Heo <teheo@suse.de>
*
* This file is released under the GPLv2.
*/
#include <linux/lockdep.h>
#include <linux/kobject_ns.h>
#include <linux/fs.h>
#include <linux/rbtree.h>
struct sysfs_open_dirent;
/* type-specific structures for sysfs_dirent->s_* union members */
struct sysfs_elem_dir {
struct kobject *kobj;
unsigned long subdirs;
/* children rbtree starts here and goes through sd->s_rb */
struct rb_root children;
};
struct sysfs_elem_symlink {
struct sysfs_dirent *target_sd;
};
struct sysfs_elem_attr {
union {
struct attribute *attr;
struct bin_attribute *bin_attr;
};
struct sysfs_open_dirent *open;
};
struct sysfs_inode_attrs {
struct iattr ia_iattr;
void *ia_secdata;
u32 ia_secdata_len;
};
sysfs: implement sysfs_dirent active reference and immediate disconnect sysfs: implement sysfs_dirent active reference and immediate disconnect Opening a sysfs node references its associated kobject, so userland can arbitrarily prolong lifetime of a kobject which complicates lifetime rules in drivers. This patch implements active reference and makes the association between kobject and sysfs immediately breakable. Now each sysfs_dirent has two reference counts - s_count and s_active. s_count is a regular reference count which guarantees that the containing sysfs_dirent is accessible. As long as s_count reference is held, all sysfs internal fields in sysfs_dirent are accessible including s_parent and s_name. The newly added s_active is active reference count. This is acquired by invoking sysfs_get_active() and it's the caller's responsibility to ensure sysfs_dirent itself is accessible (should be holding s_count one way or the other). Dereferencing sysfs_dirent to access objects out of sysfs proper requires active reference. This includes access to the associated kobjects, attributes and ops. The active references can be drained and denied by calling sysfs_deactivate(). All active sysfs_dirents must be deactivated after deletion but before the default reference is dropped. This enables immediate disconnect of sysfs nodes. Once a sysfs_dirent is deleted, it won't access any entity external to sysfs proper. Because attr/bin_attr ops access both the node itself and its parent for kobject, they need to hold active references to both. sysfs_get/put_active_two() helpers are provided to help grabbing both references. Parent's is acquired first and released last. Unlike other operations, mmapped area lingers on after mmap() is finished and the module implement implementing it and kobj need to stay referenced till all the mapped pages are gone. This is accomplished by holding one set of active references to the bin_attr and its parent if there have been any mmap during lifetime of an openfile. The references are dropped when the openfile is released. This change makes sysfs lifetime rules independent from both kobject's and module's. It not only fixes several race conditions caused by sysfs not holding onto the proper module when referencing kobject, but also helps fixing and simplifying lifetime management in driver model and drivers by taking sysfs out of the equation. Please read the following message for more info. http://article.gmane.org/gmane.linux.kernel/510293 Signed-off-by: Tejun Heo <htejun@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2007-06-14 01:45:16 +07:00
/*
* sysfs_dirent - the building block of sysfs hierarchy. Each and
* every sysfs node is represented by single sysfs_dirent.
*
sysfs: implement sysfs_dirent active reference and immediate disconnect sysfs: implement sysfs_dirent active reference and immediate disconnect Opening a sysfs node references its associated kobject, so userland can arbitrarily prolong lifetime of a kobject which complicates lifetime rules in drivers. This patch implements active reference and makes the association between kobject and sysfs immediately breakable. Now each sysfs_dirent has two reference counts - s_count and s_active. s_count is a regular reference count which guarantees that the containing sysfs_dirent is accessible. As long as s_count reference is held, all sysfs internal fields in sysfs_dirent are accessible including s_parent and s_name. The newly added s_active is active reference count. This is acquired by invoking sysfs_get_active() and it's the caller's responsibility to ensure sysfs_dirent itself is accessible (should be holding s_count one way or the other). Dereferencing sysfs_dirent to access objects out of sysfs proper requires active reference. This includes access to the associated kobjects, attributes and ops. The active references can be drained and denied by calling sysfs_deactivate(). All active sysfs_dirents must be deactivated after deletion but before the default reference is dropped. This enables immediate disconnect of sysfs nodes. Once a sysfs_dirent is deleted, it won't access any entity external to sysfs proper. Because attr/bin_attr ops access both the node itself and its parent for kobject, they need to hold active references to both. sysfs_get/put_active_two() helpers are provided to help grabbing both references. Parent's is acquired first and released last. Unlike other operations, mmapped area lingers on after mmap() is finished and the module implement implementing it and kobj need to stay referenced till all the mapped pages are gone. This is accomplished by holding one set of active references to the bin_attr and its parent if there have been any mmap during lifetime of an openfile. The references are dropped when the openfile is released. This change makes sysfs lifetime rules independent from both kobject's and module's. It not only fixes several race conditions caused by sysfs not holding onto the proper module when referencing kobject, but also helps fixing and simplifying lifetime management in driver model and drivers by taking sysfs out of the equation. Please read the following message for more info. http://article.gmane.org/gmane.linux.kernel/510293 Signed-off-by: Tejun Heo <htejun@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2007-06-14 01:45:16 +07:00
* As long as s_count reference is held, the sysfs_dirent itself is
* accessible. Dereferencing s_elem or any other outer entity
* requires s_active reference.
