async_tx: add support for asynchronous GF multiplication
[ Based on an original patch by Yuri Tikhonov ]
This adds support for doing asynchronous GF multiplication by adding
two additional functions to the async_tx API:
async_gen_syndrome() does simultaneous XOR and Galois field
multiplication of sources.
async_syndrome_val() validates the given source buffers against known P
and Q values.
When a request is made to run async_pq against more than the hardware
maximum number of supported sources we need to reuse the previous
generated P and Q values as sources into the next operation. Care must
be taken to remove Q from P' and P from Q'. For example to perform a 5
source pq op with hardware that only supports 4 sources at a time the
following approach is taken:
p, q = PQ(src0, src1, src2, src3, COEF({01}, {02}, {04}, {08}))
p', q' = PQ(p, q, q, src4, COEF({00}, {01}, {00}, {10}))
p' = p + q + q + src4 = p + src4
q' = {00}*p + {01}*q + {00}*q + {10}*src4 = q + {10}*src4
Note: 4 is the minimum acceptable maxpq otherwise we punt to
synchronous-software path.
The DMA_PREP_CONTINUE flag indicates to the driver to reuse p and q as
sources (in the above manner) and fill the remaining slots up to maxpq
with the new sources/coefficients.
Note1: Some devices have native support for P+Q continuation and can skip
this extra work. Devices with this capability can advertise it with
dma_set_maxpq. It is up to each driver how to handle the
DMA_PREP_CONTINUE flag.
Note2: The api supports disabling the generation of P when generating Q,
this is ignored by the synchronous path but is implemented by some dma
devices to save unnecessary writes. In this case the continuation
algorithm is simplified to only reuse Q as a source.
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: David Woodhouse <David.Woodhouse@intel.com>
Signed-off-by: Yuri Tikhonov <yur@emcraft.com>
Signed-off-by: Ilya Yanok <yanok@emcraft.com>
Reviewed-by: Andre Noll <maan@systemlinux.org>
Acked-by: Maciej Sosnowski <maciej.sosnowski@intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2009-07-15 02:20:36 +07:00
|
|
|
/*
|
|
|
|
* Copyright(c) 2007 Yuri Tikhonov <yur@emcraft.com>
|
|
|
|
* Copyright(c) 2009 Intel Corporation
|
|
|
|
*
|
|
|
|
* This program is free software; you can redistribute it and/or modify it
|
|
|
|
* under the terms of the GNU General Public License as published by the Free
|
|
|
|
* Software Foundation; either version 2 of the License, or (at your option)
|
|
|
|
* any later version.
|
|
|
|
*
|
|
|
|
* This program is distributed in the hope that it will be useful, but WITHOUT
|
|
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
|
|
|
* more details.
|
|
|
|
*
|
|
|
|
* You should have received a copy of the GNU General Public License along with
|
|
|
|
* this program; if not, write to the Free Software Foundation, Inc., 59
|
|
|
|
* Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
|
|
|
*
|
|
|
|
* The full GNU General Public License is included in this distribution in the
|
|
|
|
* file called COPYING.
|
|
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
|
|
#include <linux/interrupt.h>
|
2011-05-28 01:41:48 +07:00
|
|
|
#include <linux/module.h>
|
async_tx: add support for asynchronous GF multiplication
[ Based on an original patch by Yuri Tikhonov ]
This adds support for doing asynchronous GF multiplication by adding
two additional functions to the async_tx API:
async_gen_syndrome() does simultaneous XOR and Galois field
multiplication of sources.
async_syndrome_val() validates the given source buffers against known P
and Q values.
When a request is made to run async_pq against more than the hardware
maximum number of supported sources we need to reuse the previous
generated P and Q values as sources into the next operation. Care must
be taken to remove Q from P' and P from Q'. For example to perform a 5
source pq op with hardware that only supports 4 sources at a time the
following approach is taken:
p, q = PQ(src0, src1, src2, src3, COEF({01}, {02}, {04}, {08}))
p', q' = PQ(p, q, q, src4, COEF({00}, {01}, {00}, {10}))
p' = p + q + q + src4 = p + src4
q' = {00}*p + {01}*q + {00}*q + {10}*src4 = q + {10}*src4
Note: 4 is the minimum acceptable maxpq otherwise we punt to
synchronous-software path.
The DMA_PREP_CONTINUE flag indicates to the driver to reuse p and q as
sources (in the above manner) and fill the remaining slots up to maxpq
with the new sources/coefficients.
Note1: Some devices have native support for P+Q continuation and can skip
this extra work. Devices with this capability can advertise it with
dma_set_maxpq. It is up to each driver how to handle the
DMA_PREP_CONTINUE flag.
Note2: The api supports disabling the generation of P when generating Q,
this is ignored by the synchronous path but is implemented by some dma
devices to save unnecessary writes. In this case the continuation
algorithm is simplified to only reuse Q as a source.
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: David Woodhouse <David.Woodhouse@intel.com>
Signed-off-by: Yuri Tikhonov <yur@emcraft.com>
Signed-off-by: Ilya Yanok <yanok@emcraft.com>
Reviewed-by: Andre Noll <maan@systemlinux.org>
Acked-by: Maciej Sosnowski <maciej.sosnowski@intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2009-07-15 02:20:36 +07:00
|
|
|
#include <linux/dma-mapping.h>
|
|
|
|
#include <linux/raid/pq.h>
|
|
|
|
#include <linux/async_tx.h>
|
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files. percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.
percpu.h -> slab.h dependency is about to be removed. Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability. As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.
http://userweb.kernel.org/~tj/misc/slabh-sweep.py
The script does the followings.
* Scan files for gfp and slab usages and update includes such that
only the necessary includes are there. ie. if only gfp is used,
gfp.h, if slab is used, slab.h.
* When the script inserts a new include, it looks at the include
blocks and try to put the new include such that its order conforms
to its surrounding. It's put in the include block which contains
core kernel includes, in the same order that the rest are ordered -
alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
doesn't seem to be any matching order.
* If the script can't find a place to put a new include (mostly
because the file doesn't have fitting include block), it prints out
an error message indicating which .h file needs to be added to the
file.
The conversion was done in the following steps.
1. The initial automatic conversion of all .c files updated slightly
over 4000 files, deleting around 700 includes and adding ~480 gfp.h
and ~3000 slab.h inclusions. The script emitted errors for ~400
files.
2. Each error was manually checked. Some didn't need the inclusion,
some needed manual addition while adding it to implementation .h or
embedding .c file was more appropriate for others. This step added
inclusions to around 150 files.
3. The script was run again and the output was compared to the edits
from #2 to make sure no file was left behind.
4. Several build tests were done and a couple of problems were fixed.
e.g. lib/decompress_*.c used malloc/free() wrappers around slab
APIs requiring slab.h to be added manually.
5. The script was run on all .h files but without automatically
editing them as sprinkling gfp.h and slab.h inclusions around .h
files could easily lead to inclusion dependency hell. Most gfp.h
inclusion directives were ignored as stuff from gfp.h was usually
wildly available and often used in preprocessor macros. Each
slab.h inclusion directive was examined and added manually as
necessary.
6. percpu.h was updated not to include slab.h.
7. Build test were done on the following configurations and failures
were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my
distributed build env didn't work with gcov compiles) and a few
more options had to be turned off depending on archs to make things
build (like ipr on powerpc/64 which failed due to missing writeq).
* x86 and x86_64 UP and SMP allmodconfig and a custom test config.
* powerpc and powerpc64 SMP allmodconfig
* sparc and sparc64 SMP allmodconfig
* ia64 SMP allmodconfig
* s390 SMP allmodconfig
* alpha SMP allmodconfig
* um on x86_64 SMP allmodconfig
8. percpu.h modifications were reverted so that it could be applied as
a separate patch and serve as bisection point.
Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.
Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 15:04:11 +07:00
|
|
|
#include <linux/gfp.h>
|
async_tx: add support for asynchronous GF multiplication
[ Based on an original patch by Yuri Tikhonov ]
This adds support for doing asynchronous GF multiplication by adding
two additional functions to the async_tx API:
async_gen_syndrome() does simultaneous XOR and Galois field
multiplication of sources.
async_syndrome_val() validates the given source buffers against known P
and Q values.
When a request is made to run async_pq against more than the hardware
maximum number of supported sources we need to reuse the previous
generated P and Q values as sources into the next operation. Care must
be taken to remove Q from P' and P from Q'. For example to perform a 5
source pq op with hardware that only supports 4 sources at a time the
following approach is taken:
p, q = PQ(src0, src1, src2, src3, COEF({01}, {02}, {04}, {08}))
p', q' = PQ(p, q, q, src4, COEF({00}, {01}, {00}, {10}))
p' = p + q + q + src4 = p + src4
q' = {00}*p + {01}*q + {00}*q + {10}*src4 = q + {10}*src4
Note: 4 is the minimum acceptable maxpq otherwise we punt to
synchronous-software path.
The DMA_PREP_CONTINUE flag indicates to the driver to reuse p and q as
sources (in the above manner) and fill the remaining slots up to maxpq
with the new sources/coefficients.
Note1: Some devices have native support for P+Q continuation and can skip
this extra work. Devices with this capability can advertise it with
dma_set_maxpq. It is up to each driver how to handle the
DMA_PREP_CONTINUE flag.
Note2: The api supports disabling the generation of P when generating Q,
this is ignored by the synchronous path but is implemented by some dma
devices to save unnecessary writes. In this case the continuation
algorithm is simplified to only reuse Q as a source.
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: David Woodhouse <David.Woodhouse@intel.com>
Signed-off-by: Yuri Tikhonov <yur@emcraft.com>
Signed-off-by: Ilya Yanok <yanok@emcraft.com>
Reviewed-by: Andre Noll <maan@systemlinux.org>
Acked-by: Maciej Sosnowski <maciej.sosnowski@intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2009-07-15 02:20:36 +07:00
|
|
|
|
|
|
|
/**
|
2009-10-20 08:09:32 +07:00
|
|
|
* pq_scribble_page - space to hold throwaway P or Q buffer for
|
|
|
|
* synchronous gen_syndrome
|
async_tx: add support for asynchronous GF multiplication
[ Based on an original patch by Yuri Tikhonov ]
This adds support for doing asynchronous GF multiplication by adding
two additional functions to the async_tx API:
async_gen_syndrome() does simultaneous XOR and Galois field
multiplication of sources.
async_syndrome_val() validates the given source buffers against known P
and Q values.
When a request is made to run async_pq against more than the hardware
maximum number of supported sources we need to reuse the previous
generated P and Q values as sources into the next operation. Care must
be taken to remove Q from P' and P from Q'. For example to perform a 5
source pq op with hardware that only supports 4 sources at a time the
following approach is taken:
p, q = PQ(src0, src1, src2, src3, COEF({01}, {02}, {04}, {08}))
p', q' = PQ(p, q, q, src4, COEF({00}, {01}, {00}, {10}))
p' = p + q + q + src4 = p + src4
q' = {00}*p + {01}*q + {00}*q + {10}*src4 = q + {10}*src4
Note: 4 is the minimum acceptable maxpq otherwise we punt to
synchronous-software path.
The DMA_PREP_CONTINUE flag indicates to the driver to reuse p and q as
sources (in the above manner) and fill the remaining slots up to maxpq
with the new sources/coefficients.
Note1: Some devices have native support for P+Q continuation and can skip
this extra work. Devices with this capability can advertise it with
dma_set_maxpq. It is up to each driver how to handle the
DMA_PREP_CONTINUE flag.
Note2: The api supports disabling the generation of P when generating Q,
this is ignored by the synchronous path but is implemented by some dma
devices to save unnecessary writes. In this case the continuation
algorithm is simplified to only reuse Q as a source.
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: David Woodhouse <David.Woodhouse@intel.com>
Signed-off-by: Yuri Tikhonov <yur@emcraft.com>
Signed-off-by: Ilya Yanok <yanok@emcraft.com>
Reviewed-by: Andre Noll <maan@systemlinux.org>
Acked-by: Maciej Sosnowski <maciej.sosnowski@intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2009-07-15 02:20:36 +07:00
|
|
|
*/
|
2009-10-20 08:09:32 +07:00
|
|
|
static struct page *pq_scribble_page;
|
async_tx: add support for asynchronous GF multiplication
[ Based on an original patch by Yuri Tikhonov ]
This adds support for doing asynchronous GF multiplication by adding
two additional functions to the async_tx API:
async_gen_syndrome() does simultaneous XOR and Galois field
multiplication of sources.
async_syndrome_val() validates the given source buffers against known P
and Q values.
When a request is made to run async_pq against more than the hardware
maximum number of supported sources we need to reuse the previous
generated P and Q values as sources into the next operation. Care must
be taken to remove Q from P' and P from Q'. For example to perform a 5
source pq op with hardware that only supports 4 sources at a time the
following approach is taken:
p, q = PQ(src0, src1, src2, src3, COEF({01}, {02}, {04}, {08}))
p', q' = PQ(p, q, q, src4, COEF({00}, {01}, {00}, {10}))
p' = p + q + q + src4 = p + src4
q' = {00}*p + {01}*q + {00}*q + {10}*src4 = q + {10}*src4
Note: 4 is the minimum acceptable maxpq otherwise we punt to
synchronous-software path.
The DMA_PREP_CONTINUE flag indicates to the driver to reuse p and q as
sources (in the above manner) and fill the remaining slots up to maxpq
with the new sources/coefficients.
Note1: Some devices have native support for P+Q continuation and can skip
this extra work. Devices with this capability can advertise it with
dma_set_maxpq. It is up to each driver how to handle the
DMA_PREP_CONTINUE flag.
Note2: The api supports disabling the generation of P when generating Q,
this is ignored by the synchronous path but is implemented by some dma
devices to save unnecessary writes. In this case the continuation
algorithm is simplified to only reuse Q as a source.
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: David Woodhouse <David.Woodhouse@intel.com>
Signed-off-by: Yuri Tikhonov <yur@emcraft.com>
Signed-off-by: Ilya Yanok <yanok@emcraft.com>
Reviewed-by: Andre Noll <maan@systemlinux.org>
Acked-by: Maciej Sosnowski <maciej.sosnowski@intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2009-07-15 02:20:36 +07:00
|
|
|
|
|
|
|
/* the struct page *blocks[] parameter passed to async_gen_syndrome()
|
|
|
|
* and async_syndrome_val() contains the 'P' destination address at
|
|
|
|
* blocks[disks-2] and the 'Q' destination address at blocks[disks-1]
|
|
|
|
*
|
|
|
|
* note: these are macros as they are used as lvalues
|
|
|
|
*/
|
|
|
|
#define P(b, d) (b[d-2])
|
|
|
|
#define Q(b, d) (b[d-1])
|
|
|
|
|
|
|
|
/**
|
|
|
|
* do_async_gen_syndrome - asynchronously calculate P and/or Q
|
|
|
|
*/
|
|
|
|
static __async_inline struct dma_async_tx_descriptor *
|
2013-10-19 00:35:29 +07:00
|
|
|
do_async_gen_syndrome(struct dma_chan *chan,
|
|
|
|
const unsigned char *scfs, int disks,
|
|
|
|
struct dmaengine_unmap_data *unmap,
|
|
|
|
enum dma_ctrl_flags dma_flags,
|
async_tx: add support for asynchronous GF multiplication
[ Based on an original patch by Yuri Tikhonov ]
This adds support for doing asynchronous GF multiplication by adding
two additional functions to the async_tx API:
async_gen_syndrome() does simultaneous XOR and Galois field
multiplication of sources.
async_syndrome_val() validates the given source buffers against known P
and Q values.
