2017-10-10 02:15:40 +07:00
|
|
|
/*
|
|
|
|
* fs/crypto/hooks.c
|
|
|
|
*
|
|
|
|
* Encryption hooks for higher-level filesystem operations.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <linux/ratelimit.h>
|
|
|
|
#include "fscrypt_private.h"
|
|
|
|
|
|
|
|
/**
|
|
|
|
* fscrypt_file_open - prepare to open a possibly-encrypted regular file
|
|
|
|
* @inode: the inode being opened
|
|
|
|
* @filp: the struct file being set up
|
|
|
|
*
|
|
|
|
* Currently, an encrypted regular file can only be opened if its encryption key
|
|
|
|
* is available; access to the raw encrypted contents is not supported.
|
|
|
|
* Therefore, we first set up the inode's encryption key (if not already done)
|
|
|
|
* and return an error if it's unavailable.
|
|
|
|
*
|
|
|
|
* We also verify that if the parent directory (from the path via which the file
|
|
|
|
* is being opened) is encrypted, then the inode being opened uses the same
|
|
|
|
* encryption policy. This is needed as part of the enforcement that all files
|
|
|
|
* in an encrypted directory tree use the same encryption policy, as a
|
|
|
|
* protection against certain types of offline attacks. Note that this check is
|
|
|
|
* needed even when opening an *unencrypted* file, since it's forbidden to have
|
|
|
|
* an unencrypted file in an encrypted directory.
|
|
|
|
*
|
|
|
|
* Return: 0 on success, -ENOKEY if the key is missing, or another -errno code
|
|
|
|
*/
|
|
|
|
int fscrypt_file_open(struct inode *inode, struct file *filp)
|
|
|
|
{
|
|
|
|
int err;
|
|
|
|
struct dentry *dir;
|
|
|
|
|
|
|
|
err = fscrypt_require_key(inode);
|
|
|
|
if (err)
|
|
|
|
return err;
|
|
|
|
|
|
|
|
dir = dget_parent(file_dentry(filp));
|
|
|
|
if (IS_ENCRYPTED(d_inode(dir)) &&
|
|
|
|
!fscrypt_has_permitted_context(d_inode(dir), inode)) {
|
|
|
|
pr_warn_ratelimited("fscrypt: inconsistent encryption contexts: %lu/%lu",
|
|
|
|
d_inode(dir)->i_ino, inode->i_ino);
|
|
|
|
err = -EPERM;
|
|
|
|
}
|
|
|
|
dput(dir);
|
|
|
|
return err;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(fscrypt_file_open);
|
2017-10-10 02:15:41 +07:00
|
|
|
|
|
|
|
int __fscrypt_prepare_link(struct inode *inode, struct inode *dir)
|
|
|
|
{
|
|
|
|
int err;
|
|
|
|
|
|
|
|
err = fscrypt_require_key(dir);
|
|
|
|
if (err)
|
|
|
|
return err;
|
|
|
|
|
|
|
|
if (!fscrypt_has_permitted_context(dir, inode))
|
|
|
|
return -EPERM;
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(__fscrypt_prepare_link);
|
2017-10-10 02:15:42 +07:00
|
|
|
|
|
|
|
int __fscrypt_prepare_rename(struct inode *old_dir, struct dentry *old_dentry,
|
|
|
|
struct inode *new_dir, struct dentry *new_dentry,
|
|
|
|
unsigned int flags)
|
|
|
|
{
|
|
|
|
int err;
|
|
|
|
|
|
|
|
err = fscrypt_require_key(old_dir);
|
|
|
|
if (err)
|
|
|
|
return err;
|
|
|
|
|
|
|
|
err = fscrypt_require_key(new_dir);
|
|
|
|
if (err)
|
|
|
|
return err;
|
|
|
|
|
|
|
|
if (old_dir != new_dir) {
|
|
|
|
if (IS_ENCRYPTED(new_dir) &&
|
|
|
|
!fscrypt_has_permitted_context(new_dir,
|
|
|
|
d_inode(old_dentry)))
|
|
|
|
return -EPERM;
|
|
|
|
|
|
|
|
if ((flags & RENAME_EXCHANGE) &&
|
|
|
|
IS_ENCRYPTED(old_dir) &&
|
|
|
|
!fscrypt_has_permitted_context(old_dir,
|
|
|
|
d_inode(new_dentry)))
|
|
|
|
return -EPERM;
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(__fscrypt_prepare_rename);
|
2017-10-10 02:15:43 +07:00
|
|
|
|
|
|
|
int __fscrypt_prepare_lookup(struct inode *dir, struct dentry *dentry)
|
|
|
|
{
|
|
|
|
int err = fscrypt_get_encryption_info(dir);
|
|
|
|
|
|
|
|
if (err)
|
|
|
|
return err;
|
|
|
|
|
|
|
|
