linux_dsm_epyc7002/drivers/net/bonding/bond_alb.c

1829 lines
49 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Copyright(c) 1999 - 2004 Intel Corporation. All rights reserved.
*/
#include <linux/skbuff.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/pkt_sched.h>
#include <linux/spinlock.h>
#include <linux/slab.h>
#include <linux/timer.h>
#include <linux/ip.h>
#include <linux/ipv6.h>
#include <linux/if_arp.h>
#include <linux/if_ether.h>
#include <linux/if_bonding.h>
#include <linux/if_vlan.h>
#include <linux/in.h>
#include <net/ipx.h>
#include <net/arp.h>
#include <net/ipv6.h>
#include <asm/byteorder.h>
#include <net/bonding.h>
#include <net/bond_alb.h>
static const u8 mac_v6_allmcast[ETH_ALEN + 2] __long_aligned = {
0x33, 0x33, 0x00, 0x00, 0x00, 0x01
};
static const int alb_delta_in_ticks = HZ / ALB_TIMER_TICKS_PER_SEC;
#pragma pack(1)
struct learning_pkt {
u8 mac_dst[ETH_ALEN];
u8 mac_src[ETH_ALEN];
__be16 type;
u8 padding[ETH_ZLEN - ETH_HLEN];
};
struct arp_pkt {
__be16 hw_addr_space;
__be16 prot_addr_space;
u8 hw_addr_len;
u8 prot_addr_len;
__be16 op_code;
u8 mac_src[ETH_ALEN]; /* sender hardware address */
__be32 ip_src; /* sender IP address */
u8 mac_dst[ETH_ALEN]; /* target hardware address */
__be32 ip_dst; /* target IP address */
};
#pragma pack()
/* Forward declaration */
static void alb_send_learning_packets(struct slave *slave, u8 mac_addr[],
bool strict_match);
bonding: delete migrated IP addresses from the rlb hash table Bonding in balance-alb mode records information from ARP packets passing through the bond in a hash table (rx_hashtbl). At certain situations (e.g. link change of a slave), rlb_update_rx_clients() will send out ARP packets to update ARP caches of other hosts on the network to achieve RX load balancing. The problem is that once an IP address is recorded in the hash table, it stays there indefinitely. If this IP address is migrated to a different host in the network, bonding still sends out ARP packets that poison other systems' ARP caches with invalid information. This patch solves this by looking at all incoming ARP packets, and checking if the source IP address is one of the source addresses stored in the rx_hashtbl. If it is, but the MAC addresses differ, the corresponding hash table entries are removed. Thus, when an IP address is migrated, the first ARP broadcast by its new owner will purge the offending entries of rx_hashtbl. The hash table is hashed by ip_dst. To be able to do the above check efficiently (not walking the whole hash table), we need a reverse mapping (by ip_src). I added three new members in struct rlb_client_info: rx_hashtbl[x].src_first will point to the start of a list of entries for which hash(ip_src) == x. The list is linked with src_next and src_prev. When an incoming ARP packet arrives at rlb_arp_recv() rlb_purge_src_ip() can quickly walk only the entries on the corresponding lists, i.e. the entries that are likely to contain the offending IP address. To avoid confusion, I renamed these existing fields of struct rlb_client_info: next -> used_next prev -> used_prev rx_hashtbl_head -> rx_hashtbl_used_head (The current linked list is _not_ a list of hash table entries with colliding ip_dst. It's a list of entries that are being used; its purpose is to avoid walking the whole hash table when looking for used entries.) Signed-off-by: Jiri Bohac <jbohac@suse.cz> Signed-off-by: Jay Vosburgh <fubar@us.ibm.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-11-28 11:42:14 +07:00
static void rlb_purge_src_ip(struct bonding *bond, struct arp_pkt *arp);
static void rlb_src_unlink(struct bonding *bond, u32 index);
static void rlb_src_link(struct bonding *bond, u32 ip_src_hash,
u32 ip_dst_hash);
static inline u8 _simple_hash(const u8 *hash_start, int hash_size)
{
int i;
u8 hash = 0;
for (i = 0; i < hash_size; i++)
hash ^= hash_start[i];
return hash;
}
/*********************** tlb specific functions ***************************/
static inline void tlb_init_table_entry(struct tlb_client_info *entry, int save_load)
{
if (save_load) {
entry->load_history = 1 + entry->tx_bytes /
BOND_TLB_REBALANCE_INTERVAL;
entry->tx_bytes = 0;
}
entry->tx_slave = NULL;
entry->next = TLB_NULL_INDEX;
entry->prev = TLB_NULL_INDEX;
}
static inline void tlb_init_slave(struct slave *slave)
{
SLAVE_TLB_INFO(slave).load = 0;
SLAVE_TLB_INFO(slave).head = TLB_NULL_INDEX;
}
static void __tlb_clear_slave(struct bonding *bond, struct slave *slave,
int save_load)
{
struct tlb_client_info *tx_hash_table;
u32 index;
/* clear slave from tx_hashtbl */
tx_hash_table = BOND_ALB_INFO(bond).tx_hashtbl;
/* skip this if we've already freed the tx hash table */
if (tx_hash_table) {
index = SLAVE_TLB_INFO(slave).head;
while (index != TLB_NULL_INDEX) {
u32 next_index = tx_hash_table[index].next;
tlb_init_table_entry(&tx_hash_table[index], save_load);
index = next_index;
}
}
tlb_init_slave(slave);
}
static void tlb_clear_slave(struct bonding *bond, struct slave *slave,
int save_load)
{
spin_lock_bh(&bond->mode_lock);
__tlb_clear_slave(bond, slave, save_load);
spin_unlock_bh(&bond->mode_lock);
}
/* Must be called before starting the monitor timer */
static int tlb_initialize(struct bonding *bond)
{
struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
int size = TLB_HASH_TABLE_SIZE * sizeof(struct tlb_client_info);
struct tlb_client_info *new_hashtbl;
int i;
new_hashtbl = kzalloc(size, GFP_KERNEL);
if (!new_hashtbl)
return -ENOMEM;
spin_lock_bh(&bond->mode_lock);
bond_info->tx_hashtbl = new_hashtbl;
for (i = 0; i < TLB_HASH_TABLE_SIZE; i++)
tlb_init_table_entry(&bond_info->tx_hashtbl[i], 0);
spin_unlock_bh(&bond->mode_lock);
return 0;
}
/* Must be called only after all slaves have been released */
static void tlb_deinitialize(struct bonding *bond)
{
struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
spin_lock_bh(&bond->mode_lock);
kfree(bond_info->tx_hashtbl);
bond_info->tx_hashtbl = NULL;
spin_unlock_bh(&bond->mode_lock);
}
static long long compute_gap(struct slave *slave)
{
return (s64) (slave->speed << 20) - /* Convert to Megabit per sec */
(s64) (SLAVE_TLB_INFO(slave).load << 3); /* Bytes to bits */
}
static struct slave *tlb_get_least_loaded_slave(struct bonding *bond)
{
struct slave *slave, *least_loaded;
struct list_head *iter;
long long max_gap;
least_loaded = NULL;
max_gap = LLONG_MIN;
/* Find the slave with the largest gap */
bond_for_each_slave_rcu(bond, slave, iter) {
if (bond_slave_can_tx(slave)) {
long long gap = compute_gap(slave);
if (max_gap < gap) {
least_loaded = slave;
max_gap = gap;
}
}
}
return least_loaded;
}
static struct slave *__tlb_choose_channel(struct bonding *bond, u32 hash_index,
u32 skb_len)
{
struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
struct tlb_client_info *hash_table;
struct slave *assigned_slave;
hash_table = bond_info->tx_hashtbl;
assigned_slave = hash_table[hash_index].tx_slave;
if (!assigned_slave) {
assigned_slave = tlb_get_least_loaded_slave(bond);
if (assigned_slave) {
struct tlb_slave_info *slave_info =
&(SLAVE_TLB_INFO(assigned_slave));
u32 next_index = slave_info->head;
hash_table[hash_index].tx_slave = assigned_slave;
hash_table[hash_index].next = next_index;
hash_table[hash_index].prev = TLB_NULL_INDEX;
if (next_index != TLB_NULL_INDEX)
hash_table[next_index].prev = hash_index;
slave_info->head = hash_index;
slave_info->load +=
hash_table[hash_index].load_history;
}
}
if (assigned_slave)
hash_table[hash_index].tx_bytes += skb_len;
return assigned_slave;
}
static struct slave *tlb_choose_channel(struct bonding *bond, u32 hash_index,
u32 skb_len)
{
struct slave *tx_slave;
/* We don't need to disable softirq here, becase
* tlb_choose_channel() is only called by bond_alb_xmit()
* which already has softirq disabled.
