linux_dsm_epyc7002/drivers/gpu/drm/amd/amdkfd/kfd_device.c

496 lines
13 KiB
C
Raw Normal View History

/*
* Copyright 2014 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*/
#include <linux/amd-iommu.h>
#include <linux/bsearch.h>
#include <linux/pci.h>
#include <linux/slab.h>
#include "kfd_priv.h"
2014-07-17 05:27:00 +07:00
#include "kfd_device_queue_manager.h"
amdkfd: Add basic modules to amdkfd This patch adds the process module and three helper modules: - kfd_process, which handles process which open /dev/kfd - kfd_doorbell, which provides helper functions for doorbell allocation, release and mapping to userspace - kfd_pasid, which provides helper functions for pasid allocation and release - kfd_aperture, which provides helper functions for managing the LDS, Local GPU memory and Scratch memory apertures of the process This patch only contains the basic kfd_process module, which doesn't contain the reference to the queue scheduler. This was done to allow easier code review. Also, this patch doesn't contain the calls to the IOMMU driver for binding the pasid to the device. Again, this was done to allow easier code review The kfd_process object is created when a process opens /dev/kfd and is closed when the mm_struct of that process is teared-down. v3: Removed kfd_vidmem.c file Replaced direct mmput call to mmu_notifier release Removed typedefs Moved bool field to end of the structure Added new kernel params for gart usage limitation Added initialization of sa manager Fixed debug messages Remove support for LDS in 32 bit Changed code to support mmap of doorbell pages from userspace Added documentation for apertures v4: Replaced RCU by SRCU for kfd_process list management v5: Move amdkfd from drm/radeon/ to drm/amd/ Rename kfd_aperture.c to kfd_flat_memory.c Protect against multiple init calls MQD size is H/W dependent so moved it to device info structure Rename kfd_mem_obj structure's members Use delayed function for process tear-down Signed-off-by: Oded Gabbay <oded.gabbay@amd.com>
2014-07-17 03:25:31 +07:00
#define MQD_SIZE_ALIGNED 768
static const struct kfd_device_info kaveri_device_info = {
.max_pasid_bits = 16,
.ih_ring_entry_size = 4 * sizeof(uint32_t),
.num_of_watch_points = 4,
amdkfd: Add basic modules to amdkfd This patch adds the process module and three helper modules: - kfd_process, which handles process which open /dev/kfd - kfd_doorbell, which provides helper functions for doorbell allocation, release and mapping to userspace - kfd_pasid, which provides helper functions for pasid allocation and release - kfd_aperture, which provides helper functions for managing the LDS, Local GPU memory and Scratch memory apertures of the process This patch only contains the basic kfd_process module, which doesn't contain the reference to the queue scheduler. This was done to allow easier code review. Also, this patch doesn't contain the calls to the IOMMU driver for binding the pasid to the device. Again, this was done to allow easier code review The kfd_process object is created when a process opens /dev/kfd and is closed when the mm_struct of that process is teared-down. v3: Removed kfd_vidmem.c file Replaced direct mmput call to mmu_notifier release Removed typedefs Moved bool field to end of the structure Added new kernel params for gart usage limitation Added initialization of sa manager Fixed debug messages Remove support for LDS in 32 bit Changed code to support mmap of doorbell pages from userspace Added documentation for apertures v4: Replaced RCU by SRCU for kfd_process list management v5: Move amdkfd from drm/radeon/ to drm/amd/ Rename kfd_aperture.c to kfd_flat_memory.c Protect against multiple init calls MQD size is H/W dependent so moved it to device info structure Rename kfd_mem_obj structure's members Use delayed function for process tear-down Signed-off-by: Oded Gabbay <oded.gabbay@amd.com>
