linux_dsm_epyc7002/drivers/s390/block/dasd_int.h

681 lines
22 KiB
C
Raw Normal View History

/*
* File...........: linux/drivers/s390/block/dasd_int.h
* Author(s)......: Holger Smolinski <Holger.Smolinski@de.ibm.com>
* Horst Hummel <Horst.Hummel@de.ibm.com>
* Martin Schwidefsky <schwidefsky@de.ibm.com>
* Bugreports.to..: <Linux390@de.ibm.com>
* Copyright IBM Corp. 1999, 2009
*/
#ifndef DASD_INT_H
#define DASD_INT_H
#ifdef __KERNEL__
/* we keep old device allocation scheme; IOW, minors are still in 0..255 */
#define DASD_PER_MAJOR (1U << (MINORBITS - DASD_PARTN_BITS))
#define DASD_PARTN_MASK ((1 << DASD_PARTN_BITS) - 1)
/*
* States a dasd device can have:
* new: the dasd_device structure is allocated.
* known: the discipline for the device is identified.
* basic: the device can do basic i/o.
* unfmt: the device could not be analyzed (format is unknown).
* ready: partition detection is done and the device is can do block io.
* online: the device accepts requests from the block device queue.
*
* Things to do for startup state transitions:
* new -> known: find discipline for the device and create devfs entries.
* known -> basic: request irq line for the device.
* basic -> ready: do the initial analysis, e.g. format detection,
* do block device setup and detect partitions.
* ready -> online: schedule the device tasklet.
* Things to do for shutdown state transitions:
* online -> ready: just set the new device state.
* ready -> basic: flush requests from the block device layer, clear
* partition information and reset format information.
* basic -> known: terminate all requests and free irq.
* known -> new: remove devfs entries and forget discipline.
*/
#define DASD_STATE_NEW 0
#define DASD_STATE_KNOWN 1
#define DASD_STATE_BASIC 2
#define DASD_STATE_UNFMT 3
#define DASD_STATE_READY 4
#define DASD_STATE_ONLINE 5
#include <linux/module.h>
#include <linux/wait.h>
#include <linux/blkdev.h>
#include <linux/genhd.h>
#include <linux/hdreg.h>
#include <linux/interrupt.h>
#include <linux/log2.h>
#include <asm/ccwdev.h>
#include <linux/workqueue.h>
#include <asm/debug.h>
#include <asm/dasd.h>
#include <asm/idals.h>
/* DASD discipline magic */
#define DASD_ECKD_MAGIC 0xC5C3D2C4
#define DASD_DIAG_MAGIC 0xC4C9C1C7
#define DASD_FBA_MAGIC 0xC6C2C140
/*
* SECTION: Type definitions
*/
struct dasd_device;
[S390] dasd: add hyper PAV support to DASD device driver, part 1 Parallel access volumes (PAV) is a storage server feature, that allows to start multiple channel programs on the same DASD in parallel. It defines alias devices which can be used as alternative paths to the same disk. With the old base PAV support we only needed rudimentary functionality in the DASD device driver. As the mapping between base and alias devices was static, we just had to export an identifier (uid) and could leave the combining of devices to external layers like a device mapper multipath. Now hyper PAV removes the requirement to dedicate alias devices to specific base devices. Instead each alias devices can be combined with multiple base device on a per request basis. This requires full support by the DASD device driver as now each channel program itself has to identify the target base device. The changes to the dasd device driver and the ECKD discipline are: - Separate subchannel device representation (dasd_device) from block device representation (dasd_block). Only base devices are block devices. - Gather information about base and alias devices and possible combinations. - For each request decide which dasd_device should be used (base or alias) and build specific channel program. - Support summary unit checks, which allow the storage server to upgrade / downgrade between base and hyper PAV at runtime (support is mandatory). Signed-off-by: Stefan Weinhuber <wein@de.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2008-01-26 20:11:23 +07:00
struct dasd_block;
/* BIT DEFINITIONS FOR SENSE DATA */
#define DASD_SENSE_BIT_0 0x80
#define DASD_SENSE_BIT_1 0x40
#define DASD_SENSE_BIT_2 0x20
#define DASD_SENSE_BIT_3 0x10
/* BIT DEFINITIONS FOR SIM SENSE */
#define DASD_SIM_SENSE 0x0F
#define DASD_SIM_MSG_TO_OP 0x03
#define DASD_SIM_LOG 0x0C
/*
* SECTION: MACROs for klogd and s390 debug feature (dbf)
*/
#define DBF_DEV_EVENT(d_level, d_device, d_str, d_data...) \
do { \
debug_sprintf_event(d_device->debug_area, \
d_level, \
d_str "\n", \
d_data); \
} while(0)
#define DBF_DEV_EXC(d_level, d_device, d_str, d_data...) \
do { \
debug_sprintf_exception(d_device->debug_area, \
d_level, \
d_str "\n", \
d_data); \
} while(0)
#define DBF_EVENT(d_level, d_str, d_data...)\
do { \
debug_sprintf_event(dasd_debug_area, \
d_level,\
d_str "\n", \
d_data); \
} while(0)
#define DBF_EXC(d_level, d_str, d_data...)\
do { \
debug_sprintf_exception(dasd_debug_area, \
d_level,\
d_str "\n", \
d_data); \
} while(0)
/* limit size for an errorstring */
#define ERRORLENGTH 30
/* definition of dbf debug levels */
#define DBF_EMERG 0 /* system is unusable */
#define DBF_ALERT 1 /* action must be taken immediately */
#define DBF_CRIT 2 /* critical conditions */
#define DBF_ERR 3 /* error conditions */
#define DBF_WARNING 4 /* warning conditions */
#define DBF_NOTICE 5 /* normal but significant condition */
#define DBF_INFO 6 /* informational */
#define DBF_DEBUG 6 /* debug-level messages */
/* messages to be written via klogd and dbf */
#define DEV_MESSAGE(d_loglevel,d_device,d_string,d_args...)\
do { \
printk(d_loglevel PRINTK_HEADER " %s: " d_string "\n", \
dev_name(&d_device->cdev->dev), d_args); \
DBF_DEV_EVENT(DBF_ALERT, d_device, d_string, d_args); \
} while(0)
#define MESSAGE(d_loglevel,d_string,d_args...)\
do { \
printk(d_loglevel PRINTK_HEADER " " d_string "\n", d_args); \
DBF_EVENT(DBF_ALERT, d_string, d_args); \
} while(0)
/* messages to be written via klogd only */
#define DEV_MESSAGE_LOG(d_loglevel,d_device,d_string,d_args...)\
do { \
printk(d_loglevel PRINTK_HEADER " %s: " d_string "\n", \
dev_name(&d_device->cdev->dev), d_args); \
} while(0)
#define MESSAGE_LOG(d_loglevel,d_string,d_args...)\
do { \
printk(d_loglevel PRINTK_HEADER " " d_string "\n", d_args); \
} while(0)
struct dasd_ccw_req {
unsigned int magic; /* Eye catcher */
[S390] dasd: add hyper PAV support to DASD device driver, part 1 Parallel access volumes (PAV) is a storage server feature, that allows to start multiple channel programs on the same DASD in parallel. It defines alias devices which can be used as alternative paths to the same disk. With the old base PAV support we only needed rudimentary functionality in the DASD device driver. As the mapping between base and alias devices was static, we just had to export an identifier (uid) and could leave the combining of devices to external layers like a device mapper multipath. Now hyper PAV removes the requirement to dedicate alias devices to specific base devices. Instead each alias devices can be combined with multiple base device on a per request basis. This requires full support by the DASD device driver as now each channel program itself has to identify the target base device. The changes to the dasd device driver and the ECKD discipline are: - Separate subchannel device representation (dasd_device) from block device representation (dasd_block). Only base devices are block devices. - Gather information about base and alias devices and possible combinations. - For each request decide which dasd_device should be used (base or alias) and build specific channel program. - Support summary unit checks, which allow the storage server to upgrade / downgrade between base and hyper PAV at runtime (support is mandatory). Signed-off-by: Stefan Weinhuber <wein@de.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2008-01-26 20:11:23 +07:00
