linux_dsm_epyc7002/arch/powerpc/platforms/wsp/ics.c

761 lines
17 KiB
C
Raw Normal View History

/*
* Copyright 2008-2011 IBM Corporation.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#include <linux/cpu.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/kernel.h>
#include <linux/msi.h>
#include <linux/of.h>
#include <linux/slab.h>
#include <linux/smp.h>
#include <linux/spinlock.h>
#include <linux/types.h>
#include <asm/io.h>
#include <asm/irq.h>
#include <asm/xics.h>
#include "wsp.h"
#include "ics.h"
/* WSP ICS */
struct wsp_ics {
struct ics ics;
struct device_node *dn;
void __iomem *regs;
spinlock_t lock;
unsigned long *bitmap;
u32 chip_id;
u32 lsi_base;
u32 lsi_count;
u64 hwirq_start;
u64 count;
#ifdef CONFIG_SMP
int *hwirq_cpu_map;
#endif
};
#define to_wsp_ics(ics) container_of(ics, struct wsp_ics, ics)
#define INT_SRC_LAYER_BUID_REG(base) ((base) + 0x00)
#define IODA_TBL_ADDR_REG(base) ((base) + 0x18)
#define IODA_TBL_DATA_REG(base) ((base) + 0x20)
#define XIVE_UPDATE_REG(base) ((base) + 0x28)
#define ICS_INT_CAPS_REG(base) ((base) + 0x30)
#define TBL_AUTO_INCREMENT ((1UL << 63) | (1UL << 15))
#define TBL_SELECT_XIST (1UL << 48)
#define TBL_SELECT_XIVT (1UL << 49)
#define IODA_IRQ(irq) ((irq) & (0x7FFULL)) /* HRM 5.1.3.4 */
#define XIST_REQUIRED 0x8
#define XIST_REJECTED 0x4
#define XIST_PRESENTED 0x2
#define XIST_PENDING 0x1
#define XIVE_SERVER_SHIFT 42
#define XIVE_SERVER_MASK 0xFFFFULL
#define XIVE_PRIORITY_MASK 0xFFULL
#define XIVE_PRIORITY_SHIFT 32
#define XIVE_WRITE_ENABLE (1ULL << 63)
/*
* The docs refer to a 6 bit field called ChipID, which consists of a
* 3 bit NodeID and a 3 bit ChipID. On WSP the ChipID is always zero
* so we ignore it, and every where we use "chip id" in this code we
* mean the NodeID.
*/
#define WSP_ICS_CHIP_SHIFT 17
static struct wsp_ics *ics_list;
static int num_ics;
/* ICS Source controller accessors */
static u64 wsp_ics_get_xive(struct wsp_ics *ics, unsigned int irq)
{
unsigned long flags;
u64 xive;
spin_lock_irqsave(&ics->lock, flags);
out_be64(IODA_TBL_ADDR_REG(ics->regs), TBL_SELECT_XIVT | IODA_IRQ(irq));
xive = in_be64(IODA_TBL_DATA_REG(ics->regs));
spin_unlock_irqrestore(&ics->lock, flags);
return xive;
}
static void wsp_ics_set_xive(struct wsp_ics *ics, unsigned int irq, u64 xive)
{
xive &= ~XIVE_ADDR_MASK;
xive |= (irq & XIVE_ADDR_MASK);
xive |= XIVE_WRITE_ENABLE;
out_be64(XIVE_UPDATE_REG(ics->regs), xive);
}
static u64 xive_set_server(u64 xive, unsigned int server)
{
u64 mask = ~(XIVE_SERVER_MASK << XIVE_SERVER_SHIFT);
xive &= mask;
xive |= (server & XIVE_SERVER_MASK) << XIVE_SERVER_SHIFT;
return xive;
}
static u64 xive_set_priority(u64 xive, unsigned int priority)
{
u64 mask = ~(XIVE_PRIORITY_MASK << XIVE_PRIORITY_SHIFT);
xive &= mask;
xive |= (priority & XIVE_PRIORITY_MASK) << XIVE_PRIORITY_SHIFT;
return xive;
}
#ifdef CONFIG_SMP
