linux_dsm_epyc7002/net/rds/page.c

222 lines
5.9 KiB
C
Raw Normal View History

/*
* Copyright (c) 2006 Oracle. All rights reserved.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* OpenIB.org BSD license below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
*/
#include <linux/highmem.h>
#include "rds.h"
struct rds_page_remainder {
struct page *r_page;
unsigned long r_offset;
};
DEFINE_PER_CPU(struct rds_page_remainder, rds_page_remainders) ____cacheline_aligned;
/*
* returns 0 on success or -errno on failure.
*
* We don't have to worry about flush_dcache_page() as this only works
* with private pages. If, say, we were to do directed receive to pinned
* user pages we'd have to worry more about cache coherence. (Though
* the flush_dcache_page() in get_user_pages() would probably be enough).
*/
int rds_page_copy_user(struct page *page, unsigned long offset,
void __user *ptr, unsigned long bytes,
int to_user)
{
unsigned long ret;
void *addr;
if (to_user)
rds_stats_add(s_copy_to_user, bytes);
else
rds_stats_add(s_copy_from_user, bytes);
addr = kmap_atomic(page, KM_USER0);
if (to_user)
ret = __copy_to_user_inatomic(ptr, addr + offset, bytes);
else
ret = __copy_from_user_inatomic(addr + offset, ptr, bytes);
kunmap_atomic(addr, KM_USER0);
if (ret) {
addr = kmap(page);
if (to_user)
ret = copy_to_user(ptr, addr + offset, bytes);
else
ret = copy_from_user(addr + offset, ptr, bytes);
kunmap(page);
if (ret)
return -EFAULT;
}
return 0;
}
/*
* Message allocation uses this to build up regions of a message.
*
* @bytes - the number of bytes needed.
* @gfp - the waiting behaviour of the allocation
*
* @gfp is always ored with __GFP_HIGHMEM. Callers must be prepared to
* kmap the pages, etc.
*
* If @bytes is at least a full page then this just returns a page from
* alloc_page().
*
* If @bytes is a partial page then this stores the unused region of the
* page in a per-cpu structure. Future partial-page allocations may be
* satisfied from that cached region. This lets us waste less memory on
* small allocations with minimal complexity. It works because the transmit
* path passes read-only page regions down to devices. They hold a page
* reference until they are done with the region.
*/
int rds_page_remainder_alloc(struct scatterlist *scat, unsigned long bytes,
gfp_t gfp)
{
struct rds_page_remainder *rem;
unsigned long flags;
struct page *page;
int ret;
gfp |= __GFP_HIGHMEM;
/* jump straight to allocation if we're trying for a huge page */
if (bytes >= PAGE_SIZE) {
page = alloc_page(gfp);
if (page == NULL) {
ret = -ENOMEM;
} else {
sg_set_page(scat, page, PAGE_SIZE, 0);
ret = 0;
}
goto out;
}
rem = &per_cpu(rds_page_remainders, get_cpu());
local_irq_save(flags);
while (1) {
/* avoid a tiny region getting stuck by tossing it */
if (rem->r_page && bytes > (PAGE_SIZE - rem->r_offset)) {
rds_stats_inc(s_page_remainder_miss);
__free_page(rem->r_page);
rem->r_page = NULL;
}
/* hand out a fragment from the cached page */
if (rem->r_page && bytes <= (PAGE_SIZE - rem->r_offset)) {
sg_set_page(scat, rem->r_page, bytes, rem->r_offset);
get_page(sg_page(scat));
if (rem->r_offset != 0)
rds_stats_inc(s_page_remainder_hit);
rem->r_offset += bytes;
if (rem->r_offset == PAGE_SIZE) {
__free_page(rem->r_page);
rem->r_page = NULL;
}
ret = 0;
break;
}
/* alloc if there is nothing for us to use */
local_irq_restore(flags);
put_cpu();
page = alloc_page(gfp);
rem = &per_cpu(rds_page_remainders, get_cpu());
local_irq_save(flags);
if (page == NULL) {
ret = -ENOMEM;
break;
}
/* did someone race to fill the remainder before us? */
if (rem->r_page) {
__free_page(page);
continue;
}
/* otherwise install our page and loop around to alloc */
rem->r_page = page;
rem->r_offset = 0;
}
local_irq_restore(flags);
put_cpu();
out:
rdsdebug("bytes %lu ret %d %p %u %u\n", bytes, ret,
ret ? NULL : sg_page(scat), ret ? 0 : scat->offset,
ret ? 0 : scat->length);
return ret;
}
static int rds_page_remainder_cpu_notify(struct notifier_block *self,
unsigned long action, void *hcpu)
{
struct rds_page_remainder *rem;
long cpu = (long)hcpu;
rem = &per_cpu(rds_page_remainders, cpu);
rdsdebug("cpu %ld action 0x%lx\n", cpu, action);
switch (action) {
case CPU_DEAD:
if (rem->r_page)
__free_page(rem->r_page);
rem->r_page = NULL;
break;
}
return 0;
}
static struct notifier_block rds_page_remainder_nb = {
.notifier_call = rds_page_remainder_cpu_notify,
};
void rds_page_exit(void)
{
int i;
for_each_possible_cpu(i)
rds_page_remainder_cpu_notify(&rds_page_remainder_nb,
(unsigned long)CPU_DEAD,
(void *)(long)i);
}