linux_dsm_epyc7002/drivers/media/video/cx18/cx18-firmware.c

449 lines
15 KiB
C
Raw Normal View History

/*
* cx18 firmware functions
*
* Copyright (C) 2007 Hans Verkuil <hverkuil@xs4all.nl>
* Copyright (C) 2008 Andy Walls <awalls@md.metrocast.net>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
* 02111-1307 USA
*/
#include "cx18-driver.h"
#include "cx18-io.h"
#include "cx18-scb.h"
#include "cx18-irq.h"
#include "cx18-firmware.h"
#include "cx18-cards.h"
#include <linux/firmware.h>
#define CX18_PROC_SOFT_RESET 0xc70010
#define CX18_DDR_SOFT_RESET 0xc70014
#define CX18_CLOCK_SELECT1 0xc71000
#define CX18_CLOCK_SELECT2 0xc71004
#define CX18_HALF_CLOCK_SELECT1 0xc71008
#define CX18_HALF_CLOCK_SELECT2 0xc7100C
#define CX18_CLOCK_POLARITY1 0xc71010
#define CX18_CLOCK_POLARITY2 0xc71014
#define CX18_ADD_DELAY_ENABLE1 0xc71018
#define CX18_ADD_DELAY_ENABLE2 0xc7101C
#define CX18_CLOCK_ENABLE1 0xc71020
#define CX18_CLOCK_ENABLE2 0xc71024
#define CX18_REG_BUS_TIMEOUT_EN 0xc72024
#define CX18_FAST_CLOCK_PLL_INT 0xc78000
#define CX18_FAST_CLOCK_PLL_FRAC 0xc78004
#define CX18_FAST_CLOCK_PLL_POST 0xc78008
#define CX18_FAST_CLOCK_PLL_PRESCALE 0xc7800C
#define CX18_FAST_CLOCK_PLL_ADJUST_BANDWIDTH 0xc78010
#define CX18_SLOW_CLOCK_PLL_INT 0xc78014
#define CX18_SLOW_CLOCK_PLL_FRAC 0xc78018
#define CX18_SLOW_CLOCK_PLL_POST 0xc7801C
#define CX18_MPEG_CLOCK_PLL_INT 0xc78040
#define CX18_MPEG_CLOCK_PLL_FRAC 0xc78044
#define CX18_MPEG_CLOCK_PLL_POST 0xc78048
#define CX18_PLL_POWER_DOWN 0xc78088
#define CX18_SW1_INT_STATUS 0xc73104
#define CX18_SW1_INT_ENABLE_PCI 0xc7311C
#define CX18_SW2_INT_SET 0xc73140
#define CX18_SW2_INT_STATUS 0xc73144
#define CX18_ADEC_CONTROL 0xc78120
#define CX18_DDR_REQUEST_ENABLE 0xc80000
#define CX18_DDR_CHIP_CONFIG 0xc80004
#define CX18_DDR_REFRESH 0xc80008
#define CX18_DDR_TIMING1 0xc8000C
#define CX18_DDR_TIMING2 0xc80010
#define CX18_DDR_POWER_REG 0xc8001C
#define CX18_DDR_TUNE_LANE 0xc80048
#define CX18_DDR_INITIAL_EMRS 0xc80054
#define CX18_DDR_MB_PER_ROW_7 0xc8009C
#define CX18_DDR_BASE_63_ADDR 0xc804FC
#define CX18_WMB_CLIENT02 0xc90108
#define CX18_WMB_CLIENT05 0xc90114
#define CX18_WMB_CLIENT06 0xc90118
#define CX18_WMB_CLIENT07 0xc9011C
#define CX18_WMB_CLIENT08 0xc90120
#define CX18_WMB_CLIENT09 0xc90124
#define CX18_WMB_CLIENT10 0xc90128
#define CX18_WMB_CLIENT11 0xc9012C
#define CX18_WMB_CLIENT12 0xc90130
#define CX18_WMB_CLIENT13 0xc90134
#define CX18_WMB_CLIENT14 0xc90138
#define CX18_DSP0_INTERRUPT_MASK 0xd0004C
#define APU_ROM_SYNC1 0x6D676553 /* "mgeS" */
#define APU_ROM_SYNC2 0x72646548 /* "rdeH" */
struct cx18_apu_rom_seghdr {
u32 sync1;
u32 sync2;
u32 addr;
u32 size;
};