When a request is made to run async_pq against more than the hardware
maximum number of supported sources we need to reuse the previous
generated P and Q values as sources into the next operation. Care must
be taken to remove Q from P' and P from Q'. For example to perform a 5
source pq op with hardware that only supports 4 sources at a time the
following approach is taken:
p, q = PQ(src0, src1, src2, src3, COEF({01}, {02}, {04}, {08}))
p', q' = PQ(p, q, q, src4, COEF({00}, {01}, {00}, {10}))
p' = p + q + q + src4 = p + src4
q' = {00}*p + {01}*q + {00}*q + {10}*src4 = q + {10}*src4
Note: 4 is the minimum acceptable maxpq otherwise we punt to
synchronous-software path.
The DMA_PREP_CONTINUE flag indicates to the driver to reuse p and q as
sources (in the above manner) and fill the remaining slots up to maxpq
with the new sources/coefficients.
Note1: Some devices have native support for P+Q continuation and can skip
this extra work. Devices with this capability can advertise it with
dma_set_maxpq. It is up to each driver how to handle the
DMA_PREP_CONTINUE flag.
Note2: The api supports disabling the generation of P when generating Q,
this is ignored by the synchronous path but is implemented by some dma
devices to save unnecessary writes. In this case the continuation
algorithm is simplified to only reuse Q as a source.
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: David Woodhouse <David.Woodhouse@intel.com>
Signed-off-by: Yuri Tikhonov <yur@emcraft.com>
Signed-off-by: Ilya Yanok <yanok@emcraft.com>
Reviewed-by: Andre Noll <maan@systemlinux.org>
Acked-by: Maciej Sosnowski <maciej.sosnowski@intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2009-07-15 02:20:36 +07:00
|
|
|
struct async_submit_ctl *submit)
|
|
|
|
{
|
|
|
|
struct dma_async_tx_descriptor *tx = NULL;
|
|
|
|
struct dma_device *dma = chan->device;
|
|
|
|
enum async_tx_flags flags_orig = submit->flags;
|
|
|
|
dma_async_tx_callback cb_fn_orig = submit->cb_fn;
|
|
|
|
dma_async_tx_callback cb_param_orig = submit->cb_param;
|
|
|
|
int src_cnt = disks - 2;
|
|
|
|
unsigned short pq_src_cnt;
|
|
|
|
dma_addr_t dma_dest[2];
|
|
|
|
int src_off = 0;
|
|
|
|
|
2013-10-19 00:35:29 +07:00
|
|
|
if (submit->flags & ASYNC_TX_FENCE)
|
|
|
|
dma_flags |= DMA_PREP_FENCE;
|
async_tx: add support for asynchronous GF multiplication
[ Based on an original patch by Yuri Tikhonov ]
This adds support for doing asynchronous GF multiplication by adding
two additional functions to the async_tx API:
async_gen_syndrome() does simultaneous XOR and Galois field
multiplication of sources.
async_syndrome_val() validates the given source buffers against known P
and Q values.
When a request is made to run async_pq against more than the hardware
maximum number of supported sources we need to reuse the previous
generated P and Q values as sources into the next operation. Care must
be taken to remove Q from P' and P from Q'. For example to perform a 5
source pq op with hardware that only supports 4 sources at a time the
following approach is taken:
p, q = PQ(src0, src1, src2, src3, COEF({01}, {02}, {04}, {08}))
p', q' = PQ(p, q, q, src4, COEF({00}, {01}, {00}, {10}))
p' = p + q + q + src4 = p + src4
q' = {00}*p + {01}*q + {00}*q + {10}*src4 = q + {10}*src4
Note: 4 is the minimum acceptable maxpq otherwise we punt to
synchronous-software path.
The DMA_PREP_CONTINUE flag indicates to the driver to reuse p and q as
sources (in the above manner) and fill the remaining slots up to maxpq
with the new sources/coefficients.
Note1: Some devices have native support for P+Q continuation and can skip
this extra work. Devices with this capability can advertise it with
dma_set_maxpq. It is up to each driver how to handle the
DMA_PREP_CONTINUE flag.
Note2: The api supports disabling the generation of P when generating Q,
this is ignored by the synchronous path but is implemented by some dma
devices to save unnecessary writes. In this case the continuation
algorithm is simplified to only reuse Q as a source.
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: David Woodhouse <David.Woodhouse@intel.com>
Signed-off-by: Yuri Tikhonov <yur@emcraft.com>
Signed-off-by: Ilya Yanok <yanok@emcraft.com>
Reviewed-by: Andre Noll <maan@systemlinux.org>
Acked-by: Maciej Sosnowski <maciej.sosnowski@intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2009-07-15 02:20:36 +07:00
|
|
|
|
|
|
|
while (src_cnt > 0) {
|
|
|
|
submit->flags = flags_orig;
|
|
|
|
pq_src_cnt = min(src_cnt, dma_maxpq(dma, dma_flags));
|
|
|
|
/* if we are submitting additional pqs, leave the chain open,
|
|
|
|
* clear the callback parameters, and leave the destination
|
|
|
|
* buffers mapped
|
|
|
|
*/
|
|
|
|
if (src_cnt > pq_src_cnt) {
|
|
|
|
submit->flags &= ~ASYNC_TX_ACK;
|
2009-09-09 07:42:50 +07:00
|
|
|
submit->flags |= ASYNC_TX_FENCE;
|
async_tx: add support for asynchronous GF multiplication
[ Based on an original patch by Yuri Tikhonov ]
This adds support for doing asynchronous GF multiplication by adding
two additional functions to the async_tx API:
async_gen_syndrome() does simultaneous XOR and Galois field
multiplication of sources.
async_syndrome_val() validates the given source buffers against known P
and Q values.
When a request is made to run async_pq against more than the hardware
maximum number of supported sources we need to reuse the previous
generated P and Q values as sources into the next operation. Care must
be taken to remove Q from P' and P from Q'. For example to perform a 5
source pq op with hardware that only supports 4 sources at a time the
following approach is taken:
p, q = PQ(src0, src1, src2, src3, COEF({01}, {02}, {04}, {08}))
p', q' = PQ(p, q, q, src4, COEF({00}, {01}, {00}, {10}))
p' = p + q + q + src4 = p + src4
q' = {00}*p + {01}*q + {00}*q + {10}*src4 = q + {10}*src4
Note: 4 is the minimum acceptable maxpq otherwise we punt to
synchronous-software path.
The DMA_PREP_CONTINUE flag indicates to the driver to reuse p and q as
sources (in the above manner) and fill the remaining slots up to maxpq
with the new sources/coefficients.
Note1: Some devices have native support for P+Q continuation and can skip
this extra work. Devices with this capability can advertise it with
dma_set_maxpq. It is up to each driver how to handle the
DMA_PREP_CONTINUE flag.
Note2: The api supports disabling the generation of P when generating Q,
this is ignored by the synchronous path but is implemented by some dma
devices to save unnecessary writes. In this case the continuation
algorithm is simplified to only reuse Q as a source.
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: David Woodhouse <David.Woodhouse@intel.com>
Signed-off-by: Yuri Tikhonov <yur@emcraft.com>
Signed-off-by: Ilya Yanok <yanok@emcraft.com>
Reviewed-by: Andre Noll <maan@systemlinux.org>
Acked-by: Maciej Sosnowski <maciej.sosnowski@intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2009-07-15 02:20:36 +07:00
|
|
|
submit->cb_fn = NULL;
|
|
|
|
submit->cb_param = NULL;
|
|
|
|
} else {
|
|
|
|
submit->cb_fn = cb_fn_orig;
|
|
|
|
submit->cb_param = cb_param_orig;
|
|
|
|
if (cb_fn_orig)
|
|
|
|
dma_flags |= DMA_PREP_INTERRUPT;
|
|
|
|
}
|
|
|
|
|
2013-10-19 00:35:29 +07:00
|
|
|
/* Drivers force forward progress in case they can not provide
|
|
|
|
* a descriptor
|
async_tx: add support for asynchronous GF multiplication
[ Based on an original patch by Yuri Tikhonov ]
This adds support for doing asynchronous GF multiplication by adding
two additional functions to the async_tx API:
async_gen_syndrome() does simultaneous XOR and Galois field
multiplication of sources.
async_syndrome_val() validates the given source buffers against known P
and Q values.
When a request is made to run async_pq against more than the hardware
maximum number of supported sources we need to reuse the previous
generated P and Q values as sources into the next operation. Care must
be taken to remove Q from P' and P from Q'. For example to perform a 5
source pq op with hardware that only supports 4 sources at a time the
following approach is taken:
p, q = PQ(src0, src1, src2, src3, COEF({01}, {02}, {04}, {08}))
p', q' = PQ(p, q, q, src4, COEF({00}, {01}, {00}, {10}))
p' = p + q + q + src4 = p + src4
q' = {00}*p + {01}*q + {00}*q + {10}*src4 = q + {10}*src4
Note: 4 is the minimum acceptable maxpq otherwise we punt to
synchronous-software path.
The DMA_PREP_CONTINUE flag indicates to the driver to reuse p and q as
sources (in the above manner) and fill the remaining slots up to maxpq
with the new sources/coefficients.
Note1: Some devices have native support for P+Q continuation and can skip
this extra work. Devices with this capability can advertise it with
dma_set_maxpq. It is up to each driver how to handle the
DMA_PREP_CONTINUE flag.
Note2: The api supports disabling the generation of P when generating Q,
this is ignored by the synchronous path but is implemented by some dma
devices to save unnecessary writes. In this case the continuation
algorithm is simplified to only reuse Q as a source.
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: David Woodhouse <David.Woodhouse@intel.com>
Signed-off-by: Yuri Tikhonov <yur@emcraft.com>
Signed-off-by: Ilya Yanok <yanok@emcraft.com>
Reviewed-by: Andre Noll <maan@systemlinux.org>
Acked-by: Maciej Sosnowski <maciej.sosnowski@intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2009-07-15 02:20:36 +07:00
|
|
|
*/
|
|
|
|
for (;;) {
|
2013-10-19 00:35:29 +07:00
|
|
|
dma_dest[0] = unmap->addr[disks - 2];
|
|
|
|
dma_dest[1] = unmap->addr[disks - 1];
|
async_tx: add support for asynchronous GF multiplication
[ Based on an original patch by Yuri Tikhonov ]
This adds support for doing asynchronous GF multiplication by adding
two additional functions to the async_tx API:
async_gen_syndrome() does simultaneous XOR and Galois field
multiplication of sources.
async_syndrome_val() validates the given source buffers against known P
and Q values.
When a request is made to run async_pq against more than the hardware
maximum number of supported sources we need to reuse the previous
generated P and Q values as sources into the next operation. Care must
be taken to remove Q from P' and P from Q'. For example to perform a 5
source pq op with hardware that only supports 4 sources at a time the
following approach is taken:
p, q = PQ(src0, src1, src2, src3, COEF({01}, {02}, {04}, {08}))
p', q' = PQ(p, q, q, src4, COEF({00}, {01}, {00}, {10}))
p' = p + q + q + src4 = p + src4
q' = {00}*p + {01}*q + {00}*q + {10}*src4 = q + {10}*src4
Note: 4 is the minimum acceptable maxpq otherwise we punt to
synchronous-software path.
The DMA_PREP_CONTINUE flag indicates to the driver to reuse p and q as
sources (in the above manner) and fill the remaining slots up to maxpq
with the new sources/coefficients.
Note1: Some devices have native support for P+Q continuation and can skip
this extra work. Devices with this capability can advertise it with
dma_set_maxpq. It is up to each driver how to handle the
DMA_PREP_CONTINUE flag.
Note2: The api supports disabling the generation of P when generating Q,
this is ignored by the synchronous path but is implemented by some dma
devices to save unnecessary writes. In this case the continuation
algorithm is simplified to only reuse Q as a source.
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: David Woodhouse <David.Woodhouse@intel.com>
Signed-off-by: Yuri Tikhonov <yur@emcraft.com>
Signed-off-by: Ilya Yanok <yanok@emcraft.com>
Reviewed-by: Andre Noll <maan@systemlinux.org>
Acked-by: Maciej Sosnowski <maciej.sosnowski@intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2009-07-15 02:20:36 +07:00
|
|
|
tx = dma->device_prep_dma_pq(chan, dma_dest,
|
2013-10-19 00:35:29 +07:00
|
|
|
&unmap->addr[src_off],
|
async_tx: add support for asynchronous GF multiplication
[ Based on an original patch by Yuri Tikhonov ]
This adds support for doing asynchronous GF multiplication by adding
two additional functions to the async_tx API:
async_gen_syndrome() does simultaneous XOR and Galois field
multiplication of sources.
async_syndrome_val() validates the given source buffers against known P
and Q values.
When a request is made to run async_pq against more than the hardware
maximum number of supported sources we need to reuse the previous
generated P and Q values as sources into the next operation. Care must
be taken to remove Q from P' and P from Q'. For example to perform a 5
source pq op with hardware that only supports 4 sources at a time the
following approach is taken:
p, q = PQ(src0, src1, src2, src3, COEF({01}, {02}, {04}, {08}))
p', q' = PQ(p, q, q, src4, COEF({00}, {01}, {00}, {10}))
p' = p + q + q + src4 = p + src4
q' = {00}*p + {01}*q + {00}*q + {10}*src4 = q + {10}*src4
Note: 4 is the minimum acceptable maxpq otherwise we punt to
synchronous-software path.
The DMA_PREP_CONTINUE flag indicates to the driver to reuse p and q as
sources (in the above manner) and fill the remaining slots up to maxpq
with the new sources/coefficients.
Note1: Some devices have native support for P+Q continuation and can skip
this extra work. Devices with this capability can advertise it with
dma_set_maxpq. It is up to each driver how to handle the
DMA_PREP_CONTINUE flag.
Note2: The api supports disabling the generation of P when generating Q,
this is ignored by the synchronous path but is implemented by some dma
devices to save unnecessary writes. In this case the continuation
algorithm is simplified to only reuse Q as a source.
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: David Woodhouse <David.Woodhouse@intel.com>
Signed-off-by: Yuri Tikhonov <yur@emcraft.com>
Signed-off-by: Ilya Yanok <yanok@emcraft.com>
Reviewed-by: Andre Noll <maan@systemlinux.org>
Acked-by: Maciej Sosnowski <maciej.sosnowski@intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2009-07-15 02:20:36 +07:00
|
|
|
pq_src_cnt,
|
2013-10-19 00:35:29 +07:00
|
|
|
&scfs[src_off], unmap->len,
|
async_tx: add support for asynchronous GF multiplication
[ Based on an original patch by Yuri Tikhonov ]
This adds support for doing asynchronous GF multiplication by adding
two additional functions to the async_tx API:
async_gen_syndrome() does simultaneous XOR and Galois field
multiplication of sources.
async_syndrome_val() validates the given source buffers against known P
and Q values.
