linux_dsm_epyc7002/drivers/net/fs_enet/mac-fec.c

519 lines
12 KiB
C
Raw Normal View History

/*
* Freescale Ethernet controllers
*
* Copyright (c) 2005 Intracom S.A.
* by Pantelis Antoniou <panto@intracom.gr>
*
* 2005 (c) MontaVista Software, Inc.
* Vitaly Bordug <vbordug@ru.mvista.com>
*
* This file is licensed under the terms of the GNU General Public License
* version 2. This program is licensed "as is" without any warranty of any
* kind, whether express or implied.
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/string.h>
#include <linux/ptrace.h>
#include <linux/errno.h>
#include <linux/ioport.h>
#include <linux/slab.h>
#include <linux/interrupt.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <linux/spinlock.h>
#include <linux/mii.h>
#include <linux/ethtool.h>
#include <linux/bitops.h>
#include <linux/fs.h>
#include <linux/platform_device.h>
#include <linux/of_device.h>
#include <asm/irq.h>
#include <asm/uaccess.h>
#ifdef CONFIG_8xx
#include <asm/8xx_immap.h>
#include <asm/pgtable.h>
#include <asm/mpc8xx.h>
#include <asm/cpm1.h>
#endif
#include "fs_enet.h"
#include "fec.h"
/*************************************************/
#if defined(CONFIG_CPM1)
/* for a CPM1 __raw_xxx's are sufficient */
#define __fs_out32(addr, x) __raw_writel(x, addr)
#define __fs_out16(addr, x) __raw_writew(x, addr)
#define __fs_in32(addr) __raw_readl(addr)
#define __fs_in16(addr) __raw_readw(addr)
#else
/* for others play it safe */
#define __fs_out32(addr, x) out_be32(addr, x)
#define __fs_out16(addr, x) out_be16(addr, x)
#define __fs_in32(addr) in_be32(addr)
#define __fs_in16(addr) in_be16(addr)
#endif
/* write */
#define FW(_fecp, _reg, _v) __fs_out32(&(_fecp)->fec_ ## _reg, (_v))
/* read */
#define FR(_fecp, _reg) __fs_in32(&(_fecp)->fec_ ## _reg)
/* set bits */
#define FS(_fecp, _reg, _v) FW(_fecp, _reg, FR(_fecp, _reg) | (_v))
/* clear bits */
#define FC(_fecp, _reg, _v) FW(_fecp, _reg, FR(_fecp, _reg) & ~(_v))
/*
* Delay to wait for FEC reset command to complete (in us)
*/
#define FEC_RESET_DELAY 50
static int whack_reset(fec_t __iomem *fecp)
{
int i;
FW(fecp, ecntrl, FEC_ECNTRL_PINMUX | FEC_ECNTRL_RESET);
for (i = 0; i < FEC_RESET_DELAY; i++) {
if ((FR(fecp, ecntrl) & FEC_ECNTRL_RESET) == 0)
return 0; /* OK */
udelay(1);
}
return -1;
}
static int do_pd_setup(struct fs_enet_private *fep)
{
struct of_device *ofdev = to_of_device(fep->dev);
fep->interrupt = of_irq_to_resource(ofdev->node, 0, NULL);
if (fep->interrupt == NO_IRQ)
return -EINVAL;
fep->fec.fecp = of_iomap(ofdev->node, 0);
if (!fep->fcc.fccp)
return -EINVAL;
return 0;
}
#define FEC_NAPI_RX_EVENT_MSK (FEC_ENET_RXF | FEC_ENET_RXB)
#define FEC_RX_EVENT (FEC_ENET_RXF)
#define FEC_TX_EVENT (FEC_ENET_TXF)
#define FEC_ERR_EVENT_MSK (FEC_ENET_HBERR | FEC_ENET_BABR | \
FEC_ENET_BABT | FEC_ENET_EBERR)
static int setup_data(struct net_device *dev)
{
struct fs_enet_private *fep = netdev_priv(dev);
if (do_pd_setup(fep) != 0)
return -EINVAL;
fep->fec.hthi = 0;
fep->fec.htlo = 0;
fep->ev_napi_rx = FEC_NAPI_RX_EVENT_MSK;
