linux_dsm_epyc7002/include/linux/io-mapping.h

190 lines
3.7 KiB
C
Raw Normal View History

/* SPDX-License-Identifier: GPL-2.0-only */
/*
* Copyright © 2008 Keith Packard <keithp@keithp.com>
*/
#ifndef _LINUX_IO_MAPPING_H
#define _LINUX_IO_MAPPING_H
#include <linux/types.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 15:04:11 +07:00
#include <linux/slab.h>
#include <linux/bug.h>
#include <linux/io.h>
#include <asm/page.h>
/*
* The io_mapping mechanism provides an abstraction for mapping
* individual pages from an io device to the CPU in an efficient fashion.
*
* See Documentation/driver-api/io-mapping.rst
*/
struct io_mapping {
resource_size_t base;
unsigned long size;
pgprot_t prot;
void __iomem *iomem;
};
#ifdef CONFIG_HAVE_ATOMIC_IOMAP
#include <linux/pfn.h>
#include <asm/iomap.h>
/*
* For small address space machines, mapping large objects
* into the kernel virtual space isn't practical. Where
* available, use fixmap support to dynamically map pages
* of the object at run time.
*/
static inline struct io_mapping *
io_mapping_init_wc(struct io_mapping *iomap,
resource_size_t base,
unsigned long size)
{
pgprot_t prot;
if (iomap_create_wc(base, size, &prot))
return NULL;
iomap->base = base;
iomap->size = size;
iomap->prot = prot;
return iomap;
}
static inline void
io_mapping_fini(struct io_mapping *mapping)
{
iomap_free(mapping->base, mapping->size);
}
/* Atomic map/unmap */
static inline void __iomem *
io_mapping_map_atomic_wc(struct io_mapping *mapping,
mm: stack based kmap_atomic() Keep the current interface but ignore the KM_type and use a stack based approach. The advantage is that we get rid of crappy code like: #define __KM_PTE \ (in_nmi() ? KM_NMI_PTE : \ in_irq() ? KM_IRQ_PTE : \ KM_PTE0) and in general can stop worrying about what context we're in and what kmap slots might be appropriate for that. The downside is that FRV kmap_atomic() gets more expensive. For now we use a CPP trick suggested by Andrew: #define kmap_atomic(page, args...) __kmap_atomic(page) to avoid having to touch all kmap_atomic() users in a single patch. [ not compiled on: - mn10300: the arch doesn't actually build with highmem to begin with ] [akpm@linux-foundation.org: coding-style fixes] [akpm@linux-foundation.org: fix up drivers/gpu/drm/i915/intel_overlay.c] Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Acked-by: Chris Metcalf <cmetcalf@tilera.com> Cc: David Howells <dhowells@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Russell King <rmk@arm.linux.org.uk> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: David Miller <davem@davemloft.net> Cc: Paul Mackerras <paulus@samba.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Dave Airlie <airlied@linux.ie> Cc: Li Zefan <lizf@cn.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-10-27 04:21:51 +07:00
unsigned long offset)
{
resource_size_t phys_addr;
BUG_ON(offset >= mapping->size);
phys_addr = mapping->base + offset;
return iomap_atomic_prot_pfn(PHYS_PFN(phys_addr), mapping->prot);
}
static inline void
mm: stack based kmap_atomic() Keep the current interface but ignore the KM_type and use a stack based approach. The advantage is that we get rid of crappy code like: #define __KM_PTE \ (in_nmi() ? KM_NMI_PTE : \ in_irq() ? KM_IRQ_PTE : \ KM_PTE0) and in general can stop worrying about what context we're in and what kmap slots might be appropriate for that. The downside is that FRV kmap_atomic() gets more expensive. For now we use a CPP trick suggested by Andrew: #define kmap_atomic(page, args...) __kmap_atomic(page) to avoid having to touch all kmap_atomic() users in a single patch. [ not compiled on: - mn10300: the arch doesn't actually build with highmem to begin with ] [akpm@linux-foundation.org: coding-style fixes] [akpm@linux-foundation.org: fix up drivers/gpu/drm/i915/intel_overlay.c] Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Acked-by: Chris Metcalf <cmetcalf@tilera.com> Cc: David Howells <dhowells@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Russell King <rmk@arm.linux.org.uk> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: David Miller <davem@davemloft.net> Cc: Paul Mackerras <paulus@samba.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Dave Airlie <airlied@linux.ie> Cc: Li Zefan <lizf@cn.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-10-27 04:21:51 +07:00
io_mapping_unmap_atomic(void __iomem *vaddr)
{
mm: stack based kmap_atomic() Keep the current interface but ignore the KM_type and use a stack based approach. The advantage is that we get rid of crappy code like: #define __KM_PTE \ (in_nmi() ? KM_NMI_PTE : \ in_irq() ? KM_IRQ_PTE : \ KM_PTE0) and in general can stop worrying about what context we're in and what kmap slots might be appropriate for that. The downside is that FRV kmap_atomic() gets more expensive. For now we use a CPP trick suggested by Andrew: #define kmap_atomic(page, args...) __kmap_atomic(page) to avoid having to touch all kmap_atomic() users in a single patch. [ not compiled on: - mn10300: the arch doesn't actually build with highmem to begin with ] [akpm@linux-foundation.org: coding-style fixes] [akpm@linux-foundation.org: fix up drivers/gpu/drm/i915/intel_overlay.c] Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Acked-by: Chris Metcalf <cmetcalf@tilera.com> Cc: David Howells <dhowells@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Russell King <rmk@arm.linux.org.uk> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: David Miller <davem@davemloft.net> Cc: Paul Mackerras <paulus@samba.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Dave Airlie <airlied@linux.ie> Cc: Li Zefan <lizf@cn.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-10-27 04:21:51 +07:00