*/
struct sysfs_dirent {
atomic_t s_count;
atomic_t s_active;
#ifdef CONFIG_DEBUG_LOCK_ALLOC
struct lockdep_map dep_map;
#endif
struct sysfs_dirent *s_parent;
const char *s_name;
struct rb_node s_rb;
union {
struct completion *completion;
struct sysfs_dirent *removed_list;
} u;
const void *s_ns; /* namespace tag */
unsigned int s_hash; /* ns + name hash */
union {
struct sysfs_elem_dir s_dir;
struct sysfs_elem_symlink s_symlink;
struct sysfs_elem_attr s_attr;
};
unsigned short s_flags;
umode_t s_mode;
unsigned int s_ino;
struct sysfs_inode_attrs *s_iattr;
};
#define SD_DEACTIVATED_BIAS INT_MIN
sysfs: implement sysfs_dirent active reference and immediate disconnect sysfs: implement sysfs_dirent active reference and immediate disconnect Opening a sysfs node references its associated kobject, so userland can arbitrarily prolong lifetime of a kobject which complicates lifetime rules in drivers. This patch implements active reference and makes the association between kobject and sysfs immediately breakable. Now each sysfs_dirent has two reference counts - s_count and s_active. s_count is a regular reference count which guarantees that the containing sysfs_dirent is accessible. As long as s_count reference is held, all sysfs internal fields in sysfs_dirent are accessible including s_parent and s_name. The newly added s_active is active reference count. This is acquired by invoking sysfs_get_active() and it's the caller's responsibility to ensure sysfs_dirent itself is accessible (should be holding s_count one way or the other). Dereferencing sysfs_dirent to access objects out of sysfs proper requires active reference. This includes access to the associated kobjects, attributes and ops. The active references can be drained and denied by calling sysfs_deactivate(). All active sysfs_dirents must be deactivated after deletion but before the default reference is dropped. This enables immediate disconnect of sysfs nodes. Once a sysfs_dirent is deleted, it won't access any entity external to sysfs proper. Because attr/bin_attr ops access both the node itself and its parent for kobject, they need to hold active references to both. sysfs_get/put_active_two() helpers are provided to help grabbing both references. Parent's is acquired first and released last. Unlike other operations, mmapped area lingers on after mmap() is finished and the module implement implementing it and kobj need to stay referenced till all the mapped pages are gone. This is accomplished by holding one set of active references to the bin_attr and its parent if there have been any mmap during lifetime of an openfile. The references are dropped when the openfile is released. This change makes sysfs lifetime rules independent from both kobject's and module's. It not only fixes several race conditions caused by sysfs not holding onto the proper module when referencing kobject, but also helps fixing and simplifying lifetime management in driver model and drivers by taking sysfs out of the equation. Please read the following message for more info. http://article.gmane.org/gmane.linux.kernel/510293 Signed-off-by: Tejun Heo <htejun@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2007-06-14 01:45:16 +07:00
#define SYSFS_TYPE_MASK 0x00ff
#define SYSFS_DIR 0x0001
#define SYSFS_KOBJ_ATTR 0x0002
#define SYSFS_KOBJ_BIN_ATTR 0x0004
#define SYSFS_KOBJ_LINK 0x0008
#define SYSFS_COPY_NAME (SYSFS_DIR | SYSFS_KOBJ_LINK)
#define SYSFS_ACTIVE_REF (SYSFS_KOBJ_ATTR | SYSFS_KOBJ_BIN_ATTR)
/* identify any namespace tag on sysfs_dirents */
#define SYSFS_NS_TYPE_MASK 0xf00
#define SYSFS_NS_TYPE_SHIFT 8
#define SYSFS_FLAG_MASK ~(SYSFS_NS_TYPE_MASK|SYSFS_TYPE_MASK)
#define SYSFS_FLAG_REMOVED 0x02000
static inline unsigned int sysfs_type(struct sysfs_dirent *sd)
{
return sd->s_flags & SYSFS_TYPE_MASK;
}
/*
* Return any namespace tags on this dirent.