/* Find logical CPUs within mask on a given chip and store result in ret */
void cpus_on_chip(int chip_id, cpumask_t *mask, cpumask_t *ret)
{
int cpu, chip;
struct device_node *cpu_dn, *dn;
const u32 *prop;
cpumask_clear(ret);
for_each_cpu(cpu, mask) {
cpu_dn = of_get_cpu_node(cpu, NULL);
if (!cpu_dn)
continue;
prop = of_get_property(cpu_dn, "at-node", NULL);
if (!prop) {
of_node_put(cpu_dn);
continue;
}
dn = of_find_node_by_phandle(*prop);
of_node_put(cpu_dn);
chip = wsp_get_chip_id(dn);
if (chip == chip_id)
cpumask_set_cpu(cpu, ret);
of_node_put(dn);
}
}
/* Store a suitable CPU to handle a hwirq in the ics->hwirq_cpu_map cache */
static int cache_hwirq_map(struct wsp_ics *ics, unsigned int hwirq,
const cpumask_t *affinity)
{
cpumask_var_t avail, newmask;
int ret = -ENOMEM, cpu, cpu_rover = 0, target;
int index = hwirq - ics->hwirq_start;
unsigned int nodeid;
BUG_ON(index < 0 || index >= ics->count);
if (!ics->hwirq_cpu_map)
return -ENOMEM;
if (!distribute_irqs) {
ics->hwirq_cpu_map[hwirq - ics->hwirq_start] = xics_default_server;
return 0;
}
/* Allocate needed CPU masks */
if (!alloc_cpumask_var(&avail, GFP_KERNEL))
goto ret;
if (!alloc_cpumask_var(&newmask, GFP_KERNEL))
goto freeavail;
/* Find PBus attached to the source of this IRQ */
nodeid = (hwirq >> WSP_ICS_CHIP_SHIFT) & 0x3; /* 12:14 */
/* Find CPUs that could handle this IRQ */
if (affinity)
cpumask_and(avail, cpu_online_mask, affinity);
else
cpumask_copy(avail, cpu_online_mask);
/* Narrow selection down to logical CPUs on the same chip */
cpus_on_chip(nodeid, avail, newmask);
/* Ensure we haven't narrowed it down to 0 */
if (unlikely(cpumask_empty(newmask))) {
if (unlikely(cpumask_empty(avail))) {
ret = -1;
goto out;
}
cpumask_copy(newmask, avail);
}
/* Choose a CPU out of those we narrowed it down to in round robin */
target = hwirq % cpumask_weight(newmask);
for_each_cpu(cpu, newmask) {
if (cpu_rover++ >= target) {
ics->hwirq_cpu_map[index] = get_hard_smp_processor_id(cpu);
ret = 0;
goto out;
}
}
/* Shouldn't happen */
WARN_ON(1);
out:
free_cpumask_var(newmask);
freeavail:
free_cpumask_var(avail);
ret:
if (ret < 0) {
ics->hwirq_cpu_map[index] = cpumask_first(cpu_online_mask);
pr_warning("Error, falling hwirq 0x%x routing back to CPU %i\n",
hwirq, ics->hwirq_cpu_map[index]);
}
return ret;
}
static void alloc_irq_map(struct wsp_ics *ics)
{
int i;
ics->hwirq_cpu_map = kmalloc(sizeof(int) * ics->count, GFP_KERNEL);
if (!ics->hwirq_cpu_map) {
pr_warning("Allocate hwirq_cpu_map failed, "
"IRQ balancing disabled\n");
return;
}
for (i=0; i < ics->count; i++)
ics->hwirq_cpu_map[i] = xics_default_server;
}
static int get_irq_server(struct wsp_ics *ics, unsigned int hwirq)
{
int index = hwirq - ics->hwirq_start;
BUG_ON(index < 0 || index >= ics->count);
if (!ics->hwirq_cpu_map)
return xics_default_server;
return ics->hwirq_cpu_map[index];
}
#else /* !CONFIG_SMP */
