linux_dsm_epyc7002/fs/crypto/fname.c

452 lines
12 KiB
C
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 21:07:57 +07:00
// SPDX-License-Identifier: GPL-2.0
/*
* This contains functions for filename crypto management
*
* Copyright (C) 2015, Google, Inc.
* Copyright (C) 2015, Motorola Mobility
*
* Written by Uday Savagaonkar, 2014.
* Modified by Jaegeuk Kim, 2015.
*
* This has not yet undergone a rigorous security audit.
*/
#include <linux/namei.h>
#include <linux/scatterlist.h>
#include <crypto/skcipher.h>
#include "fscrypt_private.h"
static inline bool fscrypt_is_dot_dotdot(const struct qstr *str)
{
if (str->len == 1 && str->name[0] == '.')
return true;
if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.')
return true;
return false;
}
/**
* fscrypt_fname_encrypt() - encrypt a filename
*
* The output buffer must be at least as large as the input buffer.
* Any extra space is filled with NUL padding before encryption.
*
* Return: 0 on success, -errno on failure
*/
int fscrypt_fname_encrypt(const struct inode *inode, const struct qstr *iname,
u8 *out, unsigned int olen)
{
struct skcipher_request *req = NULL;
DECLARE_CRYPTO_WAIT(wait);
const struct fscrypt_info *ci = inode->i_crypt_info;
fscrypt: add Adiantum support Add support for the Adiantum encryption mode to fscrypt. Adiantum is a tweakable, length-preserving encryption mode with security provably reducible to that of XChaCha12 and AES-256, subject to a security bound. It's also a true wide-block mode, unlike XTS. See the paper "Adiantum: length-preserving encryption for entry-level processors" (https://eprint.iacr.org/2018/720.pdf) for more details. Also see commit 059c2a4d8e16 ("crypto: adiantum - add Adiantum support"). On sufficiently long messages, Adiantum's bottlenecks are XChaCha12 and the NH hash function. These algorithms are fast even on processors without dedicated crypto instructions. Adiantum makes it feasible to enable storage encryption on low-end mobile devices that lack AES instructions; currently such devices are unencrypted. On ARM Cortex-A7, on 4096-byte messages Adiantum encryption is about 4 times faster than AES-256-XTS encryption; decryption is about 5 times faster. In fscrypt, Adiantum is suitable for encrypting both file contents and names. With filenames, it fixes a known weakness: when two filenames in a directory share a common prefix of >= 16 bytes, with CTS-CBC their encrypted filenames share a common prefix too, leaking information. Adiantum does not have this problem. Since Adiantum also accepts long tweaks (IVs), it's also safe to use the master key directly for Adiantum encryption rather than deriving per-file keys, provided that the per-file nonce is included in the IVs and the master key isn't used for any other encryption mode. This configuration saves memory and improves performance. A new fscrypt policy flag is added to allow users to opt-in to this configuration. Signed-off-by: Eric Biggers <ebiggers@google.com> Signed-off-by: Theodore Ts'o <tytso@mit.edu>
2019-01-06 20:36:21 +07:00
struct crypto_skcipher *tfm = ci->ci_ctfm;
union fscrypt_iv iv;
struct scatterlist sg;
fscrypt: add Adiantum support Add support for the Adiantum encryption mode to fscrypt. Adiantum is a tweakable, length-preserving encryption mode with security provably reducible to that of XChaCha12 and AES-256, subject to a security bound. It's also a true wide-block mode, unlike XTS. See the paper "Adiantum: length-preserving encryption for entry-level processors" (https://eprint.iacr.org/2018/720.pdf) for more details. Also see commit 059c2a4d8e16 ("crypto: adiantum - add Adiantum support"). On sufficiently long messages, Adiantum's bottlenecks are XChaCha12 and the NH hash function. These algorithms are fast even on processors without dedicated crypto instructions. Adiantum makes it feasible to enable storage encryption on low-end mobile devices that lack AES instructions; currently such devices are unencrypted. On ARM Cortex-A7, on 4096-byte messages Adiantum encryption is about 4 times faster than AES-256-XTS encryption; decryption is about 5 times faster. In fscrypt, Adiantum is suitable for encrypting both file contents and names. With filenames, it fixes a known weakness: when two filenames in a directory share a common prefix of >= 16 bytes, with CTS-CBC their encrypted filenames share a common prefix too, leaking information. Adiantum does not have this problem. Since Adiantum also accepts long tweaks (IVs), it's also safe to use the master key directly for Adiantum encryption rather than deriving per-file keys, provided that the per-file nonce is included in the IVs and the master key isn't used for any other encryption mode. This configuration saves memory and improves performance. A new fscrypt policy flag is added to allow users to opt-in to this configuration. Signed-off-by: Eric Biggers <ebiggers@google.com> Signed-off-by: Theodore Ts'o <tytso@mit.edu>
2019-01-06 20:36:21 +07:00
int res;
/*
* Copy the filename to the output buffer for encrypting in-place and
* pad it with the needed number of NUL bytes.