*/
spin_lock(&bond->mode_lock);
tx_slave = __tlb_choose_channel(bond, hash_index, skb_len);
spin_unlock(&bond->mode_lock);
return tx_slave;
}
/*********************** rlb specific functions ***************************/
/* when an ARP REPLY is received from a client update its info
* in the rx_hashtbl
*/
static void rlb_update_entry_from_arp(struct bonding *bond, struct arp_pkt *arp)
{
struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
struct rlb_client_info *client_info;
u32 hash_index;
spin_lock_bh(&bond->mode_lock);
hash_index = _simple_hash((u8 *)&(arp->ip_src), sizeof(arp->ip_src));
client_info = &(bond_info->rx_hashtbl[hash_index]);
if ((client_info->assigned) &&
(client_info->ip_src == arp->ip_dst) &&
bonding: check if clients MAC addr has changed When two systems using bonding devices in adaptive load balancing (ALB) communicates with each other, an endless ping-pong of ARP replies starts between these two systems. What happens? In the ALB mode, bonding driver keeps track of each client connected in a hash table, so it can do the receive load balancing (RLB). This hash table is updated when an ARP reply is received, then it scans for the client entry, updates its MAC address and flag it to be announced later. Therefore, two seconds later, the alb monitor runs and send for each updated client entry two ARP replies updating this specific client. The same process happens on the receiving system, causing the endless ping-pong of arp replies. See more information including the relevant functions below: System 1 System 2 bond0 bond0 ping <system2> ARP request ---------> <--------- ARP reply +->rlb_arp_recv <---------------------+ <--- loop begins | rlb_update_entry_from_arp | | client_info->ntt = 1; | | bond_info->rx_ntt = 1; | | | | <communication succeed> | | | | bond_alb_monitor | | rlb_update_rx_clients | | rlb_update_client | | arp_create(ARPOP_REPLY) | | send ARP reply --------------> V | send ARP reply --------------> | rlb_arp_recv | rlb_update_entry_from_arp | client_info->ntt = 1; | bond_info->rx_ntt = 1; | < snipped, same as in system 1> +------- <-------------- send ARP reply <-------------- send ARP reply Besides the unneeded networking traffic, this loop breaks a cluster because a backup system can't take over the IP address. There is always one system sending an ARP reply poisoning the network. This patch fixes the problem adding a check for the MAC address before updating it. Thus, if the MAC address didn't change, there is no need to update neither to announce it later. Signed-off-by: Flavio Leitner <fleitner@redhat.com> Signed-off-by: Jay Vosburgh <fubar@us.ibm.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2010-06-29 15:24:39 +07:00
(client_info->ip_dst == arp->ip_src) &&
(!ether_addr_equal_64bits(client_info->mac_dst, arp->mac_src))) {
/* update the clients MAC address */
ether_addr_copy(client_info->mac_dst, arp->mac_src);
client_info->ntt = 1;
bond_info->rx_ntt = 1;
}
spin_unlock_bh(&bond->mode_lock);
}
static int rlb_arp_recv(const struct sk_buff *skb, struct bonding *bond,
struct slave *slave)
{
struct arp_pkt *arp, _arp;
if (skb->protocol != cpu_to_be16(ETH_P_ARP))
goto out;
arp = skb_header_pointer(skb, 0, sizeof(_arp), &_arp);
if (!arp)
goto out;
bonding: delete migrated IP addresses from the rlb hash table Bonding in balance-alb mode records information from ARP packets passing through the bond in a hash table (rx_hashtbl). At certain situations (e.g. link change of a slave), rlb_update_rx_clients() will send out ARP packets to update ARP caches of other hosts on the network to achieve RX load balancing. The problem is that once an IP address is recorded in the hash table, it stays there indefinitely. If this IP address is migrated to a different host in the network, bonding still sends out ARP packets that poison other systems' ARP caches with invalid information. This patch solves this by looking at all incoming ARP packets, and checking if the source IP address is one of the source addresses stored in the rx_hashtbl. If it is, but the MAC addresses differ, the corresponding hash table entries are removed. Thus, when an IP address is migrated, the first ARP broadcast by its new owner will purge the offending entries of rx_hashtbl. The hash table is hashed by ip_dst. To be able to do the above check efficiently (not walking the whole hash table), we need a reverse mapping (by ip_src). I added three new members in struct rlb_client_info: rx_hashtbl[x].src_first will point to the start of a list of entries for which hash(ip_src) == x. The list is linked with src_next and src_prev. When an incoming ARP packet arrives at rlb_arp_recv() rlb_purge_src_ip() can quickly walk only the entries on the corresponding lists, i.e. the entries that are likely to contain the offending IP address. To avoid confusion, I renamed these existing fields of struct rlb_client_info: next -> used_next prev -> used_prev rx_hashtbl_head -> rx_hashtbl_used_head (The current linked list is _not_ a list of hash table entries with colliding ip_dst. It's a list of entries that are being used; its purpose is to avoid walking the whole hash table when looking for used entries.) Signed-off-by: Jiri Bohac <jbohac@suse.cz> Signed-off-by: Jay Vosburgh <fubar@us.ibm.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-11-28 11:42:14 +07:00
/* We received an ARP from arp->ip_src.
* We might have used this IP address previously (on the bonding host
* itself or on a system that is bridged together with the bond).
* However, if arp->mac_src is different than what is stored in
* rx_hashtbl, some other host is now using the IP and we must prevent
* sending out client updates with this IP address and the old MAC
* address.
* Clean up all hash table entries that have this address as ip_src but
* have a different mac_src.
*/
rlb_purge_src_ip(bond, arp);
if (arp->op_code == htons(ARPOP_REPLY)) {
/* update rx hash table for this ARP */
rlb_update_entry_from_arp(bond, arp);
slave_dbg(bond->dev, slave->dev, "Server received an ARP Reply from client\n");
}
out:
return RX_HANDLER_ANOTHER;
}
/* Caller must hold rcu_read_lock() */
static struct slave *__rlb_next_rx_slave(struct bonding *bond)
{
struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
struct slave *before = NULL, *rx_slave = NULL, *slave;
struct list_head *iter;
bool found = false;
bond_for_each_slave_rcu(bond, slave, iter) {
if (!bond_slave_can_tx(slave))
continue;
if (!found) {
if (!before || before->speed < slave->speed)
before = slave;
} else {
if (!rx_slave || rx_slave->speed < slave->speed)
rx_slave = slave;
}
if (slave == bond_info->rx_slave)
found = true;
}
/* we didn't find anything after the current or we have something
* better before and up to the current slave
*/
if (!rx_slave || (before && rx_slave->speed < before->speed))
rx_slave = before;
if (rx_slave)
bond_info->rx_slave = rx_slave;
return rx_slave;
}
/* Caller must hold RTNL, rcu_read_lock is obtained only to silence checkers */
static struct slave *rlb_next_rx_slave(struct bonding *bond)
{
struct slave *rx_slave;
ASSERT_RTNL();
rcu_read_lock();
rx_slave = __rlb_next_rx_slave(bond);
rcu_read_unlock();
return rx_slave;
}
/* teach the switch the mac of a disabled slave
* on the primary for fault tolerance
*
* Caller must hold RTNL
*/
static void rlb_teach_disabled_mac_on_primary(struct bonding *bond, u8 addr[])
{
struct slave *curr_active = rtnl_dereference(bond->curr_active_slave);
if (!curr_active)
return;
if (!bond->alb_info.primary_is_promisc) {
if (!dev_set_promiscuity(curr_active->dev, 1))
bond->alb_info.primary_is_promisc = 1;
else
bond->alb_info.primary_is_promisc = 0;
}
bond->alb_info.rlb_promisc_timeout_counter = 0;
alb_send_learning_packets(curr_active, addr, true);
}
/* slave being removed should not be active at this point
*
* Caller must hold rtnl.
*/
static void rlb_clear_slave(struct bonding *bond, struct slave *slave)
{
struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
struct rlb_client_info *rx_hash_table;
u32 index, next_index;
/* clear slave from rx_hashtbl */
spin_lock_bh(&bond->mode_lock);
rx_hash_table = bond_info->rx_hashtbl;
bonding: delete migrated IP addresses from the rlb hash table Bonding in balance-alb mode records information from ARP packets passing through the bond in a hash table (rx_hashtbl). At certain situations (e.g. link change of a slave), rlb_update_rx_clients() will send out ARP packets to update ARP caches of other hosts on the network to achieve RX load balancing. The problem is that once an IP address is recorded in the hash table, it stays there indefinitely. If this IP address is migrated to a different host in the network, bonding still sends out ARP packets that poison other systems' ARP caches with invalid information. This patch solves this by looking at all incoming ARP packets, and checking if the source IP address is one of the source addresses stored in the rx_hashtbl. If it is, but the MAC addresses differ, the corresponding hash table entries are removed. Thus, when an IP address is migrated, the first ARP broadcast by its new owner will purge the offending entries of rx_hashtbl. The hash table is hashed by ip_dst. To be able to do the above check efficiently (not walking the whole hash table), we need a reverse mapping (by ip_src). I added three new members in struct rlb_client_info: rx_hashtbl[x].src_first will point to the start of a list of entries for which hash(ip_src) == x. The list is linked with src_next and src_prev. When an incoming ARP packet arrives at rlb_arp_recv() rlb_purge_src_ip() can quickly walk only the entries on the corresponding lists, i.e. the entries that are likely to contain the offending IP address. To avoid confusion, I renamed these existing fields of struct rlb_client_info: next -> used_next prev -> used_prev rx_hashtbl_head -> rx_hashtbl_used_head (The current linked list is _not_ a list of hash table entries with colliding ip_dst. It's a list of entries that are being used; its purpose is to avoid walking the whole hash table when looking for used entries.) Signed-off-by: Jiri Bohac <jbohac@suse.cz> Signed-off-by: Jay Vosburgh <fubar@us.ibm.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-11-28 11:42:14 +07:00
index = bond_info->rx_hashtbl_used_head;
for (; index != RLB_NULL_INDEX; index = next_index) {