2014-07-17 03:25:31 +07:00
.mqd_size_aligned = MQD_SIZE_ALIGNED
};
struct kfd_deviceid {
unsigned short did;
const struct kfd_device_info *device_info;
};
/* Please keep this sorted by increasing device id. */
static const struct kfd_deviceid supported_devices[] = {
{ 0x1304, &kaveri_device_info }, /* Kaveri */
{ 0x1305, &kaveri_device_info }, /* Kaveri */
{ 0x1306, &kaveri_device_info }, /* Kaveri */
{ 0x1307, &kaveri_device_info }, /* Kaveri */
{ 0x1309, &kaveri_device_info }, /* Kaveri */
{ 0x130A, &kaveri_device_info }, /* Kaveri */
{ 0x130B, &kaveri_device_info }, /* Kaveri */
{ 0x130C, &kaveri_device_info }, /* Kaveri */
{ 0x130D, &kaveri_device_info }, /* Kaveri */
{ 0x130E, &kaveri_device_info }, /* Kaveri */
{ 0x130F, &kaveri_device_info }, /* Kaveri */
{ 0x1310, &kaveri_device_info }, /* Kaveri */
{ 0x1311, &kaveri_device_info }, /* Kaveri */
{ 0x1312, &kaveri_device_info }, /* Kaveri */
{ 0x1313, &kaveri_device_info }, /* Kaveri */
{ 0x1315, &kaveri_device_info }, /* Kaveri */
{ 0x1316, &kaveri_device_info }, /* Kaveri */
{ 0x1317, &kaveri_device_info }, /* Kaveri */
{ 0x1318, &kaveri_device_info }, /* Kaveri */
{ 0x131B, &kaveri_device_info }, /* Kaveri */
{ 0x131C, &kaveri_device_info }, /* Kaveri */
{ 0x131D, &kaveri_device_info }, /* Kaveri */
};
static int kfd_gtt_sa_init(struct kfd_dev *kfd, unsigned int buf_size,
unsigned int chunk_size);
static void kfd_gtt_sa_fini(struct kfd_dev *kfd);
static const struct kfd_device_info *lookup_device_info(unsigned short did)
{
size_t i;
for (i = 0; i < ARRAY_SIZE(supported_devices); i++) {
if (supported_devices[i].did == did) {
BUG_ON(supported_devices[i].device_info == NULL);
return supported_devices[i].device_info;
}
}
return NULL;
}
struct kfd_dev *kgd2kfd_probe(struct kgd_dev *kgd, struct pci_dev *pdev)
{
struct kfd_dev *kfd;
const struct kfd_device_info *device_info =
lookup_device_info(pdev->device);
if (!device_info)
return NULL;
kfd = kzalloc(sizeof(*kfd), GFP_KERNEL);
if (!kfd)
return NULL;
kfd->kgd = kgd;
kfd->device_info = device_info;
kfd->pdev = pdev;
amdkfd: Add basic modules to amdkfd This patch adds the process module and three helper modules: - kfd_process, which handles process which open /dev/kfd - kfd_doorbell, which provides helper functions for doorbell allocation, release and mapping to userspace - kfd_pasid, which provides helper functions for pasid allocation and release - kfd_aperture, which provides helper functions for managing the LDS, Local GPU memory and Scratch memory apertures of the process This patch only contains the basic kfd_process module, which doesn't contain the reference to the queue scheduler. This was done to allow easier code review. Also, this patch doesn't contain the calls to the IOMMU driver for binding the pasid to the device. Again, this was done to allow easier code review The kfd_process object is created when a process opens /dev/kfd and is closed when the mm_struct of that process is teared-down. v3: Removed kfd_vidmem.c file Replaced direct mmput call to mmu_notifier release Removed typedefs Moved bool field to end of the structure Added new kernel params for gart usage limitation