* enum kobj_ns_type is defined in linux/kobject.h
*/
static inline enum kobj_ns_type sysfs_ns_type(struct sysfs_dirent *sd)
{
return (sd->s_flags & SYSFS_NS_TYPE_MASK) >> SYSFS_NS_TYPE_SHIFT;
}
#ifdef CONFIG_DEBUG_LOCK_ALLOC
sysfs: make sysfs_file_ops() follow ignore_lockdep flag 375b611e60 ("sysfs: remove sysfs_buffer->ops") introduced sysfs_file_ops() which determines the associated file operation of a given sysfs_dirent. As file ops access should be protected by an active reference, the new function includes a lockdep assertion on the sysfs_dirent; unfortunately, I forgot to take attr->ignore_lockdep flag into account and the lockdep assertion trips spuriously for files which opt out from active reference lockdep checking. # cat /sys/devices/pci0000:00/0000:00:01.2/usb1/authorized ------------[ cut here ]------------ WARNING: CPU: 1 PID: 540 at /work/os/work/fs/sysfs/file.c:79 sysfs_file_ops+0x4e/0x60() Modules linked in: CPU: 1 PID: 540 Comm: cat Not tainted 3.11.0-work+ #3 Hardware name: Bochs Bochs, BIOS Bochs 01/01/2011 0000000000000009 ffff880016205c08 ffffffff81ca0131 0000000000000000 ffff880016205c40 ffffffff81096d0d ffff8800166cb898 ffff8800166f6f60 ffffffff8125a220 ffff880011ab1ec0 ffff88000aff0c78 ffff880016205c50 Call Trace: [<ffffffff81ca0131>] dump_stack+0x4e/0x82 [<ffffffff81096d0d>] warn_slowpath_common+0x7d/0xa0 [<ffffffff81096dea>] warn_slowpath_null+0x1a/0x20 [<ffffffff8125994e>] sysfs_file_ops+0x4e/0x60 [<ffffffff8125a274>] sysfs_open_file+0x54/0x300 [<ffffffff811df612>] do_dentry_open.isra.17+0x182/0x280 [<ffffffff811df820>] finish_open+0x30/0x40 [<ffffffff811f0623>] do_last+0x503/0xd90 [<ffffffff811f0f6b>] path_openat+0xbb/0x6d0 [<ffffffff811f23ba>] do_filp_open+0x3a/0x90 [<ffffffff811e09a9>] do_sys_open+0x129/0x220 [<ffffffff811e0abe>] SyS_open+0x1e/0x20 [<ffffffff81caf3c2>] system_call_fastpath+0x16/0x1b ---[ end trace aa48096b111dafdb ]--- Rename fs/sysfs/dir.c::ignore_lockdep() to sysfs_ignore_lockdep() and move it to fs/sysfs/sysfs.h and make sysfs_file_ops() skip lockdep assertion if sysfs_ignore_lockdep() is true. Signed-off-by: Tejun Heo <tj@kernel.org> Reported-by: Yinghai Lu <yinghai@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2013-10-14 20:27:11 +07:00
#define sysfs_dirent_init_lockdep(sd) \
do { \
struct attribute *attr = sd->s_attr.attr; \
struct lock_class_key *key = attr->key; \
if (!key) \
key = &attr->skey; \
\
lockdep_init_map(&sd->dep_map, "s_active", key, 0); \
} while (0)
sysfs: make sysfs_file_ops() follow ignore_lockdep flag 375b611e60 ("sysfs: remove sysfs_buffer->ops") introduced sysfs_file_ops() which determines the associated file operation of a given sysfs_dirent. As file ops access should be protected by an active reference, the new function includes a lockdep assertion on the sysfs_dirent; unfortunately, I forgot to take attr->ignore_lockdep flag into account and the lockdep assertion trips spuriously for files which opt out from active reference lockdep checking. # cat /sys/devices/pci0000:00/0000:00:01.2/usb1/authorized ------------[ cut here ]------------ WARNING: CPU: 1 PID: 540 at /work/os/work/fs/sysfs/file.c:79 sysfs_file_ops+0x4e/0x60() Modules linked in: CPU: 1 PID: 540 Comm: cat Not tainted 