struct list_head devlist; /* for dasd_device request queue */
struct list_head blocklist; /* for dasd_block request queue */
/* Where to execute what... */
[S390] dasd: add hyper PAV support to DASD device driver, part 1 Parallel access volumes (PAV) is a storage server feature, that allows to start multiple channel programs on the same DASD in parallel. It defines alias devices which can be used as alternative paths to the same disk. With the old base PAV support we only needed rudimentary functionality in the DASD device driver. As the mapping between base and alias devices was static, we just had to export an identifier (uid) and could leave the combining of devices to external layers like a device mapper multipath. Now hyper PAV removes the requirement to dedicate alias devices to specific base devices. Instead each alias devices can be combined with multiple base device on a per request basis. This requires full support by the DASD device driver as now each channel program itself has to identify the target base device. The changes to the dasd device driver and the ECKD discipline are: - Separate subchannel device representation (dasd_device) from block device representation (dasd_block). Only base devices are block devices. - Gather information about base and alias devices and possible combinations. - For each request decide which dasd_device should be used (base or alias) and build specific channel program. - Support summary unit checks, which allow the storage server to upgrade / downgrade between base and hyper PAV at runtime (support is mandatory). Signed-off-by: Stefan Weinhuber <wein@de.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2008-01-26 20:11:23 +07:00
struct dasd_block *block; /* the originating block device */
struct dasd_device *memdev; /* the device used to allocate this */
struct dasd_device *startdev; /* device the request is started on */
void *cpaddr; /* address of ccw or tcw */
unsigned char cpmode; /* 0 = cmd mode, 1 = itcw */
[S390] dasd: add hyper PAV support to DASD device driver, part 1 Parallel access volumes (PAV) is a storage server feature, that allows to start multiple channel programs on the same DASD in parallel. It defines alias devices which can be used as alternative paths to the same disk. With the old base PAV support we only needed rudimentary functionality in the DASD device driver. As the mapping between base and alias devices was static, we just had to export an identifier (uid) and could leave the combining of devices to external layers like a device mapper multipath. Now hyper PAV removes the requirement to dedicate alias devices to specific base devices. Instead each alias devices can be combined with multiple base device on a per request basis. This requires full support by the DASD device driver as now each channel program itself has to identify the target base device. The changes to the dasd device driver and the ECKD discipline are: - Separate subchannel device representation (dasd_device) from block device representation (dasd_block). Only base devices are block devices. - Gather information about base and alias devices and possible combinations. - For each request decide which dasd_device should be used (base or alias) and build specific channel program. - Support summary unit checks, which allow the storage server to upgrade / downgrade between base and hyper PAV at runtime (support is mandatory). Signed-off-by: Stefan Weinhuber <wein@de.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2008-01-26 20:11:23 +07:00
char status; /* status of this request */
short retries; /* A retry counter */
unsigned long flags; /* flags of this request */
/* ... and how */
unsigned long starttime; /* jiffies time of request start */
int expires; /* expiration period in jiffies */
[S390] dasd: add hyper PAV support to DASD device driver, part 1 Parallel access volumes (PAV) is a storage server feature, that allows to start multiple channel programs on the same DASD in parallel. It defines alias devices which can be used as alternative paths to the same disk. With the old base PAV support we only needed rudimentary functionality in the DASD device driver. As the mapping between base and alias devices was static, we just had to export an identifier (uid) and could leave the combining of devices to external layers like a device mapper multipath. Now hyper PAV removes the requirement to dedicate alias devices to specific base devices. Instead each alias devices can be combined with multiple base device on a per request basis. This requires full support by the DASD device driver as now each channel program itself has to identify the target base device. The changes to the dasd device driver and the ECKD discipline are: - Separate subchannel device representation (dasd_device) from block device representation (dasd_block). Only base devices are block devices. - Gather information about base and alias devices and possible combinations. - For each request decide which dasd_device should be used (base or alias) and build specific channel program. - Support summary unit checks, which allow the storage server to upgrade / downgrade between base and hyper PAV at runtime (support is mandatory). Signed-off-by: Stefan Weinhuber <wein@de.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2008-01-26 20:11:23 +07:00
char lpm; /* logical path mask */
void *data; /* pointer to data area */
/* these are important for recovering erroneous requests */
int intrc; /* internal error, e.g. from start_IO */
struct irb irb; /* device status in case of an error */
struct dasd_ccw_req *refers; /* ERP-chain queueing. */
void *function; /* originating ERP action */
/* these are for statistics only */
unsigned long long buildclk; /* TOD-clock of request generation */
unsigned long long startclk; /* TOD-clock of request start */
unsigned long long stopclk; /* TOD-clock of request interrupt */
unsigned long long endclk; /* TOD-clock of request termination */
/* Callback that is called after reaching final status. */
[S390] dasd: add hyper PAV support to DASD device driver, part 1 Parallel access volumes (PAV) is a storage server feature, that allows to start multiple channel programs on the same DASD in parallel. It defines alias devices which can be used as alternative paths to the same disk. With the old base PAV support we only needed rudimentary functionality in the DASD device driver. As the mapping between base and alias devices was static, we just had to export an identifier (uid) and could leave the combining of devices to external layers like a device mapper multipath. Now hyper PAV removes the requirement to dedicate alias devices to specific base devices. Instead each alias devices can be combined with multiple base device on a per request basis. This requires full support by the DASD device driver as now each channel program itself has to identify the target base device. The changes to the dasd device driver and the ECKD discipline are: - Separate subchannel device representation (dasd_device) from block device representation (dasd_block). Only base devices are block devices. - Gather information about base and alias devices and possible combinations. - For each request decide which dasd_device should be used (base or alias) and build specific channel program. - Support summary unit checks, which allow the storage server to upgrade / downgrade between base and hyper PAV at runtime (support is mandatory). Signed-off-by: Stefan Weinhuber <wein@de.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2008-01-26 20:11:23 +07:00