Added initialization of sa manager Fixed debug messages Remove support for LDS in 32 bit Changed code to support mmap of doorbell pages from userspace Added documentation for apertures v4: Replaced RCU by SRCU for kfd_process list management v5: Move amdkfd from drm/radeon/ to drm/amd/ Rename kfd_aperture.c to kfd_flat_memory.c Protect against multiple init calls MQD size is H/W dependent so moved it to device info structure Rename kfd_mem_obj structure's members Use delayed function for process tear-down Signed-off-by: Oded Gabbay <oded.gabbay@amd.com>
2014-07-17 03:25:31 +07:00
kfd->init_complete = false;
return kfd;
}
static bool device_iommu_pasid_init(struct kfd_dev *kfd)
{
const u32 required_iommu_flags = AMD_IOMMU_DEVICE_FLAG_ATS_SUP |
AMD_IOMMU_DEVICE_FLAG_PRI_SUP |
AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
struct amd_iommu_device_info iommu_info;
unsigned int pasid_limit;
int err;
err = amd_iommu_device_info(kfd->pdev, &iommu_info);
if (err < 0) {
dev_err(kfd_device,
"error getting iommu info. is the iommu enabled?\n");
return false;
}
if ((iommu_info.flags & required_iommu_flags) != required_iommu_flags) {
dev_err(kfd_device, "error required iommu flags ats(%i), pri(%i), pasid(%i)\n",
(iommu_info.flags & AMD_IOMMU_DEVICE_FLAG_ATS_SUP) != 0,
(iommu_info.flags & AMD_IOMMU_DEVICE_FLAG_PRI_SUP) != 0,
(iommu_info.flags & AMD_IOMMU_DEVICE_FLAG_PASID_SUP) != 0);
return false;
}
pasid_limit = min_t(unsigned int,
(unsigned int)1 << kfd->device_info->max_pasid_bits,
iommu_info.max_pasids);
/*
* last pasid is used for kernel queues doorbells
* in the future the last pasid might be used for a kernel thread.
*/
pasid_limit = min_t(unsigned int,
pasid_limit,
kfd->doorbell_process_limit - 1);
err = amd_iommu_init_device(kfd->pdev, pasid_limit);
if (err < 0) {
dev_err(kfd_device, "error initializing iommu device\n");
return false;
}
if (!kfd_set_pasid_limit(pasid_limit)) {
dev_err(kfd_device, "error setting pasid limit\n");
amd_iommu_free_device(kfd->pdev);
return false;
}
return true;
}
static void iommu_pasid_shutdown_callback(struct pci_dev *pdev, int pasid)
{
struct kfd_dev *dev = kfd_device_by_pci_dev(pdev);
if (dev)
kfd_unbind_process_from_device(dev, pasid);
}
bool kgd2kfd_device_init(struct kfd_dev *kfd,
const struct kgd2kfd_shared_resources *gpu_resources)
{
amdkfd: Add basic modules to amdkfd This patch adds the process module and three helper modules: - kfd_process, which handles process which open /dev/kfd - kfd_doorbell, which provides helper functions for doorbell allocation, release and mapping to userspace - kfd_pasid, which provides helper functions for pasid allocation and release - kfd_aperture, which provides helper functions for managing the LDS, Local GPU memory and Scratch memory apertures of the process This patch only contains the basic kfd_process module, which doesn't contain the reference to the queue scheduler. This was done to allow easier code review. Also, this patch doesn't contain the calls to the IOMMU driver for binding the pasid to the device. Again, this was done to allow easier code review The kfd_process object is created when a process opens /dev/kfd and is closed when the mm_struct of that process is teared-down. v3: Removed kfd_vidmem.c file Replaced direct mmput call to mmu_notifier release Removed typedefs Moved bool field to end of the structure Added new kernel params for gart usage limitation Added initialization of sa manager Fixed debug messages Remove support for LDS in 32 bit Changed code to support mmap of doorbell pages from userspace Added documentation for apertures v4: Replaced RCU by SRCU for kfd_process list management v5: Move amdkfd from drm/radeon/ to drm/amd/ Rename kfd_aperture.c to kfd_flat_memory.c Protect against multiple init calls MQD size is H/W dependent so moved it to device info structure Rename kfd_mem_obj structure's members Use delayed function for process tear-down Signed-off-by: Oded Gabbay <oded.gabbay@amd.com>