*/
if (WARN_ON(olen < iname->len))
fscrypt: new helper functions for ->symlink() Currently, filesystems supporting fscrypt need to implement some tricky logic when creating encrypted symlinks, including handling a peculiar on-disk format (struct fscrypt_symlink_data) and correctly calculating the size of the encrypted symlink. Introduce helper functions to make things a bit easier: - fscrypt_prepare_symlink() computes and validates the size the symlink target will require on-disk. - fscrypt_encrypt_symlink() creates the encrypted target if needed. The new helpers actually fix some subtle bugs. First, when checking whether the symlink target was too long, filesystems didn't account for the fact that the NUL padding is meant to be truncated if it would cause the maximum length to be exceeded, as is done for filenames in directories. Consequently users would receive ENAMETOOLONG when creating symlinks close to what is supposed to be the maximum length. For example, with EXT4 with a 4K block size, the maximum symlink target length in an encrypted directory is supposed to be 4093 bytes (in comparison to 4095 in an unencrypted directory), but in FS_POLICY_FLAGS_PAD_32-mode only up to 4064 bytes were accepted. Second, symlink targets of "." and ".." were not being encrypted, even though they should be, as these names are special in *directory entries* but not in symlink targets. Fortunately, we can fix this simply by starting to encrypt them, as old kernels already accept them in encrypted form. Third, the output string length the filesystems were providing when doing the actual encryption was incorrect, as it was forgotten to exclude 'sizeof(struct fscrypt_symlink_data)'. Fortunately though, this bug didn't make a difference. Signed-off-by: Eric Biggers <ebiggers@google.com> Signed-off-by: Theodore Ts'o <tytso@mit.edu>
2018-01-06 01:45:01 +07:00
return -ENOBUFS;
memcpy(out, iname->name, iname->len);
memset(out + iname->len, 0, olen - iname->len);
/* Initialize the IV */
fscrypt: add Adiantum support Add support for the Adiantum encryption mode to fscrypt. Adiantum is a tweakable, length-preserving encryption mode with security provably reducible to that of XChaCha12 and AES-256, subject to a security bound. It's also a true wide-block mode, unlike XTS. See the paper "Adiantum: length-preserving encryption for entry-level processors" (https://eprint.iacr.org/2018/720.pdf) for more details. Also see commit 059c2a4d8e16 ("crypto: adiantum - add Adiantum support"). On sufficiently long messages, Adiantum's bottlenecks are XChaCha12 and the NH hash function. These algorithms are fast even on processors without dedicated crypto instructions. Adiantum makes it feasible to enable storage encryption on low-end mobile devices that lack AES instructions; currently such devices are unencrypted. On ARM Cortex-A7, on 4096-byte messages Adiantum encryption is about 4 times faster than AES-256-XTS encryption; decryption is about 5 times faster. In fscrypt, Adiantum is suitable for encrypting both file contents and names. With filenames, it fixes a known weakness: when two filenames in a directory share a common prefix of >= 16 bytes, with CTS-CBC their encrypted filenames share a common prefix too, leaking information. Adiantum does not have this problem. Since Adiantum also accepts long tweaks (IVs), it's also safe to use the master key directly for Adiantum encryption rather than deriving per-file keys, provided that the per-file nonce is included in the IVs and the master key isn't used for any other encryption mode. This configuration saves memory and improves performance. A new fscrypt policy flag is added to allow users to opt-in to this configuration. Signed-off-by: Eric Biggers <ebiggers@google.com> Signed-off-by: Theodore Ts'o <tytso@mit.edu>
2019-01-06 20:36:21 +07:00
fscrypt_generate_iv(&iv, 0, ci);
/* Set up the encryption request */
req = skcipher_request_alloc(tfm, GFP_NOFS);
if (!req)
return -ENOMEM;
skcipher_request_set_callback(req,
CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
crypto_req_done, &wait);
sg_init_one(&sg, out, olen);