fep->ev_rx = FEC_RX_EVENT;
fep->ev_tx = FEC_TX_EVENT;
fep->ev_err = FEC_ERR_EVENT_MSK;
return 0;
}
static int allocate_bd(struct net_device *dev)
{
struct fs_enet_private *fep = netdev_priv(dev);
const struct fs_platform_info *fpi = fep->fpi;
fep->ring_base = (void __force __iomem *)dma_alloc_coherent(fep->dev,
(fpi->tx_ring + fpi->rx_ring) *
sizeof(cbd_t), &fep->ring_mem_addr,
GFP_KERNEL);
if (fep->ring_base == NULL)
return -ENOMEM;
return 0;
}
static void free_bd(struct net_device *dev)
{
struct fs_enet_private *fep = netdev_priv(dev);
const struct fs_platform_info *fpi = fep->fpi;
if(fep->ring_base)
dma_free_coherent(fep->dev, (fpi->tx_ring + fpi->rx_ring)
* sizeof(cbd_t),
(void __force *)fep->ring_base,
fep->ring_mem_addr);
}
static void cleanup_data(struct net_device *dev)
{
/* nothing */
}
static void set_promiscuous_mode(struct net_device *dev)
{
struct fs_enet_private *fep = netdev_priv(dev);
fec_t __iomem *fecp = fep->fec.fecp;
FS(fecp, r_cntrl, FEC_RCNTRL_PROM);
}
static void set_multicast_start(struct net_device *dev)
{
struct fs_enet_private *fep = netdev_priv(dev);
fep->fec.hthi = 0;
fep->fec.htlo = 0;
}
static void set_multicast_one(struct net_device *dev, const u8 *mac)
{
struct fs_enet_private *fep = netdev_priv(dev);
int temp, hash_index, i, j;
u32 crc, csrVal;
u8 byte, msb;
crc = 0xffffffff;
for (i = 0; i < 6; i++) {
byte = mac[i];
for (j = 0; j < 8; j++) {
msb = crc >> 31;
crc <<= 1;
if (msb ^ (byte & 0x1))
crc ^= FEC_CRC_POLY;
byte >>= 1;
}
}
temp = (crc & 0x3f) >> 1;
hash_index = ((temp & 0x01) << 4) |
((temp & 0x02) << 2) |
((temp & 0x04)) |
((temp & 0x08) >> 2) |
((temp & 0x10) >> 4);
csrVal = 1 << hash_index;
if (crc & 1)
fep->fec.hthi |= csrVal;
else
fep->fec.htlo |= csrVal;
}
static void set_multicast_finish(struct net_device *dev)
{
struct fs_enet_private *fep = netdev_priv(dev);
fec_t __iomem *fecp = fep->fec.fecp;
/* if all multi or too many multicasts; just enable all */
if ((dev->flags & IFF_ALLMULTI) != 0 ||
dev->mc_count > FEC_MAX_MULTICAST_ADDRS) {
fep->fec.hthi = 0xffffffffU;
fep->fec.htlo = 0xffffffffU;
}
FC(fecp, r_cntrl, FEC_RCNTRL_PROM);
FW(fecp, hash_table_high, fep->fec.hthi);
FW(fecp, hash_table_low, fep->fec.htlo);
}
static void set_multicast_list(struct net_device *dev)
{
struct dev_mc_list *pmc;
if ((dev->flags & IFF_PROMISC) == 0) {
set_multicast_start(dev);
for (pmc = dev->mc_list; pmc != NULL; pmc = pmc->next)
set_multicast_one(dev, pmc->dmi_addr);
set_multicast_finish(dev);
} else
set_promiscuous_mode(dev);
}
static void restart(struct net_device *dev)
{
#ifdef CONFIG_DUET
immap_t *immap = fs_enet_immap;
u32 cptr;
#endif
struct fs_enet_private *fep = netdev_priv(dev);
fec_t __iomem *fecp = fep->fec.fecp;
const struct fs_platform_info *fpi = fep->fpi;
dma_addr_t rx_bd_base_phys, tx_bd_base_phys;
int r;
u32 addrhi, addrlo;
struct mii_bus* mii = fep->phydev->bus;
struct fec_info* fec_inf = mii->priv;
r = whack_reset(fep->fec.fecp);
if (r != 0)
printk(KERN_ERR DRV_MODULE_NAME
": %s FEC Reset FAILED!\n", dev->name);
/*
* Set station address.