bonding: delete migrated IP addresses from the rlb hash table Bonding in balance-alb mode records information from ARP packets passing through the bond in a hash table (rx_hashtbl). At certain situations (e.g. link change of a slave), rlb_update_rx_clients() will send out ARP packets to update ARP caches of other hosts on the network to achieve RX load balancing. The problem is that once an IP address is recorded in the hash table, it stays there indefinitely. If this IP address is migrated to a different host in the network, bonding still sends out ARP packets that poison other systems' ARP caches with invalid information. This patch solves this by looking at all incoming ARP packets, and checking if the source IP address is one of the source addresses stored in the rx_hashtbl. If it is, but the MAC addresses differ, the corresponding hash table entries are removed. Thus, when an IP address is migrated, the first ARP broadcast by its new owner will purge the offending entries of rx_hashtbl. The hash table is hashed by ip_dst. To be able to do the above check efficiently (not walking the whole hash table), we need a reverse mapping (by ip_src). I added three new members in struct rlb_client_info: rx_hashtbl[x].src_first will point to the start of a list of entries for which hash(ip_src) == x. The list is linked with src_next and src_prev. When an incoming ARP packet arrives at rlb_arp_recv() rlb_purge_src_ip() can quickly walk only the entries on the corresponding lists, i.e. the entries that are likely to contain the offending IP address. To avoid confusion, I renamed these existing fields of struct rlb_client_info: next -> used_next prev -> used_prev rx_hashtbl_head -> rx_hashtbl_used_head (The current linked list is _not_ a list of hash table entries with colliding ip_dst. It's a list of entries that are being used; its purpose is to avoid walking the whole hash table when looking for used entries.) Signed-off-by: Jiri Bohac <jbohac@suse.cz> Signed-off-by: Jay Vosburgh <fubar@us.ibm.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-11-28 11:42:14 +07:00
next_index = rx_hash_table[index].used_next;
if (rx_hash_table[index].slave == slave) {
struct slave *assigned_slave = rlb_next_rx_slave(bond);
if (assigned_slave) {
rx_hash_table[index].slave = assigned_slave;
if (is_valid_ether_addr(rx_hash_table[index].mac_dst)) {
bond_info->rx_hashtbl[index].ntt = 1;
bond_info->rx_ntt = 1;
/* A slave has been removed from the
* table because it is either disabled
* or being released. We must retry the
* update to avoid clients from not
* being updated & disconnecting when
* there is stress
*/
bond_info->rlb_update_retry_counter =
RLB_UPDATE_RETRY;
}
} else { /* there is no active slave */
rx_hash_table[index].slave = NULL;
}
}
}
spin_unlock_bh(&bond->mode_lock);
if (slave != rtnl_dereference(bond->curr_active_slave))
rlb_teach_disabled_mac_on_primary(bond, slave->dev->dev_addr);
}
static void rlb_update_client(struct rlb_client_info *client_info)
{
int i;
if (!client_info->slave || !is_valid_ether_addr(client_info->mac_dst))
return;
for (i = 0; i < RLB_ARP_BURST_SIZE; i++) {
struct sk_buff *skb;
skb = arp_create(ARPOP_REPLY, ETH_P_ARP,
client_info->ip_dst,
client_info->slave->dev,
client_info->ip_src,
client_info->mac_dst,
client_info->slave->dev->dev_addr,
client_info->mac_dst);
if (!skb) {
slave_err(client_info->slave->bond->dev,
client_info->slave->dev,
"failed to create an ARP packet\n");
continue;
}
skb->dev = client_info->slave->dev;
if (client_info->vlan_id) {
__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
client_info->vlan_id);
}
arp_xmit(skb);
}
}
/* sends ARP REPLIES that update the clients that need updating */
static void rlb_update_rx_clients(struct bonding *bond)
{
struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
struct rlb_client_info *client_info;
u32 hash_index;
spin_lock_bh(&bond->mode_lock);
bonding: delete migrated IP addresses from the rlb hash table Bonding in balance-alb mode records information from ARP packets passing through the bond in a hash table (rx_hashtbl). At certain situations (e.g. link change of a slave), rlb_update_rx_clients() will send out ARP packets to update ARP caches of other hosts on the network to achieve RX load balancing. The problem is that once an IP address is recorded in the hash table, it stays there indefinitely. If this IP address is migrated to a different host in the network, bonding still sends out ARP packets that poison other systems' ARP caches with invalid information. This patch solves this by looking at all incoming ARP packets, and checking if the source IP address is one of the source addresses stored in the rx_hashtbl. If it is, but the MAC addresses differ, the corresponding hash table entries are removed. Thus, when an IP address is migrated, the first ARP broadcast by its new owner will purge the offending entries of rx_hashtbl. The hash table is hashed by ip_dst. To be able to do the above check efficiently (not walking the whole hash table), we need a reverse mapping (by ip_src). I added three new members in struct rlb_client_info: rx_hashtbl[x].src_first will point to the start of a list of entries for which hash(ip_src) == x. The list is linked with src_next and src_prev. When an incoming ARP packet arrives at rlb_arp_recv() rlb_purge_src_ip() can quickly walk only the entries on the corresponding lists, i.e. the entries that are likely to contain the offending IP address. To avoid confusion, I renamed these existing fields of struct rlb_client_info: next -> used_next prev -> used_prev rx_hashtbl_head -> rx_hashtbl_used_head (The current linked list is _not_ a list of hash table entries with colliding ip_dst. It's a list of entries that are being used; its purpose is to avoid walking the whole hash table when looking for used entries.) Signed-off-by: Jiri Bohac <jbohac@suse.cz> Signed-off-by: Jay Vosburgh <fubar@us.ibm.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-11-28 11:42:14 +07:00
hash_index = bond_info->rx_hashtbl_used_head;
for (; hash_index != RLB_NULL_INDEX;
hash_index = client_info->used_next) {
client_info = &(bond_info->rx_hashtbl[hash_index]);
if (client_info->ntt) {
rlb_update_client(client_info);
if (bond_info->rlb_update_retry_counter == 0)
client_info->ntt = 0;
}
}
/* do not update the entries again until this counter is zero so that
* not to confuse the clients.
*/
bond_info->rlb_update_delay_counter = RLB_UPDATE_DELAY;
spin_unlock_bh(&bond->mode_lock);
}
/* The slave was assigned a new mac address - update the clients */
static void rlb_req_update_slave_clients(struct bonding *bond, struct slave *slave)
{
struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
struct rlb_client_info *client_info;
int ntt = 0;
u32 hash_index;
spin_lock_bh(&bond->mode_lock);
bonding: delete migrated IP addresses from the rlb hash table Bonding in balance-alb mode records information from ARP packets passing through the bond in a hash table (rx_hashtbl). At certain situations (e.g. link change of a slave), rlb_update_rx_clients() will send out ARP packets to update ARP caches of other hosts on the network to achieve RX load balancing. The problem is that once an IP address is recorded in the hash table, it stays there indefinitely. If this IP address is migrated to a different host in the network, bonding still sends out ARP packets that poison other systems' ARP caches with invalid information. This patch solves this by looking at all incoming ARP packets, and checking if the source IP address is one of the source addresses stored in the rx_hashtbl. If it is, but the MAC addresses differ, the corresponding hash table entries are removed. Thus, when an IP address is migrated, the first ARP broadcast by its new owner will purge the offending entries of rx_hashtbl. The hash table is hashed by ip_dst. To be able to do the above check efficiently (not walking the whole hash table), we need a reverse mapping (by ip_src). I added three new members in struct rlb_client_info: rx_hashtbl[x].src_first will point to the start of a list of entries for which hash(ip_src) == x. The list is linked with src_next and src_prev. When an incoming ARP packet arrives at rlb_arp_recv() rlb_purge_src_ip() can quickly walk only the entries on the corresponding lists, i.e. the entries that are likely to contain the offending IP address. To avoid confusion, I renamed these existing fields of struct rlb_client_info: next -> used_next prev -> used_prev rx_hashtbl_head -> rx_hashtbl_used_head (The current linked list is _not_ a list of hash table entries with colliding ip_dst. It's a list of entries that are being used; its purpose is to avoid walking the whole hash table when looking for used entries.) Signed-off-by: Jiri Bohac <jbohac@suse.cz> Signed-off-by: Jay Vosburgh <fubar@us.ibm.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-11-28 11:42:14 +07:00
hash_index = bond_info->rx_hashtbl_used_head;
for (; hash_index != RLB_NULL_INDEX;
hash_index = client_info->used_next) {
client_info = &(bond_info->rx_hashtbl[hash_index]);
if ((client_info->slave == slave) &&
is_valid_ether_addr(client_info->mac_dst)) {
client_info->ntt = 1;
ntt = 1;
}
}
/* update the team's flag only after the whole iteration */
if (ntt) {
bond_info->rx_ntt = 1;
/* fasten the change */
bond_info->rlb_update_retry_counter = RLB_UPDATE_RETRY;
}
spin_unlock_bh(&bond->mode_lock);
}
/* mark all clients using src_ip to be updated */
static void rlb_req_update_subnet_clients(struct bonding *bond, __be32 src_ip)
{
struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
struct rlb_client_info *client_info;
u32 hash_index;
spin_lock(&bond->mode_lock);
bonding: delete migrated IP addresses from the rlb hash table Bonding in balance-alb mode records information from ARP packets passing through the bond in a hash table (rx_hashtbl). At certain situations (e.g. link change of a slave), rlb_update_rx_clients() will send out ARP packets to update ARP caches of other hosts on the network to achieve RX load balancing. The problem is that once an IP address is recorded in the hash table, it stays there indefinitely. If this IP address is migrated to a different host in the network, bonding still sends out ARP packets that poison other systems' ARP caches with invalid information. This patch solves this by looking at all incoming ARP packets, and checking if the source IP address is one of the source addresses stored in the rx_hashtbl. If it is, but the MAC addresses differ, the corresponding hash table entries are removed. Thus, when an IP address is migrated, the first ARP broadcast by its new owner will purge the offending entries of rx_hashtbl. The hash table is hashed by ip_dst. To be able to do the above check efficiently (not walking the whole hash table), we need a reverse mapping (by ip_src). I added three new members in struct rlb_client_info: rx_hashtbl[x].src_first will point to the start of a list of entries for which hash(ip_src) == x. The list is linked with src_next and src_prev. When an incoming ARP packet arrives at rlb_arp_recv() rlb_purge_src_ip() can quickly walk only the entries on the corresponding lists, i.e. the entries that are likely to contain the offending IP address. To avoid confusion, I renamed these existing fields of struct rlb_client_info: next -> used_next prev -> used_prev rx_hashtbl_head -> rx_hashtbl_used_head (The current linked list is _not_ a list of hash table entries with colliding ip_dst. It's a list of entries that are being used; its purpose is to avoid walking the whole hash table when looking for used entries.) Signed-off-by: Jiri Bohac <jbohac@suse.cz> Signed-off-by: Jay Vosburgh <fubar@us.ibm.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-11-28 11:42:14 +07:00
hash_index = bond_info->rx_hashtbl_used_head;
for (; hash_index != RLB_NULL_INDEX;
hash_index = client_info->used_next) {
client_info = &(bond_info->rx_hashtbl[hash_index]);
if (!client_info->slave) {
netdev_err(bond->dev, "found a client with no channel in the client's hash table\n");
continue;
}
/* update all clients using this src_ip, that are not assigned
* to the team's address (curr_active_slave) and have a known
* unicast mac address.