static int load_cpu_fw_direct(const char *fn, u8 __iomem *mem, struct cx18 *cx)
{
const struct firmware *fw = NULL;
int i, j;
unsigned size;
u32 __iomem *dst = (u32 __iomem *)mem;
const u32 *src;
if (request_firmware(&fw, fn, &cx->pci_dev->dev)) {
CX18_ERR("Unable to open firmware %s\n", fn);
CX18_ERR("Did you put the firmware in the hotplug firmware directory?\n");
return -ENOMEM;
}
src = (const u32 *)fw->data;
for (i = 0; i < fw->size; i += 4096) {
cx18_setup_page(cx, i);
for (j = i; j < fw->size && j < i + 4096; j += 4) {
/* no need for endianness conversion on the ppc */
cx18_raw_writel(cx, *src, dst);
if (cx18_raw_readl(cx, dst) != *src) {
CX18_ERR("Mismatch at offset %x\n", i);
release_firmware(fw);
cx18_setup_page(cx, 0);
return -EIO;
}
dst++;
src++;
}
}
if (!test_bit(CX18_F_I_LOADED_FW, &cx->i_flags))
CX18_INFO("loaded %s firmware (%zd bytes)\n", fn, fw->size);
size = fw->size;
release_firmware(fw);
cx18_setup_page(cx, SCB_OFFSET);
return size;
}
static int load_apu_fw_direct(const char *fn, u8 __iomem *dst, struct cx18 *cx,
u32 *entry_addr)
{
const struct firmware *fw = NULL;
int i, j;
unsigned size;
const u32 *src;
struct cx18_apu_rom_seghdr seghdr;
const u8 *vers;
u32 offset = 0;
u32 apu_version = 0;
int sz;
if (request_firmware(&fw, fn, &cx->pci_dev->dev)) {
CX18_ERR("unable to open firmware %s\n", fn);
CX18_ERR("did you put the firmware in the hotplug firmware directory?\n");
cx18_setup_page(cx, 0);
return -ENOMEM;
}
*entry_addr = 0;
src = (const u32 *)fw->data;
vers = fw->data + sizeof(seghdr);
sz = fw->size;
apu_version = (vers[0] << 24) | (vers[4] << 16) | vers[32];
while (offset + sizeof(seghdr) < fw->size) {
/* TODO: byteswapping */
memcpy(&seghdr, src + offset / 4, sizeof(seghdr));
offset += sizeof(seghdr);
if (seghdr.sync1 != APU_ROM_SYNC1 ||
seghdr.sync2 != APU_ROM_SYNC2) {
offset += seghdr.size;
continue;
}
CX18_DEBUG_INFO("load segment %x-%x\n", seghdr.addr,
seghdr.addr + seghdr.size - 1);
if (*entry_addr == 0)
*entry_addr = seghdr.addr;
if (offset + seghdr.size > sz)
break;
for (i = 0; i < seghdr.size; i += 4096) {
cx18_setup_page(cx, seghdr.addr + i);
for (j = i; j < seghdr.size && j < i + 4096; j += 4) {
/* no need for endianness conversion on the ppc */
cx18_raw_writel(cx, src[(offset + j) / 4],
dst + seghdr.addr + j);
if (cx18_raw_readl(cx, dst + seghdr.addr + j)
!= src[(offset + j) / 4]) {
CX18_ERR("Mismatch at offset %x\n",
offset + j);
release_firmware(fw);
cx18_setup_page(cx, 0);
return -EIO;
}
}
}
offset += seghdr.size;
}
if (!test_bit(CX18_F_I_LOADED_FW, &cx->i_flags))
CX18_INFO("loaded %s firmware V%08x (%zd bytes)\n",
fn, apu_version, fw->size);
size = fw->size;
release_firmware(fw);
cx18_setup_page(cx, 0);