2014-07-17 03:25:31 +07:00
unsigned int size;
kfd->shared_resources = *gpu_resources;
amdkfd: Add basic modules to amdkfd This patch adds the process module and three helper modules: - kfd_process, which handles process which open /dev/kfd - kfd_doorbell, which provides helper functions for doorbell allocation, release and mapping to userspace - kfd_pasid, which provides helper functions for pasid allocation and release - kfd_aperture, which provides helper functions for managing the LDS, Local GPU memory and Scratch memory apertures of the process This patch only contains the basic kfd_process module, which doesn't contain the reference to the queue scheduler. This was done to allow easier code review. Also, this patch doesn't contain the calls to the IOMMU driver for binding the pasid to the device. Again, this was done to allow easier code review The kfd_process object is created when a process opens /dev/kfd and is closed when the mm_struct of that process is teared-down. v3: Removed kfd_vidmem.c file Replaced direct mmput call to mmu_notifier release Removed typedefs Moved bool field to end of the structure Added new kernel params for gart usage limitation Added initialization of sa manager Fixed debug messages Remove support for LDS in 32 bit Changed code to support mmap of doorbell pages from userspace Added documentation for apertures v4: Replaced RCU by SRCU for kfd_process list management v5: Move amdkfd from drm/radeon/ to drm/amd/ Rename kfd_aperture.c to kfd_flat_memory.c Protect against multiple init calls MQD size is H/W dependent so moved it to device info structure Rename kfd_mem_obj structure's members Use delayed function for process tear-down Signed-off-by: Oded Gabbay <oded.gabbay@amd.com>
2014-07-17 03:25:31 +07:00
/* calculate max size of mqds needed for queues */
size = max_num_of_processes *
max_num_of_queues_per_process *
kfd->device_info->mqd_size_aligned;
/* add another 512KB for all other allocations on gart */
size += 512 * 1024;
if (kfd2kgd->init_sa_manager(kfd->kgd, size)) {
dev_err(kfd_device,
"Error initializing sa manager for device (%x:%x)\n",
kfd->pdev->vendor, kfd->pdev->device);
goto out;
}
kfd_doorbell_init(kfd);
if (kfd_topology_add_device(kfd) != 0) {
dev_err(kfd_device,
"Error adding device (%x:%x) to topology\n",
kfd->pdev->vendor, kfd->pdev->device);
goto kfd_topology_add_device_error;
}
if (kfd_interrupt_init(kfd)) {
dev_err(kfd_device,
"Error initializing interrupts for device (%x:%x)\n",
kfd->pdev->vendor, kfd->pdev->device);
goto kfd_interrupt_error;
}
if (!device_iommu_pasid_init(kfd)) {
dev_err(kfd_device,
"Error initializing iommuv2 for device (%x:%x)\n",
kfd->pdev->vendor, kfd->pdev->device);
goto device_iommu_pasid_error;
}
amd_iommu_set_invalidate_ctx_cb(kfd->pdev,
iommu_pasid_shutdown_callback);