fscrypt: add Adiantum support Add support for the Adiantum encryption mode to fscrypt. Adiantum is a tweakable, length-preserving encryption mode with security provably reducible to that of XChaCha12 and AES-256, subject to a security bound. It's also a true wide-block mode, unlike XTS. See the paper "Adiantum: length-preserving encryption for entry-level processors" (https://eprint.iacr.org/2018/720.pdf) for more details. Also see commit 059c2a4d8e16 ("crypto: adiantum - add Adiantum support"). On sufficiently long messages, Adiantum's bottlenecks are XChaCha12 and the NH hash function. These algorithms are fast even on processors without dedicated crypto instructions. Adiantum makes it feasible to enable storage encryption on low-end mobile devices that lack AES instructions; currently such devices are unencrypted. On ARM Cortex-A7, on 4096-byte messages Adiantum encryption is about 4 times faster than AES-256-XTS encryption; decryption is about 5 times faster. In fscrypt, Adiantum is suitable for encrypting both file contents and names. With filenames, it fixes a known weakness: when two filenames in a directory share a common prefix of >= 16 bytes, with CTS-CBC their encrypted filenames share a common prefix too, leaking information. Adiantum does not have this problem. Since Adiantum also accepts long tweaks (IVs), it's also safe to use the master key directly for Adiantum encryption rather than deriving per-file keys, provided that the per-file nonce is included in the IVs and the master key isn't used for any other encryption mode. This configuration saves memory and improves performance. A new fscrypt policy flag is added to allow users to opt-in to this configuration. Signed-off-by: Eric Biggers <ebiggers@google.com> Signed-off-by: Theodore Ts'o <tytso@mit.edu>
2019-01-06 20:36:21 +07:00
skcipher_request_set_crypt(req, &sg, &sg, olen, &iv);
/* Do the encryption */
res = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
skcipher_request_free(req);
if (res < 0) {
fscrypt_err(inode, "Filename encryption failed: %d", res);
return res;
}
return 0;
}
/**
* fname_decrypt() - decrypt a filename
*
* The caller must have allocated sufficient memory for the @oname string.
*
* Return: 0 on success, -errno on failure
*/
static int fname_decrypt(const struct inode *inode,
const struct fscrypt_str *iname,
struct fscrypt_str *oname)
{
struct skcipher_request *req = NULL;
DECLARE_CRYPTO_WAIT(wait);
struct scatterlist src_sg, dst_sg;
const struct fscrypt_info *ci = inode->i_crypt_info;
fscrypt: add Adiantum support Add support for the Adiantum encryption mode to fscrypt. Adiantum is a tweakable, length-preserving encryption mode with security provably reducible to that of XChaCha12 and AES-256, subject to a security bound. It's also a true wide-block mode, unlike XTS. See the paper "Adiantum: length-preserving encryption for entry-level processors" (https://eprint.iacr.org/2018/720.pdf) for more details. Also see commit 059c2a4d8e16 ("crypto: adiantum - add Adiantum support"). On sufficiently long messages, Adiantum's bottlenecks are XChaCha12 and the NH hash function. These algorithms are fast even on processors without dedicated crypto instructions. Adiantum makes it feasible to enable storage encryption on low-end mobile devices that lack AES instructions; currently such devices are unencrypted. On ARM Cortex-A7, on 4096-byte messages Adiantum encryption is about 4 times faster than AES-256-XTS encryption; decryption is about 5 times faster. In fscrypt, Adiantum is suitable for encrypting both file contents and names. With filenames, it fixes a known weakness: when two filenames in a directory share a common prefix of >= 16 bytes, with CTS-CBC their encrypted filenames share a common prefix too, leaking information. Adiantum does not have this problem. Since Adiantum also accepts long tweaks (IVs), it's also safe to use the master key directly for Adiantum encryption rather than deriving per-file keys, provided that the per-file nonce is included in the IVs and the master key isn't used for any other encryption mode. This configuration saves memory and improves performance. A new fscrypt policy flag is added to allow users to opt-in to this configuration. Signed-off-by: Eric Biggers <ebiggers@google.com> Signed-off-by: Theodore Ts'o <tytso@mit.edu>
2019-01-06 20:36:21 +07:00
struct crypto_skcipher *tfm = ci->ci_ctfm;
union fscrypt_iv iv;
int res;
/* Allocate request */
req = skcipher_request_alloc(tfm, GFP_NOFS);
if (!req)
return -ENOMEM;
skcipher_request_set_callback(req,
CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
crypto_req_done, &wait);
/* Initialize IV */