return size;
}
void cx18_halt_firmware(struct cx18 *cx)
{
CX18_DEBUG_INFO("Preparing for firmware halt.\n");
cx18_write_reg_expect(cx, 0x000F000F, CX18_PROC_SOFT_RESET,
0x0000000F, 0x000F000F);
cx18_write_reg_expect(cx, 0x00020002, CX18_ADEC_CONTROL,
0x00000002, 0x00020002);
}
void cx18_init_power(struct cx18 *cx, int lowpwr)
{
/* power-down Spare and AOM PLLs */
/* power-up fast, slow and mpeg PLLs */
cx18_write_reg(cx, 0x00000008, CX18_PLL_POWER_DOWN);
/* ADEC out of sleep */
cx18_write_reg_expect(cx, 0x00020000, CX18_ADEC_CONTROL,
0x00000000, 0x00020002);
/*
* The PLL parameters are based on the external crystal frequency that
* would ideally be:
*
* NTSC Color subcarrier freq * 8 =
* 4.5 MHz/286 * 455/2 * 8 = 28.63636363... MHz
*
* The accidents of history and rationale that explain from where this
* combination of magic numbers originate can be found in:
*
* [1] Abrahams, I. C., "Choice of Chrominance Subcarrier Frequency in
* the NTSC Standards", Proceedings of the I-R-E, January 1954, pp 79-80
*
* [2] Abrahams, I. C., "The 'Frequency Interleaving' Principle in the
* NTSC Standards", Proceedings of the I-R-E, January 1954, pp 81-83
*
* As Mike Bradley has rightly pointed out, it's not the exact crystal
* frequency that matters, only that all parts of the driver and
* firmware are using the same value (close to the ideal value).
*
* Since I have a strong suspicion that, if the firmware ever assumes a
* crystal value at all, it will assume 28.636360 MHz, the crystal
* freq used in calculations in this driver will be:
*
* xtal_freq = 28.636360 MHz
*
* an error of less than 0.13 ppm which is way, way better than any off
* the shelf crystal will have for accuracy anyway.
*
* Below I aim to run the PLLs' VCOs near 400 MHz to minimze errors.
*
* Many thanks to Jeff Campbell and Mike Bradley for their extensive
* investigation, experimentation, testing, and suggested solutions of
* of audio/video sync problems with SVideo and CVBS captures.
*/
/* the fast clock is at 200/245 MHz */
/* 1 * xtal_freq * 0x0d.f7df9b8 / 2 = 200 MHz: 400 MHz pre post-divide*/
/* 1 * xtal_freq * 0x11.1c71eb8 / 2 = 245 MHz: 490 MHz pre post-divide*/
cx18_write_reg(cx, lowpwr ? 0xD : 0x11, CX18_FAST_CLOCK_PLL_INT);
cx18_write_reg(cx, lowpwr ? 0x1EFBF37 : 0x038E3D7,
CX18_FAST_CLOCK_PLL_FRAC);
cx18_write_reg(cx, 2, CX18_FAST_CLOCK_PLL_POST);
cx18_write_reg(cx, 1, CX18_FAST_CLOCK_PLL_PRESCALE);
cx18_write_reg(cx, 4, CX18_FAST_CLOCK_PLL_ADJUST_BANDWIDTH);
/* set slow clock to 125/120 MHz */
/* xtal_freq * 0x0d.1861a20 / 3 = 125 MHz: 375 MHz before post-divide */
/* xtal_freq * 0x0c.92493f8 / 3 = 120 MHz: 360 MHz before post-divide */