When a request is made to run async_pq against more than the hardware
maximum number of supported sources we need to reuse the previous
generated P and Q values as sources into the next operation. Care must
be taken to remove Q from P' and P from Q'. For example to perform a 5
source pq op with hardware that only supports 4 sources at a time the
following approach is taken:
p, q = PQ(src0, src1, src2, src3, COEF({01}, {02}, {04}, {08}))
p', q' = PQ(p, q, q, src4, COEF({00}, {01}, {00}, {10}))
p' = p + q + q + src4 = p + src4
q' = {00}*p + {01}*q + {00}*q + {10}*src4 = q + {10}*src4
Note: 4 is the minimum acceptable maxpq otherwise we punt to
synchronous-software path.
The DMA_PREP_CONTINUE flag indicates to the driver to reuse p and q as
sources (in the above manner) and fill the remaining slots up to maxpq
with the new sources/coefficients.
Note1: Some devices have native support for P+Q continuation and can skip
this extra work. Devices with this capability can advertise it with
dma_set_maxpq. It is up to each driver how to handle the
DMA_PREP_CONTINUE flag.
Note2: The api supports disabling the generation of P when generating Q,
this is ignored by the synchronous path but is implemented by some dma
devices to save unnecessary writes. In this case the continuation
algorithm is simplified to only reuse Q as a source.
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: David Woodhouse <David.Woodhouse@intel.com>
Signed-off-by: Yuri Tikhonov <yur@emcraft.com>
Signed-off-by: Ilya Yanok <yanok@emcraft.com>
Reviewed-by: Andre Noll <maan@systemlinux.org>
Acked-by: Maciej Sosnowski <maciej.sosnowski@intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2009-07-15 02:20:36 +07:00
|
|
|
dma_flags);
|
|
|
|
if (likely(tx))
|
|
|
|
break;
|
|
|
|
async_tx_quiesce(&submit->depend_tx);
|
|
|
|
dma_async_issue_pending(chan);
|
|
|
|
}
|
|
|
|
|
2013-10-19 00:35:29 +07:00
|
|
|
dma_set_unmap(tx, unmap);
|
async_tx: add support for asynchronous GF multiplication
[ Based on an original patch by Yuri Tikhonov ]
This adds support for doing asynchronous GF multiplication by adding
two additional functions to the async_tx API:
async_gen_syndrome() does simultaneous XOR and Galois field
multiplication of sources.
async_syndrome_val() validates the given source buffers against known P
and Q values.
When a request is made to run async_pq against more than the hardware
maximum number of supported sources we need to reuse the previous
generated P and Q values as sources into the next operation. Care must
be taken to remove Q from P' and P from Q'. For example to perform a 5
source pq op with hardware that only supports 4 sources at a time the
following approach is taken:
p, q = PQ(src0, src1, src2, src3, COEF({01}, {02}, {04}, {08}))
p', q' = PQ(p, q, q, src4, COEF({00}, {01}, {00}, {10}))
p' = p + q + q + src4 = p + src4
q' = {00}*p + {01}*q + {00}*q + {10}*src4 = q + {10}*src4
Note: 4 is the minimum acceptable maxpq otherwise we punt to
synchronous-software path.
The DMA_PREP_CONTINUE flag indicates to the driver to reuse p and q as
sources (in the above manner) and fill the remaining slots up to maxpq
with the new sources/coefficients.
Note1: Some devices have native support for P+Q continuation and can skip
this extra work. Devices with this capability can advertise it with
dma_set_maxpq. It is up to each driver how to handle the
DMA_PREP_CONTINUE flag.
Note2: The api supports disabling the generation of P when generating Q,
this is ignored by the synchronous path but is implemented by some dma
devices to save unnecessary writes. In this case the continuation
algorithm is simplified to only reuse Q as a source.
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: David Woodhouse <David.Woodhouse@intel.com>
Signed-off-by: Yuri Tikhonov <yur@emcraft.com>
Signed-off-by: Ilya Yanok <yanok@emcraft.com>
Reviewed-by: Andre Noll <maan@systemlinux.org>
Acked-by: Maciej Sosnowski <maciej.sosnowski@intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2009-07-15 02:20:36 +07:00
|
|
|
async_tx_submit(chan, tx, submit);
|
|
|
|
submit->depend_tx = tx;
|
|
|
|
|
|
|
|
/* drop completed sources */
|
|
|
|
src_cnt -= pq_src_cnt;
|
|
|
|
src_off += pq_src_cnt;
|
|
|
|
|
|
|
|
dma_flags |= DMA_PREP_CONTINUE;
|
|
|
|
}
|
|
|
|
|
|
|
|
return tx;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* do_sync_gen_syndrome - synchronously calculate a raid6 syndrome
|
|
|
|
*/
|
|
|
|
static void
|
|
|
|
do_sync_gen_syndrome(struct page **blocks, unsigned int offset, int disks,
|
|
|
|
size_t len, struct async_submit_ctl *submit)
|
|
|
|
{
|
|
|
|
void **srcs;
|
|
|
|
int i;
|
md/raid5: activate raid6 rmw feature
Glue it altogehter. The raid6 rmw path should work the same as the
already existing raid5 logic. So emulate the prexor handling/flags
and split functions as needed.
1) Enable xor_syndrome() in the async layer.
2) Split ops_run_prexor() into RAID4/5 and RAID6 logic. Xor the syndrome
at the start of a rmw run as we did it before for the single parity.
3) Take care of rmw run in ops_run_reconstruct6(). Again process only
the changed pages to get syndrome back into sync.
4) Enhance set_syndrome_sources() to fill NULL pages if we are in a rmw
run. The lower layers will calculate start & end pages from that and
call the xor_syndrome() correspondingly.
5) Adapt the several places where we ignored Q handling up to now.
Performance numbers for a single E5630 system with a mix of 10 7200k
desktop/server disks. 300 seconds random write with 8 threads onto a
3,2TB (10*400GB) RAID6 64K chunk without spare (group_thread_cnt=4)
bsize rmw_level=1 rmw_level=0 rmw_level=1 rmw_level=0
skip_copy=1 skip_copy=1 skip_copy=0 skip_copy=0
4K 115 KB/s 141 KB/s 165 KB/s 140 KB/s
8K 225 KB/s 275 KB/s 324 KB/s 274 KB/s
16K 434 KB/s 536 KB/s 640 KB/s 534 KB/s
32K 751 KB/s 1,051 KB/s 1,234 KB/s 1,045 KB/s
64K 1,339 KB/s 1,958 KB/s 2,282 KB/s 1,962 KB/s
128K 2,673 KB/s 3,862 KB/s 4,113 KB/s 3,898 KB/s
256K 7,685 KB/s 7,539 KB/s 7,557 KB/s 7,638 KB/s
512K 19,556 KB/s 19,558 KB/s 19,652 KB/s 19,688 Kb/s
Signed-off-by: Markus Stockhausen <stockhausen@collogia.de>
Signed-off-by: NeilBrown <neilb@suse.de>
2014-12-15 08:57:05 +07:00
|
|
|
int start = -1, stop = disks - 3;
|
async_tx: add support for asynchronous GF multiplication
[ Based on an original patch by Yuri Tikhonov ]
This adds support for doing asynchronous GF multiplication by adding
two additional functions to the async_tx API:
async_gen_syndrome() does simultaneous XOR and Galois field
multiplication of sources.
async_syndrome_val() validates the given source buffers against known P
and Q values.
When a request is made to run async_pq against more than the hardware
maximum number of supported sources we need to reuse the previous
generated P and Q values as sources into the next operation. Care must
be taken to remove Q from P' and P from Q'. For example to perform a 5
source pq op with hardware that only supports 4 sources at a time the
following approach is taken:
p, q = PQ(src0, src1, src2, src3, COEF({01}, {02}, {04}, {08}))
p', q' = PQ(p, q, q, src4, COEF({00}, {01}, {00}, {10}))
p' = p + q + q + src4 = p + src4
q' = {00}*p + {01}*q + {00}*q + {10}*src4 = q + {10}*src4
Note: 4 is the minimum acceptable maxpq otherwise we punt to
synchronous-software path.
The DMA_PREP_CONTINUE flag indicates to the driver to reuse p and q as
sources (in the above manner) and fill the remaining slots up to maxpq
with the new sources/coefficients.
Note1: Some devices have native support for P+Q continuation and can skip
this extra work. Devices with this capability can advertise it with
dma_set_maxpq. It is up to each driver how to handle the
DMA_PREP_CONTINUE flag.
Note2: The api supports disabling the generation of P when generating Q,
this is ignored by the synchronous path but is implemented by some dma
devices to save unnecessary writes. In this case the continuation
algorithm is simplified to only reuse Q as a source.
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: David Woodhouse <David.Woodhouse@intel.com>
Signed-off-by: Yuri Tikhonov <yur@emcraft.com>
Signed-off-by: Ilya Yanok <yanok@emcraft.com>
Reviewed-by: Andre Noll <maan@systemlinux.org>
Acked-by: Maciej Sosnowski <maciej.sosnowski@intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2009-07-15 02:20:36 +07:00
|
|
|
|
|
|
|
if (submit->scribble)
|
|
|
|
srcs = submit->scribble;
|
|
|
|
else
|
|
|
|
srcs = (void **) blocks;
|
|
|
|
|
|
|
|
for (i = 0; i < disks; i++) {
|
2009-10-16 12:40:25 +07:00
|
|
|
if (blocks[i] == NULL) {
|
async_tx: add support for asynchronous GF multiplication
[ Based on an original patch by Yuri Tikhonov ]
This adds support for doing asynchronous GF multiplication by adding
two additional functions to the async_tx API:
async_gen_syndrome() does simultaneous XOR and Galois field
multiplication of sources.
async_syndrome_val() validates the given source buffers against known P
and Q values.
When a request is made to run async_pq against more than the hardware
maximum number of supported sources we need to reuse the previous
generated P and Q values as sources into the next operation. Care must
be taken to remove Q from P' and P from Q'. For example to perform a 5
source pq op with hardware that only supports 4 sources at a time the
following approach is taken:
p, q = PQ(src0, src1, src2, src3, COEF({01}, {02}, {04}, {08}))
p', q' = PQ(p, q, q, src4, COEF({00}, {01}, {00}, {10}))
p' = p + q + q + src4 = p + src4
q' = {00}*p + {01}*q + {00}*q + {10}*src4 = q + {10}*src4
Note: 4 is the minimum acceptable maxpq otherwise we punt to
synchronous-software path.
The DMA_PREP_CONTINUE flag indicates to the driver to reuse p and q as
sources (in the above manner) and fill the remaining slots up to maxpq
with the new sources/coefficients.
Note1: Some devices have native support for P+Q continuation and can skip
this extra work. Devices with this capability can advertise it with
dma_set_maxpq. It is up to each driver how to handle the
DMA_PREP_CONTINUE flag.
Note2: The api supports disabling the generation of P when generating Q,
this is ignored by the synchronous path but is implemented by some dma
devices to save unnecessary writes. In this case the continuation
algorithm is simplified to only reuse Q as a source.
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: David Woodhouse <David.Woodhouse@intel.com>
Signed-off-by: Yuri Tikhonov <yur@emcraft.com>
Signed-off-by: Ilya Yanok <yanok@emcraft.com>
Reviewed-by: Andre Noll <maan@systemlinux.org>
Acked-by: Maciej Sosnowski <maciej.sosnowski@intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2009-07-15 02:20:36 +07:00
|
|
|
BUG_ON(i > disks - 3); /* P or Q can't be zero */
|
2009-10-16 12:40:25 +07:00
|
|
|
srcs[i] = (void*)raid6_empty_zero_page;
|
md/raid5: activate raid6 rmw feature
Glue it altogehter. The raid6 rmw path should work the same as the
already existing raid5 logic. So emulate the prexor handling/flags
and split functions as needed.
1) Enable xor_syndrome() in the async layer.
2) Split ops_run_prexor() into RAID4/5 and RAID6 logic. Xor the syndrome
at the start of a rmw run as we did it before for the single parity.
3) Take care of rmw run in ops_run_reconstruct6(). Again process only
the changed pages to get syndrome back into sync.
4) Enhance set_syndrome_sources() to fill NULL pages if we are in a rmw
run. The lower layers will calculate start & end pages from that and
call the xor_syndrome() correspondingly.
5) Adapt the several places where we ignored Q handling up to now.
Performance numbers for a single E5630 system with a mix of 10 7200k
desktop/server disks. 300 seconds random write with 8 threads onto a
3,2TB (10*400GB) RAID6 64K chunk without spare (group_thread_cnt=4)
bsize rmw_level=1 rmw_level=0 rmw_level=1 rmw_level=0
skip_copy=1 skip_copy=1 skip_copy=0 skip_copy=0
4K 115 KB/s 141 KB/s 165 KB/s 140 KB/s
8K 225 KB/s 275 KB/s 324 KB/s 274 KB/s
16K 434 KB/s 536 KB/s 640 KB/s 534 KB/s
32K 751 KB/s 1,051 KB/s 1,234 KB/s 1,045 KB/s
64K 1,339 KB/s 1,958 KB/s 2,282 KB/s 1,962 KB/s
128K 2,673 KB/s 3,862 KB/s 4,113 KB/s 3,898 KB/s
256K 7,685 KB/s 7,539 KB/s 7,557 KB/s 7,638 KB/s
512K 19,556 KB/s 19,558 KB/s 19,652 KB/s 19,688 Kb/s
Signed-off-by: Markus Stockhausen <stockhausen@collogia.de>
Signed-off-by: NeilBrown <neilb@suse.de>
2014-12-15 08:57:05 +07:00
|
|
|
} else {
|
async_tx: add support for asynchronous GF multiplication
[ Based on an original patch by Yuri Tikhonov ]
This adds support for doing asynchronous GF multiplication by adding
two additional functions to the async_tx API:
async_gen_syndrome() does simultaneous XOR and Galois field
multiplication of sources.
async_syndrome_val() validates the given source buffers against known P
and Q values.
When a request is made to run async_pq against more than the hardware
maximum number of supported sources we need to reuse the previous
generated P and Q values as sources into the next operation. Care must
be taken to remove Q from P' and P from Q'. For example to perform a 5
source pq op with hardware that only supports 4 sources at a time the
following approach is taken:
p, q = PQ(src0, src1, src2, src3, COEF({01}, {02}, {04}, {08}))
p', q' = PQ(p, q, q, src4, COEF({00}, {01}, {00}, {10}))
p' = p + q + q + src4 = p + src4
q' = {00}*p + {01}*q + {00}*q + {10}*src4 = q + {10}*src4
Note: 4 is the minimum acceptable maxpq otherwise we punt to
synchronous-software path.
The DMA_PREP_CONTINUE flag indicates to the driver to reuse p and q as
sources (in the above manner) and fill the remaining slots up to maxpq
with the new sources/coefficients.
Note1: Some devices have native support for P+Q continuation and can skip
this extra work. Devices with this capability can advertise it with
dma_set_maxpq. It is up to each driver how to handle the
DMA_PREP_CONTINUE flag.
Note2: The api supports disabling the generation of P when generating Q,
this is ignored by the synchronous path but is implemented by some dma
devices to save unnecessary writes. In this case the continuation
algorithm is simplified to only reuse Q as a source.