static int cache_hwirq_map(struct wsp_ics *ics, unsigned int hwirq,
const cpumask_t *affinity)
{
return 0;
}
static int get_irq_server(struct wsp_ics *ics, unsigned int hwirq)
{
return xics_default_server;
}
static void alloc_irq_map(struct wsp_ics *ics) { }
#endif
static void wsp_chip_unmask_irq(struct irq_data *d)
{
unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
struct wsp_ics *ics;
int server;
u64 xive;
if (hw_irq == XICS_IPI || hw_irq == XICS_IRQ_SPURIOUS)
return;
ics = d->chip_data;
if (WARN_ON(!ics))
return;
server = get_irq_server(ics, hw_irq);
xive = wsp_ics_get_xive(ics, hw_irq);
xive = xive_set_server(xive, server);
xive = xive_set_priority(xive, DEFAULT_PRIORITY);
wsp_ics_set_xive(ics, hw_irq, xive);
}
static unsigned int wsp_chip_startup(struct irq_data *d)
{
/* unmask it */
wsp_chip_unmask_irq(d);
return 0;
}
static void wsp_mask_real_irq(unsigned int hw_irq, struct wsp_ics *ics)
{
u64 xive;
if (hw_irq == XICS_IPI)
return;
if (WARN_ON(!ics))
return;
xive = wsp_ics_get_xive(ics, hw_irq);
xive = xive_set_server(xive, xics_default_server);
xive = xive_set_priority(xive, LOWEST_PRIORITY);
wsp_ics_set_xive(ics, hw_irq, xive);
}
static void wsp_chip_mask_irq(struct irq_data *d)
{
unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
struct wsp_ics *ics = d->chip_data;
if (hw_irq == XICS_IPI || hw_irq == XICS_IRQ_SPURIOUS)
return;
wsp_mask_real_irq(hw_irq, ics);
}
static int wsp_chip_set_affinity(struct irq_data *d,
const struct cpumask *cpumask, bool force)
{
unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
struct wsp_ics *ics;
int ret;
u64 xive;
if (hw_irq == XICS_IPI || hw_irq == XICS_IRQ_SPURIOUS)
return -1;
ics = d->chip_data;
if (WARN_ON(!ics))
return -1;
xive = wsp_ics_get_xive(ics, hw_irq);
/*
* For the moment only implement delivery to all cpus or one cpu.
* Get current irq_server for the given irq
*/
ret = cache_hwirq_map(ics, hw_irq, cpumask);
if (ret == -1) {
char cpulist[128];
cpumask_scnprintf(cpulist, sizeof(cpulist), cpumask);
pr_warning("%s: No online cpus in the mask %s for irq %d\n",
__func__, cpulist, d->irq);
return -1;
} else if (ret == -ENOMEM) {
pr_warning("%s: Out of memory\n", __func__);
return -1;
}
xive = xive_set_server(xive, get_irq_server(ics, hw_irq));
wsp_ics_set_xive(ics, hw_irq, xive);
return IRQ_SET_MASK_OK;
}
static struct irq_chip wsp_irq_chip = {
.name = "WSP ICS",
.irq_startup = wsp_chip_startup,
.irq_mask = wsp_chip_mask_irq,
.irq_unmask = wsp_chip_unmask_irq,
.irq_set_affinity = wsp_chip_set_affinity
};
static int wsp_ics_host_match(struct ics *ics, struct device_node *dn)
{
/* All ICSs in the system implement a global irq number space,
* so match against them all. */
return of_device_is_compatible(dn, "ibm,ppc-xics");
}
static int wsp_ics_match_hwirq(struct wsp_ics *wsp_ics, unsigned int hwirq)
{
if (hwirq >= wsp_ics->hwirq_start &&
hwirq < wsp_ics->hwirq_start + wsp_ics->count)