void (*callback)(struct dasd_ccw_req *, void *data);
void *callback_data;
};
/*
* dasd_ccw_req -> status can be:
*/
[S390] dasd: add hyper PAV support to DASD device driver, part 1 Parallel access volumes (PAV) is a storage server feature, that allows to start multiple channel programs on the same DASD in parallel. It defines alias devices which can be used as alternative paths to the same disk. With the old base PAV support we only needed rudimentary functionality in the DASD device driver. As the mapping between base and alias devices was static, we just had to export an identifier (uid) and could leave the combining of devices to external layers like a device mapper multipath. Now hyper PAV removes the requirement to dedicate alias devices to specific base devices. Instead each alias devices can be combined with multiple base device on a per request basis. This requires full support by the DASD device driver as now each channel program itself has to identify the target base device. The changes to the dasd device driver and the ECKD discipline are: - Separate subchannel device representation (dasd_device) from block device representation (dasd_block). Only base devices are block devices. - Gather information about base and alias devices and possible combinations. - For each request decide which dasd_device should be used (base or alias) and build specific channel program. - Support summary unit checks, which allow the storage server to upgrade / downgrade between base and hyper PAV at runtime (support is mandatory). Signed-off-by: Stefan Weinhuber <wein@de.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2008-01-26 20:11:23 +07:00
#define DASD_CQR_FILLED 0x00 /* request is ready to be processed */
#define DASD_CQR_DONE 0x01 /* request is completed successfully */
#define DASD_CQR_NEED_ERP 0x02 /* request needs recovery action */
#define DASD_CQR_IN_ERP 0x03 /* request is in recovery */
#define DASD_CQR_FAILED 0x04 /* request is finally failed */
#define DASD_CQR_TERMINATED 0x05 /* request was stopped by driver */
#define DASD_CQR_QUEUED 0x80 /* request is queued to be processed */
#define DASD_CQR_IN_IO 0x81 /* request is currently in IO */
#define DASD_CQR_ERROR 0x82 /* request is completed with error */
#define DASD_CQR_CLEAR_PENDING 0x83 /* request is clear pending */
#define DASD_CQR_CLEARED 0x84 /* request was cleared */
#define DASD_CQR_SUCCESS 0x85 /* request was successful */
[S390] dasd: add hyper PAV support to DASD device driver, part 1 Parallel access volumes (PAV) is a storage server feature, that allows to start multiple channel programs on the same DASD in parallel. It defines alias devices which can be used as alternative paths to the same disk. With the old base PAV support we only needed rudimentary functionality in the DASD device driver. As the mapping between base and alias devices was static, we just had to export an identifier (uid) and could leave the combining of devices to external layers like a device mapper multipath. Now hyper PAV removes the requirement to dedicate alias devices to specific base devices. Instead each alias devices can be combined with multiple base device on a per request basis. This requires full support by the DASD device driver as now each channel program itself has to identify the target base device. The changes to the dasd device driver and the ECKD discipline are: - Separate subchannel device representation (dasd_device) from block device representation (dasd_block). Only base devices are block devices. - Gather information about base and alias devices and possible combinations. - For each request decide which dasd_device should be used (base or alias) and build specific channel program. - Support summary unit checks, which allow the storage server to upgrade / downgrade between base and hyper PAV at runtime (support is mandatory). Signed-off-by: Stefan Weinhuber <wein@de.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2008-01-26 20:11:23 +07:00
/* per dasd_ccw_req flags */
#define DASD_CQR_FLAGS_USE_ERP 0 /* use ERP for this request */
#define DASD_CQR_FLAGS_FAILFAST 1 /* FAILFAST */
/* Signature for error recovery functions. */
typedef struct dasd_ccw_req *(*dasd_erp_fn_t) (struct dasd_ccw_req *);
/*
* the struct dasd_discipline is
* sth like a table of virtual functions, if you think of dasd_eckd
* inheriting dasd...
* no, currently we are not planning to reimplement the driver in C++
*/
struct dasd_discipline {
struct module *owner;
char ebcname[8]; /* a name used for tagging and printks */
char name[8]; /* a name used for tagging and printks */
int max_blocks; /* maximum number of blocks to be chained */
struct list_head list; /* used for list of disciplines */
[S390] dasd: add hyper PAV support to DASD device driver, part 1 Parallel access volumes (PAV) is a storage server feature, that allows to start multiple channel programs on the same DASD in parallel. It defines alias devices which can be used as alternative paths to the same disk. With the old base PAV support we only needed rudimentary functionality in the DASD device driver. As the mapping between base and alias devices was static, we just had to export an identifier (uid) and could leave the combining of devices to external layers like a device mapper multipath. Now hyper PAV removes the requirement to dedicate alias devices to specific base devices. Instead each alias devices can be combined with multiple base device on a per request basis. This requires full support by the DASD device driver as now each channel program itself has to identify the target base device. The changes to the dasd device driver and the ECKD discipline are: - Separate subchannel device representation (dasd_device) from block device representation (dasd_block). Only base devices are block devices. - Gather information about base and alias devices and possible combinations. - For each request decide which dasd_device should be used (base or alias) and build specific channel program. - Support summary unit checks, which allow the storage server to upgrade / downgrade between base and hyper PAV at runtime (support is mandatory). Signed-off-by: Stefan Weinhuber <wein@de.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2008-01-26 20:11:23 +07:00
/*
* Device recognition functions. check_device is used to verify
* the sense data and the information returned by read device
* characteristics. It returns 0 if the discipline can be used
* for the device in question. uncheck_device is called during
* device shutdown to deregister a device from its discipline.
*/
int (*check_device) (struct dasd_device *);
void (*uncheck_device) (struct dasd_device *);
/*
* do_analysis is used in the step from device state "basic" to
* state "accept". It returns 0 if the device can be made ready,
* it returns -EMEDIUMTYPE if the device can't be made ready or
* -EAGAIN if do_analysis started a ccw that needs to complete
* before the analysis may be repeated.
*/
int (*do_analysis) (struct dasd_block *);
/*
* Last things to do when a device is set online, and first things
* when it is set offline.
*/
int (*ready_to_online) (struct dasd_device *);
int (*online_to_ready) (struct dasd_device *);
/*
* Device operation functions. build_cp creates a ccw chain for
* a block device request, start_io starts the request and
* term_IO cancels it (e.g. in case of a timeout). format_device
* returns a ccw chain to be used to format the device.
* handle_terminated_request allows to examine a cqr and prepare
* it for retry.