cx18_write_reg(cx, lowpwr ? 0xD : 0xC, CX18_SLOW_CLOCK_PLL_INT);
cx18_write_reg(cx, lowpwr ? 0x30C344 : 0x124927F,
CX18_SLOW_CLOCK_PLL_FRAC);
cx18_write_reg(cx, 3, CX18_SLOW_CLOCK_PLL_POST);
/* mpeg clock pll 54MHz */
/* xtal_freq * 0xf.15f17f0 / 8 = 54 MHz: 432 MHz before post-divide */
cx18_write_reg(cx, 0xF, CX18_MPEG_CLOCK_PLL_INT);
cx18_write_reg(cx, 0x2BE2FE, CX18_MPEG_CLOCK_PLL_FRAC);
cx18_write_reg(cx, 8, CX18_MPEG_CLOCK_PLL_POST);
/* Defaults */
/* APU = SC or SC/2 = 125/62.5 */
/* EPU = SC = 125 */
/* DDR = FC = 180 */
/* ENC = SC = 125 */
/* AI1 = SC = 125 */
/* VIM2 = disabled */
/* PCI = FC/2 = 90 */
/* AI2 = disabled */
/* DEMUX = disabled */
/* AO = SC/2 = 62.5 */
/* SER = 54MHz */
/* VFC = disabled */
/* USB = disabled */
if (lowpwr) {
cx18_write_reg_expect(cx, 0xFFFF0020, CX18_CLOCK_SELECT1,
0x00000020, 0xFFFFFFFF);
cx18_write_reg_expect(cx, 0xFFFF0004, CX18_CLOCK_SELECT2,
0x00000004, 0xFFFFFFFF);
} else {
/* This doesn't explicitly set every clock select */
cx18_write_reg_expect(cx, 0x00060004, CX18_CLOCK_SELECT1,
0x00000004, 0x00060006);
cx18_write_reg_expect(cx, 0x00060006, CX18_CLOCK_SELECT2,
0x00000006, 0x00060006);
}
cx18_write_reg_expect(cx, 0xFFFF0002, CX18_HALF_CLOCK_SELECT1,
0x00000002, 0xFFFFFFFF);
cx18_write_reg_expect(cx, 0xFFFF0104, CX18_HALF_CLOCK_SELECT2,
0x00000104, 0xFFFFFFFF);
cx18_write_reg_expect(cx, 0xFFFF9026, CX18_CLOCK_ENABLE1,
0x00009026, 0xFFFFFFFF);
cx18_write_reg_expect(cx, 0xFFFF3105, CX18_CLOCK_ENABLE2,
0x00003105, 0xFFFFFFFF);
}
void cx18_init_memory(struct cx18 *cx)
{
cx18_msleep_timeout(10, 0);
cx18_write_reg_expect(cx, 0x00010000, CX18_DDR_SOFT_RESET,
0x00000000, 0x00010001);
cx18_msleep_timeout(10, 0);
cx18_write_reg(cx, cx->card->ddr.chip_config, CX18_DDR_CHIP_CONFIG);
cx18_msleep_timeout(10, 0);
cx18_write_reg(cx, cx->card->ddr.refresh, CX18_DDR_REFRESH);
cx18_write_reg(cx, cx->card->ddr.timing1, CX18_DDR_TIMING1);
cx18_write_reg(cx, cx->card->ddr.timing2, CX18_DDR_TIMING2);
cx18_msleep_timeout(10, 0);
/* Initialize DQS pad time */
cx18_write_reg(cx, cx->card->ddr.tune_lane, CX18_DDR_TUNE_LANE);
cx18_write_reg(cx, cx->card->ddr.initial_emrs, CX18_DDR_INITIAL_EMRS);
cx18_msleep_timeout(10, 0);
cx18_write_reg_expect(cx, 0x00020000, CX18_DDR_SOFT_RESET,
0x00000000, 0x00020002);
cx18_msleep_timeout(10, 0);
/* use power-down mode when idle */
cx18_write_reg(cx, 0x00000010, CX18_DDR_POWER_REG);
cx18_write_reg_expect(cx, 0x00010001, CX18_REG_BUS_TIMEOUT_EN,
0x00000001, 0x00010001);
cx18_write_reg(cx, 0x48, CX18_DDR_MB_PER_ROW_7);
cx18_write_reg(cx, 0xE0000, CX18_DDR_BASE_63_ADDR);
cx18_write_reg(cx, 0x00000101, CX18_WMB_CLIENT02); /* AO */
cx18_write_reg(cx, 0x00000101, CX18_WMB_CLIENT09); /* AI2 */