return 1;
return 0;
}
static int wsp_ics_map(struct ics *ics, unsigned int virq)
{
struct wsp_ics *wsp_ics = to_wsp_ics(ics);
unsigned int hw_irq = virq_to_hw(virq);
unsigned long flags;
if (!wsp_ics_match_hwirq(wsp_ics, hw_irq))
return -ENOENT;
irq_set_chip_and_handler(virq, &wsp_irq_chip, handle_fasteoi_irq);
irq_set_chip_data(virq, wsp_ics);
spin_lock_irqsave(&wsp_ics->lock, flags);
bitmap_allocate_region(wsp_ics->bitmap, hw_irq - wsp_ics->hwirq_start, 0);
spin_unlock_irqrestore(&wsp_ics->lock, flags);
return 0;
}
static void wsp_ics_mask_unknown(struct ics *ics, unsigned long hw_irq)
{
struct wsp_ics *wsp_ics = to_wsp_ics(ics);
if (!wsp_ics_match_hwirq(wsp_ics, hw_irq))
return;
pr_err("%s: IRQ %lu (real) is invalid, disabling it.\n", __func__, hw_irq);
wsp_mask_real_irq(hw_irq, wsp_ics);
}
static long wsp_ics_get_server(struct ics *ics, unsigned long hw_irq)
{
struct wsp_ics *wsp_ics = to_wsp_ics(ics);
if (!wsp_ics_match_hwirq(wsp_ics, hw_irq))
return -ENOENT;
return get_irq_server(wsp_ics, hw_irq);
}
/* HW Number allocation API */
static struct wsp_ics *wsp_ics_find_dn_ics(struct device_node *dn)
{
struct device_node *iparent;
int i;
iparent = of_irq_find_parent(dn);
if (!iparent) {
pr_err("wsp_ics: Failed to find interrupt parent!\n");
return NULL;
}
for(i = 0; i < num_ics; i++) {
if(ics_list[i].dn == iparent)
break;
}
if (i >= num_ics) {
pr_err("wsp_ics: Unable to find parent bitmap!\n");
return NULL;
}
return &ics_list[i];
}
int wsp_ics_alloc_irq(struct device_node *dn, int num)
{
struct wsp_ics *ics;
int order, offset;
ics = wsp_ics_find_dn_ics(dn);
if (!ics)
return -ENODEV;
/* Fast, but overly strict if num isn't a power of two */
order = get_count_order(num);
spin_lock_irq(&ics->lock);
offset = bitmap_find_free_region(ics->bitmap, ics->count, order);
spin_unlock_irq(&ics->lock);
if (offset < 0)
return offset;
return offset + ics->hwirq_start;
}
void wsp_ics_free_irq(struct device_node *dn, unsigned int irq)
{
struct wsp_ics *ics;
ics = wsp_ics_find_dn_ics(dn);
if (WARN_ON(!ics))
return;
spin_lock_irq(&ics->lock);
bitmap_release_region(ics->bitmap, irq, 0);
spin_unlock_irq(&ics->lock);
}
/* Initialisation */
static int __init wsp_ics_bitmap_setup(struct wsp_ics *ics,
struct device_node *dn)
{
int len, i, j, size;
u32 start, count;
const u32 *p;
size = BITS_TO_LONGS(ics->count) * sizeof(long);
ics->bitmap = kzalloc(size, GFP_KERNEL);
if (!ics->bitmap) {
pr_err("wsp_ics: ENOMEM allocating IRQ bitmap!\n");
return -ENOMEM;
}
spin_lock_init(&ics->lock);
p = of_get_property(dn, "available-ranges", &len);
if (!p || !len) {
/* FIXME this should be a WARN() once mambo is updated */
pr_err("wsp_ics: No available-ranges defined for %s\n",
dn->full_name);
return 0;
}
if (len % (2 * sizeof(u32)) != 0) {
/* FIXME this should be a WARN() once mambo is updated */
pr_err("wsp_ics: Invalid available-ranges for %s\n",