*/
struct dasd_ccw_req *(*build_cp) (struct dasd_device *,
[S390] dasd: add hyper PAV support to DASD device driver, part 1 Parallel access volumes (PAV) is a storage server feature, that allows to start multiple channel programs on the same DASD in parallel. It defines alias devices which can be used as alternative paths to the same disk. With the old base PAV support we only needed rudimentary functionality in the DASD device driver. As the mapping between base and alias devices was static, we just had to export an identifier (uid) and could leave the combining of devices to external layers like a device mapper multipath. Now hyper PAV removes the requirement to dedicate alias devices to specific base devices. Instead each alias devices can be combined with multiple base device on a per request basis. This requires full support by the DASD device driver as now each channel program itself has to identify the target base device. The changes to the dasd device driver and the ECKD discipline are: - Separate subchannel device representation (dasd_device) from block device representation (dasd_block). Only base devices are block devices. - Gather information about base and alias devices and possible combinations. - For each request decide which dasd_device should be used (base or alias) and build specific channel program. - Support summary unit checks, which allow the storage server to upgrade / downgrade between base and hyper PAV at runtime (support is mandatory). Signed-off-by: Stefan Weinhuber <wein@de.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2008-01-26 20:11:23 +07:00
struct dasd_block *,
struct request *);
int (*start_IO) (struct dasd_ccw_req *);
int (*term_IO) (struct dasd_ccw_req *);
[S390] dasd: add hyper PAV support to DASD device driver, part 1 Parallel access volumes (PAV) is a storage server feature, that allows to start multiple channel programs on the same DASD in parallel. It defines alias devices which can be used as alternative paths to the same disk. With the old base PAV support we only needed rudimentary functionality in the DASD device driver. As the mapping between base and alias devices was static, we just had to export an identifier (uid) and could leave the combining of devices to external layers like a device mapper multipath. Now hyper PAV removes the requirement to dedicate alias devices to specific base devices. Instead each alias devices can be combined with multiple base device on a per request basis. This requires full support by the DASD device driver as now each channel program itself has to identify the target base device. The changes to the dasd device driver and the ECKD discipline are: - Separate subchannel device representation (dasd_device) from block device representation (dasd_block). Only base devices are block devices. - Gather information about base and alias devices and possible combinations. - For each request decide which dasd_device should be used (base or alias) and build specific channel program. - Support summary unit checks, which allow the storage server to upgrade / downgrade between base and hyper PAV at runtime (support is mandatory). Signed-off-by: Stefan Weinhuber <wein@de.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2008-01-26 20:11:23 +07:00
void (*handle_terminated_request) (struct dasd_ccw_req *);
struct dasd_ccw_req *(*format_device) (struct dasd_device *,
struct format_data_t *);
int (*free_cp) (struct dasd_ccw_req *, struct request *);
[S390] dasd: add hyper PAV support to DASD device driver, part 1 Parallel access volumes (PAV) is a storage server feature, that allows to start multiple channel programs on the same DASD in parallel. It defines alias devices which can be used as alternative paths to the same disk. With the old base PAV support we only needed rudimentary functionality in the DASD device driver. As the mapping between base and alias devices was static, we just had to export an identifier (uid) and could leave the combining of devices to external layers like a device mapper multipath. Now hyper PAV removes the requirement to dedicate alias devices to specific base devices. Instead each alias devices can be combined with multiple base device on a per request basis. This requires full support by the DASD device driver as now each channel program itself has to identify the target base device. The changes to the dasd device driver and the ECKD discipline are: - Separate subchannel device representation (dasd_device) from block device representation (dasd_block). Only base devices are block devices. - Gather information about base and alias devices and possible combinations. - For each request decide which dasd_device should be used (base or alias) and build specific channel program. - Support summary unit checks, which allow the storage server to upgrade / downgrade between base and hyper PAV at runtime (support is mandatory). Signed-off-by: Stefan Weinhuber <wein@de.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2008-01-26 20:11:23 +07:00
/*
* Error recovery functions. examine_error() returns a value that
* indicates what to do for an error condition. If examine_error()
* returns 'dasd_era_recover' erp_action() is called to create a
[S390] dasd: add hyper PAV support to DASD device driver, part 1 Parallel access volumes (PAV) is a storage server feature, that allows to start multiple channel programs on the same DASD in parallel. It defines alias devices which can be used as alternative paths to the same disk. With the old base PAV support we only needed rudimentary functionality in the DASD device driver. As the mapping between base and alias devices was static, we just had to export an identifier (uid) and could leave the combining of devices to external layers like a device mapper multipath. Now hyper PAV removes the requirement to dedicate alias devices to specific base devices. Instead each alias devices can be combined with multiple base device on a per request basis. This requires full support by the DASD device driver as now each channel program itself has to identify the target base device. The changes to the dasd device driver and the ECKD discipline are: - Separate subchannel device representation (dasd_device) from block device representation (dasd_block). Only base devices are block devices. - Gather information about base and alias devices and possible combinations. - For each request decide which dasd_device should be used (base or alias) and build specific channel program. - Support summary unit checks, which allow the storage server to upgrade / downgrade between base and hyper PAV at runtime (support is mandatory). Signed-off-by: Stefan Weinhuber <wein@de.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2008-01-26 20:11:23 +07:00
* special error recovery ccw. erp_postaction() is called after
* an error recovery ccw has finished its execution. dump_sense
* is called for every error condition to print the sense data
* to the console.
*/
dasd_erp_fn_t(*erp_action) (struct dasd_ccw_req *);
dasd_erp_fn_t(*erp_postaction) (struct dasd_ccw_req *);
void (*dump_sense) (struct dasd_device *, struct dasd_ccw_req *,
struct irb *);
void (*dump_sense_dbf) (struct dasd_device *, struct irb *, char *);
[S390] dasd: add hyper PAV support to DASD device driver, part 1 Parallel access volumes (PAV) is a storage server feature, that allows to start multiple channel programs on the same DASD in parallel. It defines alias devices which can be used as alternative paths to the same disk. With the old base PAV support we only needed rudimentary functionality in the DASD device driver. As the mapping between base and alias devices was static, we just had to export an identifier (uid) and could leave the combining of devices to external layers like a device mapper multipath. Now hyper PAV removes the requirement to dedicate alias devices to specific base devices. Instead each alias devices can be combined with multiple base device on a per request basis. This requires full support by the DASD device driver as now each channel program itself has to identify the target base device. The changes to the dasd device driver and the ECKD discipline are: - Separate subchannel device representation (dasd_device) from block device representation (dasd_block). Only base devices are block devices. - Gather information about base and alias devices and possible combinations. - For each request decide which dasd_device should be used (base or alias) and build specific channel program. - Support summary unit checks, which allow the storage server to upgrade / downgrade between base and hyper PAV at runtime (support is mandatory). Signed-off-by: Stefan Weinhuber <wein@de.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2008-01-26 20:11:23 +07:00
void (*handle_unsolicited_interrupt) (struct dasd_device *,
struct irb *);
/* i/o control functions. */
[S390] dasd: add hyper PAV support to DASD device driver, part 1 Parallel access volumes (PAV) is a storage server feature, that allows to start multiple channel programs on the same DASD in parallel. It defines alias devices which can be used as alternative paths to the same disk. With the old base PAV support we only needed rudimentary functionality in the DASD device driver. As the mapping between base and alias devices was static, we just had to export an identifier (uid) and could leave the combining of devices to external layers like a device mapper multipath. Now hyper PAV removes the requirement to dedicate alias devices to specific base devices. Instead each alias devices can be combined with multiple base device on a per request basis. This requires full support by the DASD device driver as now each channel program itself has to identify the target base device. The changes to the dasd device driver and the ECKD discipline are: - Separate subchannel device representation (dasd_device) from block device representation (dasd_block). Only base devices are block devices. - Gather information about base and alias devices and possible combinations. - For each request decide which dasd_device should be used (base or alias) and build specific channel program. - Support summary unit checks, which allow the storage server to upgrade / downgrade between base and hyper PAV at runtime (support is mandatory). Signed-off-by: Stefan Weinhuber <wein@de.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2008-01-26 20:11:23 +07:00
int (*fill_geometry) (struct dasd_block *, struct hd_geometry *);
int (*fill_info) (struct dasd_device *, struct dasd_information2_t *);
[S390] dasd: add hyper PAV support to DASD device driver, part 1 Parallel access volumes (PAV) is a storage server feature, that allows to start multiple channel programs on the same DASD in parallel. It defines alias devices which can be used as alternative paths to the same disk. With the old base PAV support we only needed rudimentary functionality in the DASD device driver. As the mapping between base and alias devices was static, we just had to export an identifier (uid) and could leave the combining of devices to external layers like a device mapper multipath. Now hyper PAV removes the requirement to dedicate alias devices to specific base devices. Instead each alias devices can be combined with multiple base device on a per request basis. This requires full support by the DASD device driver as now each channel program itself has to identify the target base device. The changes to the dasd device driver and the ECKD discipline are: - Separate subchannel device representation (dasd_device) from block device representation (dasd_block). Only base devices are block devices. - Gather information about base and alias devices and possible combinations. - For each request decide which dasd_device should be used (base or alias) and build specific channel program. - Support summary unit checks, which allow the storage server to upgrade / downgrade between base and hyper PAV at runtime (support is mandatory). Signed-off-by: Stefan Weinhuber <wein@de.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2008-01-26 20:11:23 +07:00
int (*ioctl) (struct dasd_block *, unsigned int, void __user *);
/* suspend/resume functions */
int (*freeze) (struct dasd_device *);
int (*restore) (struct dasd_device *);
};
extern struct dasd_discipline *dasd_diag_discipline_pointer;
/*
* Unique identifier for dasd device.