*/
if ((client_info->ip_src == src_ip) &&
!ether_addr_equal_64bits(client_info->slave->dev->dev_addr,
bond->dev->dev_addr) &&
is_valid_ether_addr(client_info->mac_dst)) {
client_info->ntt = 1;
bond_info->rx_ntt = 1;
}
}
spin_unlock(&bond->mode_lock);
}
bonding/alb: make sure arp header is pulled before accessing it Similar to commit 38f88c454042 ("bonding/alb: properly access headers in bond_alb_xmit()"), we need to make sure arp header was pulled in skb->head before blindly accessing it in rlb_arp_xmit(). Remove arp_pkt() private helper, since it is more readable/obvious to have the following construct back to back : if (!pskb_network_may_pull(skb, sizeof(*arp))) return NULL; arp = (struct arp_pkt *)skb_network_header(skb); syzbot reported : BUG: KMSAN: uninit-value in bond_slave_has_mac_rx include/net/bonding.h:704 [inline] BUG: KMSAN: uninit-value in rlb_arp_xmit drivers/net/bonding/bond_alb.c:662 [inline] BUG: KMSAN: uninit-value in bond_alb_xmit+0x575/0x25e0 drivers/net/bonding/bond_alb.c:1477 CPU: 0 PID: 12743 Comm: syz-executor.4 Not tainted 5.6.0-rc2-syzkaller #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Call Trace: __dump_stack lib/dump_stack.c:77 [inline] dump_stack+0x1c9/0x220 lib/dump_stack.c:118 kmsan_report+0xf7/0x1e0 mm/kmsan/kmsan_report.c:118 __msan_warning+0x58/0xa0 mm/kmsan/kmsan_instr.c:215 bond_slave_has_mac_rx include/net/bonding.h:704 [inline] rlb_arp_xmit drivers/net/bonding/bond_alb.c:662 [inline] bond_alb_xmit+0x575/0x25e0 drivers/net/bonding/bond_alb.c:1477 __bond_start_xmit drivers/net/bonding/bond_main.c:4257 [inline] bond_start_xmit+0x85d/0x2f70 drivers/net/bonding/bond_main.c:4282 __netdev_start_xmit include/linux/netdevice.h:4524 [inline] netdev_start_xmit include/linux/netdevice.h:4538 [inline] xmit_one net/core/dev.c:3470 [inline] dev_hard_start_xmit+0x531/0xab0 net/core/dev.c:3486 __dev_queue_xmit+0x37de/0x4220 net/core/dev.c:4063 dev_queue_xmit+0x4b/0x60 net/core/dev.c:4096 packet_snd net/packet/af_packet.c:2967 [inline] packet_sendmsg+0x8347/0x93b0 net/packet/af_packet.c:2992 sock_sendmsg_nosec net/socket.c:652 [inline] sock_sendmsg net/socket.c:672 [inline] __sys_sendto+0xc1b/0xc50 net/socket.c:1998 __do_sys_sendto net/socket.c:2010 [inline] __se_sys_sendto+0x107/0x130 net/socket.c:2006 __x64_sys_sendto+0x6e/0x90 net/socket.c:2006 do_syscall_64+0xb8/0x160 arch/x86/entry/common.c:296 entry_SYSCALL_64_after_hwframe+0x44/0xa9 RIP: 0033:0x45c479 Code: ad b6 fb ff c3 66 2e 0f 1f 84 00 00 00 00 00 66 90 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 0f 83 7b b6 fb ff c3 66 2e 0f 1f 84 00 00 00 00 RSP: 002b:00007fc77ffbbc78 EFLAGS: 00000246 ORIG_RAX: 000000000000002c RAX: ffffffffffffffda RBX: 00007fc77ffbc6d4 RCX: 000000000045c479 RDX: 000000000000000e RSI: 00000000200004c0 RDI: 0000000000000003 RBP: 000000000076bf20 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000246 R12: 00000000ffffffff R13: 0000000000000a04 R14: 00000000004cc7b0 R15: 000000000076bf2c Uninit was created at: kmsan_save_stack_with_flags mm/kmsan/kmsan.c:144 [inline] kmsan_internal_poison_shadow+0x66/0xd0 mm/kmsan/kmsan.c:127 kmsan_slab_alloc+0x8a/0xe0 mm/kmsan/kmsan_hooks.c:82 slab_alloc_node mm/slub.c:2793 [inline] __kmalloc_node_track_caller+0xb40/0x1200 mm/slub.c:4401 __kmalloc_reserve net/core/skbuff.c:142 [inline] __alloc_skb+0x2fd/0xac0 net/core/skbuff.c:210 alloc_skb include/linux/skbuff.h:1051 [inline] alloc_skb_with_frags+0x18c/0xa70 net/core/skbuff.c:5766 sock_alloc_send_pskb+0xada/0xc60 net/core/sock.c:2242 packet_alloc_skb net/packet/af_packet.c:2815 [inline] packet_snd net/packet/af_packet.c:2910 [inline] packet_sendmsg+0x66a0/0x93b0 net/packet/af_packet.c:2992 sock_sendmsg_nosec net/socket.c:652 [inline] sock_sendmsg net/socket.c:672 [inline] __sys_sendto+0xc1b/0xc50 net/socket.c:1998 __do_sys_sendto net/socket.c:2010 [inline] __se_sys_sendto+0x107/0x130 net/socket.c:2006 __x64_sys_sendto+0x6e/0x90 net/socket.c:2006 do_syscall_64+0xb8/0x160 arch/x86/entry/common.c:296 entry_SYSCALL_64_after_hwframe+0x44/0xa9 Fixes: 1da177e4c3f4 ("Linux-2.6.12-rc2") Signed-off-by: Eric Dumazet <edumazet@google.com> Reported-by: syzbot <syzkaller@googlegroups.com> Cc: Jay Vosburgh <j.vosburgh@gmail.com> Cc: Veaceslav Falico <vfalico@gmail.com> Cc: Andy Gospodarek <andy@greyhouse.net> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-03-05 00:32:16 +07:00
static struct slave *rlb_choose_channel(struct sk_buff *skb,
struct bonding *bond,
const struct arp_pkt *arp)
{
struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
struct slave *assigned_slave, *curr_active_slave;
struct rlb_client_info *client_info;
u32 hash_index = 0;
spin_lock(&bond->mode_lock);
curr_active_slave = rcu_dereference(bond->curr_active_slave);
hash_index = _simple_hash((u8 *)&arp->ip_dst, sizeof(arp->ip_dst));
client_info = &(bond_info->rx_hashtbl[hash_index]);
if (client_info->assigned) {
if ((client_info->ip_src == arp->ip_src) &&
(client_info->ip_dst == arp->ip_dst)) {
/* the entry is already assigned to this client */
if (!is_broadcast_ether_addr(arp->mac_dst)) {
/* update mac address from arp */
ether_addr_copy(client_info->mac_dst, arp->mac_dst);
}
ether_addr_copy(client_info->mac_src, arp->mac_src);
assigned_slave = client_info->slave;
if (assigned_slave) {
spin_unlock(&bond->mode_lock);
return assigned_slave;
}
} else {
/* the entry is already assigned to some other client,
* move the old client to primary (curr_active_slave) so
* that the new client can be assigned to this entry.
*/
if (curr_active_slave &&
client_info->slave != curr_active_slave) {
client_info->slave = curr_active_slave;
rlb_update_client(client_info);
}
}
}
/* assign a new slave */
assigned_slave = __rlb_next_rx_slave(bond);
if (assigned_slave) {
bonding: delete migrated IP addresses from the rlb hash table Bonding in balance-alb mode records information from ARP packets passing through the bond in a hash table (rx_hashtbl). At certain situations (e.g. link change of a slave), rlb_update_rx_clients() will send out ARP packets to update ARP caches of other hosts on the network to achieve RX load balancing. The problem is that once an IP address is recorded in the hash table, it stays there indefinitely. If this IP address is migrated to a different host in the network, bonding still sends out ARP packets that poison other systems' ARP caches with invalid information. This patch solves this by looking at all incoming ARP packets, and checking if the source IP address is one of the source addresses stored in the rx_hashtbl. If it is, but the MAC addresses differ, the corresponding hash table entries are removed. Thus, when an IP address is migrated, the first ARP broadcast by its new owner will purge the offending entries of rx_hashtbl. The hash table is hashed by ip_dst. To be able to do the above check efficiently (not walking the whole hash table), we need a reverse mapping (by ip_src). I added three new members in struct rlb_client_info: rx_hashtbl[x].src_first will point to the start of a list of entries for which hash(ip_src) == x. The list is linked with src_next and src_prev. When an incoming ARP packet arrives at rlb_arp_recv() rlb_purge_src_ip() can quickly walk only the entries on the corresponding lists, i.e. the entries that are likely to contain the offending IP address. To avoid confusion, I renamed these existing fields of struct rlb_client_info: next -> used_next prev -> used_prev rx_hashtbl_head -> rx_hashtbl_used_head (The current linked list is _not_ a list of hash table entries with colliding ip_dst. It's a list of entries that are being used; its purpose is to avoid walking the whole hash table when looking for used entries.) Signed-off-by: Jiri Bohac <jbohac@suse.cz> Signed-off-by: Jay Vosburgh <fubar@us.ibm.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-11-28 11:42:14 +07:00
if (!(client_info->assigned &&
client_info->ip_src == arp->ip_src)) {
/* ip_src is going to be updated,
* fix the src hash list
*/
u32 hash_src = _simple_hash((u8 *)&arp->ip_src,
sizeof(arp->ip_src));
rlb_src_unlink(bond, hash_index);
rlb_src_link(bond, hash_src, hash_index);
}
client_info->ip_src = arp->ip_src;
client_info->ip_dst = arp->ip_dst;
/* arp->mac_dst is broadcast for arp reqeusts.