dn->full_name);
return 0;
}
bitmap_fill(ics->bitmap, ics->count);
for (i = 0; i < len / sizeof(u32); i += 2) {
start = of_read_number(p + i, 1);
count = of_read_number(p + i + 1, 1);
pr_devel("%s: start: %d count: %d\n", __func__, start, count);
if ((start + count) > (ics->hwirq_start + ics->count) ||
start < ics->hwirq_start) {
pr_err("wsp_ics: Invalid range! -> %d to %d\n",
start, start + count);
break;
}
for (j = 0; j < count; j++)
bitmap_release_region(ics->bitmap,
(start + j) - ics->hwirq_start, 0);
}
/* Ensure LSIs are not available for allocation */
bitmap_allocate_region(ics->bitmap, ics->lsi_base,
get_count_order(ics->lsi_count));
return 0;
}
static int __init wsp_ics_setup(struct wsp_ics *ics, struct device_node *dn)
{
u32 lsi_buid, msi_buid, msi_base, msi_count;
void __iomem *regs;
const u32 *p;
int rc, len, i;
u64 caps, buid;
p = of_get_property(dn, "interrupt-ranges", &len);
if (!p || len < (2 * sizeof(u32))) {
pr_err("wsp_ics: No/bad interrupt-ranges found on %s\n",
dn->full_name);
return -ENOENT;
}
if (len > (2 * sizeof(u32))) {
pr_err("wsp_ics: Multiple ics ranges not supported.\n");
return -EINVAL;
}
regs = of_iomap(dn, 0);
if (!regs) {
pr_err("wsp_ics: of_iomap(%s) failed\n", dn->full_name);
return -ENXIO;
}
ics->hwirq_start = of_read_number(p, 1);
ics->count = of_read_number(p + 1, 1);
ics->regs = regs;
ics->chip_id = wsp_get_chip_id(dn);
if (WARN_ON(ics->chip_id < 0))
ics->chip_id = 0;
/* Get some informations about the critter */
caps = in_be64(ICS_INT_CAPS_REG(ics->regs));
buid = in_be64(INT_SRC_LAYER_BUID_REG(ics->regs));
ics->lsi_count = caps >> 56;
msi_count = (caps >> 44) & 0x7ff;
/* Note: LSI BUID is 9 bits, but really only 3 are BUID and the
* rest is mixed in the interrupt number. We store the whole
* thing though
*/
lsi_buid = (buid >> 48) & 0x1ff;
ics->lsi_base = (ics->chip_id << WSP_ICS_CHIP_SHIFT) | lsi_buid << 5;
msi_buid = (buid >> 37) & 0x7;
msi_base = (ics->chip_id << WSP_ICS_CHIP_SHIFT) | msi_buid << 11;
pr_info("wsp_ics: Found %s\n", dn->full_name);
pr_info("wsp_ics: irq range : 0x%06llx..0x%06llx\n",
ics->hwirq_start, ics->hwirq_start + ics->count - 1);
pr_info("wsp_ics: %4d LSIs : 0x%06x..0x%06x\n",
ics->lsi_count, ics->lsi_base,
ics->lsi_base + ics->lsi_count - 1);
pr_info("wsp_ics: %4d MSIs : 0x%06x..0x%06x\n",
msi_count, msi_base,
msi_base + msi_count - 1);
/* Let's check the HW config is sane */
if (ics->lsi_base < ics->hwirq_start ||
(ics->lsi_base + ics->lsi_count) > (ics->hwirq_start + ics->count))
pr_warning("wsp_ics: WARNING ! LSIs out of interrupt-ranges !\n");
if (msi_base < ics->hwirq_start ||
(msi_base + msi_count) > (ics->hwirq_start + ics->count))
pr_warning("wsp_ics: WARNING ! MSIs out of interrupt-ranges !\n");
/* We don't check for overlap between LSI and MSI, which will happen
* if we use the same BUID, I'm not sure yet how legit that is.