*/
[S390] dasd: add hyper PAV support to DASD device driver, part 1 Parallel access volumes (PAV) is a storage server feature, that allows to start multiple channel programs on the same DASD in parallel. It defines alias devices which can be used as alternative paths to the same disk. With the old base PAV support we only needed rudimentary functionality in the DASD device driver. As the mapping between base and alias devices was static, we just had to export an identifier (uid) and could leave the combining of devices to external layers like a device mapper multipath. Now hyper PAV removes the requirement to dedicate alias devices to specific base devices. Instead each alias devices can be combined with multiple base device on a per request basis. This requires full support by the DASD device driver as now each channel program itself has to identify the target base device. The changes to the dasd device driver and the ECKD discipline are: - Separate subchannel device representation (dasd_device) from block device representation (dasd_block). Only base devices are block devices. - Gather information about base and alias devices and possible combinations. - For each request decide which dasd_device should be used (base or alias) and build specific channel program. - Support summary unit checks, which allow the storage server to upgrade / downgrade between base and hyper PAV at runtime (support is mandatory). Signed-off-by: Stefan Weinhuber <wein@de.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2008-01-26 20:11:23 +07:00
#define UA_NOT_CONFIGURED 0x00
#define UA_BASE_DEVICE 0x01
#define UA_BASE_PAV_ALIAS 0x02
#define UA_HYPER_PAV_ALIAS 0x03
struct dasd_uid {
[S390] dasd: add hyper PAV support to DASD device driver, part 1 Parallel access volumes (PAV) is a storage server feature, that allows to start multiple channel programs on the same DASD in parallel. It defines alias devices which can be used as alternative paths to the same disk. With the old base PAV support we only needed rudimentary functionality in the DASD device driver. As the mapping between base and alias devices was static, we just had to export an identifier (uid) and could leave the combining of devices to external layers like a device mapper multipath. Now hyper PAV removes the requirement to dedicate alias devices to specific base devices. Instead each alias devices can be combined with multiple base device on a per request basis. This requires full support by the DASD device driver as now each channel program itself has to identify the target base device. The changes to the dasd device driver and the ECKD discipline are: - Separate subchannel device representation (dasd_device) from block device representation (dasd_block). Only base devices are block devices. - Gather information about base and alias devices and possible combinations. - For each request decide which dasd_device should be used (base or alias) and build specific channel program. - Support summary unit checks, which allow the storage server to upgrade / downgrade between base and hyper PAV at runtime (support is mandatory). Signed-off-by: Stefan Weinhuber <wein@de.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2008-01-26 20:11:23 +07:00
__u8 type;
char vendor[4];
char serial[15];
__u16 ssid;
[S390] dasd: add hyper PAV support to DASD device driver, part 1 Parallel access volumes (PAV) is a storage server feature, that allows to start multiple channel programs on the same DASD in parallel. It defines alias devices which can be used as alternative paths to the same disk. With the old base PAV support we only needed rudimentary functionality in the DASD device driver. As the mapping between base and alias devices was static, we just had to export an identifier (uid) and could leave the combining of devices to external layers like a device mapper multipath. Now hyper PAV removes the requirement to dedicate alias devices to specific base devices. Instead each alias devices can be combined with multiple base device on a per request basis. This requires full support by the DASD device driver as now each channel program itself has to identify the target base device. The changes to the dasd device driver and the ECKD discipline are: - Separate subchannel device representation (dasd_device) from block device representation (dasd_block). Only base devices are block devices. - Gather information about base and alias devices and possible combinations. - For each request decide which dasd_device should be used (base or alias) and build specific channel program. - Support summary unit checks, which allow the storage server to upgrade / downgrade between base and hyper PAV at runtime (support is mandatory). Signed-off-by: Stefan Weinhuber <wein@de.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2008-01-26 20:11:23 +07:00
__u8 real_unit_addr;
__u8 base_unit_addr;
char vduit[33];
};
/*
* Notification numbers for extended error reporting notifications:
* The DASD_EER_DISABLE notification is sent before a dasd_device (and it's
* eer pointer) is freed. The error reporting module needs to do all necessary
* cleanup steps.
* The DASD_EER_TRIGGER notification sends the actual error reports (triggers).
*/
#define DASD_EER_DISABLE 0
#define DASD_EER_TRIGGER 1
/* Trigger IDs for extended error reporting DASD_EER_TRIGGER notification */
#define DASD_EER_FATALERROR 1
#define DASD_EER_NOPATH 2
#define DASD_EER_STATECHANGE 3
#define DASD_EER_PPRCSUSPEND 4
struct dasd_device {
/* Block device stuff. */
[S390] dasd: add hyper PAV support to DASD device driver, part 1 Parallel access volumes (PAV) is a storage server feature, that allows to start multiple channel programs on the same DASD in parallel. It defines alias devices which can be used as alternative paths to the same disk. With the old base PAV support we only needed rudimentary functionality in the DASD device driver. As the mapping between base and alias devices was static, we just had to export an identifier (uid) and could leave the combining of devices to external layers like a device mapper multipath. Now hyper PAV removes the requirement to dedicate alias devices to specific base devices. Instead each alias devices can be combined with multiple base device on a per request basis. This requires full support by the DASD device driver as now each channel program itself has to identify the target base device. The changes to the dasd device driver and the ECKD discipline are: - Separate subchannel device representation (dasd_device) from block device representation (dasd_block). Only base devices are block devices. - Gather information about base and alias devices and possible combinations. - For each request decide which dasd_device should be used (base or alias) and build specific channel program. - Support summary unit checks, which allow the storage server to upgrade / downgrade between base and hyper PAV at runtime (support is mandatory). Signed-off-by: Stefan Weinhuber <wein@de.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2008-01-26 20:11:23 +07:00
struct dasd_block *block;
unsigned int devindex;
unsigned long flags; /* per device flags */
unsigned short features; /* copy of devmap-features (read-only!) */
/* extended error reporting stuff (eer) */
struct dasd_ccw_req *eer_cqr;
/* Device discipline stuff. */
struct dasd_discipline *discipline;
struct dasd_discipline *base_discipline;
char *private;
/* Device state and target state. */
int state, target;
int stopped; /* device (ccw_device_start) was stopped */
[S390] dasd: add hyper PAV support to DASD device driver, part 1 Parallel access volumes (PAV) is a storage server feature, that allows to start multiple channel programs on the same DASD in parallel. It defines alias devices which can be used as alternative paths to the same disk. With the old base PAV support we only needed rudimentary functionality in the DASD device driver. As the mapping between base and alias devices was static, we just had to export an identifier (uid) and could leave the combining of devices to external layers like a device mapper multipath. Now hyper PAV removes the requirement to dedicate alias devices to specific base devices. Instead each alias devices can be combined with multiple base device on a per request basis. This requires full support by the DASD device driver as now each channel program itself has to identify the target base device. The changes to the dasd device driver and the ECKD discipline are: - Separate subchannel device representation (dasd_device) from block device representation (dasd_block). Only base devices are block devices. - Gather information about base and alias devices and possible combinations. - For each request decide which dasd_device should be used (base or alias) and build specific channel program. - Support summary unit checks, which allow the storage server to upgrade / downgrade between base and hyper PAV at runtime (support is mandatory). Signed-off-by: Stefan Weinhuber <wein@de.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2008-01-26 20:11:23 +07:00