3.11.0-work+ #3 Hardware name: Bochs Bochs, BIOS Bochs 01/01/2011 0000000000000009 ffff880016205c08 ffffffff81ca0131 0000000000000000 ffff880016205c40 ffffffff81096d0d ffff8800166cb898 ffff8800166f6f60 ffffffff8125a220 ffff880011ab1ec0 ffff88000aff0c78 ffff880016205c50 Call Trace: [<ffffffff81ca0131>] dump_stack+0x4e/0x82 [<ffffffff81096d0d>] warn_slowpath_common+0x7d/0xa0 [<ffffffff81096dea>] warn_slowpath_null+0x1a/0x20 [<ffffffff8125994e>] sysfs_file_ops+0x4e/0x60 [<ffffffff8125a274>] sysfs_open_file+0x54/0x300 [<ffffffff811df612>] do_dentry_open.isra.17+0x182/0x280 [<ffffffff811df820>] finish_open+0x30/0x40 [<ffffffff811f0623>] do_last+0x503/0xd90 [<ffffffff811f0f6b>] path_openat+0xbb/0x6d0 [<ffffffff811f23ba>] do_filp_open+0x3a/0x90 [<ffffffff811e09a9>] do_sys_open+0x129/0x220 [<ffffffff811e0abe>] SyS_open+0x1e/0x20 [<ffffffff81caf3c2>] system_call_fastpath+0x16/0x1b ---[ end trace aa48096b111dafdb ]--- Rename fs/sysfs/dir.c::ignore_lockdep() to sysfs_ignore_lockdep() and move it to fs/sysfs/sysfs.h and make sysfs_file_ops() skip lockdep assertion if sysfs_ignore_lockdep() is true. Signed-off-by: Tejun Heo <tj@kernel.org> Reported-by: Yinghai Lu <yinghai@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2013-10-14 20:27:11 +07:00
/* Test for attributes that want to ignore lockdep for read-locking */
static inline bool sysfs_ignore_lockdep(struct sysfs_dirent *sd)
{
int type = sysfs_type(sd);
return (type == SYSFS_KOBJ_ATTR || type == SYSFS_KOBJ_BIN_ATTR) &&
sysfs: make sysfs_file_ops() follow ignore_lockdep flag 375b611e60 ("sysfs: remove sysfs_buffer->ops") introduced sysfs_file_ops() which determines the associated file operation of a given sysfs_dirent. As file ops access should be protected by an active reference, the new function includes a lockdep assertion on the sysfs_dirent; unfortunately, I forgot to take attr->ignore_lockdep flag into account and the lockdep assertion trips spuriously for files which opt out from active reference lockdep checking. # cat /sys/devices/pci0000:00/0000:00:01.2/usb1/authorized ------------[ cut here ]------------ WARNING: CPU: 1 PID: 540 at /work/os/work/fs/sysfs/file.c:79 sysfs_file_ops+0x4e/0x60() Modules linked in: CPU: 1 PID: 540 Comm: cat Not tainted 3.11.0-work+ #3 Hardware name: Bochs Bochs, BIOS Bochs 01/01/2011 0000000000000009 ffff880016205c08 ffffffff81ca0131 0000000000000000 ffff880016205c40 ffffffff81096d0d ffff8800166cb898 ffff8800166f6f60 ffffffff8125a220 ffff880011ab1ec0 ffff88000aff0c78 ffff880016205c50 Call Trace: [<ffffffff81ca0131>] dump_stack+0x4e/0x82 [<ffffffff81096d0d>] warn_slowpath_common+0x7d/0xa0 [<ffffffff81096dea>] warn_slowpath_null+0x1a/0x20 [<ffffffff8125994e>] sysfs_file_ops+0x4e/0x60 [<ffffffff8125a274>] sysfs_open_file+0x54/0x300 [<ffffffff811df612>] do_dentry_open.isra.17+0x182/0x280 [<ffffffff811df820>] finish_open+0x30/0x40 [<ffffffff811f0623>] do_last+0x503/0xd90 [<ffffffff811f0f6b>] path_openat+0xbb/0x6d0 [<ffffffff811f23ba>] do_filp_open+0x3a/0x90 [<ffffffff811e09a9>] do_sys_open+0x129/0x220 [<ffffffff811e0abe>] SyS_open+0x1e/0x20 [<ffffffff81caf3c2>] system_call_fastpath+0x16/0x1b ---[ end trace aa48096b111dafdb ]--- Rename fs/sysfs/dir.c::ignore_lockdep() to sysfs_ignore_lockdep() and move it to fs/sysfs/sysfs.h and make sysfs_file_ops() skip lockdep assertion if sysfs_ignore_lockdep() is true. Signed-off-by: Tejun Heo <tj@kernel.org> Reported-by: Yinghai Lu <yinghai@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2013-10-14 20:27:11 +07:00