* will be updated with clients actual unicast mac address
* upon receiving an arp reply.
*/
ether_addr_copy(client_info->mac_dst, arp->mac_dst);
ether_addr_copy(client_info->mac_src, arp->mac_src);
client_info->slave = assigned_slave;
if (is_valid_ether_addr(client_info->mac_dst)) {
client_info->ntt = 1;
bond->alb_info.rx_ntt = 1;
} else {
client_info->ntt = 0;
}
if (vlan_get_tag(skb, &client_info->vlan_id))
client_info->vlan_id = 0;
if (!client_info->assigned) {
bonding: delete migrated IP addresses from the rlb hash table Bonding in balance-alb mode records information from ARP packets passing through the bond in a hash table (rx_hashtbl). At certain situations (e.g. link change of a slave), rlb_update_rx_clients() will send out ARP packets to update ARP caches of other hosts on the network to achieve RX load balancing. The problem is that once an IP address is recorded in the hash table, it stays there indefinitely. If this IP address is migrated to a different host in the network, bonding still sends out ARP packets that poison other systems' ARP caches with invalid information. This patch solves this by looking at all incoming ARP packets, and checking if the source IP address is one of the source addresses stored in the rx_hashtbl. If it is, but the MAC addresses differ, the corresponding hash table entries are removed. Thus, when an IP address is migrated, the first ARP broadcast by its new owner will purge the offending entries of rx_hashtbl. The hash table is hashed by ip_dst. To be able to do the above check efficiently (not walking the whole hash table), we need a reverse mapping (by ip_src). I added three new members in struct rlb_client_info: rx_hashtbl[x].src_first will point to the start of a list of entries for which hash(ip_src) == x. The list is linked with src_next and src_prev. When an incoming ARP packet arrives at rlb_arp_recv() rlb_purge_src_ip() can quickly walk only the entries on the corresponding lists, i.e. the entries that are likely to contain the offending IP address. To avoid confusion, I renamed these existing fields of struct rlb_client_info: next -> used_next prev -> used_prev rx_hashtbl_head -> rx_hashtbl_used_head (The current linked list is _not_ a list of hash table entries with colliding ip_dst. It's a list of entries that are being used; its purpose is to avoid walking the whole hash table when looking for used entries.) Signed-off-by: Jiri Bohac <jbohac@suse.cz> Signed-off-by: Jay Vosburgh <fubar@us.ibm.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-11-28 11:42:14 +07:00
u32 prev_tbl_head = bond_info->rx_hashtbl_used_head;
bond_info->rx_hashtbl_used_head = hash_index;
client_info->used_next = prev_tbl_head;
if (prev_tbl_head != RLB_NULL_INDEX) {
bonding: delete migrated IP addresses from the rlb hash table Bonding in balance-alb mode records information from ARP packets passing through the bond in a hash table (rx_hashtbl). At certain situations (e.g. link change of a slave), rlb_update_rx_clients() will send out ARP packets to update ARP caches of other hosts on the network to achieve RX load balancing. The problem is that once an IP address is recorded in the hash table, it stays there indefinitely. If this IP address is migrated to a different host in the network, bonding still sends out ARP packets that poison other systems' ARP caches with invalid information. This patch solves this by looking at all incoming ARP packets, and checking if the source IP address is one of the source addresses stored in the rx_hashtbl. If it is, but the MAC addresses differ, the corresponding hash table entries are removed. Thus, when an IP address is migrated, the first ARP broadcast by its new owner will purge the offending entries of rx_hashtbl. The hash table is hashed by ip_dst. To be able to do the above check efficiently (not walking the whole hash table), we need a reverse mapping (by ip_src). I added three new members in struct rlb_client_info: rx_hashtbl[x].src_first will point to the start of a list of entries for which hash(ip_src) == x. The list is linked with src_next and src_prev. When an incoming ARP packet arrives at rlb_arp_recv() rlb_purge_src_ip() can quickly walk only the entries on the corresponding lists, i.e. the entries that are likely to contain the offending IP address. To avoid confusion, I renamed these existing fields of struct rlb_client_info: next -> used_next prev -> used_prev rx_hashtbl_head -> rx_hashtbl_used_head (The current linked list is _not_ a list of hash table entries with colliding ip_dst. It's a list of entries that are being used; its purpose is to avoid walking the whole hash table when looking for used entries.) Signed-off-by: Jiri Bohac <jbohac@suse.cz> Signed-off-by: Jay Vosburgh <fubar@us.ibm.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-11-28 11:42:14 +07:00
bond_info->rx_hashtbl[prev_tbl_head].used_prev =
hash_index;
}
client_info->assigned = 1;
}
}
spin_unlock(&bond->mode_lock);
return assigned_slave;
}
/* chooses (and returns) transmit channel for arp reply
* does not choose channel for other arp types since they are
* sent on the curr_active_slave
*/
static struct slave *rlb_arp_xmit(struct sk_buff *skb, struct bonding *bond)
{
struct slave *tx_slave = NULL;
bonding/alb: make sure arp header is pulled before accessing it Similar to commit 38f88c454042 ("bonding/alb: properly access headers in bond_alb_xmit()"), we need to make sure arp header was pulled in skb->head before blindly accessing it in rlb_arp_xmit(). Remove arp_pkt() private helper, since it is more readable/obvious to have the following construct back to back : if (!pskb_network_may_pull(skb, sizeof(*arp))) return NULL; arp = (struct arp_pkt *)skb_network_header(skb); syzbot reported : BUG: KMSAN: uninit-value in bond_slave_has_mac_rx include/net/bonding.h:704 [inline] BUG: KMSAN: uninit-value in rlb_arp_xmit drivers/net/bonding/bond_alb.c:662 [inline] BUG: KMSAN: uninit-value in bond_alb_xmit+0x575/0x25e0 drivers/net/bonding/bond_alb.c:1477 CPU: 0 PID: 12743 Comm: syz-executor.4 Not tainted 5.6.0-rc2-syzkaller #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Call Trace: __dump_stack lib/dump_stack.c:77 [inline] dump_stack+0x1c9/0x220 lib/dump_stack.c:118 kmsan_report+0xf7/0x1e0 mm/kmsan/kmsan_report.c:118 __msan_warning+0x58/0xa0 mm/kmsan/kmsan_instr.c:215 bond_slave_has_mac_rx include/net/bonding.h:704 [inline] rlb_arp_xmit drivers/net/bonding/bond_alb.c:662 [inline] bond_alb_xmit+0x575/0x25e0 drivers/net/bonding/bond_alb.c:1477 __bond_start_xmit drivers/net/bonding/bond_main.c:4257 [inline] bond_start_xmit+0x85d/0x2f70 drivers/net/bonding/bond_main.c:4282 __netdev_start_xmit include/linux/netdevice.h:4524 [inline] netdev_start_xmit include/linux/netdevice.h:4538 [inline] xmit_one net/core/dev.c:3470 [inline] dev_hard_start_xmit+0x531/0xab0 net/core/dev.c:3486 __dev_queue_xmit+0x37de/0x4220 net/core/dev.c:4063 dev_queue_xmit+0x4b/0x60 net/core/dev.c:4096 packet_snd net/packet/af_packet.c:2967 [inline] packet_sendmsg+0x8347/0x93b0 net/packet/af_packet.c:2992 sock_sendmsg_nosec net/socket.c:652 [inline] sock_sendmsg net/socket.c:672 [inline] __sys_sendto+0xc1b/0xc50 net/socket.c:1998 __do_sys_sendto net/socket.c:2010 [inline] __se_sys_sendto+0x107/0x130 net/socket.c:2006 __x64_sys_sendto+0x6e/0x90 net/socket.c:2006 do_syscall_64+0xb8/0x160 arch/x86/entry/common.c:296 entry_SYSCALL_64_after_hwframe+0x44/0xa9 RIP: 0033:0x45c479 Code: ad b6 fb ff c3 66 2e 0f 1f 84 00 00 00 00 00 66 90 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 0f 83 7b b6 fb ff c3 66 2e 0f 1f 84 00 00 00 00 RSP: 002b:00007fc77ffbbc78 EFLAGS: 00000246 ORIG_RAX: 000000000000002c RAX: ffffffffffffffda RBX: 00007fc77ffbc6d4 RCX: 000000000045c479 RDX: 000000000000000e RSI: 00000000200004c0 RDI: 0000000000000003 RBP: 000000000076bf20 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000246 R12: 00000000ffffffff R13: 0000000000000a04 R14: 00000000004cc7b0 R15: 000000000076bf2c Uninit was created at: kmsan_save_stack_with_flags mm/kmsan/kmsan.c:144 [inline] kmsan_internal_poison_shadow+0x66/0xd0 mm/kmsan/kmsan.c:127 kmsan_slab_alloc+0x8a/0xe0 mm/kmsan/kmsan_hooks.c:82 slab_alloc_node mm/slub.c:2793 [inline] __kmalloc_node_track_caller+0xb40/0x1200 mm/slub.c:4401 __kmalloc_reserve net/core/skbuff.c:142 [inline] __alloc_skb+0x2fd/0xac0 net/core/skbuff.c:210 alloc_skb include/linux/skbuff.h:1051 [inline] alloc_skb_with_frags+0x18c/0xa70 net/core/skbuff.c:5766 sock_alloc_send_pskb+0xada/0xc60 net/core/sock.c:2242 packet_alloc_skb net/packet/af_packet.c:2815 [inline] packet_snd net/packet/af_packet.c:2910 [inline] packet_sendmsg+0x66a0/0x93b0 net/packet/af_packet.c:2992 sock_sendmsg_nosec net/socket.c:652 [inline] sock_sendmsg net/socket.c:672 [inline] __sys_sendto+0xc1b/0xc50 net/socket.c:1998 __do_sys_sendto net/socket.c:2010 [inline] __se_sys_sendto+0x107/0x130 net/socket.c:2006 __x64_sys_sendto+0x6e/0x90 net/socket.c:2006 do_syscall_64+0xb8/0x160 arch/x86/entry/common.c:296 entry_SYSCALL_64_after_hwframe+0x44/0xa9 Fixes: 1da177e4c3f4 ("Linux-2.6.12-rc2") Signed-off-by: Eric Dumazet <edumazet@google.com> Reported-by: syzbot <syzkaller@googlegroups.com> Cc: Jay Vosburgh <j.vosburgh@gmail.com> Cc: Veaceslav Falico <vfalico@gmail.com> Cc: Andy Gospodarek <andy@greyhouse.net> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-03-05 00:32:16 +07:00
struct arp_pkt *arp;
if (!pskb_network_may_pull(skb, sizeof(*arp)))
return NULL;
arp = (struct arp_pkt *)skb_network_header(skb);
/* Don't modify or load balance ARPs that do not originate locally
* (e.g.,arrive via a bridge).