/* reference count. */
atomic_t ref_count;
/* ccw queue and memory for static ccw/erp buffers. */
struct list_head ccw_queue;
spinlock_t mem_lock;
void *ccw_mem;
void *erp_mem;
struct list_head ccw_chunks;
struct list_head erp_chunks;
atomic_t tasklet_scheduled;
struct tasklet_struct tasklet;
struct work_struct kick_work;
struct work_struct restore_device;
struct timer_list timer;
debug_info_t *debug_area;
struct ccw_device *cdev;
[S390] dasd: add hyper PAV support to DASD device driver, part 1 Parallel access volumes (PAV) is a storage server feature, that allows to start multiple channel programs on the same DASD in parallel. It defines alias devices which can be used as alternative paths to the same disk. With the old base PAV support we only needed rudimentary functionality in the DASD device driver. As the mapping between base and alias devices was static, we just had to export an identifier (uid) and could leave the combining of devices to external layers like a device mapper multipath. Now hyper PAV removes the requirement to dedicate alias devices to specific base devices. Instead each alias devices can be combined with multiple base device on a per request basis. This requires full support by the DASD device driver as now each channel program itself has to identify the target base device. The changes to the dasd device driver and the ECKD discipline are: - Separate subchannel device representation (dasd_device) from block device representation (dasd_block). Only base devices are block devices. - Gather information about base and alias devices and possible combinations. - For each request decide which dasd_device should be used (base or alias) and build specific channel program. - Support summary unit checks, which allow the storage server to upgrade / downgrade between base and hyper PAV at runtime (support is mandatory). Signed-off-by: Stefan Weinhuber <wein@de.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2008-01-26 20:11:23 +07:00
/* hook for alias management */
struct list_head alias_list;
};
struct dasd_block {
/* Block device stuff. */
struct gendisk *gdp;
struct request_queue *request_queue;
spinlock_t request_queue_lock;
struct block_device *bdev;
atomic_t open_count;
unsigned long long blocks; /* size of volume in blocks */
[S390] dasd: add hyper PAV support to DASD device driver, part 1 Parallel access volumes (PAV) is a storage server feature, that allows to start multiple channel programs on the same DASD in parallel. It defines alias devices which can be used as alternative paths to the same disk. With the old base PAV support we only needed rudimentary functionality in the DASD device driver. As the mapping between base and alias devices was static, we just had to export an identifier (uid) and could leave the combining of devices to external layers like a device mapper multipath. Now hyper PAV removes the requirement to dedicate alias devices to specific base devices. Instead each alias devices can be combined with multiple base device on a per request basis. This requires full support by the DASD device driver as now each channel program itself has to identify the target base device. The changes to the dasd device driver and the ECKD discipline are: - Separate subchannel device representation (dasd_device) from block device representation (dasd_block). Only base devices are block devices. - Gather information about base and alias devices and possible combinations. - For each request decide which dasd_device should be used (base or alias) and build specific channel program. - Support summary unit checks, which allow the storage server to upgrade / downgrade between base and hyper PAV at runtime (support is mandatory). Signed-off-by: Stefan Weinhuber <wein@de.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2008-01-26 20:11:23 +07:00
unsigned int bp_block; /* bytes per block */
unsigned int s2b_shift; /* log2 (bp_block/512) */
struct dasd_device *base;
struct list_head ccw_queue;
spinlock_t queue_lock;
atomic_t tasklet_scheduled;
struct tasklet_struct tasklet;
struct timer_list timer;
#ifdef CONFIG_DASD_PROFILE
struct dasd_profile_info_t profile;
#endif
};
[S390] dasd: add hyper PAV support to DASD device driver, part 1 Parallel access volumes (PAV) is a storage server feature, that allows to start multiple channel programs on the same DASD in parallel. It defines alias devices which can be used as alternative paths to the same disk. With the old base PAV support we only needed rudimentary functionality in the DASD device driver. As the mapping between base and alias devices was static, we just had to export an identifier (uid) and could leave the combining of devices to external layers like a device mapper multipath. Now hyper PAV removes the requirement to dedicate alias devices to specific base devices. Instead each alias devices can be combined with multiple base device on a per request basis. This requires full support by the DASD device driver as now each channel program itself has to identify the target base device. The changes to the dasd device driver and the ECKD discipline are: - Separate subchannel device representation (dasd_device) from block device representation (dasd_block). Only base devices are block devices. - Gather information about base and alias devices and possible combinations. - For each request decide which dasd_device should be used (base or alias) and build specific channel program. - Support summary unit checks, which allow the storage server to upgrade / downgrade between base and hyper PAV at runtime (support is mandatory). Signed-off-by: Stefan Weinhuber <wein@de.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2008-01-26 20:11:23 +07:00
/* reasons why device (ccw_device_start) was stopped */
#define DASD_STOPPED_NOT_ACC 1 /* not accessible */
#define DASD_STOPPED_QUIESCE 2 /* Quiesced */
#define DASD_STOPPED_PENDING 4 /* long busy */
#define DASD_STOPPED_DC_WAIT 8 /* disconnected, wait */
[S390] dasd: add hyper PAV support to DASD device driver, part 1 Parallel access volumes (PAV) is a storage server feature, that allows to start multiple channel programs on the same DASD in parallel. It defines alias devices which can be used as alternative paths to the same disk. With the old base PAV support we only needed rudimentary functionality in the DASD device driver. As the mapping between base and alias devices was static, we just had to export an identifier (uid) and could leave the combining of devices to external layers like a device mapper multipath. Now hyper PAV removes the requirement to dedicate alias devices to specific base devices. Instead each alias devices can be combined with multiple base device on a per request basis. This requires full support by the DASD device driver as now each channel program itself has to identify the target base device. The changes to the dasd device driver and the ECKD discipline are: - Separate subchannel device representation (dasd_device) from block device representation (dasd_block). Only base devices are block devices. - Gather information about base and alias devices and possible combinations. - For each request decide which dasd_device should be used (base or alias) and build specific channel program. - Support summary unit checks, which allow the storage server to upgrade / downgrade between base and hyper PAV at runtime (support is mandatory). Signed-off-by: Stefan Weinhuber <wein@de.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2008-01-26 20:11:23 +07:00
#define DASD_STOPPED_SU 16 /* summary unit check handling */
#define DASD_STOPPED_PM 32 /* pm state transition */
#define DASD_UNRESUMED_PM 64 /* pm resume failed state */
/* per device flags */
#define DASD_FLAG_OFFLINE 3 /* device is in offline processing */
#define DASD_FLAG_EER_SNSS 4 /* A SNSS is required */
#define DASD_FLAG_EER_IN_USE 5 /* A SNSS request is running */
void dasd_put_device_wake(struct dasd_device *);
/*
* Reference count inliners
*/
static inline void
dasd_get_device(struct dasd_device *device)
{
atomic_inc(&device->ref_count);
}
static inline void
dasd_put_device(struct dasd_device *device)
{
if (atomic_dec_return(&device->ref_count) == 0)
dasd_put_device_wake(device);
}
/*
* The static memory in ccw_mem and erp_mem is managed by a sorted
* list of free memory chunks.