fscrypt: add Adiantum support Add support for the Adiantum encryption mode to fscrypt. Adiantum is a tweakable, length-preserving encryption mode with security provably reducible to that of XChaCha12 and AES-256, subject to a security bound. It's also a true wide-block mode, unlike XTS. See the paper "Adiantum: length-preserving encryption for entry-level processors" (https://eprint.iacr.org/2018/720.pdf) for more details. Also see commit 059c2a4d8e16 ("crypto: adiantum - add Adiantum support"). On sufficiently long messages, Adiantum's bottlenecks are XChaCha12 and the NH hash function. These algorithms are fast even on processors without dedicated crypto instructions. Adiantum makes it feasible to enable storage encryption on low-end mobile devices that lack AES instructions; currently such devices are unencrypted. On ARM Cortex-A7, on 4096-byte messages Adiantum encryption is about 4 times faster than AES-256-XTS encryption; decryption is about 5 times faster. In fscrypt, Adiantum is suitable for encrypting both file contents and names. With filenames, it fixes a known weakness: when two filenames in a directory share a common prefix of >= 16 bytes, with CTS-CBC their encrypted filenames share a common prefix too, leaking information. Adiantum does not have this problem. Since Adiantum also accepts long tweaks (IVs), it's also safe to use the master key directly for Adiantum encryption rather than deriving per-file keys, provided that the per-file nonce is included in the IVs and the master key isn't used for any other encryption mode. This configuration saves memory and improves performance. A new fscrypt policy flag is added to allow users to opt-in to this configuration. Signed-off-by: Eric Biggers <ebiggers@google.com> Signed-off-by: Theodore Ts'o <tytso@mit.edu>
2019-01-06 20:36:21 +07:00
fscrypt_generate_iv(&iv, 0, ci);
/* Create decryption request */
sg_init_one(&src_sg, iname->name, iname->len);
sg_init_one(&dst_sg, oname->name, oname->len);
fscrypt: add Adiantum support Add support for the Adiantum encryption mode to fscrypt. Adiantum is a tweakable, length-preserving encryption mode with security provably reducible to that of XChaCha12 and AES-256, subject to a security bound. It's also a true wide-block mode, unlike XTS. See the paper "Adiantum: length-preserving encryption for entry-level processors" (https://eprint.iacr.org/2018/720.pdf) for more details. Also see commit 059c2a4d8e16 ("crypto: adiantum - add Adiantum support"). On sufficiently long messages, Adiantum's bottlenecks are XChaCha12 and the NH hash function. These algorithms are fast even on processors without dedicated crypto instructions. Adiantum makes it feasible to enable storage encryption on low-end mobile devices that lack AES instructions; currently such devices are unencrypted. On ARM Cortex-A7, on 4096-byte messages Adiantum encryption is about 4 times faster than AES-256-XTS encryption; decryption is about 5 times faster. In fscrypt, Adiantum is suitable for encrypting both file contents and names. With filenames, it fixes a known weakness: when two filenames in a directory share a common prefix of >= 16 bytes, with CTS-CBC their encrypted filenames share a common prefix too, leaking information. Adiantum does not have this problem. Since Adiantum also accepts long tweaks (IVs), it's also safe to use the master key directly for Adiantum encryption rather than deriving per-file keys, provided that the per-file nonce is included in the IVs and the master key isn't used for any other encryption mode. This configuration saves memory and improves performance. A new fscrypt policy flag is added to allow users to opt-in to this configuration. Signed-off-by: Eric Biggers <ebiggers@google.com> Signed-off-by: Theodore Ts'o <tytso@mit.edu>
2019-01-06 20:36:21 +07:00
skcipher_request_set_crypt(req, &src_sg, &dst_sg, iname->len, &iv);
res = crypto_wait_req(crypto_skcipher_decrypt(req), &wait);
skcipher_request_free(req);
if (res < 0) {
fscrypt_err(inode, "Filename decryption failed: %d", res);
return res;
}
oname->len = strnlen(oname->name, iname->len);
return 0;
}
static const char lookup_table[65] =
"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+,";
#define BASE64_CHARS(nbytes) DIV_ROUND_UP((nbytes) * 4, 3)
/**
* base64_encode() -
*
* Encodes the input string using characters from the set [A-Za-z0-9+,].