sd->s_attr.attr->ignore_lockdep;
}
#else
sysfs: make sysfs_file_ops() follow ignore_lockdep flag 375b611e60 ("sysfs: remove sysfs_buffer->ops") introduced sysfs_file_ops() which determines the associated file operation of a given sysfs_dirent. As file ops access should be protected by an active reference, the new function includes a lockdep assertion on the sysfs_dirent; unfortunately, I forgot to take attr->ignore_lockdep flag into account and the lockdep assertion trips spuriously for files which opt out from active reference lockdep checking. # cat /sys/devices/pci0000:00/0000:00:01.2/usb1/authorized ------------[ cut here ]------------ WARNING: CPU: 1 PID: 540 at /work/os/work/fs/sysfs/file.c:79 sysfs_file_ops+0x4e/0x60() Modules linked in: CPU: 1 PID: 540 Comm: cat Not tainted 3.11.0-work+ #3 Hardware name: Bochs Bochs, BIOS Bochs 01/01/2011 0000000000000009 ffff880016205c08 ffffffff81ca0131 0000000000000000 ffff880016205c40 ffffffff81096d0d ffff8800166cb898 ffff8800166f6f60 ffffffff8125a220 ffff880011ab1ec0 ffff88000aff0c78 ffff880016205c50 Call Trace: [<ffffffff81ca0131>] dump_stack+0x4e/0x82 [<ffffffff81096d0d>] warn_slowpath_common+0x7d/0xa0 [<ffffffff81096dea>] warn_slowpath_null+0x1a/0x20 [<ffffffff8125994e>] sysfs_file_ops+0x4e/0x60 [<ffffffff8125a274>] sysfs_open_file+0x54/0x300 [<ffffffff811df612>] do_dentry_open.isra.17+0x182/0x280 [<ffffffff811df820>] finish_open+0x30/0x40 [<ffffffff811f0623>] do_last+0x503/0xd90 [<ffffffff811f0f6b>] path_openat+0xbb/0x6d0 [<ffffffff811f23ba>] do_filp_open+0x3a/0x90 [<ffffffff811e09a9>] do_sys_open+0x129/0x220 [<ffffffff811e0abe>] SyS_open+0x1e/0x20 [<ffffffff81caf3c2>] system_call_fastpath+0x16/0x1b ---[ end trace aa48096b111dafdb ]--- Rename fs/sysfs/dir.c::ignore_lockdep() to sysfs_ignore_lockdep() and move it to fs/sysfs/sysfs.h and make sysfs_file_ops() skip lockdep assertion if sysfs_ignore_lockdep() is true. Signed-off-by: Tejun Heo <tj@kernel.org> Reported-by: Yinghai Lu <yinghai@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2013-10-14 20:27:11 +07:00
#define sysfs_dirent_init_lockdep(sd) do {} while (0)
sysfs: make sysfs_file_ops() follow ignore_lockdep flag 375b611e60 ("sysfs: remove sysfs_buffer->ops") introduced sysfs_file_ops() which determines the associated file operation of a given sysfs_dirent. As file ops access should be protected by an active reference, the new function includes a lockdep assertion on the sysfs_dirent; unfortunately, I forgot to take attr->ignore_lockdep flag into account and the lockdep assertion trips spuriously for files which opt out from active reference lockdep checking. # cat /sys/devices/pci0000:00/0000:00:01.2/usb1/authorized ------------[ cut here ]------------ WARNING: CPU: 1 PID: 540 at /work/os/work/fs/sysfs/file.c:79 sysfs_file_ops+0x4e/0x60() Modules linked in: CPU: 1 PID: 540 Comm: cat Not tainted 3.11.0-work+ #3 Hardware name: Bochs Bochs, BIOS Bochs 01/01/2011 0000000000000009 