linux_dsm_epyc7002/drivers/input/mouse/alps.h

177 lines
5.9 KiB
C
Raw Normal View History

/*
* ALPS touchpad PS/2 mouse driver
*
* Copyright (c) 2003 Peter Osterlund <petero2@telia.com>
* Copyright (c) 2005 Vojtech Pavlik <vojtech@suse.cz>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published by
* the Free Software Foundation.
*/
#ifndef _ALPS_H
#define _ALPS_H
#define ALPS_PROTO_V1 1
#define ALPS_PROTO_V2 2
#define ALPS_PROTO_V3 3
#define ALPS_PROTO_V4 4
#define ALPS_PROTO_V5 5
/**
* struct alps_model_info - touchpad ID table
* @signature: E7 response string to match.
* @command_mode_resp: For V3/V4 touchpads, the final byte of the EC response
* (aka command mode response) identifies the firmware minor version. This
* can be used to distinguish different hardware models which are not
* uniquely identifiable through their E7 responses.
* @proto_version: Indicates V1/V2/V3/...
* @byte0: Helps figure out whether a position report packet matches the
* known format for this model. The first byte of the report, ANDed with
* mask0, should match byte0.
* @mask0: The mask used to check the first byte of the report.
* @flags: Additional device capabilities (passthrough port, trackstick, etc.).
*
* Many (but not all) ALPS touchpads can be identified by looking at the
* values returned in the "E7 report" and/or the "EC report." This table
* lists a number of such touchpads.
*/
struct alps_model_info {
unsigned char signature[3];
unsigned char command_mode_resp;
unsigned char proto_version;
unsigned char byte0, mask0;
unsigned char flags;
};
/**
* struct alps_nibble_commands - encodings for register accesses
* @command: PS/2 command used for the nibble
* @data: Data supplied as an argument to the PS/2 command, if applicable
*
* The ALPS protocol uses magic sequences to transmit binary data to the
* touchpad, as it is generally not OK to send arbitrary bytes out the
* PS/2 port. Each of the sequences in this table sends one nibble of the
* register address or (write) data. Different versions of the ALPS protocol
* use slightly different encodings.
*/
struct alps_nibble_commands {
int command;
unsigned char data;
};
/**
* struct alps_fields - decoded version of the report packet
* @x_map: Bitmap of active X positions for MT.
* @y_map: Bitmap of active Y positions for MT.
* @fingers: Number of fingers for MT.
* @x: X position for ST.
* @y: Y position for ST.
* @z: Z position for ST.
* @first_mp: Packet is the first of a multi-packet report.
* @is_mp: Packet is part of a multi-packet report.
* @left: Left touchpad button is active.
* @right: Right touchpad button is active.
* @middle: Middle touchpad button is active.
* @ts_left: Left trackstick button is active.
* @ts_right: Right trackstick button is active.
* @ts_middle: Middle trackstick button is active.
*/
struct alps_fields {
unsigned int x_map;
unsigned int y_map;
unsigned int fingers;
unsigned int x;
unsigned int y;
unsigned int z;
unsigned int first_mp:1;
unsigned int is_mp:1;
unsigned int left:1;
unsigned int right:1;
unsigned int middle:1;
unsigned int ts_left:1;
unsigned int ts_right:1;
unsigned int ts_middle:1;
};
/**
* struct alps_data - private data structure for the ALPS driver
* @dev2: "Relative" device used to report trackstick or mouse activity.
* @phys: Physical path for the relative device.
* @nibble_commands: Command mapping used for touchpad register accesses.
* @addr_command: Command used to tell the touchpad that a register address
* follows.
* @proto_version: Indicates V1/V2/V3/...
* @byte0: Helps figure out whether a position report packet matches the
* known format for this model. The first byte of the report, ANDed with
* mask0, should match byte0.
* @mask0: The mask used to check the first byte of the report.
* @flags: Additional device capabilities (passthrough port, trackstick, etc.).
* @x_max: Largest possible X position value.
* @y_max: Largest possible Y position value.
* @x_bits: Number of X bits in the MT bitmap.
* @y_bits: Number of Y bits in the MT bitmap.
* @hw_init: Protocol-specific hardware init function.
* @process_packet: Protocol-specific function to process a report packet.
* @decode_fields: Protocol-specific function to read packet bitfields.
* @set_abs_params: Protocol-specific function to configure the input_dev.
* @prev_fin: Finger bit from previous packet.
* @multi_packet: Multi-packet data in progress.
* @multi_data: Saved multi-packet data.
* @x1: First X coordinate from last MT report.
* @x2: Second X coordinate from last MT report.
* @y1: First Y coordinate from last MT report.
* @y2: Second Y coordinate from last MT report.
* @fingers: Number of fingers from last MT report.
* @quirks: Bitmap of ALPS_QUIRK_*.
* @timer: Timer for flushing out the final report packet in the stream.
*/
struct alps_data {
struct input_dev *dev2;
char phys[32];
/* these are autodetected when the device is identified */
const struct alps_nibble_commands *nibble_commands;
int addr_command;
unsigned char proto_version;
unsigned char byte0, mask0;
unsigned char flags;
int x_max;
int y_max;
int x_bits;
int y_bits;
int (*hw_init)(struct psmouse *psmouse);
void (*process_packet)(struct psmouse *psmouse);
void (*decode_fields)(struct alps_fields *f, unsigned char *p);
void (*set_abs_params)(struct alps_data *priv, struct input_dev *dev1);
int prev_fin;
int multi_packet;
unsigned char multi_data[6];
int x1, x2, y1, y2;
int fingers;
u8 quirks;
struct timer_list timer;
};
#define ALPS_QUIRK_TRACKSTICK_BUTTONS 1 /* trakcstick buttons in trackstick packet */
#ifdef CONFIG_MOUSE_PS2_ALPS
int alps_detect(struct psmouse *psmouse, bool set_properties);
int alps_init(struct psmouse *psmouse);
#else
inline int alps_detect(struct psmouse *psmouse, bool set_properties)
{
return -ENOSYS;
}
inline int alps_init(struct psmouse *psmouse)
{
return -ENOSYS;
}
#endif /* CONFIG_MOUSE_PS2_ALPS */
#endif