if (fscrypt_has_encryption_key(dir)) {
|
|
|
|
spin_lock(&dentry->d_lock);
|
|
|
|
dentry->d_flags |= DCACHE_ENCRYPTED_WITH_KEY;
|
|
|
|
spin_unlock(&dentry->d_lock);
|
|
|
|
}
|
|
|
|
|
|
|
|
d_set_d_op(dentry, &fscrypt_d_ops);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(__fscrypt_prepare_lookup);
|
fscrypt: new helper functions for ->symlink()
Currently, filesystems supporting fscrypt need to implement some tricky
logic when creating encrypted symlinks, including handling a peculiar
on-disk format (struct fscrypt_symlink_data) and correctly calculating
the size of the encrypted symlink. Introduce helper functions to make
things a bit easier:
- fscrypt_prepare_symlink() computes and validates the size the symlink
target will require on-disk.
- fscrypt_encrypt_symlink() creates the encrypted target if needed.
The new helpers actually fix some subtle bugs. First, when checking
whether the symlink target was too long, filesystems didn't account for
the fact that the NUL padding is meant to be truncated if it would cause
the maximum length to be exceeded, as is done for filenames in
directories. Consequently users would receive ENAMETOOLONG when
creating symlinks close to what is supposed to be the maximum length.
For example, with EXT4 with a 4K block size, the maximum symlink target
length in an encrypted directory is supposed to be 4093 bytes (in
comparison to 4095 in an unencrypted directory), but in
FS_POLICY_FLAGS_PAD_32-mode only up to 4064 bytes were accepted.
Second, symlink targets of "." and ".." were not being encrypted, even
though they should be, as these names are special in *directory entries*
but not in symlink targets. Fortunately, we can fix this simply by
starting to encrypt them, as old kernels already accept them in
encrypted form.
Third, the output string length the filesystems were providing when
doing the actual encryption was incorrect, as it was forgotten to
exclude 'sizeof(struct fscrypt_symlink_data)'. Fortunately though, this
bug didn't make a difference.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
2018-01-06 01:45:01 +07:00
|
|
|
|
|
|
|
int __fscrypt_prepare_symlink(struct inode *dir, unsigned int len,
|
|
|
|
unsigned int max_len,
|
|
|
|
struct fscrypt_str *disk_link)
|
|
|
|
{
|
|
|
|
int err;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* To calculate the size of the encrypted symlink target we need to know
|
|
|
|
* the amount of NUL padding, which is determined by the flags set in
|
|
|
|
* the encryption policy which will be inherited from the directory.
|
|
|
|
* The easiest way to get access to this is to just load the directory's
|
|
|
|
* fscrypt_info, since we'll need it to create the dir_entry anyway.
|
|
|
|
*
|
|
|
|
* Note: in test_dummy_encryption mode, @dir may be unencrypted.
|
|
|
|
*/
|
|
|
|
err = fscrypt_get_encryption_info(dir);
|
|
|
|
if (err)
|
|
|
|
return err;
|
|
|
|
if (!fscrypt_has_encryption_key(dir))
|
|
|
|
return -ENOKEY;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Calculate the size of the encrypted symlink and verify it won't
|
|
|
|
* exceed max_len. Note that for historical reasons, encrypted symlink
|
|
|
|
* targets are prefixed with the ciphertext length, despite this
|
|
|
|
* actually being redundant with i_size. This decreases by 2 bytes the
|
|
|
|
* longest symlink target we can accept.
|
|
|
|
*
|
|
|
|
* We could recover 1 byte by not counting a null terminator, but
|
|
|
|
* counting it (even though it is meaningless for ciphertext) is simpler
|
|
|
|
* for now since filesystems will assume it is there and subtract it.