ffff880016205c08 ffffffff81ca0131 0000000000000000 ffff880016205c40 ffffffff81096d0d ffff8800166cb898 ffff8800166f6f60 ffffffff8125a220 ffff880011ab1ec0 ffff88000aff0c78 ffff880016205c50 Call Trace: [<ffffffff81ca0131>] dump_stack+0x4e/0x82 [<ffffffff81096d0d>] warn_slowpath_common+0x7d/0xa0 [<ffffffff81096dea>] warn_slowpath_null+0x1a/0x20 [<ffffffff8125994e>] sysfs_file_ops+0x4e/0x60 [<ffffffff8125a274>] sysfs_open_file+0x54/0x300 [<ffffffff811df612>] do_dentry_open.isra.17+0x182/0x280 [<ffffffff811df820>] finish_open+0x30/0x40 [<ffffffff811f0623>] do_last+0x503/0xd90 [<ffffffff811f0f6b>] path_openat+0xbb/0x6d0 [<ffffffff811f23ba>] do_filp_open+0x3a/0x90 [<ffffffff811e09a9>] do_sys_open+0x129/0x220 [<ffffffff811e0abe>] SyS_open+0x1e/0x20 [<ffffffff81caf3c2>] system_call_fastpath+0x16/0x1b ---[ end trace aa48096b111dafdb ]--- Rename fs/sysfs/dir.c::ignore_lockdep() to sysfs_ignore_lockdep() and move it to fs/sysfs/sysfs.h and make sysfs_file_ops() skip lockdep assertion if sysfs_ignore_lockdep() is true. Signed-off-by: Tejun Heo <tj@kernel.org> Reported-by: Yinghai Lu <yinghai@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2013-10-14 20:27:11 +07:00
static inline bool sysfs_ignore_lockdep(struct sysfs_dirent *sd)
{
return true;
}
#endif
/*
* Context structure to be used while adding/removing nodes.
*/
sysfs: restructure add/remove paths and fix inode update The original add/remove code had the following problems. * parent's timestamps are updated on dentry instantiation. this is incorrect with reclaimable files. * updating parent's timestamps isn't synchronized. * parent nlink update assumes the inode is accessible which won't be true once directory dentries are made reclaimable. This patch restructures add/remove paths to resolve the above problems. Add/removal are done in the following steps. 1. sysfs_addrm_start() : acquire locks including sysfs_mutex and other resources. 2-a. sysfs_add_one() : add new sd. linking the new sd into the children list is caller's responsibility. 2-b. sysfs_remove_one() : remove a sd. unlinking the sd from the children list is caller's responsibility. 3. sysfs_addrm_finish() : release all resources and clean up. Steps 2-a and/or 2-b can be repeated multiple times. Parent's inode is looked up during sysfs_addrm_start(). If available (always at the moment), it's pinned and nlink is updated as sd's are added and removed. Timestamps are updated during finish if any sd has been added or removed. If parent's inode is not available during start, sysfs_mutex ensures that parent inode is not created till add/remove is complete. All the complexity is contained inside the helper functions. Especially, dentry/inode handling is properly hidden from the rest of sysfs which now mostly operate on sysfs_dirents. As an added bonus, codes which use these helpers to add and remove sysfs_dirents are now more structured and simpler. Signed-off-by: Tejun Heo <htejun@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2007-06-14 02:27:24 +07:00
struct sysfs_addrm_cxt {
struct sysfs_dirent *removed;
};
/*
* mount.c
*/
/*
* Each sb is associated with a set of namespace tags (i.e.
* the network namespace of the task which mounted this sysfs
* instance).