iounmap_atomic(vaddr);
}
static inline void __iomem *
io_mapping_map_wc(struct io_mapping *mapping,
unsigned long offset,
unsigned long size)
{
resource_size_t phys_addr;
BUG_ON(offset >= mapping->size);
phys_addr = mapping->base + offset;
return ioremap_wc(phys_addr, size);
}
static inline void
io_mapping_unmap(void __iomem *vaddr)
{
iounmap(vaddr);
}
#else
#include <linux/uaccess.h>
#include <asm/pgtable.h>
/* Create the io_mapping object*/
static inline struct io_mapping *
io_mapping_init_wc(struct io_mapping *iomap,
resource_size_t base,
unsigned long size)
{
iomap->base = base;
iomap->size = size;
iomap->iomem = ioremap_wc(base, size);
#if defined(pgprot_noncached_wc) /* archs can't agree on a name ... */
iomap->prot = pgprot_noncached_wc(PAGE_KERNEL);
#elif defined(pgprot_writecombine)
iomap->prot = pgprot_writecombine(PAGE_KERNEL);
#else
iomap->prot = pgprot_noncached(PAGE_KERNEL);
#endif
return iomap;
}
static inline void
io_mapping_fini(struct io_mapping *mapping)
{
iounmap(mapping->iomem);
}
/* Non-atomic map/unmap */
static inline void __iomem *
io_mapping_map_wc(struct io_mapping *mapping,
unsigned long offset,
unsigned long size)
{
return mapping->iomem + offset;
}
static inline void
io_mapping_unmap(void __iomem *vaddr)
{
}
/* Atomic map/unmap */
static inline void __iomem *
io_mapping_map_atomic_wc(struct io_mapping *mapping,
mm: stack based kmap_atomic() Keep the current interface but ignore the KM_type and use a stack based approach. The advantage is that we get rid of crappy code like: #define __KM_PTE \ (in_nmi() ? KM_NMI_PTE : \ in_irq() ? KM_IRQ_PTE : \ KM_PTE0) and in general can stop worrying about what context we're in and what kmap slots might be appropriate for that. The downside is that FRV kmap_atomic() gets more expensive. For now we use a CPP trick suggested by Andrew: #define kmap_atomic(page, args...) __kmap_atomic(page) to avoid having to touch all kmap_atomic() users in a single patch. [ not compiled on: - mn10300: the arch doesn't actually build with highmem to begin with ] [akpm@linux-foundation.org: coding-style fixes] [akpm@linux-foundation.org: fix up drivers/gpu/drm/i915/intel_overlay.c] Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Acked-by: Chris Metcalf <cmetcalf@tilera.com> Cc: David Howells <dhowells@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Russell King <rmk@arm.linux.org.uk> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: David Miller <davem@davemloft.net> Cc: Paul Mackerras <paulus@samba.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Dave Airlie <airlied@linux.ie> Cc: Li Zefan <lizf@cn.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-10-27 04:21:51 +07:00
unsigned long offset)
{
preempt_disable();
pagefault_disable();
return io_mapping_map_wc(mapping, offset, PAGE_SIZE);
}
static inline void
mm: stack based kmap_atomic() Keep the current interface but ignore the KM_type and use a stack based approach. The advantage is that we get rid of crappy code like: #define __KM_PTE \ (in_nmi() ? KM_NMI_PTE : \ in_irq() ? KM_IRQ_PTE : \ KM_PTE0) and in general can stop worrying about what context we're in and what kmap slots might be appropriate for that. The downside is that FRV kmap_atomic() gets more expensive. For now we use a CPP trick suggested by Andrew: #define kmap_atomic(page, args...) __kmap_atomic(page) to avoid having to touch all kmap_atomic() users in a single patch. [ not compiled on: - mn10300: the arch doesn't actually build with highmem to begin with ] [akpm@linux-foundation.org: coding-style fixes] [akpm@linux-foundation.org: fix up drivers/gpu/drm/i915/intel_overlay.c] Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Acked-by: Chris Metcalf <cmetcalf@tilera.com> Cc: David Howells <dhowells@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Russell King <rmk@arm.linux.org.uk> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: David Miller <davem@davemloft.net> Cc: Paul Mackerras <paulus@samba.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Dave Airlie <airlied@linux.ie> Cc: Li Zefan <lizf@cn.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-10-27 04:21:51 +07:00
io_mapping_unmap_atomic(void __iomem *vaddr)
{
io_mapping_unmap(vaddr);
pagefault_enable();
preempt_enable();
}
#endif /* HAVE_ATOMIC_IOMAP */
static inline struct io_mapping *
io_mapping_create_wc(resource_size_t base,
unsigned long size)
{
struct io_mapping *iomap;
iomap = kmalloc(sizeof(*iomap), GFP_KERNEL);
if (!iomap)
return NULL;
if (!io_mapping_init_wc(iomap, base, size)) {
kfree(iomap);
return NULL;
}
return iomap;
}
static inline void
io_mapping_free(struct io_mapping *iomap)
{
io_mapping_fini(iomap);
kfree(iomap);
}
#endif /* _LINUX_IO_MAPPING_H */