amdkfd: Add topology module to amdkfd This patch adds the topology module to the driver. The topology is exposed to userspace through the sysfs. The calls to add and remove a device to/from topology are done by the radeon driver. v3: The CPU information, that is provided in the topology section of the amdkfd driver, is extracted from the CRAT table. Unlike the CPU information located in /sys/devices/system/cpu/cpu*, which is extracted from the SRAT table. While the CPU information provided by the CRAT and the SRAT tables might be identical, the node topology might be different. The SRAT table contains the topology of CPU nodes only. The CRAT table contains the topology of CPU and GPU nodes together (and can be interleaved). For example CPU node 1 in SRAT can be CPU node 3 in CRAT. Furthermore it's worth to mention that the CRAT table contains only HSA compatible nodes (nodes which are compliant with the HSA spec). To recap, amdkfd exposes a different kind of topology than the one exposed by /sys/devices/system/cpu/cpu even though it may contain similar information. v4: The topology module doesn't support uevent handling and doesn't notify the userspace about runtime modifications. It is up to the userspace to acquire snapshots of the topology information created by the amdkfd and exposed in sysfs. The following is an example of how the topology looks on a Kaveri A10-7850K system with amdkfd installed: /sys/devices/virtual/kfd/kfd/ | --- topology/ | |--- generation_id |--- system_properties |--- nodes/ | |--- 0/ | |--- gpu_id |--- name |--- properties |--- caches/ | |--- 0/ | |--- properties |--- 1/ | |--- properties |--- 2/ | |--- properties |--- io_links/ | |--- mem_banks/ | |--- 0/ | |--- properties |--- 1/ | |--- properties |--- 2/ | |--- properties |--- 3/ | |--- properties v5: Move amdkfd from drm/radeon/ to drm/amd/ Add a check if dev->gpu pointer is null before accessing it in the node_show function in kfd_topology.c This situation may occur when amdkfd is loaded and there is a GPU with a CRAT table, but that GPU isn't supported by amdkfd Signed-off-by: Evgeny Pinchuk <evgeny.pinchuk@amd.com> Signed-off-by: Oded Gabbay <oded.gabbay@amd.com>
2014-07-17 01:22:32 +07:00
2014-07-17 05:27:00 +07:00
kfd->dqm = device_queue_manager_init(kfd);
if (!kfd->dqm) {
dev_err(kfd_device,
"Error initializing queue manager for device (%x:%x)\n",
kfd->pdev->vendor, kfd->pdev->device);
goto device_queue_manager_error;
}
if (kfd->dqm->start(kfd->dqm) != 0) {
dev_err(kfd_device,
"Error starting queuen manager for device (%x:%x)\n",
kfd->pdev->vendor, kfd->pdev->device);
goto dqm_start_error;
}
kfd->init_complete = true;
dev_info(kfd_device, "added device (%x:%x)\n", kfd->pdev->vendor,
kfd->pdev->device);
2014-07-17 05:27:00 +07:00
pr_debug("kfd: Starting kfd with the following scheduling policy %d\n",
sched_policy);
amdkfd: Add basic modules to amdkfd This patch adds the process module and three helper modules: - kfd_process, which handles process which open /dev/kfd - kfd_doorbell, which provides helper functions for doorbell allocation, release and mapping to userspace - kfd_pasid, which provides helper functions for pasid allocation and release - kfd_aperture, which provides helper functions for managing the LDS, Local GPU memory and Scratch memory apertures of the process This patch only contains the basic kfd_process module, which doesn't contain the reference to the queue scheduler. This was done to allow easier code review. Also, this patch doesn't contain the calls to the IOMMU driver for binding the pasid to the device. Again, this was done to allow easier code review The kfd_process object is created when a process opens /dev/kfd and is closed when the mm_struct of that process is teared-down. v3: Removed