*/
if (!bond_slave_has_mac_rx(bond, arp->mac_src))
return NULL;
if (arp->op_code == htons(ARPOP_REPLY)) {
/* the arp must be sent on the selected rx channel */
bonding/alb: make sure arp header is pulled before accessing it Similar to commit 38f88c454042 ("bonding/alb: properly access headers in bond_alb_xmit()"), we need to make sure arp header was pulled in skb->head before blindly accessing it in rlb_arp_xmit(). Remove arp_pkt() private helper, since it is more readable/obvious to have the following construct back to back : if (!pskb_network_may_pull(skb, sizeof(*arp))) return NULL; arp = (struct arp_pkt *)skb_network_header(skb); syzbot reported : BUG: KMSAN: uninit-value in bond_slave_has_mac_rx include/net/bonding.h:704 [inline] BUG: KMSAN: uninit-value in rlb_arp_xmit drivers/net/bonding/bond_alb.c:662 [inline] BUG: KMSAN: uninit-value in bond_alb_xmit+0x575/0x25e0 drivers/net/bonding/bond_alb.c:1477 CPU: 0 PID: 12743 Comm: syz-executor.4 Not tainted 5.6.0-rc2-syzkaller #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Call Trace: __dump_stack lib/dump_stack.c:77 [inline] dump_stack+0x1c9/0x220 lib/dump_stack.c:118 kmsan_report+0xf7/0x1e0 mm/kmsan/kmsan_report.c:118 __msan_warning+0x58/0xa0 mm/kmsan/kmsan_instr.c:215 bond_slave_has_mac_rx include/net/bonding.h:704 [inline] rlb_arp_xmit drivers/net/bonding/bond_alb.c:662 [inline] bond_alb_xmit+0x575/0x25e0 drivers/net/bonding/bond_alb.c:1477 __bond_start_xmit drivers/net/bonding/bond_main.c:4257 [inline] bond_start_xmit+0x85d/0x2f70 drivers/net/bonding/bond_main.c:4282 __netdev_start_xmit include/linux/netdevice.h:4524 [inline] netdev_start_xmit include/linux/netdevice.h:4538 [inline] xmit_one net/core/dev.c:3470 [inline] dev_hard_start_xmit+0x531/0xab0 net/core/dev.c:3486 __dev_queue_xmit+0x37de/0x4220 net/core/dev.c:4063 dev_queue_xmit+0x4b/0x60 net/core/dev.c:4096 packet_snd net/packet/af_packet.c:2967 [inline] packet_sendmsg+0x8347/0x93b0 net/packet/af_packet.c:2992 sock_sendmsg_nosec net/socket.c:652 [inline] sock_sendmsg net/socket.c:672 [inline] __sys_sendto+0xc1b/0xc50 net/socket.c:1998 __do_sys_sendto net/socket.c:2010 [inline] __se_sys_sendto+0x107/0x130 net/socket.c:2006 __x64_sys_sendto+0x6e/0x90 net/socket.c:2006 do_syscall_64+0xb8/0x160 arch/x86/entry/common.c:296 entry_SYSCALL_64_after_hwframe+0x44/0xa9 RIP: 0033:0x45c479 Code: ad b6 fb ff c3 66 2e 0f 1f 84 00 00 00 00 00 66 90 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 0f 83 7b b6 fb ff c3 66 2e 0f 1f 84 00 00 00 00 RSP: 002b:00007fc77ffbbc78 EFLAGS: 00000246 ORIG_RAX: 000000000000002c RAX: ffffffffffffffda RBX: 00007fc77ffbc6d4 RCX: 000000000045c479 RDX: 000000000000000e RSI: 00000000200004c0 RDI: 0000000000000003 RBP: 000000000076bf20 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000246 R12: 00000000ffffffff R13: 0000000000000a04 R14: 00000000004cc7b0 R15: 000000000076bf2c Uninit was created at: kmsan_save_stack_with_flags mm/kmsan/kmsan.c:144 [inline] kmsan_internal_poison_shadow+0x66/0xd0 mm/kmsan/kmsan.c:127 kmsan_slab_alloc+0x8a/0xe0 mm/kmsan/kmsan_hooks.c:82 slab_alloc_node mm/slub.c:2793 [inline] __kmalloc_node_track_caller+0xb40/0x1200 mm/slub.c:4401 __kmalloc_reserve net/core/skbuff.c:142 [inline] __alloc_skb+0x2fd/0xac0 net/core/skbuff.c:210 alloc_skb include/linux/skbuff.h:1051 [inline] alloc_skb_with_frags+0x18c/0xa70 net/core/skbuff.c:5766 sock_alloc_send_pskb+0xada/0xc60 net/core/sock.c:2242 packet_alloc_skb net/packet/af_packet.c:2815 [inline] packet_snd net/packet/af_packet.c:2910 [inline] packet_sendmsg+0x66a0/0x93b0 net/packet/af_packet.c:2992 sock_sendmsg_nosec net/socket.c:652 [inline] sock_sendmsg net/socket.c:672 [inline] __sys_sendto+0xc1b/0xc50 net/socket.c:1998 __do_sys_sendto net/socket.c:2010 [inline] __se_sys_sendto+0x107/0x130 net/socket.c:2006 __x64_sys_sendto+0x6e/0x90 net/socket.c:2006 do_syscall_64+0xb8/0x160 arch/x86/entry/common.c:296 entry_SYSCALL_64_after_hwframe+0x44/0xa9 Fixes: 1da177e4c3f4 ("Linux-2.6.12-rc2") Signed-off-by: Eric Dumazet <edumazet@google.com> Reported-by: syzbot <syzkaller@googlegroups.com> Cc: Jay Vosburgh <j.vosburgh@gmail.com> Cc: Veaceslav Falico <vfalico@gmail.com> Cc: Andy Gospodarek <andy@greyhouse.net> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-03-05 00:32:16 +07:00
tx_slave = rlb_choose_channel(skb, bond, arp);
if (tx_slave)
bonding: attempt to better support longer hw addresses People are using bonding over Infiniband IPoIB connections, and who knows what else. Infiniband has a hardware address length of 20 octets (INFINIBAND_ALEN), and the network core defines a MAX_ADDR_LEN of 32. Various places in the bonding code are currently hard-wired to 6 octets (ETH_ALEN), such as the 3ad code, which I've left untouched here. Besides, only alb is currently possible on Infiniband links right now anyway, due to commit 1533e7731522, so the alb code is where most of the changes are. One major component of this change is the addition of a bond_hw_addr_copy function that takes a length argument, instead of using ether_addr_copy everywhere that hardware addresses need to be copied about. The other major component of this change is converting the bonding code from using struct sockaddr for address storage to struct sockaddr_storage, as the former has an address storage space of only 14, while the latter is 128 minus a few, which is necessary to support bonding over device with up to MAX_ADDR_LEN octet hardware addresses. Additionally, this probably fixes up some memory corruption issues with the current code, where it's possible to write an infiniband hardware address into a sockaddr declared on the stack. Lightly tested on a dual mlx4 IPoIB setup, which properly shows a 20-octet hardware address now: $ cat /proc/net/bonding/bond0 Ethernet Channel Bonding Driver: v3.7.1 (April 27, 2011) Bonding Mode: fault-tolerance (active-backup) (fail_over_mac active) Primary Slave: mlx4_ib0 (primary_reselect always) Currently Active Slave: mlx4_ib0 MII Status: up MII Polling Interval (ms): 100 Up Delay (ms): 100 Down Delay (ms): 100 Slave Interface: mlx4_ib0 MII Status: up Speed: Unknown Duplex: Unknown Link Failure Count: 0 Permanent HW addr: 80:00:02:08:fe:80:00:00:00:00:00:00:e4:1d:2d:03:00:1d:67:01 Slave queue ID: 0 Slave Interface: mlx4_ib1 MII Status: up Speed: Unknown Duplex: Unknown Link Failure Count: 0 Permanent HW addr: 80:00:02:09:fe:80:00:00:00:00:00:01:e4:1d:2d:03:00:1d:67:02 Slave queue ID: 0 Also tested with a standard 1Gbps NIC bonding setup (with a mix of e1000 and e1000e cards), running LNST's bonding tests. CC: Jay Vosburgh <j.vosburgh@gmail.com> CC: Veaceslav Falico <vfalico@gmail.com> CC: Andy Gospodarek <andy@greyhouse.net> CC: netdev@vger.kernel.org Signed-off-by: Jarod Wilson <jarod@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-04-05 04:32:42 +07:00
bond_hw_addr_copy(arp->mac_src, tx_slave->dev->dev_addr,
tx_slave->dev->addr_len);
netdev_dbg(bond->dev, "(slave %s): Server sent ARP Reply packet\n",
tx_slave ? tx_slave->dev->name : "NULL");
} else if (arp->op_code == htons(ARPOP_REQUEST)) {
/* Create an entry in the rx_hashtbl for this client as a
* place holder.
* When the arp reply is received the entry will be updated
* with the correct unicast address of the client.