|
|
|
|
*/
|
2018-01-12 11:30:08 +07:00
|
|
|
if (!fscrypt_fname_encrypted_size(dir, len,
|
|
|
|
max_len - sizeof(struct fscrypt_symlink_data),
|
|
|
|
&disk_link->len))
|
fscrypt: new helper functions for ->symlink()
Currently, filesystems supporting fscrypt need to implement some tricky
logic when creating encrypted symlinks, including handling a peculiar
on-disk format (struct fscrypt_symlink_data) and correctly calculating
the size of the encrypted symlink. Introduce helper functions to make
things a bit easier:
- fscrypt_prepare_symlink() computes and validates the size the symlink
target will require on-disk.
- fscrypt_encrypt_symlink() creates the encrypted target if needed.
The new helpers actually fix some subtle bugs. First, when checking
whether the symlink target was too long, filesystems didn't account for
the fact that the NUL padding is meant to be truncated if it would cause
the maximum length to be exceeded, as is done for filenames in
directories. Consequently users would receive ENAMETOOLONG when
creating symlinks close to what is supposed to be the maximum length.
For example, with EXT4 with a 4K block size, the maximum symlink target
length in an encrypted directory is supposed to be 4093 bytes (in
comparison to 4095 in an unencrypted directory), but in
FS_POLICY_FLAGS_PAD_32-mode only up to 4064 bytes were accepted.
Second, symlink targets of "." and ".." were not being encrypted, even
though they should be, as these names are special in *directory entries*
but not in symlink targets. Fortunately, we can fix this simply by
starting to encrypt them, as old kernels already accept them in
encrypted form.
Third, the output string length the filesystems were providing when
doing the actual encryption was incorrect, as it was forgotten to
exclude 'sizeof(struct fscrypt_symlink_data)'. Fortunately though, this
bug didn't make a difference.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
2018-01-06 01:45:01 +07:00
|
|
|
return -ENAMETOOLONG;
|
2018-01-12 11:30:08 +07:00
|
|
|
disk_link->len += sizeof(struct fscrypt_symlink_data);
|
|
|
|
|
fscrypt: new helper functions for ->symlink()
Currently, filesystems supporting fscrypt need to implement some tricky
logic when creating encrypted symlinks, including handling a peculiar
on-disk format (struct fscrypt_symlink_data) and correctly calculating
the size of the encrypted symlink. Introduce helper functions to make
things a bit easier:
- fscrypt_prepare_symlink() computes and validates the size the symlink
target will require on-disk.
- fscrypt_encrypt_symlink() creates the encrypted target if needed.
The new helpers actually fix some subtle bugs. First, when checking
whether the symlink target was too long, filesystems didn't account for
the fact that the NUL padding is meant to be truncated if it would cause
the maximum length to be exceeded, as is done for filenames in
directories. Consequently users would receive ENAMETOOLONG when
creating symlinks close to what is supposed to be the maximum length.
For example, with EXT4 with a 4K block size, the maximum symlink target
length in an encrypted directory is supposed to be 4093 bytes (in
comparison to 4095 in an unencrypted directory), but in
FS_POLICY_FLAGS_PAD_32-mode only up to 4064 bytes were accepted.
Second, symlink targets of "." and ".." were not being encrypted, even
though they should be, as these names are special in *directory entries*
but not in symlink targets. Fortunately, we can fix this simply by
starting to encrypt them, as old kernels already accept them in
encrypted form.
Third, the output string length the filesystems were providing when
doing the actual encryption was incorrect, as it was forgotten to
exclude 'sizeof(struct fscrypt_symlink_data)'. Fortunately though, this
bug didn't make a difference.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
2018-01-06 01:45:01 +07:00
|
|
|
disk_link->name = NULL;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(__fscrypt_prepare_symlink);
|
|
|
|
|
|
|
|
int __fscrypt_encrypt_symlink(struct inode *inode, const char *target,
|
|
|
|
unsigned int len, struct fscrypt_str *disk_link)
|
|
|
|
{
|
|
|
|
int err;
|
2018-01-20 04:45:24 +07:00
|
|
|
struct qstr iname = QSTR_INIT(target, len);
|
fscrypt: new helper functions for ->symlink()
Currently, filesystems supporting fscrypt need to implement some tricky
logic when creating encrypted symlinks, including handling a peculiar
on-disk format (struct fscrypt_symlink_data) and correctly calculating
the size of the encrypted symlink. Introduce helper functions to make
things a bit easier:
- fscrypt_prepare_symlink() computes and validates the size the symlink
target will require on-disk.