* The encoded string is roughly 4/3 times the size of the input string.
*
* Return: length of the encoded string
*/
static int base64_encode(const u8 *src, int len, char *dst)
{
int i, bits = 0, ac = 0;
char *cp = dst;
for (i = 0; i < len; i++) {
ac += src[i] << bits;
bits += 8;
do {
*cp++ = lookup_table[ac & 0x3f];
ac >>= 6;
bits -= 6;
} while (bits >= 6);
}
if (bits)
*cp++ = lookup_table[ac & 0x3f];
return cp - dst;
}
static int base64_decode(const char *src, int len, u8 *dst)
{
int i, bits = 0, ac = 0;
const char *p;
u8 *cp = dst;
for (i = 0; i < len; i++) {
p = strchr(lookup_table, src[i]);
if (p == NULL || src[i] == 0)
return -2;
ac += (p - lookup_table) << bits;
bits += 6;
if (bits >= 8) {
*cp++ = ac & 0xff;
ac >>= 8;
bits -= 8;
}
}
if (ac)
return -1;
return cp - dst;
}
bool fscrypt_fname_encrypted_size(const struct inode *inode, u32 orig_len,
u32 max_len, u32 *encrypted_len_ret)
{
fscrypt: v2 encryption policy support Add a new fscrypt policy version, "v2". It has the following changes from the original policy version, which we call "v1" (*): - Master keys (the user-provided encryption keys) are only ever used as input to HKDF-SHA512. This is more flexible and less error-prone, and it avoids the quirks and limitations of the AES-128-ECB based KDF. Three classes of cryptographically isolated subkeys are defined: - Per-file keys, like used in v1 policies except for the new KDF. - Per-mode keys. These implement the semantics of the DIRECT_KEY flag, which for v1 policies made the master key be used directly. These are also planned to be used for inline encryption when support for it is added. - Key identifiers (see below). - Each master key is identified by a 16-byte master_key_identifier, which is derived from the key itself using HKDF-SHA512. This prevents users from associating the wrong key with an encrypted file or directory. This was easily possible with v1 policies, which identified the key by an arbitrary 8-byte master_key_descriptor. - The key must be provided in the filesystem-level keyring, not in a process-subscribed keyring. The following UAPI additions are made: - The existing ioctl FS_IOC_SET_ENCRYPTION_POLICY can now be passed a fscrypt_policy_v2 to set a v2 encryption policy. It's disambiguated from fscrypt_policy/fscrypt_policy_v1 by the version code prefix. - A new ioctl FS_IOC_GET_ENCRYPTION_POLICY_EX is added. It allows getting the v1 or v2 encryption policy of an encrypted file or directory. The existing FS_IOC_GET_ENCRYPTION_POLICY ioctl could not be used because it did not have a way for userspace to indicate which policy structure is expected. The new ioctl includes a size field, so it is extensible to future fscrypt policy versions. - The ioctls FS_IOC_ADD_ENCRYPTION_KEY, FS_IOC_REMOVE_ENCRYPTION_KEY, and FS_IOC_GET_ENCRYPTION_KEY_STATUS now support managing keys for v2 encryption policies. Such keys are kept logically separate from keys for v1 encryption policies, and are identified by 'identifier' rather than by 'descriptor'. The 'identifier' need not be provided when adding a key, since the kernel will calculate it anyway. This patch temporarily keeps adding/removing v2 policy keys behind the same permission check done for adding/removing v1 policy keys: capable(CAP_SYS_ADMIN). However, the next patch will carefully take advantage of the cryptographically secure master_key_identifier to allow non-root users to add/remove v2 policy keys, thus providing a full replacement for v1 policies. (*) Actually, in the API fscrypt_policy::version is 0 while on-disk fscrypt_context::format is 1. But I believe it makes the most sense to advance both to '2' to have them be in sync, and to consider the numbering to start at 1 except for the API quirk. Reviewed-by: Paul Crowley <paulcrowley@google.com> Reviewed-by: Theodore Ts'o <tytso@mit.edu> Signed-off-by: Eric Biggers <ebiggers@google.com>
2019-08-05 09:35:47 +07:00
const struct fscrypt_info *ci = inode->i_crypt_info;
int padding = 4 << (fscrypt_policy_flags(&ci->ci_policy) &
FSCRYPT_POLICY_FLAGS_PAD_MASK);
u32 encrypted_len;
if (orig_len > max_len)
return false;
encrypted_len = max(orig_len, (u32)FS_CRYPTO_BLOCK_SIZE);
encrypted_len = round_up(encrypted_len, padding);
*encrypted_len_ret = min(encrypted_len, max_len);
return true;
}
/**
* fscrypt_fname_alloc_buffer - allocate a buffer for presented filenames
*
* Allocate a buffer that is large enough to hold any decrypted or encoded
* filename (null-terminated), for the given maximum encrypted filename length.