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: David Woodhouse <David.Woodhouse@intel.com>
Signed-off-by: Yuri Tikhonov <yur@emcraft.com>
Signed-off-by: Ilya Yanok <yanok@emcraft.com>
Reviewed-by: Andre Noll <maan@systemlinux.org>
Acked-by: Maciej Sosnowski <maciej.sosnowski@intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2009-07-15 02:20:36 +07:00
|
|
|
srcs[i] = page_address(blocks[i]) + offset;
|
md/raid5: activate raid6 rmw feature
Glue it altogehter. The raid6 rmw path should work the same as the
already existing raid5 logic. So emulate the prexor handling/flags
and split functions as needed.
1) Enable xor_syndrome() in the async layer.
2) Split ops_run_prexor() into RAID4/5 and RAID6 logic. Xor the syndrome
at the start of a rmw run as we did it before for the single parity.
3) Take care of rmw run in ops_run_reconstruct6(). Again process only
the changed pages to get syndrome back into sync.
4) Enhance set_syndrome_sources() to fill NULL pages if we are in a rmw
run. The lower layers will calculate start & end pages from that and
call the xor_syndrome() correspondingly.
5) Adapt the several places where we ignored Q handling up to now.
Performance numbers for a single E5630 system with a mix of 10 7200k
desktop/server disks. 300 seconds random write with 8 threads onto a
3,2TB (10*400GB) RAID6 64K chunk without spare (group_thread_cnt=4)
bsize rmw_level=1 rmw_level=0 rmw_level=1 rmw_level=0
skip_copy=1 skip_copy=1 skip_copy=0 skip_copy=0
4K 115 KB/s 141 KB/s 165 KB/s 140 KB/s
8K 225 KB/s 275 KB/s 324 KB/s 274 KB/s
16K 434 KB/s 536 KB/s 640 KB/s 534 KB/s
32K 751 KB/s 1,051 KB/s 1,234 KB/s 1,045 KB/s
64K 1,339 KB/s 1,958 KB/s 2,282 KB/s 1,962 KB/s
128K 2,673 KB/s 3,862 KB/s 4,113 KB/s 3,898 KB/s
256K 7,685 KB/s 7,539 KB/s 7,557 KB/s 7,638 KB/s
512K 19,556 KB/s 19,558 KB/s 19,652 KB/s 19,688 Kb/s
Signed-off-by: Markus Stockhausen <stockhausen@collogia.de>
Signed-off-by: NeilBrown <neilb@suse.de>
2014-12-15 08:57:05 +07:00
|
|
|
if (i < disks - 2) {
|
|
|
|
stop = i;
|
|
|
|
if (start == -1)
|
|
|
|
start = i;
|
|
|
|
}
|
|
|
|
}
|
async_tx: add support for asynchronous GF multiplication
[ Based on an original patch by Yuri Tikhonov ]
This adds support for doing asynchronous GF multiplication by adding
two additional functions to the async_tx API:
async_gen_syndrome() does simultaneous XOR and Galois field
multiplication of sources.
async_syndrome_val() validates the given source buffers against known P
and Q values.
When a request is made to run async_pq against more than the hardware
maximum number of supported sources we need to reuse the previous
generated P and Q values as sources into the next operation. Care must
be taken to remove Q from P' and P from Q'. For example to perform a 5
source pq op with hardware that only supports 4 sources at a time the
following approach is taken:
p, q = PQ(src0, src1, src2, src3, COEF({01}, {02}, {04}, {08}))
p', q' = PQ(p, q, q, src4, COEF({00}, {01}, {00}, {10}))
p' = p + q + q + src4 = p + src4
q' = {00}*p + {01}*q + {00}*q + {10}*src4 = q + {10}*src4
Note: 4 is the minimum acceptable maxpq otherwise we punt to
synchronous-software path.
The DMA_PREP_CONTINUE flag indicates to the driver to reuse p and q as
sources (in the above manner) and fill the remaining slots up to maxpq
with the new sources/coefficients.
Note1: Some devices have native support for P+Q continuation and can skip
this extra work. Devices with this capability can advertise it with
dma_set_maxpq. It is up to each driver how to handle the
DMA_PREP_CONTINUE flag.
Note2: The api supports disabling the generation of P when generating Q,
this is ignored by the synchronous path but is implemented by some dma
devices to save unnecessary writes. In this case the continuation
algorithm is simplified to only reuse Q as a source.
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: David Woodhouse <David.Woodhouse@intel.com>
Signed-off-by: Yuri Tikhonov <yur@emcraft.com>
Signed-off-by: Ilya Yanok <yanok@emcraft.com>
Reviewed-by: Andre Noll <maan@systemlinux.org>
Acked-by: Maciej Sosnowski <maciej.sosnowski@intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2009-07-15 02:20:36 +07:00
|
|
|
}
|
md/raid5: activate raid6 rmw feature
Glue it altogehter. The raid6 rmw path should work the same as the
already existing raid5 logic. So emulate the prexor handling/flags
and split functions as needed.
1) Enable xor_syndrome() in the async layer.
2) Split ops_run_prexor() into RAID4/5 and RAID6 logic. Xor the syndrome
at the start of a rmw run as we did it before for the single parity.
3) Take care of rmw run in ops_run_reconstruct6(). Again process only
the changed pages to get syndrome back into sync.
4) Enhance set_syndrome_sources() to fill NULL pages if we are in a rmw
run. The lower layers will calculate start & end pages from that and
call the xor_syndrome() correspondingly.
5) Adapt the several places where we ignored Q handling up to now.
Performance numbers for a single E5630 system with a mix of 10 7200k
desktop/server disks. 300 seconds random write with 8 threads onto a
3,2TB (10*400GB) RAID6 64K chunk without spare (group_thread_cnt=4)
bsize rmw_level=1 rmw_level=0 rmw_level=1 rmw_level=0
skip_copy=1 skip_copy=1 skip_copy=0 skip_copy=0
4K 115 KB/s 141 KB/s 165 KB/s 140 KB/s
8K 225 KB/s 275 KB/s 324 KB/s 274 KB/s
16K 434 KB/s 536 KB/s 640 KB/s 534 KB/s
32K 751 KB/s 1,051 KB/s 1,234 KB/s 1,045 KB/s
64K 1,339 KB/s 1,958 KB/s 2,282 KB/s 1,962 KB/s
128K 2,673 KB/s 3,862 KB/s 4,113 KB/s 3,898 KB/s
256K 7,685 KB/s 7,539 KB/s 7,557 KB/s 7,638 KB/s
512K 19,556 KB/s 19,558 KB/s 19,652 KB/s 19,688 Kb/s
Signed-off-by: Markus Stockhausen <stockhausen@collogia.de>
Signed-off-by: NeilBrown <neilb@suse.de>
2014-12-15 08:57:05 +07:00
|
|
|
if (submit->flags & ASYNC_TX_PQ_XOR_DST) {
|
|
|
|
BUG_ON(!raid6_call.xor_syndrome);
|
|
|
|
if (start >= 0)
|
|
|
|
raid6_call.xor_syndrome(disks, start, stop, len, srcs);
|
|
|
|
} else
|
|
|
|
raid6_call.gen_syndrome(disks, len, srcs);
|
async_tx: add support for asynchronous GF multiplication
[ Based on an original patch by Yuri Tikhonov ]
This adds support for doing asynchronous GF multiplication by adding
two additional functions to the async_tx API:
async_gen_syndrome() does simultaneous XOR and Galois field
multiplication of sources.
async_syndrome_val() validates the given source buffers against known P
and Q values.
When a request is made to run async_pq against more than the hardware
maximum number of supported sources we need to reuse the previous
generated P and Q values as sources into the next operation. Care must
be taken to remove Q from P' and P from Q'. For example to perform a 5
source pq op with hardware that only supports 4 sources at a time the
following approach is taken:
p, q = PQ(src0, src1, src2, src3, COEF({01}, {02}, {04}, {08}))
p', q' = PQ(p, q, q, src4, COEF({00}, {01}, {00}, {10}))
p' = p + q + q + src4 = p + src4
q' = {00}*p + {01}*q + {00}*q + {10}*src4 = q + {10}*src4
Note: 4 is the minimum acceptable maxpq otherwise we punt to
synchronous-software path.
The DMA_PREP_CONTINUE flag indicates to the driver to reuse p and q as
sources (in the above manner) and fill the remaining slots up to maxpq
with the new sources/coefficients.
Note1: Some devices have native support for P+Q continuation and can skip
this extra work. Devices with this capability can advertise it with
dma_set_maxpq. It is up to each driver how to handle the
DMA_PREP_CONTINUE flag.
Note2: The api supports disabling the generation of P when generating Q,
this is ignored by the synchronous path but is implemented by some dma
devices to save unnecessary writes. In this case the continuation
algorithm is simplified to only reuse Q as a source.
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: David Woodhouse <David.Woodhouse@intel.com>
Signed-off-by: Yuri Tikhonov <yur@emcraft.com>
Signed-off-by: Ilya Yanok <yanok@emcraft.com>
Reviewed-by: Andre Noll <maan@systemlinux.org>
Acked-by: Maciej Sosnowski <maciej.sosnowski@intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2009-07-15 02:20:36 +07:00
|
|
|
async_tx_sync_epilog(submit);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* async_gen_syndrome - asynchronously calculate a raid6 syndrome
|
|
|
|
* @blocks: source blocks from idx 0..disks-3, P @ disks-2 and Q @ disks-1
|
|
|
|
* @offset: common offset into each block (src and dest) to start transaction
|
|
|
|
* @disks: number of blocks (including missing P or Q, see below)
|
|
|
|
* @len: length of operation in bytes
|
|
|
|
* @submit: submission/completion modifiers
|
|
|
|
*
|
|
|
|
* General note: This routine assumes a field of GF(2^8) with a
|
|
|
|
* primitive polynomial of 0x11d and a generator of {02}.
|
|
|
|
*
|
|
|
|
* 'disks' note: callers can optionally omit either P or Q (but not
|
|
|
|
* both) from the calculation by setting blocks[disks-2] or
|
|
|
|
* blocks[disks-1] to NULL. When P or Q is omitted 'len' must be <=
|
|
|
|
* PAGE_SIZE as a temporary buffer of this size is used in the
|
|
|
|
* synchronous path. 'disks' always accounts for both destination
|
2009-10-20 08:09:32 +07:00
|
|
|
* buffers. If any source buffers (blocks[i] where i < disks - 2) are
|
|
|
|
* set to NULL those buffers will be replaced with the raid6_zero_page
|
|
|
|
* in the synchronous path and omitted in the hardware-asynchronous
|
|
|
|
* path.
|
async_tx: add support for asynchronous GF multiplication
[ Based on an original patch by Yuri Tikhonov ]
This adds support for doing asynchronous GF multiplication by adding
two additional functions to the async_tx API:
async_gen_syndrome() does simultaneous XOR and Galois field
multiplication of sources.
async_syndrome_val() validates the given source buffers against known P
and Q values.
When a request is made to run async_pq against more than the hardware
maximum number of supported sources we need to reuse the previous
generated P and Q values as sources into the next operation. Care must
be taken to remove Q from P' and P from Q'. For example to perform a 5
source pq op with hardware that only supports 4 sources at a time the
following approach is taken:
p, q = PQ(src0, src1, src2, src3, COEF({01}, {02}, {04}, {08}))
p', q' = PQ(p, q, q, src4, COEF({00}, {01}, {00}, {10}))
p' = p + q + q + src4 = p + src4
q' = {00}*p + {01}*q + {00}*q + {10}*src4 = q + {10}*src4
Note: 4 is the minimum acceptable maxpq otherwise we punt to
synchronous-software path.
The DMA_PREP_CONTINUE flag indicates to the driver to reuse p and q as
sources (in the above manner) and fill the remaining slots up to maxpq
with the new sources/coefficients.
Note1: Some devices have native support for P+Q continuation and can skip
this extra work. Devices with this capability can advertise it with
dma_set_maxpq. It is up to each driver how to handle the
DMA_PREP_CONTINUE flag.
Note2: The api supports disabling the generation of P when generating Q,
this is ignored by the synchronous path but is implemented by some dma
devices to save unnecessary writes. In this case the continuation
algorithm is simplified to only reuse Q as a source.
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: David Woodhouse <David.Woodhouse@intel.com>
Signed-off-by: Yuri Tikhonov <yur@emcraft.com>
Signed-off-by: Ilya Yanok <yanok@emcraft.com>
Reviewed-by: Andre Noll <maan@systemlinux.org>
Acked-by: Maciej Sosnowski <maciej.sosnowski@intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2009-07-15 02:20:36 +07:00
|
|
|
*/
|
|
|
|
struct dma_async_tx_descriptor *
|
|
|
|
async_gen_syndrome(struct page **blocks, unsigned int offset, int disks,
|
|
|
|
size_t len, struct async_submit_ctl *submit)
|
|
|
|
{
|
|
|
|
int src_cnt = disks - 2;
|
|
|
|
struct dma_chan *chan = async_tx_find_channel(submit, DMA_PQ,
|
|
|
|
&P(blocks, disks), 2,
|
|
|
|
blocks, src_cnt, len);
|
|
|
|
struct dma_device *device = chan ? chan->device : NULL;
|
2013-10-19 00:35:29 +07:00
|
|
|
struct dmaengine_unmap_data *unmap = NULL;
|
async_tx: add support for asynchronous GF multiplication
[ Based on an original patch by Yuri Tikhonov ]
This adds support for doing asynchronous GF multiplication by adding
two additional functions to the async_tx API:
async_gen_syndrome() does simultaneous XOR and Galois field
multiplication of sources.
async_syndrome_val() validates the given source buffers against known P
and Q values.
When a request is made to run async_pq against more than the hardware
maximum number of supported sources we need to reuse the previous
generated P and Q values as sources into the next operation. Care must
be taken to remove Q from P' and P from Q'. For example to perform a 5
source pq op with hardware that only supports 4 sources at a time the
following approach is taken:
p, q = PQ(src0, src1, src2, src3, COEF({01}, {02}, {04}, {08}))
p', q' = PQ(p, q, q, src4, COEF({00}, {01}, {00}, {10}))
p' = p + q + q + src4 = p + src4
q' = {00}*p + {01}*q + {00}*q + {10}*src4 = q + {10}*src4
Note: 4 is the minimum acceptable maxpq otherwise we punt to
synchronous-software path.
The DMA_PREP_CONTINUE flag indicates to the driver to reuse p and q as
sources (in the above manner) and fill the remaining slots up to maxpq
with the new sources/coefficients.
Note1: Some devices have native support for P+Q continuation and can skip
this extra work. Devices with this capability can advertise it with
dma_set_maxpq. It is up to each driver how to handle the
DMA_PREP_CONTINUE flag.
Note2: The api supports disabling the generation of P when generating Q,
this is ignored by the synchronous path but is implemented by some dma
devices to save unnecessary writes. In this case the continuation
algorithm is simplified to only reuse Q as a source.
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: David Woodhouse <David.Woodhouse@intel.com>
Signed-off-by: Yuri Tikhonov <yur@emcraft.com>
Signed-off-by: Ilya Yanok <yanok@emcraft.com>
Reviewed-by: Andre Noll <maan@systemlinux.org>
Acked-by: Maciej Sosnowski <maciej.sosnowski@intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2009-07-15 02:20:36 +07:00
|
|
|
|
|
|
|
BUG_ON(disks > 255 || !(P(blocks, disks) || Q(blocks, disks)));
|
|
|
|
|
2013-10-19 00:35:29 +07:00
|
|
|
if (device)
|
|
|
|
unmap = dmaengine_get_unmap_data(device->dev, disks, GFP_NOIO);
|
async_tx: add support for asynchronous GF multiplication
[ Based on an original patch by Yuri Tikhonov ]
This adds support for doing asynchronous GF multiplication by adding
two additional functions to the async_tx API:
async_gen_syndrome() does simultaneous XOR and Galois field
multiplication of sources.
async_syndrome_val() validates the given source buffers against known P
and Q values.