*/
struct dasd_mchunk
{
struct list_head list;
unsigned long size;
} __attribute__ ((aligned(8)));
static inline void
dasd_init_chunklist(struct list_head *chunk_list, void *mem,
unsigned long size)
{
struct dasd_mchunk *chunk;
INIT_LIST_HEAD(chunk_list);
chunk = (struct dasd_mchunk *) mem;
chunk->size = size - sizeof(struct dasd_mchunk);
list_add(&chunk->list, chunk_list);
}
static inline void *
dasd_alloc_chunk(struct list_head *chunk_list, unsigned long size)
{
struct dasd_mchunk *chunk, *tmp;
size = (size + 7L) & -8L;
list_for_each_entry(chunk, chunk_list, list) {
if (chunk->size < size)
continue;
if (chunk->size > size + sizeof(struct dasd_mchunk)) {
char *endaddr = (char *) (chunk + 1) + chunk->size;
tmp = (struct dasd_mchunk *) (endaddr - size) - 1;
tmp->size = size;
chunk->size -= size + sizeof(struct dasd_mchunk);
chunk = tmp;
} else
list_del(&chunk->list);
return (void *) (chunk + 1);
}
return NULL;
}
static inline void
dasd_free_chunk(struct list_head *chunk_list, void *mem)
{
struct dasd_mchunk *chunk, *tmp;
struct list_head *p, *left;
chunk = (struct dasd_mchunk *)
((char *) mem - sizeof(struct dasd_mchunk));
/* Find out the left neighbour in chunk_list. */
left = chunk_list;
list_for_each(p, chunk_list) {
if (list_entry(p, struct dasd_mchunk, list) > chunk)
break;
left = p;
}
/* Try to merge with right neighbour = next element from left. */
if (left->next != chunk_list) {
tmp = list_entry(left->next, struct dasd_mchunk, list);
if ((char *) (chunk + 1) + chunk->size == (char *) tmp) {
list_del(&tmp->list);
chunk->size += tmp->size + sizeof(struct dasd_mchunk);
}
}
/* Try to merge with left neighbour. */
if (left != chunk_list) {
tmp = list_entry(left, struct dasd_mchunk, list);
if ((char *) (tmp + 1) + tmp->size == (char *) chunk) {
tmp->size += chunk->size + sizeof(struct dasd_mchunk);
return;
}
}
__list_add(&chunk->list, left, left->next);
}
/*
* Check if bsize is in { 512, 1024, 2048, 4096 }
*/
static inline int
dasd_check_blocksize(int bsize)
{
if (bsize < 512 || bsize > 4096 || !is_power_of_2(bsize))
return -EMEDIUMTYPE;
return 0;
}
/* externals in dasd.c */
#define DASD_PROFILE_ON 1
#define DASD_PROFILE_OFF 0
extern debug_info_t *dasd_debug_area;
extern struct dasd_profile_info_t dasd_global_profile;
extern unsigned int dasd_profile_level;
extern struct block_device_operations dasd_device_operations;
extern struct kmem_cache *dasd_page_cache;
struct dasd_ccw_req *
dasd_kmalloc_request(int , int, int, struct dasd_device *);
struct dasd_ccw_req *
dasd_smalloc_request(int , int, int, struct dasd_device *);
void dasd_kfree_request(struct dasd_ccw_req *, struct dasd_device *);
void dasd_sfree_request(struct dasd_ccw_req *, struct dasd_device *);
static inline int
dasd_kmalloc_set_cda(struct ccw1 *ccw, void *cda, struct dasd_device *device)
{
return set_normalized_cda(ccw, cda);
}
struct dasd_device *dasd_alloc_device(void);
void dasd_free_device(struct dasd_device *);
[S390] dasd: add hyper PAV support to DASD device driver, part 1 Parallel access volumes (PAV) is a storage server feature, that allows to start multiple channel programs on the same DASD in parallel. It defines alias devices which can be used as alternative paths to the same disk. With the old base PAV support we only needed rudimentary functionality in the DASD device driver. As the mapping between base and alias devices was static, we just had to export an identifier (uid) and could leave the combining of devices to external layers like a device mapper multipath. Now hyper PAV removes the requirement to dedicate alias devices to specific base devices. Instead each alias devices can be combined with multiple base device on a per request basis. This requires full support by the DASD device driver as now each channel program itself has to identify the target base device. The changes to the dasd device driver and the ECKD discipline are: - Separate subchannel device representation (dasd_device) from block device representation (dasd_block). Only base devices are block devices. - Gather information about base and alias devices and possible combinations. - For each request decide which dasd_device should be used (base or alias) and build specific channel program. - Support summary unit checks, which allow the storage server to upgrade / downgrade between base and hyper PAV at runtime (support is mandatory). Signed-off-by: Stefan Weinhuber <wein@de.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2008-01-26 20:11:23 +07:00
struct dasd_block *dasd_alloc_block(void);
void dasd_free_block(struct dasd_block *);
void dasd_enable_device(struct dasd_device *);
void dasd_set_target_state(struct dasd_device *, int);
void dasd_kick_device(struct dasd_device *);
void dasd_restore_device(struct dasd_device *);
void dasd_add_request_head(struct dasd_ccw_req *);
void dasd_add_request_tail(struct dasd_ccw_req *);
int dasd_start_IO(struct dasd_ccw_req *);
int dasd_term_IO(struct dasd_ccw_req *);
[S390] dasd: add hyper PAV support to DASD device driver, part 1 Parallel access volumes (PAV) is a storage server feature, that allows to start multiple channel programs on the same DASD in parallel. It defines alias devices which can be used as alternative paths to the same disk. With the old base PAV support we only needed rudimentary functionality in the DASD device driver. As the mapping between base and alias devices was static, we just had to export an identifier (uid) and could leave the combining of devices to external layers like a device mapper multipath. Now hyper PAV removes the requirement to dedicate alias devices to specific base devices. Instead each alias devices can be combined with multiple base device on a per request basis. This requires full support by the DASD device driver as now each channel program itself has to identify the target base device. The changes to the dasd device driver and the ECKD discipline are: - Separate subchannel device representation (dasd_device) from block device representation (dasd_block). Only base devices are block devices. - Gather information about base and alias devices and possible combinations. - For each request decide which dasd_device should be used (base or alias) and build specific channel program. - Support summary unit checks, which allow the storage server to upgrade / downgrade between base and hyper PAV at runtime (support is mandatory). Signed-off-by: Stefan Weinhuber <wein@de.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2008-01-26 20:11:23 +07:00
void dasd_schedule_device_bh(struct dasd_device *);
void dasd_schedule_block_bh(struct dasd_block *);
int dasd_sleep_on(struct dasd_ccw_req *);
int dasd_sleep_on_immediatly(struct dasd_ccw_req *);
int dasd_sleep_on_interruptible(struct dasd_ccw_req *);
[S390] dasd: add hyper PAV support to DASD device driver, part 1 Parallel access volumes (PAV) is a storage server feature, that allows to start multiple channel programs on the same DASD in parallel. It defines alias devices which can be used as alternative paths to the same disk. With the old base PAV support we only needed rudimentary functionality in the DASD device driver. As the mapping between base and alias devices was static, we just had to export an identifier (uid) and could leave the combining of devices to external layers like a device mapper multipath. Now hyper PAV removes the requirement to dedicate alias devices to specific base devices. Instead each alias devices can be combined with multiple base device on a per request basis. This requires full support by the DASD device driver as now each channel program itself has to identify the target base device. The changes to the dasd device driver and the ECKD discipline are: - Separate subchannel device representation (dasd_device) from block device representation (dasd_block). Only base devices are block devices. - Gather information about base and alias devices and possible combinations. - For each request decide which dasd_device should be used (base or alias) and build specific channel program. - Support summary unit checks, which allow the storage server to upgrade / downgrade between base and hyper PAV at runtime (support is mandatory). Signed-off-by: Stefan Weinhuber <wein@de.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2008-01-26 20:11:23 +07:00