*
* Return: 0 on success, -errno on failure
*/
int fscrypt_fname_alloc_buffer(const struct inode *inode,
u32 max_encrypted_len,
struct fscrypt_str *crypto_str)
{
const u32 max_encoded_len =
max_t(u32, BASE64_CHARS(FSCRYPT_FNAME_MAX_UNDIGESTED_SIZE),
1 + BASE64_CHARS(sizeof(struct fscrypt_digested_name)));
u32 max_presented_len;
max_presented_len = max(max_encoded_len, max_encrypted_len);
crypto_str->name = kmalloc(max_presented_len + 1, GFP_NOFS);
if (!crypto_str->name)
return -ENOMEM;
crypto_str->len = max_presented_len;
return 0;
}
EXPORT_SYMBOL(fscrypt_fname_alloc_buffer);
/**
* fscrypt_fname_free_buffer - free the buffer for presented filenames
*
* Free the buffer allocated by fscrypt_fname_alloc_buffer().
*/
void fscrypt_fname_free_buffer(struct fscrypt_str *crypto_str)
{
if (!crypto_str)
return;
kfree(crypto_str->name);
crypto_str->name = NULL;
}
EXPORT_SYMBOL(fscrypt_fname_free_buffer);
/**
* fscrypt_fname_disk_to_usr() - converts a filename from disk space to user
* space
*
* The caller must have allocated sufficient memory for the @oname string.
*
* If the key is available, we'll decrypt the disk name; otherwise, we'll encode
* it for presentation. Short names are directly base64-encoded, while long
* names are encoded in fscrypt_digested_name format.
*
* Return: 0 on success, -errno on failure
*/
int fscrypt_fname_disk_to_usr(const struct inode *inode,
u32 hash, u32 minor_hash,
const struct fscrypt_str *iname,
struct fscrypt_str *oname)
{
const struct qstr qname = FSTR_TO_QSTR(iname);
struct fscrypt_digested_name digested_name;
if (fscrypt_is_dot_dotdot(&qname)) {
oname->name[0] = '.';
oname->name[iname->len - 1] = '.';
oname->len = iname->len;
return 0;
}
if (iname->len < FS_CRYPTO_BLOCK_SIZE)
return -EUCLEAN;
if (fscrypt_has_encryption_key(inode))
return fname_decrypt(inode, iname, oname);
if (iname->len <= FSCRYPT_FNAME_MAX_UNDIGESTED_SIZE) {
oname->len = base64_encode(iname->name, iname->len,
oname->name);
return 0;
}
if (hash) {
digested_name.hash = hash;
digested_name.minor_hash = minor_hash;
} else {
digested_name.hash = 0;
digested_name.minor_hash = 0;
}
memcpy(digested_name.digest,
FSCRYPT_FNAME_DIGEST(iname->name, iname->len),
FSCRYPT_FNAME_DIGEST_SIZE);
oname->name[0] = '_';
oname->len = 1 + base64_encode((const u8 *)&digested_name,
sizeof(digested_name), oname->name + 1);
return 0;
}
EXPORT_SYMBOL(fscrypt_fname_disk_to_usr);
/**
* fscrypt_setup_filename() - prepare to search a possibly encrypted directory
* @dir: the directory that will be searched
* @iname: the user-provided filename being searched for
* @lookup: 1 if we're allowed to proceed without the key because it's
* ->lookup() or we're finding the dir_entry for deletion; 0 if we cannot
* proceed without the key because we're going to create the dir_entry.