When a request is made to run async_pq against more than the hardware
maximum number of supported sources we need to reuse the previous
generated P and Q values as sources into the next operation. Care must
be taken to remove Q from P' and P from Q'. For example to perform a 5
source pq op with hardware that only supports 4 sources at a time the
following approach is taken:
p, q = PQ(src0, src1, src2, src3, COEF({01}, {02}, {04}, {08}))
p', q' = PQ(p, q, q, src4, COEF({00}, {01}, {00}, {10}))
p' = p + q + q + src4 = p + src4
q' = {00}*p + {01}*q + {00}*q + {10}*src4 = q + {10}*src4
Note: 4 is the minimum acceptable maxpq otherwise we punt to
synchronous-software path.
The DMA_PREP_CONTINUE flag indicates to the driver to reuse p and q as
sources (in the above manner) and fill the remaining slots up to maxpq
with the new sources/coefficients.
Note1: Some devices have native support for P+Q continuation and can skip
this extra work. Devices with this capability can advertise it with
dma_set_maxpq. It is up to each driver how to handle the
DMA_PREP_CONTINUE flag.
Note2: The api supports disabling the generation of P when generating Q,
this is ignored by the synchronous path but is implemented by some dma
devices to save unnecessary writes. In this case the continuation
algorithm is simplified to only reuse Q as a source.
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: David Woodhouse <David.Woodhouse@intel.com>
Signed-off-by: Yuri Tikhonov <yur@emcraft.com>
Signed-off-by: Ilya Yanok <yanok@emcraft.com>
Reviewed-by: Andre Noll <maan@systemlinux.org>
Acked-by: Maciej Sosnowski <maciej.sosnowski@intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2009-07-15 02:20:36 +07:00
|
|
|
|
md/raid5: activate raid6 rmw feature
Glue it altogehter. The raid6 rmw path should work the same as the
already existing raid5 logic. So emulate the prexor handling/flags
and split functions as needed.
1) Enable xor_syndrome() in the async layer.
2) Split ops_run_prexor() into RAID4/5 and RAID6 logic. Xor the syndrome
at the start of a rmw run as we did it before for the single parity.
3) Take care of rmw run in ops_run_reconstruct6(). Again process only
the changed pages to get syndrome back into sync.
4) Enhance set_syndrome_sources() to fill NULL pages if we are in a rmw
run. The lower layers will calculate start & end pages from that and
call the xor_syndrome() correspondingly.
5) Adapt the several places where we ignored Q handling up to now.
Performance numbers for a single E5630 system with a mix of 10 7200k
desktop/server disks. 300 seconds random write with 8 threads onto a
3,2TB (10*400GB) RAID6 64K chunk without spare (group_thread_cnt=4)
bsize rmw_level=1 rmw_level=0 rmw_level=1 rmw_level=0
skip_copy=1 skip_copy=1 skip_copy=0 skip_copy=0
4K 115 KB/s 141 KB/s 165 KB/s 140 KB/s
8K 225 KB/s 275 KB/s 324 KB/s 274 KB/s
16K 434 KB/s 536 KB/s 640 KB/s 534 KB/s
32K 751 KB/s 1,051 KB/s 1,234 KB/s 1,045 KB/s
64K 1,339 KB/s 1,958 KB/s 2,282 KB/s 1,962 KB/s
128K 2,673 KB/s 3,862 KB/s 4,113 KB/s 3,898 KB/s
256K 7,685 KB/s 7,539 KB/s 7,557 KB/s 7,638 KB/s
512K 19,556 KB/s 19,558 KB/s 19,652 KB/s 19,688 Kb/s
Signed-off-by: Markus Stockhausen <stockhausen@collogia.de>
Signed-off-by: NeilBrown <neilb@suse.de>
2014-12-15 08:57:05 +07:00
|
|
|
/* XORing P/Q is only implemented in software */
|
|
|
|
if (unmap && !(submit->flags & ASYNC_TX_PQ_XOR_DST) &&
|
async_tx: add support for asynchronous GF multiplication
[ Based on an original patch by Yuri Tikhonov ]
This adds support for doing asynchronous GF multiplication by adding
two additional functions to the async_tx API:
async_gen_syndrome() does simultaneous XOR and Galois field
multiplication of sources.
async_syndrome_val() validates the given source buffers against known P
and Q values.
When a request is made to run async_pq against more than the hardware
maximum number of supported sources we need to reuse the previous
generated P and Q values as sources into the next operation. Care must
be taken to remove Q from P' and P from Q'. For example to perform a 5
source pq op with hardware that only supports 4 sources at a time the
following approach is taken:
p, q = PQ(src0, src1, src2, src3, COEF({01}, {02}, {04}, {08}))
p', q' = PQ(p, q, q, src4, COEF({00}, {01}, {00}, {10}))
p' = p + q + q + src4 = p + src4
q' = {00}*p + {01}*q + {00}*q + {10}*src4 = q + {10}*src4
Note: 4 is the minimum acceptable maxpq otherwise we punt to
synchronous-software path.
The DMA_PREP_CONTINUE flag indicates to the driver to reuse p and q as
sources (in the above manner) and fill the remaining slots up to maxpq
with the new sources/coefficients.
Note1: Some devices have native support for P+Q continuation and can skip
this extra work. Devices with this capability can advertise it with
dma_set_maxpq. It is up to each driver how to handle the
DMA_PREP_CONTINUE flag.
Note2: The api supports disabling the generation of P when generating Q,
this is ignored by the synchronous path but is implemented by some dma
devices to save unnecessary writes. In this case the continuation
algorithm is simplified to only reuse Q as a source.
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: David Woodhouse <David.Woodhouse@intel.com>
Signed-off-by: Yuri Tikhonov <yur@emcraft.com>
Signed-off-by: Ilya Yanok <yanok@emcraft.com>
Reviewed-by: Andre Noll <maan@systemlinux.org>
Acked-by: Maciej Sosnowski <maciej.sosnowski@intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2009-07-15 02:20:36 +07:00
|
|
|
(src_cnt <= dma_maxpq(device, 0) ||
|
2009-09-09 07:42:53 +07:00
|
|
|
dma_maxpq(device, DMA_PREP_CONTINUE) > 0) &&
|
|
|
|
is_dma_pq_aligned(device, offset, 0, len)) {
|
2013-10-19 00:35:29 +07:00
|
|
|
struct dma_async_tx_descriptor *tx;
|
|
|
|
enum dma_ctrl_flags dma_flags = 0;
|
|
|
|
unsigned char coefs[src_cnt];
|
|
|
|
int i, j;
|
|
|
|
|
async_tx: add support for asynchronous GF multiplication
[ Based on an original patch by Yuri Tikhonov ]
This adds support for doing asynchronous GF multiplication by adding
two additional functions to the async_tx API:
async_gen_syndrome() does simultaneous XOR and Galois field
multiplication of sources.
async_syndrome_val() validates the given source buffers against known P
and Q values.
When a request is made to run async_pq against more than the hardware
maximum number of supported sources we need to reuse the previous
generated P and Q values as sources into the next operation. Care must
be taken to remove Q from P' and P from Q'. For example to perform a 5
source pq op with hardware that only supports 4 sources at a time the
following approach is taken:
p, q = PQ(src0, src1, src2, src3, COEF({01}, {02}, {04}, {08}))
p', q' = PQ(p, q, q, src4, COEF({00}, {01}, {00}, {10}))
p' = p + q + q + src4 = p + src4
q' = {00}*p + {01}*q + {00}*q + {10}*src4 = q + {10}*src4
Note: 4 is the minimum acceptable maxpq otherwise we punt to
synchronous-software path.
The DMA_PREP_CONTINUE flag indicates to the driver to reuse p and q as
sources (in the above manner) and fill the remaining slots up to maxpq
with the new sources/coefficients.
Note1: Some devices have native support for P+Q continuation and can skip
this extra work. Devices with this capability can advertise it with
dma_set_maxpq. It is up to each driver how to handle the
DMA_PREP_CONTINUE flag.
Note2: The api supports disabling the generation of P when generating Q,
this is ignored by the synchronous path but is implemented by some dma
devices to save unnecessary writes. In this case the continuation
algorithm is simplified to only reuse Q as a source.
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: David Woodhouse <David.Woodhouse@intel.com>
Signed-off-by: Yuri Tikhonov <yur@emcraft.com>
Signed-off-by: Ilya Yanok <yanok@emcraft.com>
Reviewed-by: Andre Noll <maan@systemlinux.org>
Acked-by: Maciej Sosnowski <maciej.sosnowski@intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2009-07-15 02:20:36 +07:00
|
|
|
/* run the p+q asynchronously */
|
|
|
|
pr_debug("%s: (async) disks: %d len: %zu\n",
|
|
|
|
__func__, disks, len);
|
2013-10-19 00:35:29 +07:00
|
|
|
|
|
|
|
/* convert source addresses being careful to collapse 'empty'
|
|
|
|
* sources and update the coefficients accordingly
|
|
|
|
*/
|
|
|
|
unmap->len = len;
|
|
|
|
for (i = 0, j = 0; i < src_cnt; i++) {
|
|
|
|
if (blocks[i] == NULL)
|
|
|
|
continue;
|
|
|
|
unmap->addr[j] = dma_map_page(device->dev, blocks[i], offset,
|
|
|
|
len, DMA_TO_DEVICE);
|
|
|
|
coefs[j] = raid6_gfexp[i];
|
|
|
|
unmap->to_cnt++;
|
|
|
|
j++;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* DMAs use destinations as sources,
|
|
|
|
* so use BIDIRECTIONAL mapping
|
|
|
|
*/
|
|
|
|
unmap->bidi_cnt++;
|
|
|
|
if (P(blocks, disks))
|
|
|
|
unmap->addr[j++] = dma_map_page(device->dev, P(blocks, disks),
|
|
|
|
offset, len, DMA_BIDIRECTIONAL);
|
|
|
|
else {
|
|
|
|
unmap->addr[j++] = 0;
|
|
|
|
dma_flags |= DMA_PREP_PQ_DISABLE_P;
|
|
|
|
}
|
|
|
|
|
|
|
|
unmap->bidi_cnt++;
|
|
|
|
if (Q(blocks, disks))
|
|
|
|
unmap->addr[j++] = dma_map_page(device->dev, Q(blocks, disks),
|
|
|
|
offset, len, DMA_BIDIRECTIONAL);
|
|
|
|
else {
|
|
|
|
unmap->addr[j++] = 0;
|
|
|
|
dma_flags |= DMA_PREP_PQ_DISABLE_Q;
|
|
|
|
}
|
|
|
|
|
|
|
|
tx = do_async_gen_syndrome(chan, coefs, j, unmap, dma_flags, submit);
|
|
|
|
dmaengine_unmap_put(unmap);
|
|
|
|
return tx;
|
async_tx: add support for asynchronous GF multiplication
[ Based on an original patch by Yuri Tikhonov ]
This adds support for doing asynchronous GF multiplication by adding
two additional functions to the async_tx API:
async_gen_syndrome() does simultaneous XOR and Galois field
multiplication of sources.
async_syndrome_val() validates the given source buffers against known P
and Q values.
When a request is made to run async_pq against more than the hardware
maximum number of supported sources we need to reuse the previous
generated P and Q values as sources into the next operation. Care must
be taken to remove Q from P' and P from Q'. For example to perform a 5
source pq op with hardware that only supports 4 sources at a time the
following approach is taken:
p, q = PQ(src0, src1, src2, src3, COEF({01}, {02}, {04}, {08}))
p', q' = PQ(p, q, q, src4, COEF({00}, {01}, {00}, {10}))
p' = p + q + q + src4 = p + src4
q' = {00}*p + {01}*q + {00}*q + {10}*src4 = q + {10}*src4
Note: 4 is the minimum acceptable maxpq otherwise we punt to
synchronous-software path.
The DMA_PREP_CONTINUE flag indicates to the driver to reuse p and q as
sources (in the above manner) and fill the remaining slots up to maxpq
with the new sources/coefficients.
Note1: Some devices have native support for P+Q continuation and can skip
this extra work. Devices with this capability can advertise it with
dma_set_maxpq. It is up to each driver how to handle the
DMA_PREP_CONTINUE flag.
Note2: The api supports disabling the generation of P when generating Q,
this is ignored by the synchronous path but is implemented by some dma
devices to save unnecessary writes. In this case the continuation
algorithm is simplified to only reuse Q as a source.
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: David Woodhouse <David.Woodhouse@intel.com>
Signed-off-by: Yuri Tikhonov <yur@emcraft.com>
Signed-off-by: Ilya Yanok <yanok@emcraft.com>
Reviewed-by: Andre Noll <maan@systemlinux.org>
Acked-by: Maciej Sosnowski <maciej.sosnowski@intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2009-07-15 02:20:36 +07:00
|
|
|
}
|
|
|
|
|
2013-10-19 00:35:29 +07:00
|
|
|
dmaengine_unmap_put(unmap);
|
|
|
|
|
async_tx: add support for asynchronous GF multiplication
[ Based on an original patch by Yuri Tikhonov ]
This adds support for doing asynchronous GF multiplication by adding
two additional functions to the async_tx API:
async_gen_syndrome() does simultaneous XOR and Galois field
multiplication of sources.
async_syndrome_val() validates the given source buffers against known P
and Q values.
When a request is made to run async_pq against more than the hardware
maximum number of supported sources we need to reuse the previous
generated P and Q values as sources into the next operation. Care must
be taken to remove Q from P' and P from Q'. For example to perform a 5
source pq op with hardware that only supports 4 sources at a time the
following approach is taken:
p, q = PQ(src0, src1, src2, src3, COEF({01}, {02}, {04}, {08}))
p', q' = PQ(p, q, q, src4, COEF({00}, {01}, {00}, {10}))
p' = p + q + q + src4 = p + src4
q' = {00}*p + {01}*q + {00}*q + {10}*src4 = q + {10}*src4
Note: 4 is the minimum acceptable maxpq otherwise we punt to
synchronous-software path.
The DMA_PREP_CONTINUE flag indicates to the driver to reuse p and q as
sources (in the above manner) and fill the remaining slots up to maxpq
with the new sources/coefficients.
Note1: Some devices have native support for P+Q continuation and can skip
this extra work. Devices with this capability can advertise it with
dma_set_maxpq. It is up to each driver how to handle the
DMA_PREP_CONTINUE flag.
Note2: The api supports disabling the generation of P when generating Q,
this is ignored by the synchronous path but is implemented by some dma
devices to save unnecessary writes. In this case the continuation
algorithm is simplified to only reuse Q as a source.