cx18_write_reg(cx, 0x00000101, CX18_WMB_CLIENT05); /* VIM1 */
cx18_write_reg(cx, 0x00000101, CX18_WMB_CLIENT06); /* AI1 */
cx18_write_reg(cx, 0x00000101, CX18_WMB_CLIENT07); /* 3D comb */
cx18_write_reg(cx, 0x00000101, CX18_WMB_CLIENT10); /* ME */
cx18_write_reg(cx, 0x00000101, CX18_WMB_CLIENT12); /* ENC */
cx18_write_reg(cx, 0x00000101, CX18_WMB_CLIENT13); /* PK */
cx18_write_reg(cx, 0x00000101, CX18_WMB_CLIENT11); /* RC */
cx18_write_reg(cx, 0x00000101, CX18_WMB_CLIENT14); /* AVO */
}
int cx18_firmware_init(struct cx18 *cx)
{
u32 fw_entry_addr;
int sz, retries;
u32 api_args[MAX_MB_ARGUMENTS];
/* Allow chip to control CLKRUN */
cx18_write_reg(cx, 0x5, CX18_DSP0_INTERRUPT_MASK);
/* Stop the firmware */
cx18_write_reg_expect(cx, 0x000F000F, CX18_PROC_SOFT_RESET,
0x0000000F, 0x000F000F);
cx18_msleep_timeout(1, 0);
/* If the CPU is still running */
if ((cx18_read_reg(cx, CX18_PROC_SOFT_RESET) & 8) == 0) {
CX18_ERR("%s: couldn't stop CPU to load firmware\n", __func__);
return -EIO;
}
cx18_sw1_irq_enable(cx, IRQ_CPU_TO_EPU | IRQ_APU_TO_EPU);
cx18_sw2_irq_enable(cx, IRQ_CPU_TO_EPU_ACK | IRQ_APU_TO_EPU_ACK);
sz = load_cpu_fw_direct("v4l-cx23418-cpu.fw", cx->enc_mem, cx);
if (sz <= 0)
return sz;
/* The SCB & IPC area *must* be correct before starting the firmwares */
cx18_init_scb(cx);
fw_entry_addr = 0;
sz = load_apu_fw_direct("v4l-cx23418-apu.fw", cx->enc_mem, cx,
&fw_entry_addr);
if (sz <= 0)
return sz;
/* Start the CPU. The CPU will take care of the APU for us. */
cx18_write_reg_expect(cx, 0x00080000, CX18_PROC_SOFT_RESET,
0x00000000, 0x00080008);
/* Wait up to 500 ms for the APU to come out of reset */
for (retries = 0;
retries < 50 && (cx18_read_reg(cx, CX18_PROC_SOFT_RESET) & 1) == 1;
retries++)
cx18_msleep_timeout(10, 0);
cx18_msleep_timeout(200, 0);
if (retries == 50 &&
(cx18_read_reg(cx, CX18_PROC_SOFT_RESET) & 1) == 1) {
CX18_ERR("Could not start the CPU\n");
return -EIO;
}
/*
* The CPU had once before set up to receive an interrupt for it's
* outgoing IRQ_CPU_TO_EPU_ACK to us. If it ever does this, we get an
* interrupt when it sends us an ack, but by the time we process it,
* that flag in the SW2 status register has been cleared by the CPU
* firmware. We'll prevent that not so useful condition from happening
* by clearing the CPU's interrupt enables for Ack IRQ's we want to
* process.
*/
cx18_sw2_irq_disable_cpu(cx, IRQ_CPU_TO_EPU_ACK | IRQ_APU_TO_EPU_ACK);
/* Try a benign command to see if the CPU is alive and well */
sz = cx18_vapi_result(cx, api_args, CX18_CPU_DEBUG_PEEK32, 1, 0);
if (sz < 0)
return sz;
/* initialize GPIO */
cx18_write_reg_expect(cx, 0x14001400, 0xc78110, 0x00001400, 0x14001400);
return 0;
}