* @fname: the filename information to be filled in
*
* Given a user-provided filename @iname, this function sets @fname->disk_name
* to the name that would be stored in the on-disk directory entry, if possible.
* If the directory is unencrypted this is simply @iname. Else, if we have the
* directory's encryption key, then @iname is the plaintext, so we encrypt it to
* get the disk_name.
*
* Else, for keyless @lookup operations, @iname is the presented ciphertext, so
* we decode it to get either the ciphertext disk_name (for short names) or the
* fscrypt_digested_name (for long names). Non-@lookup operations will be
* impossible in this case, so we fail them with ENOKEY.
*
* If successful, fscrypt_free_filename() must be called later to clean up.
*
* Return: 0 on success, -errno on failure
*/
int fscrypt_setup_filename(struct inode *dir, const struct qstr *iname,
int lookup, struct fscrypt_name *fname)
{
int ret;
int digested;
memset(fname, 0, sizeof(struct fscrypt_name));
fname->usr_fname = iname;
if (!IS_ENCRYPTED(dir) || fscrypt_is_dot_dotdot(iname)) {
fname->disk_name.name = (unsigned char *)iname->name;
fname->disk_name.len = iname->len;
return 0;
}
fscrypt: remove broken support for detecting keyring key revocation Filesystem encryption ostensibly supported revoking a keyring key that had been used to "unlock" encrypted files, causing those files to become "locked" again. This was, however, buggy for several reasons, the most severe of which was that when key revocation happened to be detected for an inode, its fscrypt_info was immediately freed, even while other threads could be using it for encryption or decryption concurrently. This could be exploited to crash the kernel or worse. This patch fixes the use-after-free by removing the code which detects the keyring key having been revoked, invalidated, or expired. Instead, an encrypted inode that is "unlocked" now simply remains unlocked until it is evicted from memory. Note that this is no worse than the case for block device-level encryption, e.g. dm-crypt, and it still remains possible for a privileged user to evict unused pages, inodes, and dentries by running 'sync; echo 3 > /proc/sys/vm/drop_caches', or by simply unmounting the filesystem. In fact, one of those actions was already needed anyway for key revocation to work even somewhat sanely. This change is not expected to break any applications. In the future I'd like to implement a real API for fscrypt key revocation that interacts sanely with ongoing filesystem operations --- waiting for existing operations to complete and blocking new operations, and invalidating and sanitizing key material and plaintext from the VFS caches. But this is a hard problem, and for now this bug must be fixed. This bug affected almost all versions of ext4, f2fs, and ubifs encryption, and it was potentially reachable in any kernel configured with encryption support (CONFIG_EXT4_ENCRYPTION=y, CONFIG_EXT4_FS_ENCRYPTION=y, CONFIG_F2FS_FS_ENCRYPTION=y, or CONFIG_UBIFS_FS_ENCRYPTION=y). Note that older kernels did not use the shared fs/crypto/ code, but due to the potential security implications of this bug, it may still be worthwhile to backport this fix to them. Fixes: b7236e21d55f ("ext4 crypto: reorganize how we store keys in the inode") Cc: stable@vger.kernel.org # v4.2+ Signed-off-by: Eric Biggers <ebiggers@google.com> Signed-off-by: Theodore Ts'o <tytso@mit.edu> Acked-by: Michael Halcrow <mhalcrow@google.com>
2017-02-22 06:07:11 +07:00
ret = fscrypt_get_encryption_info(dir);
if (ret)
return ret;
if (fscrypt_has_encryption_key(dir)) {
if (!fscrypt_fname_encrypted_size(dir, iname->len,
dir->i_sb->s_cop->max_namelen,
&fname->crypto_buf.len))
return -ENAMETOOLONG;
fname->crypto_buf.name = kmalloc(fname->crypto_buf.len,
GFP_NOFS);
if (!fname->crypto_buf.name)
return -ENOMEM;
ret = fscrypt_fname_encrypt(dir, iname, fname->crypto_buf.name,
fname->crypto_buf.len);
if (ret)
goto errout;
fname->disk_name.name = fname->crypto_buf.name;
fname->disk_name.len = fname->crypto_buf.len;
return 0;
}