*/
struct sysfs_super_info {
void *ns[KOBJ_NS_TYPES];
};
#define sysfs_info(SB) ((struct sysfs_super_info *)(SB->s_fs_info))
extern struct sysfs_dirent sysfs_root;
extern struct kmem_cache *sysfs_dir_cachep;
/*
* dir.c
*/
extern struct mutex sysfs_mutex;
extern spinlock_t sysfs_symlink_target_lock;
extern const struct dentry_operations sysfs_dentry_ops;
extern const struct file_operations sysfs_dir_operations;
extern const struct inode_operations sysfs_dir_inode_operations;
struct sysfs_dirent *sysfs_get_active(struct sysfs_dirent *sd);
void sysfs_put_active(struct sysfs_dirent *sd);
void sysfs_addrm_start(struct sysfs_addrm_cxt *acxt);
void sysfs_warn_dup(struct sysfs_dirent *parent, const char *name);
int __sysfs_add_one(struct sysfs_addrm_cxt *acxt, struct sysfs_dirent *sd,
struct sysfs_dirent *parent_sd);
int sysfs_add_one(struct sysfs_addrm_cxt *acxt, struct sysfs_dirent *sd,
struct sysfs_dirent *parent_sd);
void sysfs_remove(struct sysfs_dirent *sd);
int sysfs_hash_and_remove(struct sysfs_dirent *dir_sd, const char *name,
const void *ns);
void sysfs_addrm_finish(struct sysfs_addrm_cxt *acxt);
struct sysfs_dirent *sysfs_find_dirent(struct sysfs_dirent *parent_sd,
const unsigned char *name,
const void *ns);
struct sysfs_dirent *sysfs_new_dirent(const char *name, umode_t mode, int type);
void release_sysfs_dirent(struct sysfs_dirent *sd);
int sysfs_create_subdir(struct kobject *kobj, const char *name,
struct sysfs_dirent **p_sd);
int sysfs_rename(struct sysfs_dirent *sd, struct sysfs_dirent *new_parent_sd,
const char *new_name, const void *new_ns);
static inline struct sysfs_dirent *__sysfs_get(struct sysfs_dirent *sd)
{
sysfs: implement sysfs_dirent active reference and immediate disconnect sysfs: implement sysfs_dirent active reference and immediate disconnect Opening a sysfs node references its associated kobject, so userland can arbitrarily prolong lifetime of a kobject which complicates lifetime rules in drivers. This patch implements active reference and makes the association between kobject and sysfs immediately breakable. Now each sysfs_dirent has two reference counts - s_count and s_active. s_count is a regular reference count which guarantees that the containing sysfs_dirent is accessible. As long as s_count reference is held, all sysfs internal fields in sysfs_dirent are accessible including s_parent and s_name. The newly added s_active is active reference count. This is acquired by invoking sysfs_get_active() and it's the caller's responsibility to ensure sysfs_dirent itself is accessible (should be holding s_count one way or the other). Dereferencing sysfs_dirent to access objects out of sysfs proper requires active reference. This includes access to the associated kobjects, attributes and ops. The active references can be drained and denied by calling sysfs_deactivate(). All active sysfs_dirents must be deactivated after deletion but before the default reference is dropped. This enables immediate disconnect of sysfs nodes. Once a sysfs_dirent is deleted, it won't access any entity external to sysfs proper. Because attr/bin_attr ops access both the node itself and its parent for kobject, they need to hold active references to both. sysfs_get/put_active_two() helpers are provided to help grabbing both references. Parent's is acquired first and released last. Unlike other operations, mmapped area lingers on after mmap() is finished and the module implement implementing it and kobj need to stay referenced till all the mapped pages are gone. This is accomplished by holding one set of active references to the bin_attr and its parent if there have been any mmap during lifetime of an openfile. The references are dropped when the openfile is released. This change makes sysfs lifetime rules independent from both kobject's and module's. It not only fixes several race conditions caused by sysfs not holding onto the proper module when referencing kobject, but also helps fixing and simplifying lifetime management in driver model and drivers by taking sysfs out of the equation. Please read the following message for more info. http://article.gmane.org/gmane.linux.kernel/510293 Signed-off-by: Tejun Heo <htejun@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2007-06-14 01:45:16 +07:00
if (sd) {
WARN_ON(!atomic_read(&sd->s_count));
atomic_inc(&sd->s_count);
}
return sd;
}
#define sysfs_get(sd) __sysfs_get(sd)
static inline void __sysfs_put(struct sysfs_dirent *sd)
{
sysfs: implement sysfs_dirent active reference and immediate disconnect sysfs: implement sysfs_dirent active reference and immediate disconnect Opening a sysfs node references its associated kobject, so userland can arbitrarily prolong lifetime of a kobject which complicates lifetime rules in drivers. This patch implements active reference and makes the association between kobject and sysfs immediately breakable. Now each sysfs_dirent has two reference counts - s_count and s_active. s_count is a regular reference count which guarantees that the containing sysfs_dirent is accessible. As long as s_count reference is held, all sysfs internal fields in sysfs_dirent are accessible including s_parent and s_name. The newly added s_active is active reference count. This is acquired by invoking