kfd_vidmem.c file Replaced direct mmput call to mmu_notifier release Removed typedefs Moved bool field to end of the structure Added new kernel params for gart usage limitation Added initialization of sa manager Fixed debug messages Remove support for LDS in 32 bit Changed code to support mmap of doorbell pages from userspace Added documentation for apertures v4: Replaced RCU by SRCU for kfd_process list management v5: Move amdkfd from drm/radeon/ to drm/amd/ Rename kfd_aperture.c to kfd_flat_memory.c Protect against multiple init calls MQD size is H/W dependent so moved it to device info structure Rename kfd_mem_obj structure's members Use delayed function for process tear-down Signed-off-by: Oded Gabbay <oded.gabbay@amd.com>
2014-07-17 03:25:31 +07:00
goto out;
2014-07-17 05:27:00 +07:00
dqm_start_error:
device_queue_manager_uninit(kfd->dqm);
device_queue_manager_error:
amd_iommu_free_device(kfd->pdev);
device_iommu_pasid_error:
kfd_interrupt_exit(kfd);
kfd_interrupt_error:
kfd_topology_remove_device(kfd);
amdkfd: Add basic modules to amdkfd This patch adds the process module and three helper modules: - kfd_process, which handles process which open /dev/kfd - kfd_doorbell, which provides helper functions for doorbell allocation, release and mapping to userspace - kfd_pasid, which provides helper functions for pasid allocation and release - kfd_aperture, which provides helper functions for managing the LDS, Local GPU memory and Scratch memory apertures of the process This patch only contains the basic kfd_process module, which doesn't contain the reference to the queue scheduler. This was done to allow easier code review. Also, this patch doesn't contain the calls to the IOMMU driver for binding the pasid to the device. Again, this was done to allow easier code review The kfd_process object is created when a process opens /dev/kfd and is closed when the mm_struct of that process is teared-down. v3: Removed kfd_vidmem.c file Replaced direct mmput call to mmu_notifier release Removed typedefs Moved bool field to end of the structure Added new kernel params for gart usage limitation Added initialization of sa manager Fixed debug messages Remove support for LDS in 32 bit Changed code to support mmap of doorbell pages from userspace Added documentation for apertures v4: Replaced RCU by SRCU for kfd_process list management v5: Move amdkfd from drm/radeon/ to drm/amd/ Rename kfd_aperture.c to kfd_flat_memory.c Protect against multiple init calls MQD size is H/W dependent so moved it to device info structure Rename kfd_mem_obj structure's members Use delayed function for process tear-down Signed-off-by: Oded Gabbay <oded.gabbay@amd.com>
2014-07-17 03:25:31 +07:00
kfd_topology_add_device_error:
kfd2kgd->fini_sa_manager(kfd->kgd);
dev_err(kfd_device,
"device (%x:%x) NOT added due to errors\n",
kfd->pdev->vendor, kfd->pdev->device);
out:
return kfd->init_complete;
}
void kgd2kfd_device_exit(struct kfd_dev *kfd)
{
if (kfd->init_complete) {
2014-07-17 05:27:00 +07:00
device_queue_manager_uninit(kfd->dqm);
amd_iommu_free_device(kfd->pdev);
kfd_interrupt_exit(kfd);
kfd_topology_remove_device(kfd);
}