void dasd_device_set_timer(struct dasd_device *, int);
void dasd_device_clear_timer(struct dasd_device *);
void dasd_block_set_timer(struct dasd_block *, int);
void dasd_block_clear_timer(struct dasd_block *);
int dasd_cancel_req(struct dasd_ccw_req *);
[S390] dasd: add hyper PAV support to DASD device driver, part 1 Parallel access volumes (PAV) is a storage server feature, that allows to start multiple channel programs on the same DASD in parallel. It defines alias devices which can be used as alternative paths to the same disk. With the old base PAV support we only needed rudimentary functionality in the DASD device driver. As the mapping between base and alias devices was static, we just had to export an identifier (uid) and could leave the combining of devices to external layers like a device mapper multipath. Now hyper PAV removes the requirement to dedicate alias devices to specific base devices. Instead each alias devices can be combined with multiple base device on a per request basis. This requires full support by the DASD device driver as now each channel program itself has to identify the target base device. The changes to the dasd device driver and the ECKD discipline are: - Separate subchannel device representation (dasd_device) from block device representation (dasd_block). Only base devices are block devices. - Gather information about base and alias devices and possible combinations. - For each request decide which dasd_device should be used (base or alias) and build specific channel program. - Support summary unit checks, which allow the storage server to upgrade / downgrade between base and hyper PAV at runtime (support is mandatory). Signed-off-by: Stefan Weinhuber <wein@de.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2008-01-26 20:11:23 +07:00
int dasd_flush_device_queue(struct dasd_device *);
int dasd_generic_probe (struct ccw_device *, struct dasd_discipline *);
void dasd_generic_remove (struct ccw_device *cdev);
int dasd_generic_set_online(struct ccw_device *, struct dasd_discipline *);
int dasd_generic_set_offline (struct ccw_device *cdev);
int dasd_generic_notify(struct ccw_device *, int);
[S390] dasd: add hyper PAV support to DASD device driver, part 1 Parallel access volumes (PAV) is a storage server feature, that allows to start multiple channel programs on the same DASD in parallel. It defines alias devices which can be used as alternative paths to the same disk. With the old base PAV support we only needed rudimentary functionality in the DASD device driver. As the mapping between base and alias devices was static, we just had to export an identifier (uid) and could leave the combining of devices to external layers like a device mapper multipath. Now hyper PAV removes the requirement to dedicate alias devices to specific base devices. Instead each alias devices can be combined with multiple base device on a per request basis. This requires full support by the DASD device driver as now each channel program itself has to identify the target base device. The changes to the dasd device driver and the ECKD discipline are: - Separate subchannel device representation (dasd_device) from block device representation (dasd_block). Only base devices are block devices. - Gather information about base and alias devices and possible combinations. - For each request decide which dasd_device should be used (base or alias) and build specific channel program. - Support summary unit checks, which allow the storage server to upgrade / downgrade between base and hyper PAV at runtime (support is mandatory). Signed-off-by: Stefan Weinhuber <wein@de.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2008-01-26 20:11:23 +07:00
void dasd_generic_handle_state_change(struct dasd_device *);
int dasd_generic_pm_freeze(struct ccw_device *);
int dasd_generic_restore_device(struct ccw_device *);
int dasd_generic_read_dev_chars(struct dasd_device *, int, void *, int);
char *dasd_get_sense(struct irb *);
/* externals in dasd_devmap.c */
extern int dasd_max_devindex;
extern int dasd_probeonly;
extern int dasd_autodetect;
extern int dasd_nopav;
extern int dasd_nofcx;
int dasd_devmap_init(void);
void dasd_devmap_exit(void);
struct dasd_device *dasd_create_device(struct ccw_device *);
void dasd_delete_device(struct dasd_device *);
int dasd_get_uid(struct ccw_device *, struct dasd_uid *);
int dasd_set_uid(struct ccw_device *, struct dasd_uid *);
int dasd_get_feature(struct ccw_device *, int);
int dasd_set_feature(struct ccw_device *, int, int);
int dasd_add_sysfs_files(struct ccw_device *);
void dasd_remove_sysfs_files(struct ccw_device *);
struct dasd_device *dasd_device_from_cdev(struct ccw_device *);
struct dasd_device *dasd_device_from_cdev_locked(struct ccw_device *);
struct dasd_device *dasd_device_from_devindex(int);
int dasd_parse(void);
int dasd_busid_known(const char *);
/* externals in dasd_gendisk.c */
int dasd_gendisk_init(void);
void dasd_gendisk_exit(void);
[S390] dasd: add hyper PAV support to DASD device driver, part 1 Parallel access volumes (PAV) is a storage server feature, that allows to start multiple channel programs on the same DASD in parallel. It defines alias devices which can be used as alternative paths to the same disk. With the old base PAV support we only needed rudimentary functionality in the DASD device driver. As the mapping between base and alias devices was static, we just had to export an identifier (uid) and could leave the combining of devices to external layers like a device mapper multipath. Now hyper PAV removes the requirement to dedicate alias devices to specific base devices. Instead each alias devices can be combined with multiple base device on a per request basis. This requires full support by the DASD device driver as now each channel program itself has to identify the target base device. The changes to the dasd device driver and the ECKD discipline are: - Separate subchannel device representation (dasd_device) from block device representation (dasd_block). Only base devices are block devices. - Gather information about base and alias devices and possible combinations. - For each request decide which dasd_device should be used (base or alias) and build specific channel program. - Support summary unit checks, which allow the storage server to upgrade / downgrade between base and hyper PAV at runtime (support is mandatory). Signed-off-by: Stefan Weinhuber <wein@de.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2008-01-26 20:11:23 +07:00
int dasd_gendisk_alloc(struct dasd_block *);
void dasd_gendisk_free(struct dasd_block *);
int dasd_scan_partitions(struct dasd_block *);
void dasd_destroy_partitions(struct dasd_block *);
/* externals in dasd_ioctl.c */
int dasd_ioctl(struct block_device *, fmode_t, unsigned int, unsigned long);
/* externals in dasd_proc.c */
int dasd_proc_init(void);
void dasd_proc_exit(void);
/* externals in dasd_erp.c */
struct dasd_ccw_req *dasd_default_erp_action(struct dasd_ccw_req *);
struct dasd_ccw_req *dasd_default_erp_postaction(struct dasd_ccw_req *);
struct dasd_ccw_req *dasd_alloc_erp_request(char *, int, int,
struct dasd_device *);
void dasd_free_erp_request(struct dasd_ccw_req *, struct dasd_device *);
void dasd_log_sense(struct dasd_ccw_req *, struct irb *);
void dasd_log_sense_dbf(struct dasd_ccw_req *cqr, struct irb *irb);
/* externals in dasd_3990_erp.c */
struct dasd_ccw_req *dasd_3990_erp_action(struct dasd_ccw_req *);
void dasd_3990_erp_handle_sim(struct dasd_device *, char *);
/* externals in dasd_eer.c */
#ifdef CONFIG_DASD_EER
int dasd_eer_init(void);
void dasd_eer_exit(void);
int dasd_eer_enable(struct dasd_device *);
void dasd_eer_disable(struct dasd_device *);
void dasd_eer_write(struct dasd_device *, struct dasd_ccw_req *cqr,
unsigned int id);
void dasd_eer_snss(struct dasd_device *);
static inline int dasd_eer_enabled(struct dasd_device *device)
{
return device->eer_cqr != NULL;
}
#else
#define dasd_eer_init() (0)
#define dasd_eer_exit() do { } while (0)
#define dasd_eer_enable(d) (0)
#define dasd_eer_disable(d) do { } while (0)
#define dasd_eer_write(d,c,i) do { } while (0)
#define dasd_eer_snss(d) do { } while (0)
#define dasd_eer_enabled(d) (0)
#endif /* CONFIG_DASD_ERR */
#endif /* __KERNEL__ */
#endif /* DASD_H */