sysfs_get_active() and it's the caller's responsibility to ensure sysfs_dirent itself is accessible (should be holding s_count one way or the other). Dereferencing sysfs_dirent to access objects out of sysfs proper requires active reference. This includes access to the associated kobjects, attributes and ops. The active references can be drained and denied by calling sysfs_deactivate(). All active sysfs_dirents must be deactivated after deletion but before the default reference is dropped. This enables immediate disconnect of sysfs nodes. Once a sysfs_dirent is deleted, it won't access any entity external to sysfs proper. Because attr/bin_attr ops access both the node itself and its parent for kobject, they need to hold active references to both. sysfs_get/put_active_two() helpers are provided to help grabbing both references. Parent's is acquired first and released last. Unlike other operations, mmapped area lingers on after mmap() is finished and the module implement implementing it and kobj need to stay referenced till all the mapped pages are gone. This is accomplished by holding one set of active references to the bin_attr and its parent if there have been any mmap during lifetime of an openfile. The references are dropped when the openfile is released. This change makes sysfs lifetime rules independent from both kobject's and module's. It not only fixes several race conditions caused by sysfs not holding onto the proper module when referencing kobject, but also helps fixing and simplifying lifetime management in driver model and drivers by taking sysfs out of the equation. Please read the following message for more info. http://article.gmane.org/gmane.linux.kernel/510293 Signed-off-by: Tejun Heo <htejun@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2007-06-14 01:45:16 +07:00
if (sd && atomic_dec_and_test(&sd->s_count))
release_sysfs_dirent(sd);
}
#define sysfs_put(sd) __sysfs_put(sd)
/*
* inode.c
*/
struct inode *sysfs_get_inode(struct super_block *sb, struct sysfs_dirent *sd);
void sysfs_evict_inode(struct inode *inode);
int sysfs_sd_setattr(struct sysfs_dirent *sd, struct iattr *iattr);
int sysfs_permission(struct inode *inode, int mask);
int sysfs_setattr(struct dentry *dentry, struct iattr *iattr);
int sysfs_getattr(struct vfsmount *mnt, struct dentry *dentry,
struct kstat *stat);
int sysfs_setxattr(struct dentry *dentry, const char *name, const void *value,
size_t size, int flags);
int sysfs_inode_init(void);
/*
* file.c
*/
extern const struct file_operations sysfs_file_operations;
extern const struct file_operations sysfs_bin_operations;
int sysfs_add_file(struct sysfs_dirent *dir_sd,
const struct attribute *attr, int type);
sysfs: make attr namespace interface less convoluted sysfs ns (namespace) implementation became more convoluted than necessary while trying to hide ns information from visible interface. The relatively recent attr ns support is a good example. * attr ns tag is determined by sysfs_ops->namespace() callback while dir tag is determined by kobj_type->namespace(). The placement is arbitrary. * Instead of performing operations with explicit ns tag, the namespace callback is routed through sysfs_attr_ns(), sysfs_ops->namespace(), class_attr_namespace(), class_attr->namespace(). It's not simpler in any sense. The only thing this convolution does is traversing the whole stack backwards. The namespace callbacks are unncessary because the operations involved are inherently synchronous. The information can be provided in in straight-forward top-down direction and reversing that direction is unnecessary and against basic design principles. This backward interface is unnecessarily convoluted and hinders properly separating out sysfs from driver model / kobject for proper layering. This patch updates attr ns support such that * sysfs_ops->namespace() and class_attr->namespace() are dropped. * sysfs_{create|remove}_file_ns(), which take explicit @ns param, are added and sysfs_{create|remove}_file() are now simple wrappers around the ns aware functions. * ns handling is dropped from sysfs_chmod_file(). Nobody uses it at this point. sysfs_chmod_file_ns() can be added later if necessary. * Explicit @ns is propagated through class_{create|remove}_file_ns() and netdev_class_{create|remove}_file_ns(). * driver/net/bonding which is currently the only user of attr namespace is updated to use netdev_class_{create|remove}_file_ns() with @bh->net as the ns tag instead of using the namespace callback. This patch should be an equivalent conversion without any functional difference. It makes the code easier to follow, reduces lines of code a bit and helps proper separation and layering. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Eric W. Biederman <ebiederm@xmission.com> Cc: Kay Sievers <kay@vrfy.org> Acked-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2013-09-12 09:29:04 +07:00
int sysfs_add_file_mode_ns(struct sysfs_dirent *dir_sd,
const struct attribute *attr, int type,
umode_t amode, const void *ns);
void sysfs_unmap_bin_file(struct sysfs_dirent *sd);
/*
* symlink.c
*/
extern const struct inode_operations sysfs_symlink_inode_operations;
int sysfs_create_link_sd(struct sysfs_dirent *sd, struct kobject *target,
const char *name);