amdkfd: Add topology module to amdkfd This patch adds the topology module to the driver. The topology is exposed to userspace through the sysfs. The calls to add and remove a device to/from topology are done by the radeon driver. v3: The CPU information, that is provided in the topology section of the amdkfd driver, is extracted from the CRAT table. Unlike the CPU information located in /sys/devices/system/cpu/cpu*, which is extracted from the SRAT table. While the CPU information provided by the CRAT and the SRAT tables might be identical, the node topology might be different. The SRAT table contains the topology of CPU nodes only. The CRAT table contains the topology of CPU and GPU nodes together (and can be interleaved). For example CPU node 1 in SRAT can be CPU node 3 in CRAT. Furthermore it's worth to mention that the CRAT table contains only HSA compatible nodes (nodes which are compliant with the HSA spec). To recap, amdkfd exposes a different kind of topology than the one exposed by /sys/devices/system/cpu/cpu even though it may contain similar information. v4: The topology module doesn't support uevent handling and doesn't notify the userspace about runtime modifications. It is up to the userspace to acquire snapshots of the topology information created by the amdkfd and exposed in sysfs. The following is an example of how the topology looks on a Kaveri A10-7850K system with amdkfd installed: /sys/devices/virtual/kfd/kfd/ | --- topology/ | |--- generation_id |--- system_properties |--- nodes/ | |--- 0/ | |--- gpu_id |--- name |--- properties |--- caches/ | |--- 0/ | |--- properties |--- 1/ | |--- properties |--- 2/ | |--- properties |--- io_links/ | |--- mem_banks/ | |--- 0/ | |--- properties |--- 1/ | |--- properties |--- 2/ | |--- properties |--- 3/ | |--- properties v5: Move amdkfd from drm/radeon/ to drm/amd/ Add a check if dev->gpu pointer is null before accessing it in the node_show function in kfd_topology.c This situation may occur when amdkfd is loaded and there is a GPU with a CRAT table, but that GPU isn't supported by amdkfd Signed-off-by: Evgeny Pinchuk <evgeny.pinchuk@amd.com> Signed-off-by: Oded Gabbay <oded.gabbay@amd.com>
2014-07-17 01:22:32 +07:00
kfree(kfd);
}
void kgd2kfd_suspend(struct kfd_dev *kfd)
{
BUG_ON(kfd == NULL);
2014-07-17 05:27:00 +07:00
if (kfd->init_complete) {
kfd->dqm->stop(kfd->dqm);
amd_iommu_set_invalidate_ctx_cb(kfd->pdev, NULL);
amd_iommu_free_device(kfd->pdev);
2014-07-17 05:27:00 +07:00
}
}
int kgd2kfd_resume(struct kfd_dev *kfd)
{
unsigned int pasid_limit;
int err;
BUG_ON(kfd == NULL);
pasid_limit = kfd_get_pasid_limit();
if (kfd->init_complete) {
err = amd_iommu_init_device(kfd->pdev, pasid_limit);
if (err < 0)
return -ENXIO;
amd_iommu_set_invalidate_ctx_cb(kfd->pdev,
iommu_pasid_shutdown_callback);
2014-07-17 05:27:00 +07:00
kfd->dqm->start(kfd->dqm);
}
return 0;
}
/* This is called directly from KGD at ISR. */
void kgd2kfd_interrupt(struct kfd_dev *kfd, const void *ih_ring_entry)
{
if (kfd->init_complete) {
spin_lock(&kfd->interrupt_lock);
if (kfd->interrupts_active
&& enqueue_ih_ring_entry(kfd, ih_ring_entry))
schedule_work(&kfd->interrupt_work);
spin_unlock(&kfd->interrupt_lock);
}
}
static int kfd_gtt_sa_init(struct kfd_dev *kfd, unsigned int buf_size,
unsigned int chunk_size)
{
unsigned int num_of_bits;
BUG_ON(!kfd);
BUG_ON(!kfd->gtt_mem);
BUG_ON(buf_size < chunk_size);
BUG_ON(buf_size == 0);
BUG_ON(chunk_size == 0);
kfd->gtt_sa_chunk_size = chunk_size;
kfd->gtt_sa_num_of_chunks = buf_size / chunk_size;
num_of_bits = kfd->gtt_sa_num_of_chunks / BITS_PER_BYTE;
BUG_ON(num_of_bits == 0);
kfd->gtt_sa_bitmap = kzalloc(num_of_bits, GFP_KERNEL);
if (!kfd->gtt_sa_bitmap)
return -ENOMEM;
pr_debug("kfd: gtt_sa_num_of_chunks = %d, gtt_sa_bitmap = %p\n",
kfd->gtt_sa_num_of_chunks, kfd->gtt_sa_bitmap);
mutex_init(&kfd->gtt_sa_lock);
return 0;
}