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: David Woodhouse <David.Woodhouse@intel.com>
Signed-off-by: Yuri Tikhonov <yur@emcraft.com>
Signed-off-by: Ilya Yanok <yanok@emcraft.com>
Reviewed-by: Andre Noll <maan@systemlinux.org>
Acked-by: Maciej Sosnowski <maciej.sosnowski@intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2009-07-15 02:20:36 +07:00
|
|
|
/* run the pq synchronously */
|
|
|
|
pr_debug("%s: (sync) disks: %d len: %zu\n", __func__, disks, len);
|
|
|
|
|
|
|
|
/* wait for any prerequisite operations */
|
|
|
|
async_tx_quiesce(&submit->depend_tx);
|
|
|
|
|
|
|
|
if (!P(blocks, disks)) {
|
2009-10-20 08:09:32 +07:00
|
|
|
P(blocks, disks) = pq_scribble_page;
|
async_tx: add support for asynchronous GF multiplication
[ Based on an original patch by Yuri Tikhonov ]
This adds support for doing asynchronous GF multiplication by adding
two additional functions to the async_tx API:
async_gen_syndrome() does simultaneous XOR and Galois field
multiplication of sources.
async_syndrome_val() validates the given source buffers against known P
and Q values.
When a request is made to run async_pq against more than the hardware
maximum number of supported sources we need to reuse the previous
generated P and Q values as sources into the next operation. Care must
be taken to remove Q from P' and P from Q'. For example to perform a 5
source pq op with hardware that only supports 4 sources at a time the
following approach is taken:
p, q = PQ(src0, src1, src2, src3, COEF({01}, {02}, {04}, {08}))
p', q' = PQ(p, q, q, src4, COEF({00}, {01}, {00}, {10}))
p' = p + q + q + src4 = p + src4
q' = {00}*p + {01}*q + {00}*q + {10}*src4 = q + {10}*src4
Note: 4 is the minimum acceptable maxpq otherwise we punt to
synchronous-software path.
The DMA_PREP_CONTINUE flag indicates to the driver to reuse p and q as
sources (in the above manner) and fill the remaining slots up to maxpq
with the new sources/coefficients.
Note1: Some devices have native support for P+Q continuation and can skip
this extra work. Devices with this capability can advertise it with
dma_set_maxpq. It is up to each driver how to handle the
DMA_PREP_CONTINUE flag.
Note2: The api supports disabling the generation of P when generating Q,
this is ignored by the synchronous path but is implemented by some dma
devices to save unnecessary writes. In this case the continuation
algorithm is simplified to only reuse Q as a source.
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: David Woodhouse <David.Woodhouse@intel.com>
Signed-off-by: Yuri Tikhonov <yur@emcraft.com>
Signed-off-by: Ilya Yanok <yanok@emcraft.com>
Reviewed-by: Andre Noll <maan@systemlinux.org>
Acked-by: Maciej Sosnowski <maciej.sosnowski@intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2009-07-15 02:20:36 +07:00
|
|
|
BUG_ON(len + offset > PAGE_SIZE);
|
|
|
|
}
|
|
|
|
if (!Q(blocks, disks)) {
|
2009-10-20 08:09:32 +07:00
|
|
|
Q(blocks, disks) = pq_scribble_page;
|
async_tx: add support for asynchronous GF multiplication
[ Based on an original patch by Yuri Tikhonov ]
This adds support for doing asynchronous GF multiplication by adding
two additional functions to the async_tx API:
async_gen_syndrome() does simultaneous XOR and Galois field
multiplication of sources.
async_syndrome_val() validates the given source buffers against known P
and Q values.
When a request is made to run async_pq against more than the hardware
maximum number of supported sources we need to reuse the previous
generated P and Q values as sources into the next operation. Care must
be taken to remove Q from P' and P from Q'. For example to perform a 5
source pq op with hardware that only supports 4 sources at a time the
following approach is taken:
p, q = PQ(src0, src1, src2, src3, COEF({01}, {02}, {04}, {08}))
p', q' = PQ(p, q, q, src4, COEF({00}, {01}, {00}, {10}))
p' = p + q + q + src4 = p + src4
q' = {00}*p + {01}*q + {00}*q + {10}*src4 = q + {10}*src4
Note: 4 is the minimum acceptable maxpq otherwise we punt to
synchronous-software path.
The DMA_PREP_CONTINUE flag indicates to the driver to reuse p and q as
sources (in the above manner) and fill the remaining slots up to maxpq
with the new sources/coefficients.
Note1: Some devices have native support for P+Q continuation and can skip
this extra work. Devices with this capability can advertise it with
dma_set_maxpq. It is up to each driver how to handle the
DMA_PREP_CONTINUE flag.
Note2: The api supports disabling the generation of P when generating Q,
this is ignored by the synchronous path but is implemented by some dma
devices to save unnecessary writes. In this case the continuation
algorithm is simplified to only reuse Q as a source.
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: David Woodhouse <David.Woodhouse@intel.com>
Signed-off-by: Yuri Tikhonov <yur@emcraft.com>
Signed-off-by: Ilya Yanok <yanok@emcraft.com>
Reviewed-by: Andre Noll <maan@systemlinux.org>
Acked-by: Maciej Sosnowski <maciej.sosnowski@intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2009-07-15 02:20:36 +07:00
|
|
|
BUG_ON(len + offset > PAGE_SIZE);
|
|
|
|
}
|
|
|
|
do_sync_gen_syndrome(blocks, offset, disks, len, submit);
|
|
|
|
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(async_gen_syndrome);
|
|
|
|
|
2009-11-20 07:10:37 +07:00
|
|
|
static inline struct dma_chan *
|
|
|
|
pq_val_chan(struct async_submit_ctl *submit, struct page **blocks, int disks, size_t len)
|
|
|
|
{
|
|
|
|
#ifdef CONFIG_ASYNC_TX_DISABLE_PQ_VAL_DMA
|
|
|
|
return NULL;
|
|
|
|
#endif
|
|
|
|
return async_tx_find_channel(submit, DMA_PQ_VAL, NULL, 0, blocks,
|
|
|
|
disks, len);
|
|
|
|
}
|
|
|
|
|
async_tx: add support for asynchronous GF multiplication
[ Based on an original patch by Yuri Tikhonov ]
This adds support for doing asynchronous GF multiplication by adding
two additional functions to the async_tx API:
async_gen_syndrome() does simultaneous XOR and Galois field
multiplication of sources.
async_syndrome_val() validates the given source buffers against known P
and Q values.
When a request is made to run async_pq against more than the hardware
maximum number of supported sources we need to reuse the previous
generated P and Q values as sources into the next operation. Care must
be taken to remove Q from P' and P from Q'. For example to perform a 5
source pq op with hardware that only supports 4 sources at a time the
following approach is taken:
p, q = PQ(src0, src1, src2, src3, COEF({01}, {02}, {04}, {08}))
p', q' = PQ(p, q, q, src4, COEF({00}, {01}, {00}, {10}))
p' = p + q + q + src4 = p + src4
q' = {00}*p + {01}*q + {00}*q + {10}*src4 = q + {10}*src4
Note: 4 is the minimum acceptable maxpq otherwise we punt to
synchronous-software path.
The DMA_PREP_CONTINUE flag indicates to the driver to reuse p and q as
sources (in the above manner) and fill the remaining slots up to maxpq
with the new sources/coefficients.
Note1: Some devices have native support for P+Q continuation and can skip
this extra work. Devices with this capability can advertise it with
dma_set_maxpq. It is up to each driver how to handle the
DMA_PREP_CONTINUE flag.
Note2: The api supports disabling the generation of P when generating Q,
this is ignored by the synchronous path but is implemented by some dma
devices to save unnecessary writes. In this case the continuation
algorithm is simplified to only reuse Q as a source.
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: David Woodhouse <David.Woodhouse@intel.com>
Signed-off-by: Yuri Tikhonov <yur@emcraft.com>
Signed-off-by: Ilya Yanok <yanok@emcraft.com>
Reviewed-by: Andre Noll <maan@systemlinux.org>
Acked-by: Maciej Sosnowski <maciej.sosnowski@intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2009-07-15 02:20:36 +07:00
|
|
|
/**
|
|
|
|
* async_syndrome_val - asynchronously validate a raid6 syndrome
|
|
|
|
* @blocks: source blocks from idx 0..disks-3, P @ disks-2 and Q @ disks-1
|
|
|
|
* @offset: common offset into each block (src and dest) to start transaction
|
|
|
|
* @disks: number of blocks (including missing P or Q, see below)
|
|
|
|
* @len: length of operation in bytes
|
|
|
|
* @pqres: on val failure SUM_CHECK_P_RESULT and/or SUM_CHECK_Q_RESULT are set
|
|
|
|
* @spare: temporary result buffer for the synchronous case
|
|
|
|
* @submit: submission / completion modifiers
|
|
|
|
*
|
|
|
|
* The same notes from async_gen_syndrome apply to the 'blocks',
|
|
|
|
* and 'disks' parameters of this routine. The synchronous path
|
|
|
|
* requires a temporary result buffer and submit->scribble to be
|
|
|
|
* specified.
|
|
|
|
*/
|
|
|
|
struct dma_async_tx_descriptor *
|
|
|
|
async_syndrome_val(struct page **blocks, unsigned int offset, int disks,
|
|
|
|
size_t len, enum sum_check_flags *pqres, struct page *spare,
|
|
|
|
struct async_submit_ctl *submit)
|
|
|
|
{
|
2009-11-20 07:10:37 +07:00
|
|
|
struct dma_chan *chan = pq_val_chan(submit, blocks, disks, len);
|
async_tx: add support for asynchronous GF multiplication
[ Based on an original patch by Yuri Tikhonov ]
This adds support for doing asynchronous GF multiplication by adding
two additional functions to the async_tx API:
async_gen_syndrome() does simultaneous XOR and Galois field
multiplication of sources.
async_syndrome_val() validates the given source buffers against known P
and Q values.
When a request is made to run async_pq against more than the hardware
maximum number of supported sources we need to reuse the previous
generated P and Q values as sources into the next operation. Care must
be taken to remove Q from P' and P from Q'. For example to perform a 5
source pq op with hardware that only supports 4 sources at a time the
following approach is taken:
p, q = PQ(src0, src1, src2, src3, COEF({01}, {02}, {04}, {08}))
p', q' = PQ(p, q, q, src4, COEF({00}, {01}, {00}, {10}))
p' = p + q + q + src4 = p + src4
q' = {00}*p + {01}*q + {00}*q + {10}*src4 = q + {10}*src4
Note: 4 is the minimum acceptable maxpq otherwise we punt to
synchronous-software path.
The DMA_PREP_CONTINUE flag indicates to the driver to reuse p and q as
sources (in the above manner) and fill the remaining slots up to maxpq
with the new sources/coefficients.
Note1: Some devices have native support for P+Q continuation and can skip
this extra work. Devices with this capability can advertise it with
dma_set_maxpq. It is up to each driver how to handle the
DMA_PREP_CONTINUE flag.
Note2: The api supports disabling the generation of P when generating Q,
this is ignored by the synchronous path but is implemented by some dma
devices to save unnecessary writes. In this case the continuation
algorithm is simplified to only reuse Q as a source.
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: David Woodhouse <David.Woodhouse@intel.com>
Signed-off-by: Yuri Tikhonov <yur@emcraft.com>
Signed-off-by: Ilya Yanok <yanok@emcraft.com>
Reviewed-by: Andre Noll <maan@systemlinux.org>
Acked-by: Maciej Sosnowski <maciej.sosnowski@intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2009-07-15 02:20:36 +07:00
|
|
|
struct dma_device *device = chan ? chan->device : NULL;
|
|
|
|
struct dma_async_tx_descriptor *tx;
|
2009-10-16 12:40:34 +07:00
|
|
|
unsigned char coefs[disks-2];
|
async_tx: add support for asynchronous GF multiplication
[ Based on an original patch by Yuri Tikhonov ]
This adds support for doing asynchronous GF multiplication by adding
two additional functions to the async_tx API:
async_gen_syndrome() does simultaneous XOR and Galois field
multiplication of sources.
async_syndrome_val() validates the given source buffers against known P
and Q values.
When a request is made to run async_pq against more than the hardware
maximum number of supported sources we need to reuse the previous
generated P and Q values as sources into the next operation. Care must
be taken to remove Q from P' and P from Q'. For example to perform a 5
source pq op with hardware that only supports 4 sources at a time the
following approach is taken:
p, q = PQ(src0, src1, src2, src3, COEF({01}, {02}, {04}, {08}))
p', q' = PQ(p, q, q, src4, COEF({00}, {01}, {00}, {10}))
p' = p + q + q + src4 = p + src4
q' = {00}*p + {01}*q + {00}*q + {10}*src4 = q + {10}*src4
Note: 4 is the minimum acceptable maxpq otherwise we punt to
synchronous-software path.
The DMA_PREP_CONTINUE flag indicates to the driver to reuse p and q as
sources (in the above manner) and fill the remaining slots up to maxpq
with the new sources/coefficients.
Note1: Some devices have native support for P+Q continuation and can skip
this extra work. Devices with this capability can advertise it with
dma_set_maxpq. It is up to each driver how to handle the
DMA_PREP_CONTINUE flag.
Note2: The api supports disabling the generation of P when generating Q,
this is ignored by the synchronous path but is implemented by some dma
devices to save unnecessary writes. In this case the continuation
algorithm is simplified to only reuse Q as a source.
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: David Woodhouse <David.Woodhouse@intel.com>
Signed-off-by: Yuri Tikhonov <yur@emcraft.com>
Signed-off-by: Ilya Yanok <yanok@emcraft.com>
Reviewed-by: Andre Noll <maan@systemlinux.org>
Acked-by: Maciej Sosnowski <maciej.sosnowski@intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2009-07-15 02:20:36 +07:00
|
|
|
enum dma_ctrl_flags dma_flags = submit->cb_fn ? DMA_PREP_INTERRUPT : 0;
|
2013-10-19 00:35:30 +07:00
|
|
|
struct dmaengine_unmap_data *unmap = NULL;
|
async_tx: add support for asynchronous GF multiplication
[ Based on an original patch by Yuri Tikhonov ]
This adds support for doing asynchronous GF multiplication by adding
two additional functions to the async_tx API:
async_gen_syndrome() does simultaneous XOR and Galois field
multiplication of sources.
async_syndrome_val() validates the given source buffers against known P
and Q values.
When a request is made to run async_pq against more than the hardware
maximum number of supported sources we need to reuse the previous
generated P and Q values as sources into the next operation. Care must
be taken to remove Q from P' and P from Q'. For example to perform a 5
source pq op with hardware that only supports 4 sources at a time the
following approach is taken:
p, q = PQ(src0, src1, src2, src3, COEF({01}, {02}, {04}, {08}))
p', q' = PQ(p, q, q, src4, COEF({00}, {01}, {00}, {10}))
p' = p + q + q + src4 = p + src4
q' = {00}*p + {01}*q + {00}*q + {10}*src4 = q + {10}*src4
Note: 4 is the minimum acceptable maxpq otherwise we punt to
synchronous-software path.
The DMA_PREP_CONTINUE flag indicates to the driver to reuse p and q as
sources (in the above manner) and fill the remaining slots up to maxpq
with the new sources/coefficients.
Note1: Some devices have native support for P+Q continuation and can skip
this extra work. Devices with this capability can advertise it with
dma_set_maxpq. It is up to each driver how to handle the
DMA_PREP_CONTINUE flag.