if (!lookup)
return -ENOKEY;
fscrypt: fix race where ->lookup() marks plaintext dentry as ciphertext ->lookup() in an encrypted directory begins as follows: 1. fscrypt_prepare_lookup(): a. Try to load the directory's encryption key. b. If the key is unavailable, mark the dentry as a ciphertext name via d_flags. 2. fscrypt_setup_filename(): a. Try to load the directory's encryption key. b. If the key is available, encrypt the name (treated as a plaintext name) to get the on-disk name. Otherwise decode the name (treated as a ciphertext name) to get the on-disk name. But if the key is concurrently added, it may be found at (2a) but not at (1a). In this case, the dentry will be wrongly marked as a ciphertext name even though it was actually treated as plaintext. This will cause the dentry to be wrongly invalidated on the next lookup, potentially causing problems. For example, if the racy ->lookup() was part of sys_mount(), then the new mount will be detached when anything tries to access it. This is despite the mountpoint having a plaintext path, which should remain valid now that the key was added. Of course, this is only possible if there's a userspace race. Still, the additional kernel-side race is confusing and unexpected. Close the kernel-side race by changing fscrypt_prepare_lookup() to also set the on-disk filename (step 2b), consistent with the d_flags update. Fixes: 28b4c263961c ("ext4 crypto: revalidate dentry after adding or removing the key") Signed-off-by: Eric Biggers <ebiggers@google.com> Signed-off-by: Theodore Ts'o <tytso@mit.edu>
2019-03-21 01:39:13 +07:00
fname->is_ciphertext_name = true;
/*
* We don't have the key and we are doing a lookup; decode the
* user-supplied name
*/
if (iname->name[0] == '_') {
if (iname->len !=
1 + BASE64_CHARS(sizeof(struct fscrypt_digested_name)))
return -ENOENT;
digested = 1;
} else {
if (iname->len >
BASE64_CHARS(FSCRYPT_FNAME_MAX_UNDIGESTED_SIZE))
return -ENOENT;
digested = 0;
}
fname->crypto_buf.name =
kmalloc(max_t(size_t, FSCRYPT_FNAME_MAX_UNDIGESTED_SIZE,
sizeof(struct fscrypt_digested_name)),
GFP_KERNEL);
if (fname->crypto_buf.name == NULL)
return -ENOMEM;
ret = base64_decode(iname->name + digested, iname->len - digested,
fname->crypto_buf.name);
if (ret < 0) {
ret = -ENOENT;
goto errout;
}
fname->crypto_buf.len = ret;
if (digested) {
const struct fscrypt_digested_name *n =
(const void *)fname->crypto_buf.name;
fname->hash = n->hash;
fname->minor_hash = n->minor_hash;
} else {
fname->disk_name.name = fname->crypto_buf.name;
fname->disk_name.len = fname->crypto_buf.len;
}
return 0;
errout:
kfree(fname->crypto_buf.name);
return ret;
}
EXPORT_SYMBOL(fscrypt_setup_filename);
/*
* Validate dentries in encrypted directories to make sure we aren't potentially
* caching stale dentries after a key has been added.
*/
static int fscrypt_d_revalidate(struct dentry *dentry, unsigned int flags)
{
struct dentry *dir;
int err;
int valid;
/*
* Plaintext names are always valid, since fscrypt doesn't support
* reverting to ciphertext names without evicting the directory's inode
* -- which implies eviction of the dentries in the directory.
*/
if (!(dentry->d_flags & DCACHE_ENCRYPTED_NAME))
return 1;
/*
* Ciphertext name; valid if the directory's key is still unavailable.
*
* Although fscrypt forbids rename() on ciphertext names, we still must
* use dget_parent() here rather than use ->d_parent directly. That's
* because a corrupted fs image may contain directory hard links, which
* the VFS handles by moving the directory's dentry tree in the dcache
* each time ->lookup() finds the directory and it already has a dentry
* elsewhere. Thus ->d_parent can be changing, and we must safely grab
* a reference to some ->d_parent to prevent it from being freed.
*/
if (flags & LOOKUP_RCU)
return -ECHILD;
dir = dget_parent(dentry);
err = fscrypt_get_encryption_info(d_inode(dir));
valid = !fscrypt_has_encryption_key(d_inode(dir));
dput(dir);
if (err < 0)
return err;
return valid;
}
const struct dentry_operations fscrypt_d_ops = {
.d_revalidate = fscrypt_d_revalidate,
};