*/
bonding/alb: make sure arp header is pulled before accessing it Similar to commit 38f88c454042 ("bonding/alb: properly access headers in bond_alb_xmit()"), we need to make sure arp header was pulled in skb->head before blindly accessing it in rlb_arp_xmit(). Remove arp_pkt() private helper, since it is more readable/obvious to have the following construct back to back : if (!pskb_network_may_pull(skb, sizeof(*arp))) return NULL; arp = (struct arp_pkt *)skb_network_header(skb); syzbot reported : BUG: KMSAN: uninit-value in bond_slave_has_mac_rx include/net/bonding.h:704 [inline] BUG: KMSAN: uninit-value in rlb_arp_xmit drivers/net/bonding/bond_alb.c:662 [inline] BUG: KMSAN: uninit-value in bond_alb_xmit+0x575/0x25e0 drivers/net/bonding/bond_alb.c:1477 CPU: 0 PID: 12743 Comm: syz-executor.4 Not tainted 5.6.0-rc2-syzkaller #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Call Trace: __dump_stack lib/dump_stack.c:77 [inline] dump_stack+0x1c9/0x220 lib/dump_stack.c:118 kmsan_report+0xf7/0x1e0 mm/kmsan/kmsan_report.c:118 __msan_warning+0x58/0xa0 mm/kmsan/kmsan_instr.c:215 bond_slave_has_mac_rx include/net/bonding.h:704 [inline] rlb_arp_xmit drivers/net/bonding/bond_alb.c:662 [inline] bond_alb_xmit+0x575/0x25e0 drivers/net/bonding/bond_alb.c:1477 __bond_start_xmit drivers/net/bonding/bond_main.c:4257 [inline] bond_start_xmit+0x85d/0x2f70 drivers/net/bonding/bond_main.c:4282 __netdev_start_xmit include/linux/netdevice.h:4524 [inline] netdev_start_xmit include/linux/netdevice.h:4538 [inline] xmit_one net/core/dev.c:3470 [inline] dev_hard_start_xmit+0x531/0xab0 net/core/dev.c:3486 __dev_queue_xmit+0x37de/0x4220 net/core/dev.c:4063 dev_queue_xmit+0x4b/0x60 net/core/dev.c:4096 packet_snd net/packet/af_packet.c:2967 [inline] packet_sendmsg+0x8347/0x93b0 net/packet/af_packet.c:2992 sock_sendmsg_nosec net/socket.c:652 [inline] sock_sendmsg net/socket.c:672 [inline] __sys_sendto+0xc1b/0xc50 net/socket.c:1998 __do_sys_sendto net/socket.c:2010 [inline] __se_sys_sendto+0x107/0x130 net/socket.c:2006 __x64_sys_sendto+0x6e/0x90 net/socket.c:2006 do_syscall_64+0xb8/0x160 arch/x86/entry/common.c:296 entry_SYSCALL_64_after_hwframe+0x44/0xa9 RIP: 0033:0x45c479 Code: ad b6 fb ff c3 66 2e 0f 1f 84 00 00 00 00 00 66 90 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 0f 83 7b b6 fb ff c3 66 2e 0f 1f 84 00 00 00 00 RSP: 002b:00007fc77ffbbc78 EFLAGS: 00000246 ORIG_RAX: 000000000000002c RAX: ffffffffffffffda RBX: 00007fc77ffbc6d4 RCX: 000000000045c479 RDX: 000000000000000e RSI: 00000000200004c0 RDI: 0000000000000003 RBP: 000000000076bf20 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000246 R12: 00000000ffffffff R13: 0000000000000a04 R14: 00000000004cc7b0 R15: 000000000076bf2c Uninit was created at: kmsan_save_stack_with_flags mm/kmsan/kmsan.c:144 [inline] kmsan_internal_poison_shadow+0x66/0xd0 mm/kmsan/kmsan.c:127 kmsan_slab_alloc+0x8a/0xe0 mm/kmsan/kmsan_hooks.c:82 slab_alloc_node mm/slub.c:2793 [inline] __kmalloc_node_track_caller+0xb40/0x1200 mm/slub.c:4401 __kmalloc_reserve net/core/skbuff.c:142 [inline] __alloc_skb+0x2fd/0xac0 net/core/skbuff.c:210 alloc_skb include/linux/skbuff.h:1051 [inline] alloc_skb_with_frags+0x18c/0xa70 net/core/skbuff.c:5766 sock_alloc_send_pskb+0xada/0xc60 net/core/sock.c:2242 packet_alloc_skb net/packet/af_packet.c:2815 [inline] packet_snd net/packet/af_packet.c:2910 [inline] packet_sendmsg+0x66a0/0x93b0 net/packet/af_packet.c:2992 sock_sendmsg_nosec net/socket.c:652 [inline] sock_sendmsg net/socket.c:672 [inline] __sys_sendto+0xc1b/0xc50 net/socket.c:1998 __do_sys_sendto net/socket.c:2010 [inline] __se_sys_sendto+0x107/0x130 net/socket.c:2006 __x64_sys_sendto+0x6e/0x90 net/socket.c:2006 do_syscall_64+0xb8/0x160 arch/x86/entry/common.c:296 entry_SYSCALL_64_after_hwframe+0x44/0xa9 Fixes: 1da177e4c3f4 ("Linux-2.6.12-rc2") Signed-off-by: Eric Dumazet <edumazet@google.com> Reported-by: syzbot <syzkaller@googlegroups.com> Cc: Jay Vosburgh <j.vosburgh@gmail.com> Cc: Veaceslav Falico <vfalico@gmail.com> Cc: Andy Gospodarek <andy@greyhouse.net> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-03-05 00:32:16 +07:00
tx_slave = rlb_choose_channel(skb, bond, arp);
/* The ARP reply packets must be delayed so that
* they can cancel out the influence of the ARP request.
*/
bond->alb_info.rlb_update_delay_counter = RLB_UPDATE_DELAY;
/* arp requests are broadcast and are sent on the primary
* the arp request will collapse all clients on the subnet to
* the primary slave. We must register these clients to be
* updated with their assigned mac.
*/
rlb_req_update_subnet_clients(bond, arp->ip_src);
netdev_dbg(bond->dev, "(slave %s): Server sent ARP Request packet\n",
tx_slave ? tx_slave->dev->name : "NULL");
}
return tx_slave;
}
static void rlb_rebalance(struct bonding *bond)
{
struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
struct slave *assigned_slave;
struct rlb_client_info *client_info;
int ntt;
u32 hash_index;
spin_lock_bh(&bond->mode_lock);
ntt = 0;
bonding: delete migrated IP addresses from the rlb hash table Bonding in balance-alb mode records information from ARP packets passing through the bond in a hash table (rx_hashtbl). At certain situations (e.g. link change of a slave), rlb_update_rx_clients() will send out ARP packets to update ARP caches of other hosts on the network to achieve RX load balancing. The problem is that once an IP address is recorded in the hash table, it stays there indefinitely. If this IP address is migrated to a different host in the network, bonding still sends out ARP packets that poison other systems' ARP caches with invalid information. This patch solves this by looking at all incoming ARP packets, and checking if the source IP address is one of the source addresses stored in the rx_hashtbl. If it is, but the MAC addresses differ, the corresponding hash table entries are removed. Thus, when an IP address is migrated, the first ARP broadcast by its new owner will purge the offending entries of rx_hashtbl. The hash table is hashed by ip_dst. To be able to do the above check efficiently (not walking the whole hash table), we need a reverse mapping (by ip_src). I added three new members in struct rlb_client_info: rx_hashtbl[x].src_first will point to the start of a list of entries for which hash(ip_src) == x. The list is linked with src_next and src_prev. When an incoming ARP packet arrives at rlb_arp_recv() rlb_purge_src_ip() can quickly walk only the entries on the corresponding lists, i.e. the entries that are likely to contain the offending IP address. To avoid confusion, I renamed these existing fields of struct rlb_client_info: next -> used_next prev -> used_prev rx_hashtbl_head -> rx_hashtbl_used_head (The current linked list is _not_ a list of hash table entries with colliding ip_dst. It's a list of entries that are being used; its purpose is to avoid walking the whole hash table when looking for used entries.) Signed-off-by: Jiri Bohac <jbohac@suse.cz> Signed-off-by: Jay Vosburgh <fubar@us.ibm.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-11-28 11:42:14 +07:00
hash_index = bond_info->rx_hashtbl_used_head;
for (; hash_index != RLB_NULL_INDEX;
hash_index = client_info->used_next) {
client_info = &(bond_info->rx_hashtbl[hash_index]);
assigned_slave = __rlb_next_rx_slave(bond);
if (assigned_slave && (client_info->slave != assigned_slave)) {
client_info->slave = assigned_slave;
if (!is_zero_ether_addr(client_info->mac_dst)) {
client_info->ntt = 1;
ntt = 1;
}
}
}
/* update the team's flag only after the whole iteration */
if (ntt)
bond_info->rx_ntt = 1;
spin_unlock_bh(&bond->mode_lock);
}
/* Caller must hold mode_lock */
bonding: delete migrated IP addresses from the rlb hash table Bonding in balance-alb mode records information from ARP packets passing through the bond in a hash table (rx_hashtbl). At certain situations (e.g. link change of a slave), rlb_update_rx_clients() will send out ARP packets to update ARP caches of other hosts on the network to achieve RX load balancing. The problem is that once an IP address is recorded in the hash table, it stays there indefinitely. If this IP address is migrated to a different host in the network, bonding still sends out ARP packets that poison other systems' ARP caches with invalid information. This patch solves this by looking at all incoming ARP packets, and checking if the source IP address is one of the source addresses stored in the rx_hashtbl. If it is, but the MAC addresses differ, the corresponding hash table entries are removed. Thus, when an IP address is migrated, the first ARP broadcast by its new owner will purge the offending entries of rx_hashtbl. The hash table is hashed by ip_dst. To be able to do the above check efficiently (not walking the whole hash table), we need a reverse mapping (by ip_src). I added three new members in struct rlb_client_info: rx_hashtbl[x].src_first will point to the start of a list of entries for which hash(ip_src) == x. The list is linked with src_next and src_prev. When an incoming ARP packet arrives at rlb_arp_recv() rlb_purge_src_ip() can quickly walk only the entries on the corresponding lists, i.e. the entries that are likely to contain the offending IP address. To avoid confusion, I renamed these existing fields of struct rlb_client_info: next -> used_next prev -> used_prev rx_hashtbl_head -> rx_hashtbl_used_head (The current linked list is _not_ a list of hash table entries with colliding ip_dst. It's a list of entries that are being used; its purpose is to avoid walking the whole hash table when looking for used entries.) Signed-off-by: Jiri Bohac <jbohac@suse.cz> Signed-off-by: Jay Vosburgh <fubar@us.ibm.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-11-28 11:42:14 +07:00
static void rlb_init_table_entry_dst(struct rlb_client_info *entry)