Note2: The api supports disabling the generation of P when generating Q,
this is ignored by the synchronous path but is implemented by some dma
devices to save unnecessary writes. In this case the continuation
algorithm is simplified to only reuse Q as a source.
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: David Woodhouse <David.Woodhouse@intel.com>
Signed-off-by: Yuri Tikhonov <yur@emcraft.com>
Signed-off-by: Ilya Yanok <yanok@emcraft.com>
Reviewed-by: Andre Noll <maan@systemlinux.org>
Acked-by: Maciej Sosnowski <maciej.sosnowski@intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2009-07-15 02:20:36 +07:00
|
|
|
|
|
|
|
BUG_ON(disks < 4);
|
|
|
|
|
2013-10-19 00:35:30 +07:00
|
|
|
if (device)
|
|
|
|
unmap = dmaengine_get_unmap_data(device->dev, disks, GFP_NOIO);
|
async_tx: add support for asynchronous GF multiplication
[ Based on an original patch by Yuri Tikhonov ]
This adds support for doing asynchronous GF multiplication by adding
two additional functions to the async_tx API:
async_gen_syndrome() does simultaneous XOR and Galois field
multiplication of sources.
async_syndrome_val() validates the given source buffers against known P
and Q values.
When a request is made to run async_pq against more than the hardware
maximum number of supported sources we need to reuse the previous
generated P and Q values as sources into the next operation. Care must
be taken to remove Q from P' and P from Q'. For example to perform a 5
source pq op with hardware that only supports 4 sources at a time the
following approach is taken:
p, q = PQ(src0, src1, src2, src3, COEF({01}, {02}, {04}, {08}))
p', q' = PQ(p, q, q, src4, COEF({00}, {01}, {00}, {10}))
p' = p + q + q + src4 = p + src4
q' = {00}*p + {01}*q + {00}*q + {10}*src4 = q + {10}*src4
Note: 4 is the minimum acceptable maxpq otherwise we punt to
synchronous-software path.
The DMA_PREP_CONTINUE flag indicates to the driver to reuse p and q as
sources (in the above manner) and fill the remaining slots up to maxpq
with the new sources/coefficients.
Note1: Some devices have native support for P+Q continuation and can skip
this extra work. Devices with this capability can advertise it with
dma_set_maxpq. It is up to each driver how to handle the
DMA_PREP_CONTINUE flag.
Note2: The api supports disabling the generation of P when generating Q,
this is ignored by the synchronous path but is implemented by some dma
devices to save unnecessary writes. In this case the continuation
algorithm is simplified to only reuse Q as a source.
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: David Woodhouse <David.Woodhouse@intel.com>
Signed-off-by: Yuri Tikhonov <yur@emcraft.com>
Signed-off-by: Ilya Yanok <yanok@emcraft.com>
Reviewed-by: Andre Noll <maan@systemlinux.org>
Acked-by: Maciej Sosnowski <maciej.sosnowski@intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2009-07-15 02:20:36 +07:00
|
|
|
|
2013-10-19 00:35:30 +07:00
|
|
|
if (unmap && disks <= dma_maxpq(device, 0) &&
|
2009-09-09 07:42:53 +07:00
|
|
|
is_dma_pq_aligned(device, offset, 0, len)) {
|
async_tx: add support for asynchronous GF multiplication
[ Based on an original patch by Yuri Tikhonov ]
This adds support for doing asynchronous GF multiplication by adding
two additional functions to the async_tx API:
async_gen_syndrome() does simultaneous XOR and Galois field
multiplication of sources.
async_syndrome_val() validates the given source buffers against known P
and Q values.
When a request is made to run async_pq against more than the hardware
maximum number of supported sources we need to reuse the previous
generated P and Q values as sources into the next operation. Care must
be taken to remove Q from P' and P from Q'. For example to perform a 5
source pq op with hardware that only supports 4 sources at a time the
following approach is taken:
p, q = PQ(src0, src1, src2, src3, COEF({01}, {02}, {04}, {08}))
p', q' = PQ(p, q, q, src4, COEF({00}, {01}, {00}, {10}))
p' = p + q + q + src4 = p + src4
q' = {00}*p + {01}*q + {00}*q + {10}*src4 = q + {10}*src4
Note: 4 is the minimum acceptable maxpq otherwise we punt to
synchronous-software path.
The DMA_PREP_CONTINUE flag indicates to the driver to reuse p and q as
sources (in the above manner) and fill the remaining slots up to maxpq
with the new sources/coefficients.
Note1: Some devices have native support for P+Q continuation and can skip
this extra work. Devices with this capability can advertise it with
dma_set_maxpq. It is up to each driver how to handle the
DMA_PREP_CONTINUE flag.
Note2: The api supports disabling the generation of P when generating Q,
this is ignored by the synchronous path but is implemented by some dma
devices to save unnecessary writes. In this case the continuation
algorithm is simplified to only reuse Q as a source.
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: David Woodhouse <David.Woodhouse@intel.com>
Signed-off-by: Yuri Tikhonov <yur@emcraft.com>
Signed-off-by: Ilya Yanok <yanok@emcraft.com>
Reviewed-by: Andre Noll <maan@systemlinux.org>
Acked-by: Maciej Sosnowski <maciej.sosnowski@intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2009-07-15 02:20:36 +07:00
|
|
|
struct device *dev = device->dev;
|
2013-10-19 00:35:30 +07:00
|
|
|
dma_addr_t pq[2];
|
|
|
|
int i, j = 0, src_cnt = 0;
|
async_tx: add support for asynchronous GF multiplication
[ Based on an original patch by Yuri Tikhonov ]
This adds support for doing asynchronous GF multiplication by adding
two additional functions to the async_tx API:
async_gen_syndrome() does simultaneous XOR and Galois field
multiplication of sources.
async_syndrome_val() validates the given source buffers against known P
and Q values.
When a request is made to run async_pq against more than the hardware
maximum number of supported sources we need to reuse the previous
generated P and Q values as sources into the next operation. Care must
be taken to remove Q from P' and P from Q'. For example to perform a 5
source pq op with hardware that only supports 4 sources at a time the
following approach is taken:
p, q = PQ(src0, src1, src2, src3, COEF({01}, {02}, {04}, {08}))
p', q' = PQ(p, q, q, src4, COEF({00}, {01}, {00}, {10}))
p' = p + q + q + src4 = p + src4
q' = {00}*p + {01}*q + {00}*q + {10}*src4 = q + {10}*src4
Note: 4 is the minimum acceptable maxpq otherwise we punt to
synchronous-software path.
The DMA_PREP_CONTINUE flag indicates to the driver to reuse p and q as
sources (in the above manner) and fill the remaining slots up to maxpq
with the new sources/coefficients.
Note1: Some devices have native support for P+Q continuation and can skip
this extra work. Devices with this capability can advertise it with
dma_set_maxpq. It is up to each driver how to handle the
DMA_PREP_CONTINUE flag.
Note2: The api supports disabling the generation of P when generating Q,
this is ignored by the synchronous path but is implemented by some dma
devices to save unnecessary writes. In this case the continuation
algorithm is simplified to only reuse Q as a source.
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: David Woodhouse <David.Woodhouse@intel.com>
Signed-off-by: Yuri Tikhonov <yur@emcraft.com>
Signed-off-by: Ilya Yanok <yanok@emcraft.com>
Reviewed-by: Andre Noll <maan@systemlinux.org>
Acked-by: Maciej Sosnowski <maciej.sosnowski@intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2009-07-15 02:20:36 +07:00
|
|
|
|
|
|
|
pr_debug("%s: (async) disks: %d len: %zu\n",
|
|
|
|
__func__, disks, len);
|
2013-10-19 00:35:30 +07:00
|
|
|
|
|
|
|
unmap->len = len;
|
|
|
|
for (i = 0; i < disks-2; i++)
|
|
|
|
if (likely(blocks[i])) {
|
|
|
|
unmap->addr[j] = dma_map_page(dev, blocks[i],
|
|
|
|
offset, len,
|
|
|
|
DMA_TO_DEVICE);
|
|
|
|
coefs[j] = raid6_gfexp[i];
|
|
|
|
unmap->to_cnt++;
|
|
|
|
src_cnt++;
|
|
|
|
j++;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!P(blocks, disks)) {
|
|
|
|
pq[0] = 0;
|
async_tx: add support for asynchronous GF multiplication
[ Based on an original patch by Yuri Tikhonov ]
This adds support for doing asynchronous GF multiplication by adding
two additional functions to the async_tx API:
async_gen_syndrome() does simultaneous XOR and Galois field
multiplication of sources.
async_syndrome_val() validates the given source buffers against known P
and Q values.
When a request is made to run async_pq against more than the hardware
maximum number of supported sources we need to reuse the previous
generated P and Q values as sources into the next operation. Care must
be taken to remove Q from P' and P from Q'. For example to perform a 5
source pq op with hardware that only supports 4 sources at a time the
following approach is taken:
p, q = PQ(src0, src1, src2, src3, COEF({01}, {02}, {04}, {08}))
p', q' = PQ(p, q, q, src4, COEF({00}, {01}, {00}, {10}))
p' = p + q + q + src4 = p + src4
q' = {00}*p + {01}*q + {00}*q + {10}*src4 = q + {10}*src4
Note: 4 is the minimum acceptable maxpq otherwise we punt to
synchronous-software path.
The DMA_PREP_CONTINUE flag indicates to the driver to reuse p and q as
sources (in the above manner) and fill the remaining slots up to maxpq
with the new sources/coefficients.
Note1: Some devices have native support for P+Q continuation and can skip
this extra work. Devices with this capability can advertise it with
dma_set_maxpq. It is up to each driver how to handle the
DMA_PREP_CONTINUE flag.
Note2: The api supports disabling the generation of P when generating Q,
this is ignored by the synchronous path but is implemented by some dma
devices to save unnecessary writes. In this case the continuation
algorithm is simplified to only reuse Q as a source.
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: David Woodhouse <David.Woodhouse@intel.com>
Signed-off-by: Yuri Tikhonov <yur@emcraft.com>
Signed-off-by: Ilya Yanok <yanok@emcraft.com>
Reviewed-by: Andre Noll <maan@systemlinux.org>
Acked-by: Maciej Sosnowski <maciej.sosnowski@intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2009-07-15 02:20:36 +07:00
|
|
|
dma_flags |= DMA_PREP_PQ_DISABLE_P;
|
2013-10-19 00:35:30 +07:00
|
|
|
} else {
|
2009-10-20 08:09:32 +07:00
|
|
|
pq[0] = dma_map_page(dev, P(blocks, disks),
|
2009-10-16 12:40:34 +07:00
|
|
|
offset, len,
|
|
|
|
DMA_TO_DEVICE);
|
2013-10-19 00:35:30 +07:00
|
|
|
unmap->addr[j++] = pq[0];
|
|
|
|
unmap->to_cnt++;
|
|
|
|
}
|
|
|
|
if (!Q(blocks, disks)) {
|
|
|
|
pq[1] = 0;
|
async_tx: add support for asynchronous GF multiplication
[ Based on an original patch by Yuri Tikhonov ]
This adds support for doing asynchronous GF multiplication by adding
two additional functions to the async_tx API:
async_gen_syndrome() does simultaneous XOR and Galois field
multiplication of sources.
async_syndrome_val() validates the given source buffers against known P
and Q values.
When a request is made to run async_pq against more than the hardware
maximum number of supported sources we need to reuse the previous
generated P and Q values as sources into the next operation. Care must
be taken to remove Q from P' and P from Q'. For example to perform a 5
source pq op with hardware that only supports 4 sources at a time the
following approach is taken:
p, q = PQ(src0, src1, src2, src3, COEF({01}, {02}, {04}, {08}))
p', q' = PQ(p, q, q, src4, COEF({00}, {01}, {00}, {10}))
p' = p + q + q + src4 = p + src4
q' = {00}*p + {01}*q + {00}*q + {10}*src4 = q + {10}*src4
Note: 4 is the minimum acceptable maxpq otherwise we punt to
synchronous-software path.
The DMA_PREP_CONTINUE flag indicates to the driver to reuse p and q as
sources (in the above manner) and fill the remaining slots up to maxpq
with the new sources/coefficients.
Note1: Some devices have native support for P+Q continuation and can skip
this extra work. Devices with this capability can advertise it with
dma_set_maxpq. It is up to each driver how to handle the
DMA_PREP_CONTINUE flag.
Note2: The api supports disabling the generation of P when generating Q,
this is ignored by the synchronous path but is implemented by some dma
devices to save unnecessary writes. In this case the continuation
algorithm is simplified to only reuse Q as a source.
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: David Woodhouse <David.Woodhouse@intel.com>
Signed-off-by: Yuri Tikhonov <yur@emcraft.com>
Signed-off-by: Ilya Yanok <yanok@emcraft.com>
Reviewed-by: Andre Noll <maan@systemlinux.org>
Acked-by: Maciej Sosnowski <maciej.sosnowski@intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2009-07-15 02:20:36 +07:00
|
|
|
dma_flags |= DMA_PREP_PQ_DISABLE_Q;
|
2013-10-19 00:35:30 +07:00
|
|
|
} else {
|
2009-10-20 08:09:32 +07:00
|
|
|
pq[1] = dma_map_page(dev, Q(blocks, disks),
|
2009-10-16 12:40:34 +07:00
|
|
|
offset, len,
|
|
|
|
DMA_TO_DEVICE);
|
2013-10-19 00:35:30 +07:00
|
|
|
unmap->addr[j++] = pq[1];
|
|
|
|
unmap->to_cnt++;
|
|
|
|
}
|
2009-10-16 12:40:34 +07:00
|
|
|
|
2009-09-09 07:42:50 +07:00
|
|
|
if (submit->flags & ASYNC_TX_FENCE)
|
|
|
|
dma_flags |= DMA_PREP_FENCE;
|
async_tx: add support for asynchronous GF multiplication
[ Based on an original patch by Yuri Tikhonov ]
This adds support for doing asynchronous GF multiplication by adding
two additional functions to the async_tx API:
async_gen_syndrome() does simultaneous XOR and Galois field
multiplication of sources.
async_syndrome_val() validates the given source buffers against known P
and Q values.
When a request is made to run async_pq against more than the hardware
maximum number of supported sources we need to reuse the previous
generated P and Q values as sources into the next operation. Care must
be taken to remove Q from P' and P from Q'. For example to perform a 5
source pq op with hardware that only supports 4 sources at a time the
following approach is taken:
p, q = PQ(src0, src1, src2, src3, COEF({01}, {02}, {04}, {08}))
p', q' = PQ(p, q, q, src4, COEF({00}, {01}, {00}, {10}))
p' = p + q + q + src4 = p + src4
q' = {00}*p + {01}*q + {00}*q + {10}*src4 = q + {10}*src4
Note: 4 is the minimum acceptable maxpq otherwise we punt to
synchronous-software path.
The DMA_PREP_CONTINUE flag indicates to the driver to reuse p and q as
sources (in the above manner) and fill the remaining slots up to maxpq
with the new sources/coefficients.
Note1: Some devices have native support for P+Q continuation and can skip
this extra work. Devices with this capability can advertise it with
dma_set_maxpq. It is up to each driver how to handle the
DMA_PREP_CONTINUE flag.