static void kfd_gtt_sa_fini(struct kfd_dev *kfd)
{
mutex_destroy(&kfd->gtt_sa_lock);
kfree(kfd->gtt_sa_bitmap);
}
static inline uint64_t kfd_gtt_sa_calc_gpu_addr(uint64_t start_addr,
unsigned int bit_num,
unsigned int chunk_size)
{
return start_addr + bit_num * chunk_size;
}
static inline uint32_t *kfd_gtt_sa_calc_cpu_addr(void *start_addr,
unsigned int bit_num,
unsigned int chunk_size)
{
return (uint32_t *) ((uint64_t) start_addr + bit_num * chunk_size);
}
int kfd_gtt_sa_allocate(struct kfd_dev *kfd, unsigned int size,
struct kfd_mem_obj **mem_obj)
{
unsigned int found, start_search, cur_size;
BUG_ON(!kfd);
if (size == 0)
return -EINVAL;
if (size > kfd->gtt_sa_num_of_chunks * kfd->gtt_sa_chunk_size)
return -ENOMEM;
*mem_obj = kmalloc(sizeof(struct kfd_mem_obj), GFP_KERNEL);
if ((*mem_obj) == NULL)
return -ENOMEM;
pr_debug("kfd: allocated mem_obj = %p for size = %d\n", *mem_obj, size);
start_search = 0;
mutex_lock(&kfd->gtt_sa_lock);
kfd_gtt_restart_search:
/* Find the first chunk that is free */
found = find_next_zero_bit(kfd->gtt_sa_bitmap,
kfd->gtt_sa_num_of_chunks,
start_search);
pr_debug("kfd: found = %d\n", found);
/* If there wasn't any free chunk, bail out */
if (found == kfd->gtt_sa_num_of_chunks)
goto kfd_gtt_no_free_chunk;
/* Update fields of mem_obj */
(*mem_obj)->range_start = found;
(*mem_obj)->range_end = found;
(*mem_obj)->gpu_addr = kfd_gtt_sa_calc_gpu_addr(
kfd->gtt_start_gpu_addr,
found,
kfd->gtt_sa_chunk_size);
(*mem_obj)->cpu_ptr = kfd_gtt_sa_calc_cpu_addr(
kfd->gtt_start_cpu_ptr,
found,
kfd->gtt_sa_chunk_size);
pr_debug("kfd: gpu_addr = %p, cpu_addr = %p\n",
(uint64_t *) (*mem_obj)->gpu_addr, (*mem_obj)->cpu_ptr);
/* If we need only one chunk, mark it as allocated and get out */
if (size <= kfd->gtt_sa_chunk_size) {
pr_debug("kfd: single bit\n");
set_bit(found, kfd->gtt_sa_bitmap);
goto kfd_gtt_out;
}
/* Otherwise, try to see if we have enough contiguous chunks */
cur_size = size - kfd->gtt_sa_chunk_size;
do {
(*mem_obj)->range_end =
find_next_zero_bit(kfd->gtt_sa_bitmap,
kfd->gtt_sa_num_of_chunks, ++found);
/*
* If next free chunk is not contiguous than we need to
* restart our search from the last free chunk we found (which
* wasn't contiguous to the previous ones
*/
if ((*mem_obj)->range_end != found) {
start_search = found;
goto kfd_gtt_restart_search;
}
/*
* If we reached end of buffer, bail out with error
*/
if (found == kfd->gtt_sa_num_of_chunks)
goto kfd_gtt_no_free_chunk;
/* Check if we don't need another chunk */
if (cur_size <= kfd->gtt_sa_chunk_size)
cur_size = 0;
else
cur_size -= kfd->gtt_sa_chunk_size;
} while (cur_size > 0);
pr_debug("kfd: range_start = %d, range_end = %d\n",
(*mem_obj)->range_start, (*mem_obj)->range_end);
/* Mark the chunks as allocated */
for (found = (*mem_obj)->range_start;
found <= (*mem_obj)->range_end;
found++)
set_bit(found, kfd->gtt_sa_bitmap);
kfd_gtt_out:
mutex_unlock(&kfd->gtt_sa_lock);
return 0;
kfd_gtt_no_free_chunk:
pr_debug("kfd: allocation failed with mem_obj = %p\n", mem_obj);
mutex_unlock(&kfd->gtt_sa_lock);
kfree(mem_obj);
return -ENOMEM;
}
int kfd_gtt_sa_free(struct kfd_dev *kfd, struct kfd_mem_obj *mem_obj)
{
unsigned int bit;
BUG_ON(!kfd);
BUG_ON(!mem_obj);
pr_debug("kfd: free mem_obj = %p, range_start = %d, range_end = %d\n",
mem_obj, mem_obj->range_start, mem_obj->range_end);
mutex_lock(&kfd->gtt_sa_lock);
/* Mark the chunks as free */
for (bit = mem_obj->range_start;
bit <= mem_obj->range_end;
bit++)
clear_bit(bit, kfd->gtt_sa_bitmap);
mutex_unlock(&kfd->gtt_sa_lock);
kfree(mem_obj);
return 0;
}