- fscrypt_encrypt_symlink() creates the encrypted target if needed.
The new helpers actually fix some subtle bugs. First, when checking
whether the symlink target was too long, filesystems didn't account for
the fact that the NUL padding is meant to be truncated if it would cause
the maximum length to be exceeded, as is done for filenames in
directories. Consequently users would receive ENAMETOOLONG when
creating symlinks close to what is supposed to be the maximum length.
For example, with EXT4 with a 4K block size, the maximum symlink target
length in an encrypted directory is supposed to be 4093 bytes (in
comparison to 4095 in an unencrypted directory), but in
FS_POLICY_FLAGS_PAD_32-mode only up to 4064 bytes were accepted.
Second, symlink targets of "." and ".." were not being encrypted, even
though they should be, as these names are special in *directory entries*
but not in symlink targets. Fortunately, we can fix this simply by
starting to encrypt them, as old kernels already accept them in
encrypted form.
Third, the output string length the filesystems were providing when
doing the actual encryption was incorrect, as it was forgotten to
exclude 'sizeof(struct fscrypt_symlink_data)'. Fortunately though, this
bug didn't make a difference.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
2018-01-06 01:45:01 +07:00
|
|
|
struct fscrypt_symlink_data *sd;
|
|
|
|
unsigned int ciphertext_len;
|
|
|
|
|
|
|
|
err = fscrypt_require_key(inode);
|
|
|
|
if (err)
|
|
|
|
return err;
|
|
|
|
|
|
|
|
if (disk_link->name) {
|
|
|
|
/* filesystem-provided buffer */
|
|
|
|
sd = (struct fscrypt_symlink_data *)disk_link->name;
|
|
|
|
} else {
|
|
|
|
sd = kmalloc(disk_link->len, GFP_NOFS);
|
|
|
|
if (!sd)
|
|
|
|
return -ENOMEM;
|
|
|
|
}
|
|
|
|
ciphertext_len = disk_link->len - sizeof(*sd);
|
|
|
|
sd->len = cpu_to_le16(ciphertext_len);
|
|
|
|
|
2018-01-12 11:30:08 +07:00
|
|
|
err = fname_encrypt(inode, &iname, sd->encrypted_path, ciphertext_len);
|
fscrypt: new helper functions for ->symlink()
Currently, filesystems supporting fscrypt need to implement some tricky
logic when creating encrypted symlinks, including handling a peculiar
on-disk format (struct fscrypt_symlink_data) and correctly calculating
the size of the encrypted symlink. Introduce helper functions to make
things a bit easier:
- fscrypt_prepare_symlink() computes and validates the size the symlink
target will require on-disk.
- fscrypt_encrypt_symlink() creates the encrypted target if needed.
The new helpers actually fix some subtle bugs. First, when checking
whether the symlink target was too long, filesystems didn't account for
the fact that the NUL padding is meant to be truncated if it would cause
the maximum length to be exceeded, as is done for filenames in
directories. Consequently users would receive ENAMETOOLONG when
creating symlinks close to what is supposed to be the maximum length.
For example, with EXT4 with a 4K block size, the maximum symlink target
length in an encrypted directory is supposed to be 4093 bytes (in
comparison to 4095 in an unencrypted directory), but in
FS_POLICY_FLAGS_PAD_32-mode only up to 4064 bytes were accepted.
Second, symlink targets of "." and ".." were not being encrypted, even
though they should be, as these names are special in *directory entries*
but not in symlink targets. Fortunately, we can fix this simply by
starting to encrypt them, as old kernels already accept them in
encrypted form.