Note2: The api supports disabling the generation of P when generating Q,
this is ignored by the synchronous path but is implemented by some dma
devices to save unnecessary writes. In this case the continuation
algorithm is simplified to only reuse Q as a source.
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: David Woodhouse <David.Woodhouse@intel.com>
Signed-off-by: Yuri Tikhonov <yur@emcraft.com>
Signed-off-by: Ilya Yanok <yanok@emcraft.com>
Reviewed-by: Andre Noll <maan@systemlinux.org>
Acked-by: Maciej Sosnowski <maciej.sosnowski@intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2009-07-15 02:20:36 +07:00
|
|
|
for (;;) {
|
2013-10-19 00:35:30 +07:00
|
|
|
tx = device->device_prep_dma_pq_val(chan, pq,
|
|
|
|
unmap->addr,
|
2009-10-16 12:40:34 +07:00
|
|
|
src_cnt,
|
|
|
|
coefs,
|
async_tx: add support for asynchronous GF multiplication
[ Based on an original patch by Yuri Tikhonov ]
This adds support for doing asynchronous GF multiplication by adding
two additional functions to the async_tx API:
async_gen_syndrome() does simultaneous XOR and Galois field
multiplication of sources.
async_syndrome_val() validates the given source buffers against known P
and Q values.
When a request is made to run async_pq against more than the hardware
maximum number of supported sources we need to reuse the previous
generated P and Q values as sources into the next operation. Care must
be taken to remove Q from P' and P from Q'. For example to perform a 5
source pq op with hardware that only supports 4 sources at a time the
following approach is taken:
p, q = PQ(src0, src1, src2, src3, COEF({01}, {02}, {04}, {08}))
p', q' = PQ(p, q, q, src4, COEF({00}, {01}, {00}, {10}))
p' = p + q + q + src4 = p + src4
q' = {00}*p + {01}*q + {00}*q + {10}*src4 = q + {10}*src4
Note: 4 is the minimum acceptable maxpq otherwise we punt to
synchronous-software path.
The DMA_PREP_CONTINUE flag indicates to the driver to reuse p and q as
sources (in the above manner) and fill the remaining slots up to maxpq
with the new sources/coefficients.
Note1: Some devices have native support for P+Q continuation and can skip
this extra work. Devices with this capability can advertise it with
dma_set_maxpq. It is up to each driver how to handle the
DMA_PREP_CONTINUE flag.
Note2: The api supports disabling the generation of P when generating Q,
this is ignored by the synchronous path but is implemented by some dma
devices to save unnecessary writes. In this case the continuation
algorithm is simplified to only reuse Q as a source.
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: David Woodhouse <David.Woodhouse@intel.com>
Signed-off-by: Yuri Tikhonov <yur@emcraft.com>
Signed-off-by: Ilya Yanok <yanok@emcraft.com>
Reviewed-by: Andre Noll <maan@systemlinux.org>
Acked-by: Maciej Sosnowski <maciej.sosnowski@intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2009-07-15 02:20:36 +07:00
|
|
|
len, pqres,
|
|
|
|
dma_flags);
|
|
|
|
if (likely(tx))
|
|
|
|
break;
|
|
|
|
async_tx_quiesce(&submit->depend_tx);
|
|
|
|
dma_async_issue_pending(chan);
|
|
|
|
}
|
2013-10-19 00:35:30 +07:00
|
|
|
|
|
|
|
dma_set_unmap(tx, unmap);
|
async_tx: add support for asynchronous GF multiplication
[ Based on an original patch by Yuri Tikhonov ]
This adds support for doing asynchronous GF multiplication by adding
two additional functions to the async_tx API:
async_gen_syndrome() does simultaneous XOR and Galois field
multiplication of sources.
async_syndrome_val() validates the given source buffers against known P
and Q values.
When a request is made to run async_pq against more than the hardware
maximum number of supported sources we need to reuse the previous
generated P and Q values as sources into the next operation. Care must
be taken to remove Q from P' and P from Q'. For example to perform a 5
source pq op with hardware that only supports 4 sources at a time the
following approach is taken:
p, q = PQ(src0, src1, src2, src3, COEF({01}, {02}, {04}, {08}))
p', q' = PQ(p, q, q, src4, COEF({00}, {01}, {00}, {10}))
p' = p + q + q + src4 = p + src4
q' = {00}*p + {01}*q + {00}*q + {10}*src4 = q + {10}*src4
Note: 4 is the minimum acceptable maxpq otherwise we punt to
synchronous-software path.
The DMA_PREP_CONTINUE flag indicates to the driver to reuse p and q as
sources (in the above manner) and fill the remaining slots up to maxpq
with the new sources/coefficients.
Note1: Some devices have native support for P+Q continuation and can skip
this extra work. Devices with this capability can advertise it with
dma_set_maxpq. It is up to each driver how to handle the
DMA_PREP_CONTINUE flag.
Note2: The api supports disabling the generation of P when generating Q,
this is ignored by the synchronous path but is implemented by some dma
devices to save unnecessary writes. In this case the continuation
algorithm is simplified to only reuse Q as a source.
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: David Woodhouse <David.Woodhouse@intel.com>
Signed-off-by: Yuri Tikhonov <yur@emcraft.com>
Signed-off-by: Ilya Yanok <yanok@emcraft.com>
Reviewed-by: Andre Noll <maan@systemlinux.org>
Acked-by: Maciej Sosnowski <maciej.sosnowski@intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2009-07-15 02:20:36 +07:00
|
|
|
async_tx_submit(chan, tx, submit);
|
|
|
|
|
|
|
|
return tx;
|
|
|
|
} else {
|
|
|
|
struct page *p_src = P(blocks, disks);
|
|
|
|
struct page *q_src = Q(blocks, disks);
|
|
|
|
enum async_tx_flags flags_orig = submit->flags;
|
|
|
|
dma_async_tx_callback cb_fn_orig = submit->cb_fn;
|
|
|
|
void *scribble = submit->scribble;
|
|
|
|
void *cb_param_orig = submit->cb_param;
|
|
|
|
void *p, *q, *s;
|
|
|
|
|
|
|
|
pr_debug("%s: (sync) disks: %d len: %zu\n",
|
|
|
|
__func__, disks, len);
|
|
|
|
|
|
|
|
/* caller must provide a temporary result buffer and
|
|
|
|
* allow the input parameters to be preserved
|
|
|
|
*/
|
|
|
|
BUG_ON(!spare || !scribble);
|
|
|
|
|
|
|
|
/* wait for any prerequisite operations */
|
|
|
|
async_tx_quiesce(&submit->depend_tx);
|
|
|
|
|
|
|
|
/* recompute p and/or q into the temporary buffer and then
|
|
|
|
* check to see the result matches the current value
|
|
|
|
*/
|
|
|
|
tx = NULL;
|
|
|
|
*pqres = 0;
|
|
|
|
if (p_src) {
|
|
|
|
init_async_submit(submit, ASYNC_TX_XOR_ZERO_DST, NULL,
|
|
|
|
NULL, NULL, scribble);
|
|
|
|
tx = async_xor(spare, blocks, offset, disks-2, len, submit);
|
|
|
|
async_tx_quiesce(&tx);
|
|
|
|
p = page_address(p_src) + offset;
|
|
|
|
s = page_address(spare) + offset;
|
|
|
|
*pqres |= !!memcmp(p, s, len) << SUM_CHECK_P;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (q_src) {
|
|
|
|
P(blocks, disks) = NULL;
|
|
|
|
Q(blocks, disks) = spare;
|
|
|
|
init_async_submit(submit, 0, NULL, NULL, NULL, scribble);
|
|
|
|
tx = async_gen_syndrome(blocks, offset, disks, len, submit);
|
|
|
|
async_tx_quiesce(&tx);
|
|
|
|
q = page_address(q_src) + offset;
|
|
|
|
s = page_address(spare) + offset;
|
|
|
|
*pqres |= !!memcmp(q, s, len) << SUM_CHECK_Q;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* restore P, Q and submit */
|
|
|
|
P(blocks, disks) = p_src;
|
|
|
|
Q(blocks, disks) = q_src;
|
|
|
|
|
|
|
|
submit->cb_fn = cb_fn_orig;
|
|
|
|
submit->cb_param = cb_param_orig;
|
|
|
|
submit->flags = flags_orig;
|
|
|
|
async_tx_sync_epilog(submit);
|
|
|
|
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(async_syndrome_val);
|
|
|
|
|
|
|
|
static int __init async_pq_init(void)
|
|
|
|
{
|
2009-10-20 08:09:32 +07:00
|
|
|
pq_scribble_page = alloc_page(GFP_KERNEL);
|
async_tx: add support for asynchronous GF multiplication
[ Based on an original patch by Yuri Tikhonov ]
This adds support for doing asynchronous GF multiplication by adding
two additional functions to the async_tx API:
async_gen_syndrome() does simultaneous XOR and Galois field
multiplication of sources.
async_syndrome_val() validates the given source buffers against known P
and Q values.
When a request is made to run async_pq against more than the hardware
maximum number of supported sources we need to reuse the previous
generated P and Q values as sources into the next operation. Care must
be taken to remove Q from P' and P from Q'. For example to perform a 5
source pq op with hardware that only supports 4 sources at a time the
following approach is taken:
p, q = PQ(src0, src1, src2, src3, COEF({01}, {02}, {04}, {08}))
p', q' = PQ(p, q, q, src4, COEF({00}, {01}, {00}, {10}))
p' = p + q + q + src4 = p + src4
q' = {00}*p + {01}*q + {00}*q + {10}*src4 = q + {10}*src4
Note: 4 is the minimum acceptable maxpq otherwise we punt to
synchronous-software path.
The DMA_PREP_CONTINUE flag indicates to the driver to reuse p and q as
sources (in the above manner) and fill the remaining slots up to maxpq
with the new sources/coefficients.
Note1: Some devices have native support for P+Q continuation and can skip
this extra work. Devices with this capability can advertise it with
dma_set_maxpq. It is up to each driver how to handle the
DMA_PREP_CONTINUE flag.
Note2: The api supports disabling the generation of P when generating Q,
this is ignored by the synchronous path but is implemented by some dma
devices to save unnecessary writes. In this case the continuation
algorithm is simplified to only reuse Q as a source.
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: David Woodhouse <David.Woodhouse@intel.com>
Signed-off-by: Yuri Tikhonov <yur@emcraft.com>
Signed-off-by: Ilya Yanok <yanok@emcraft.com>
Reviewed-by: Andre Noll <maan@systemlinux.org>
Acked-by: Maciej Sosnowski <maciej.sosnowski@intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2009-07-15 02:20:36 +07:00
|
|
|
|
2009-10-20 08:09:32 +07:00
|
|
|
if (pq_scribble_page)
|
async_tx: add support for asynchronous GF multiplication
[ Based on an original patch by Yuri Tikhonov ]
This adds support for doing asynchronous GF multiplication by adding
two additional functions to the async_tx API:
async_gen_syndrome() does simultaneous XOR and Galois field
multiplication of sources.
async_syndrome_val() validates the given source buffers against known P
and Q values.
When a request is made to run async_pq against more than the hardware
maximum number of supported sources we need to reuse the previous
generated P and Q values as sources into the next operation. Care must
be taken to remove Q from P' and P from Q'. For example to perform a 5
source pq op with hardware that only supports 4 sources at a time the
following approach is taken:
p, q = PQ(src0, src1, src2, src3, COEF({01}, {02}, {04}, {08}))
p', q' = PQ(p, q, q, src4, COEF({00}, {01}, {00}, {10}))
p' = p + q + q + src4 = p + src4
q' = {00}*p + {01}*q + {00}*q + {10}*src4 = q + {10}*src4
Note: 4 is the minimum acceptable maxpq otherwise we punt to
synchronous-software path.
The DMA_PREP_CONTINUE flag indicates to the driver to reuse p and q as
sources (in the above manner) and fill the remaining slots up to maxpq
with the new sources/coefficients.
Note1: Some devices have native support for P+Q continuation and can skip
this extra work. Devices with this capability can advertise it with
dma_set_maxpq. It is up to each driver how to handle the
DMA_PREP_CONTINUE flag.
Note2: The api supports disabling the generation of P when generating Q,
this is ignored by the synchronous path but is implemented by some dma
devices to save unnecessary writes. In this case the continuation
algorithm is simplified to only reuse Q as a source.
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: David Woodhouse <David.Woodhouse@intel.com>
Signed-off-by: Yuri Tikhonov <yur@emcraft.com>
Signed-off-by: Ilya Yanok <yanok@emcraft.com>
Reviewed-by: Andre Noll <maan@systemlinux.org>
Acked-by: Maciej Sosnowski <maciej.sosnowski@intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2009-07-15 02:20:36 +07:00
|
|
|
return 0;
|
|
|
|
|
|
|
|
pr_err("%s: failed to allocate required spare page\n", __func__);
|
|
|
|
|
|
|
|
return -ENOMEM;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void __exit async_pq_exit(void)
|
|
|
|
{
|
2009-10-20 08:09:32 +07:00
|
|
|
put_page(pq_scribble_page);
|
async_tx: add support for asynchronous GF multiplication
[ Based on an original patch by Yuri Tikhonov ]
This adds support for doing asynchronous GF multiplication by adding
two additional functions to the async_tx API:
async_gen_syndrome() does simultaneous XOR and Galois field
multiplication of sources.
async_syndrome_val() validates the given source buffers against known P
and Q values.
When a request is made to run async_pq against more than the hardware
maximum number of supported sources we need to reuse the previous
generated P and Q values as sources into the next operation. Care must
be taken to remove Q from P' and P from Q'. For example to perform a 5
source pq op with hardware that only supports 4 sources at a time the
following approach is taken:
p, q = PQ(src0, src1, src2, src3, COEF({01}, {02}, {04}, {08}))
p', q' = PQ(p, q, q, src4, COEF({00}, {01}, {00}, {10}))
p' = p + q + q + src4 = p + src4
q' = {00}*p + {01}*q + {00}*q + {10}*src4 = q + {10}*src4
Note: 4 is the minimum acceptable maxpq otherwise we punt to
synchronous-software path.
The DMA_PREP_CONTINUE flag indicates to the driver to reuse p and q as
sources (in the above manner) and fill the remaining slots up to maxpq
with the new sources/coefficients.
Note1: Some devices have native support for P+Q continuation and can skip
this extra work. Devices with this capability can advertise it with
dma_set_maxpq. It is up to each driver how to handle the
DMA_PREP_CONTINUE flag.
Note2: The api supports disabling the generation of P when generating Q,
this is ignored by the synchronous path but is implemented by some dma
devices to save unnecessary writes. In this case the continuation
algorithm is simplified to only reuse Q as a source.
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: David Woodhouse <David.Woodhouse@intel.com>
Signed-off-by: Yuri Tikhonov <yur@emcraft.com>
Signed-off-by: Ilya Yanok <yanok@emcraft.com>
Reviewed-by: Andre Noll <maan@systemlinux.org>
Acked-by: Maciej Sosnowski <maciej.sosnowski@intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2009-07-15 02:20:36 +07:00
|
|
|
}
|
|
|
|
|
|
|
|
module_init(async_pq_init);
|
|
|
|
module_exit(async_pq_exit);
|
|
|
|
|
|
|
|
MODULE_DESCRIPTION("asynchronous raid6 syndrome generation/validation");
|
|
|
|
MODULE_LICENSE("GPL");
|