*/
rc = wsp_ics_bitmap_setup(ics, dn);
if (rc) {
iounmap(regs);
return rc;
}
ics->dn = of_node_get(dn);
alloc_irq_map(ics);
for(i = 0; i < ics->count; i++)
wsp_mask_real_irq(ics->hwirq_start + i, ics);
ics->ics.map = wsp_ics_map;
ics->ics.mask_unknown = wsp_ics_mask_unknown;
ics->ics.get_server = wsp_ics_get_server;
ics->ics.host_match = wsp_ics_host_match;
xics_register_ics(&ics->ics);
return 0;
}
static void __init wsp_ics_set_default_server(void)
{
struct device_node *np;
u32 hwid;
/* Find the server number for the boot cpu. */
np = of_get_cpu_node(boot_cpuid, NULL);
BUG_ON(!np);
hwid = get_hard_smp_processor_id(boot_cpuid);
pr_info("wsp_ics: default server is %#x, CPU %s\n", hwid, np->full_name);
xics_default_server = hwid;
of_node_put(np);
}
static int __init wsp_ics_init(void)
{
struct device_node *dn;
struct wsp_ics *ics;
int rc, found;
wsp_ics_set_default_server();
found = 0;
for_each_compatible_node(dn, NULL, "ibm,ppc-xics")
found++;
if (found == 0) {
pr_err("wsp_ics: No ICS's found!\n");
return -ENODEV;
}
ics_list = kmalloc(sizeof(*ics) * found, GFP_KERNEL);
if (!ics_list) {
pr_err("wsp_ics: No memory for structs.\n");
return -ENOMEM;
}
num_ics = 0;
ics = ics_list;
for_each_compatible_node(dn, NULL, "ibm,wsp-xics") {
rc = wsp_ics_setup(ics, dn);
if (rc == 0) {
ics++;
num_ics++;
}
}
if (found != num_ics) {
pr_err("wsp_ics: Failed setting up %d ICS's\n",
found - num_ics);
return -1;
}
return 0;
}
void __init wsp_init_irq(void)
{
wsp_ics_init();
xics_init();
/* We need to patch our irq chip's EOI to point to the right ICP */
wsp_irq_chip.irq_eoi = icp_ops->eoi;
}
#ifdef CONFIG_PCI_MSI
static void wsp_ics_msi_unmask_irq(struct irq_data *d)
{
wsp_chip_unmask_irq(d);
unmask_msi_irq(d);
}
static unsigned int wsp_ics_msi_startup(struct irq_data *d)
{
wsp_ics_msi_unmask_irq(d);
return 0;
}
static void wsp_ics_msi_mask_irq(struct irq_data *d)
{
mask_msi_irq(d);
wsp_chip_mask_irq(d);
}
/*
* we do it this way because we reassinge default EOI handling in
* irq_init() above
*/
static void wsp_ics_eoi(struct irq_data *data)
{
wsp_irq_chip.irq_eoi(data);
}
static struct irq_chip wsp_ics_msi = {
.name = "WSP ICS MSI",
.irq_startup = wsp_ics_msi_startup,
.irq_mask = wsp_ics_msi_mask_irq,
.irq_unmask = wsp_ics_msi_unmask_irq,
.irq_eoi = wsp_ics_eoi,
.irq_set_affinity = wsp_chip_set_affinity
};
void wsp_ics_set_msi_chip(unsigned int irq)
{
irq_set_chip(irq, &wsp_ics_msi);
}
void wsp_ics_set_std_chip(unsigned int irq)
{
irq_set_chip(irq, &wsp_irq_chip);
}
#endif /* CONFIG_PCI_MSI */