Third, the output string length the filesystems were providing when
doing the actual encryption was incorrect, as it was forgotten to
exclude 'sizeof(struct fscrypt_symlink_data)'. Fortunately though, this
bug didn't make a difference.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
2018-01-06 01:45:01 +07:00
|
|
|
if (err) {
|
|
|
|
if (!disk_link->name)
|
|
|
|
kfree(sd);
|
|
|
|
return err;
|
|
|
|
}
|
|
|
|
/*
|
|
|
|
* Null-terminating the ciphertext doesn't make sense, but we still
|
|
|
|
* count the null terminator in the length, so we might as well
|
|
|
|
* initialize it just in case the filesystem writes it out.
|
|
|
|
*/
|
|
|
|
sd->encrypted_path[ciphertext_len] = '\0';
|
|
|
|
|
|
|
|
if (!disk_link->name)
|
|
|
|
disk_link->name = (unsigned char *)sd;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(__fscrypt_encrypt_symlink);
|
2018-01-06 01:45:02 +07:00
|
|
|
|
|
|
|
/**
|
|
|
|
* fscrypt_get_symlink - get the target of an encrypted symlink
|
|
|
|
* @inode: the symlink inode
|
|
|
|
* @caddr: the on-disk contents of the symlink
|
|
|
|
* @max_size: size of @caddr buffer
|
|
|
|
* @done: if successful, will be set up to free the returned target
|
|
|
|
*
|
|
|
|
* If the symlink's encryption key is available, we decrypt its target.
|
|
|
|
* Otherwise, we encode its target for presentation.
|
|
|
|
*
|
|
|
|
* This may sleep, so the filesystem must have dropped out of RCU mode already.
|
|
|
|
*
|
|
|
|
* Return: the presentable symlink target or an ERR_PTR()
|
|
|
|
*/
|
|
|
|
const char *fscrypt_get_symlink(struct inode *inode, const void *caddr,
|
|
|
|
unsigned int max_size,
|
|
|
|
struct delayed_call *done)
|
|
|
|
{
|
|
|
|
const struct fscrypt_symlink_data *sd;
|
|
|
|
struct fscrypt_str cstr, pstr;
|
|
|
|
int err;
|
|
|
|
|
|
|
|
/* This is for encrypted symlinks only */
|
|
|
|
if (WARN_ON(!IS_ENCRYPTED(inode)))
|
|
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Try to set up the symlink's encryption key, but we can continue
|
|
|
|
* regardless of whether the key is available or not.
|
|
|
|
*/
|
|
|
|
err = fscrypt_get_encryption_info(inode);
|
|
|
|
if (err)
|
|
|
|
return ERR_PTR(err);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* For historical reasons, encrypted symlink targets are prefixed with
|
|
|
|
* the ciphertext length, even though this is redundant with i_size.
|
|
|
|
*/
|
|
|
|
|
|
|
|
if (max_size < sizeof(*sd))
|
|
|
|
return ERR_PTR(-EUCLEAN);
|
|
|
|
sd = caddr;
|
|
|
|
cstr.name = (unsigned char *)sd->encrypted_path;
|
|
|
|
cstr.len = le16_to_cpu(sd->len);
|
|
|
|
|
|
|
|
if (cstr.len == 0)
|
|
|
|
return ERR_PTR(-EUCLEAN);
|
|
|
|
|
|
|
|
if (cstr.len + sizeof(*sd) - 1 > max_size)
|
|
|
|
return ERR_PTR(-EUCLEAN);
|
|
|
|
|
|
|
|
err = fscrypt_fname_alloc_buffer(inode, cstr.len, &pstr);
|
|
|
|
if (err)
|
|
|
|
return ERR_PTR(err);
|
|
|
|
|
|
|
|
err = fscrypt_fname_disk_to_usr(inode, 0, 0, &cstr, &pstr);
|
|
|
|
if (err)
|
|
|
|
goto err_kfree;
|
|
|
|
|
|
|
|
err = -EUCLEAN;
|
|
|
|
if (pstr.name[0] == '\0')
|
|
|
|
goto err_kfree;
|
|
|
|
|
|
|
|
pstr.name[pstr.len] = '\0';
|
|
|
|
set_delayed_call(done, kfree_link, pstr.name);
|
|
|
|
return pstr.name;
|
|
|
|
|
|
|
|
err_kfree:
|
|
|
|
kfree(pstr.name);
|
|
|
|
return ERR_PTR(err);
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(fscrypt_get_symlink);
|