*/
addrhi = ((u32) dev->dev_addr[0] << 24) |
((u32) dev->dev_addr[1] << 16) |
((u32) dev->dev_addr[2] << 8) |
(u32) dev->dev_addr[3];
addrlo = ((u32) dev->dev_addr[4] << 24) |
((u32) dev->dev_addr[5] << 16);
FW(fecp, addr_low, addrhi);
FW(fecp, addr_high, addrlo);
/*
* Reset all multicast.
*/
FW(fecp, hash_table_high, fep->fec.hthi);
FW(fecp, hash_table_low, fep->fec.htlo);
/*
* Set maximum receive buffer size.
*/
FW(fecp, r_buff_size, PKT_MAXBLR_SIZE);
FW(fecp, r_hash, PKT_MAXBUF_SIZE);
/* get physical address */
rx_bd_base_phys = fep->ring_mem_addr;
tx_bd_base_phys = rx_bd_base_phys + sizeof(cbd_t) * fpi->rx_ring;
/*
* Set receive and transmit descriptor base.
*/
FW(fecp, r_des_start, rx_bd_base_phys);
FW(fecp, x_des_start, tx_bd_base_phys);
fs_init_bds(dev);
/*
* Enable big endian and don't care about SDMA FC.
*/
FW(fecp, fun_code, 0x78000000);
/*
* Set MII speed.
*/
FW(fecp, mii_speed, fec_inf->mii_speed);
/*
* Clear any outstanding interrupt.
*/
FW(fecp, ievent, 0xffc0);
FW(fecp, ivec, (virq_to_hw(fep->interrupt) / 2) << 29);
/*
* adjust to speed (only for DUET & RMII)
*/
#ifdef CONFIG_DUET
if (fpi->use_rmii) {
cptr = in_be32(&immap->im_cpm.cp_cptr);
switch (fs_get_fec_index(fpi->fs_no)) {
case 0:
cptr |= 0x100;
if (fep->speed == 10)
cptr |= 0x0000010;
else if (fep->speed == 100)
cptr &= ~0x0000010;
break;
case 1:
cptr |= 0x80;
if (fep->speed == 10)
cptr |= 0x0000008;
else if (fep->speed == 100)
cptr &= ~0x0000008;
break;
default:
BUG(); /* should never happen */
break;
}
out_be32(&immap->im_cpm.cp_cptr, cptr);
}
#endif
FW(fecp, r_cntrl, FEC_RCNTRL_MII_MODE); /* MII enable */
/*
* adjust to duplex mode
*/
if (fep->phydev->duplex) {
FC(fecp, r_cntrl, FEC_RCNTRL_DRT);
FS(fecp, x_cntrl, FEC_TCNTRL_FDEN); /* FD enable */
} else {
FS(fecp, r_cntrl, FEC_RCNTRL_DRT);
FC(fecp, x_cntrl, FEC_TCNTRL_FDEN); /* FD disable */
}
/*
* Enable interrupts we wish to service.
*/
FW(fecp, imask, FEC_ENET_TXF | FEC_ENET_TXB |
FEC_ENET_RXF | FEC_ENET_RXB);
/*
* And last, enable the transmit and receive processing.
*/
FW(fecp, ecntrl, FEC_ECNTRL_PINMUX | FEC_ECNTRL_ETHER_EN);
FW(fecp, r_des_active, 0x01000000);
}
static void stop(struct net_device *dev)
{
struct fs_enet_private *fep = netdev_priv(dev);
const struct fs_platform_info *fpi = fep->fpi;
fec_t __iomem *fecp = fep->fec.fecp;
struct fec_info* feci= fep->phydev->bus->priv;
int i;
if ((FR(fecp, ecntrl) & FEC_ECNTRL_ETHER_EN) == 0)
return; /* already down */
FW(fecp, x_cntrl, 0x01); /* Graceful transmit stop */
for (i = 0; ((FR(fecp, ievent) & 0x10000000) == 0) &&
i < FEC_RESET_DELAY; i++)
udelay(1);
if (i == FEC_RESET_DELAY)
printk(KERN_WARNING DRV_MODULE_NAME
": %s FEC timeout on graceful transmit stop\n",
dev->name);
/*
* Disable FEC. Let only MII interrupts.
*/
FW(fecp, imask, 0);
FC(fecp, ecntrl, FEC_ECNTRL_ETHER_EN);
fs_cleanup_bds(dev);
/* shut down FEC1? that's where the mii bus is */
if (fpi->has_phy) {
FS(fecp, r_cntrl, FEC_RCNTRL_MII_MODE); /* MII enable */
FS(fecp, ecntrl, FEC_ECNTRL_PINMUX | FEC_ECNTRL_ETHER_EN);
FW(fecp, ievent, FEC_ENET_MII);
FW(fecp, mii_speed, feci->mii_speed);
}
}
static void napi_clear_rx_event(struct net_device *dev)
{
struct fs_enet_private *fep = netdev_priv(dev);
fec_t __iomem *fecp = fep->fec.fecp;
FW(fecp, ievent, FEC_NAPI_RX_EVENT_MSK);
}
static void napi_enable_rx(struct net_device *dev)
{
struct fs_enet_private *fep = netdev_priv(dev);
fec_t __iomem *fecp = fep->fec.fecp;
FS(fecp, imask, FEC_NAPI_RX_EVENT_MSK);
}
static void napi_disable_rx(struct net_device *dev)
{
struct fs_enet_private *fep = netdev_priv(dev);
fec_t __iomem *fecp = fep->fec.fecp;
FC(fecp, imask, FEC_NAPI_RX_EVENT_MSK);
}
static void rx_bd_done(struct net_device *dev)
{
struct fs_enet_private *fep = netdev_priv(dev);
fec_t __iomem *fecp = fep->fec.fecp;
FW(fecp, r_des_active, 0x01000000);
}
static void tx_kickstart(struct net_device *dev)
{
struct fs_enet_private *fep = netdev_priv(dev);
fec_t __iomem *fecp = fep->fec.fecp;
FW(fecp, x_des_active, 0x01000000);
}
static u32 get_int_events(struct net_device *dev)
{
struct fs_enet_private *fep = netdev_priv(dev);
fec_t __iomem *fecp = fep->fec.fecp;
return FR(fecp, ievent) & FR(fecp, imask);
}
static void clear_int_events(struct net_device *dev, u32 int_events)
{
struct fs_enet_private *fep = netdev_priv(dev);
fec_t __iomem *fecp = fep->fec.fecp;
FW(fecp, ievent, int_events);
}
static void ev_error(struct net_device *dev, u32 int_events)
{
printk(KERN_WARNING DRV_MODULE_NAME
": %s FEC ERROR(s) 0x%x\n", dev->name, int_events);
}
static int get_regs(struct net_device *dev, void *p, int *sizep)
{
struct fs_enet_private *fep = netdev_priv(dev);
if (*sizep < sizeof(fec_t))
return -EINVAL;
memcpy_fromio(p, fep->fec.fecp, sizeof(fec_t));
return 0;
}
static int get_regs_len(struct net_device *dev)
{
return sizeof(fec_t);
}
static void tx_restart(struct net_device *dev)
{
/* nothing */
}
/*************************************************************************/
const struct fs_ops fs_fec_ops = {
.setup_data = setup_data,
.cleanup_data = cleanup_data,
.set_multicast_list = set_multicast_list,
.restart = restart,
.stop = stop,
.napi_clear_rx_event = napi_clear_rx_event,
.napi_enable_rx = napi_enable_rx,
.napi_disable_rx = napi_disable_rx,
.rx_bd_done = rx_bd_done,
.tx_kickstart = tx_kickstart,
.get_int_events = get_int_events,
.clear_int_events = clear_int_events,
.ev_error = ev_error,
.get_regs = get_regs,
.get_regs_len = get_regs_len,
.tx_restart = tx_restart,
.allocate_bd = allocate_bd,
.free_bd = free_bd,
};