{
entry->used_next = RLB_NULL_INDEX;
entry->used_prev = RLB_NULL_INDEX;
entry->assigned = 0;
entry->slave = NULL;
entry->vlan_id = 0;
bonding: delete migrated IP addresses from the rlb hash table Bonding in balance-alb mode records information from ARP packets passing through the bond in a hash table (rx_hashtbl). At certain situations (e.g. link change of a slave), rlb_update_rx_clients() will send out ARP packets to update ARP caches of other hosts on the network to achieve RX load balancing. The problem is that once an IP address is recorded in the hash table, it stays there indefinitely. If this IP address is migrated to a different host in the network, bonding still sends out ARP packets that poison other systems' ARP caches with invalid information. This patch solves this by looking at all incoming ARP packets, and checking if the source IP address is one of the source addresses stored in the rx_hashtbl. If it is, but the MAC addresses differ, the corresponding hash table entries are removed. Thus, when an IP address is migrated, the first ARP broadcast by its new owner will purge the offending entries of rx_hashtbl. The hash table is hashed by ip_dst. To be able to do the above check efficiently (not walking the whole hash table), we need a reverse mapping (by ip_src). I added three new members in struct rlb_client_info: rx_hashtbl[x].src_first will point to the start of a list of entries for which hash(ip_src) == x. The list is linked with src_next and src_prev. When an incoming ARP packet arrives at rlb_arp_recv() rlb_purge_src_ip() can quickly walk only the entries on the corresponding lists, i.e. the entries that are likely to contain the offending IP address. To avoid confusion, I renamed these existing fields of struct rlb_client_info: next -> used_next prev -> used_prev rx_hashtbl_head -> rx_hashtbl_used_head (The current linked list is _not_ a list of hash table entries with colliding ip_dst. It's a list of entries that are being used; its purpose is to avoid walking the whole hash table when looking for used entries.) Signed-off-by: Jiri Bohac <jbohac@suse.cz> Signed-off-by: Jay Vosburgh <fubar@us.ibm.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-11-28 11:42:14 +07:00
}
static void rlb_init_table_entry_src(struct rlb_client_info *entry)
{
entry->src_first = RLB_NULL_INDEX;
entry->src_prev = RLB_NULL_INDEX;
entry->src_next = RLB_NULL_INDEX;
}
static void rlb_init_table_entry(struct rlb_client_info *entry)
{
memset(entry, 0, sizeof(struct rlb_client_info));
bonding: delete migrated IP addresses from the rlb hash table Bonding in balance-alb mode records information from ARP packets passing through the bond in a hash table (rx_hashtbl). At certain situations (e.g. link change of a slave), rlb_update_rx_clients() will send out ARP packets to update ARP caches of other hosts on the network to achieve RX load balancing. The problem is that once an IP address is recorded in the hash table, it stays there indefinitely. If this IP address is migrated to a different host in the network, bonding still sends out ARP packets that poison other systems' ARP caches with invalid information. This patch solves this by looking at all incoming ARP packets, and checking if the source IP address is one of the source addresses stored in the rx_hashtbl. If it is, but the MAC addresses differ, the corresponding hash table entries are removed. Thus, when an IP address is migrated, the first ARP broadcast by its new owner will purge the offending entries of rx_hashtbl. The hash table is hashed by ip_dst. To be able to do the above check efficiently (not walking the whole hash table), we need a reverse mapping (by ip_src). I added three new members in struct rlb_client_info: rx_hashtbl[x].src_first will point to the start of a list of entries for which hash(ip_src) == x. The list is linked with src_next and src_prev. When an incoming ARP packet arrives at rlb_arp_recv() rlb_purge_src_ip() can quickly walk only the entries on the corresponding lists, i.e. the entries that are likely to contain the offending IP address. To avoid confusion, I renamed these existing fields of struct rlb_client_info: next -> used_next prev -> used_prev rx_hashtbl_head -> rx_hashtbl_used_head (The current linked list is _not_ a list of hash table entries with colliding ip_dst. It's a list of entries that are being used; its purpose is to avoid walking the whole hash table when looking for used entries.) Signed-off-by: Jiri Bohac <jbohac@suse.cz> Signed-off-by: Jay Vosburgh <fubar@us.ibm.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-11-28 11:42:14 +07:00
rlb_init_table_entry_dst(entry);
rlb_init_table_entry_src(entry);
}
static void rlb_delete_table_entry_dst(struct bonding *bond, u32 index)
{
struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
u32 next_index = bond_info->rx_hashtbl[index].used_next;
u32 prev_index = bond_info->rx_hashtbl[index].used_prev;
if (index == bond_info->rx_hashtbl_used_head)
bond_info->rx_hashtbl_used_head = next_index;
if (prev_index != RLB_NULL_INDEX)
bond_info->rx_hashtbl[prev_index].used_next = next_index;
if (next_index != RLB_NULL_INDEX)
bond_info->rx_hashtbl[next_index].used_prev = prev_index;
}
/* unlink a rlb hash table entry from the src list */
static void rlb_src_unlink(struct bonding *bond, u32 index)
{
struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
u32 next_index = bond_info->rx_hashtbl[index].src_next;
u32 prev_index = bond_info->rx_hashtbl[index].src_prev;
bond_info->rx_hashtbl[index].src_next = RLB_NULL_INDEX;
bond_info->rx_hashtbl[index].src_prev = RLB_NULL_INDEX;
if (next_index != RLB_NULL_INDEX)
bond_info->rx_hashtbl[next_index].src_prev = prev_index;
if (prev_index == RLB_NULL_INDEX)
return;
/* is prev_index pointing to the head of this list? */
if (bond_info->rx_hashtbl[prev_index].src_first == index)
bond_info->rx_hashtbl[prev_index].src_first = next_index;
else
bond_info->rx_hashtbl[prev_index].src_next = next_index;
}
static void rlb_delete_table_entry(struct bonding *bond, u32 index)
{
struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
struct rlb_client_info *entry = &(bond_info->rx_hashtbl[index]);
rlb_delete_table_entry_dst(bond, index);
rlb_init_table_entry_dst(entry);
rlb_src_unlink(bond, index);
}
/* add the rx_hashtbl[ip_dst_hash] entry to the list
* of entries with identical ip_src_hash
*/
static void rlb_src_link(struct bonding *bond, u32 ip_src_hash, u32 ip_dst_hash)
{
struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
u32 next;
bond_info->rx_hashtbl[ip_dst_hash].src_prev = ip_src_hash;
next = bond_info->rx_hashtbl[ip_src_hash].src_first;
bond_info->rx_hashtbl[ip_dst_hash].src_next = next;
if (next != RLB_NULL_INDEX)
bond_info->rx_hashtbl[next].src_prev = ip_dst_hash;
bond_info->rx_hashtbl[ip_src_hash].src_first = ip_dst_hash;
}
/* deletes all rx_hashtbl entries with arp->ip_src if their mac_src does
* not match arp->mac_src
*/
bonding: delete migrated IP addresses from the rlb hash table Bonding in balance-alb mode records information from ARP packets passing through the bond in a hash table (rx_hashtbl). At certain situations (e.g. link change of a slave), rlb_update_rx_clients() will send out ARP packets to update ARP caches of other hosts on the network to achieve RX load balancing. The problem is that once an IP address is recorded in the hash table, it stays there indefinitely. If this IP address is migrated to a different host in the network, bonding still sends out ARP packets that poison other systems' ARP caches with invalid information. This patch solves this by looking at all incoming ARP packets, and checking if the source IP address is one of the source addresses stored in the rx_hashtbl. If it is, but the MAC addresses differ, the corresponding hash table entries are removed. Thus, when an IP address is migrated, the first ARP broadcast by its new owner will purge the offending entries of rx_hashtbl. The hash table is hashed by ip_dst. To be able to do the above check efficiently (not walking the whole hash table), we need a reverse mapping (by ip_src). I added three new members in struct rlb_client_info: rx_hashtbl[x].src_first will point to the start of a list of entries for which hash(ip_src) == x. The list is linked with src_next and src_prev. When an incoming ARP packet arrives at rlb_arp_recv() rlb_purge_src_ip() can quickly walk only the entries on the corresponding lists, i.e. the entries that are likely to contain the offending IP address. To avoid confusion, I renamed these existing fields of struct rlb_client_info: next -> used_next prev -> used_prev rx_hashtbl_head -> rx_hashtbl_used_head (The current linked list is _not_ a list of hash table entries with colliding ip_dst. It's a list of entries that are being used; its purpose is to avoid walking the whole hash table when looking for used entries.) Signed-off-by: Jiri Bohac <jbohac@suse.cz> Signed-off-by: Jay Vosburgh <fubar@us.ibm.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-11-28 11:42:14 +07:00
static void rlb_purge_src_ip(struct bonding *bond, struct arp_pkt *arp)
{
struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
u32 ip_src_hash = _simple_hash((u8 *)&(arp->ip_src), sizeof(arp->ip_src));
bonding: delete migrated IP addresses from the rlb hash table Bonding in balance-alb mode records information from ARP packets passing through the bond in a hash table (rx_hashtbl). At certain situations (e.g. link change of a slave), rlb_update_rx_clients() will send out ARP packets to update ARP caches of other hosts on the network to achieve RX load balancing. The problem is that once an IP address is recorded in the hash table, it stays there indefinitely. If this IP address is migrated to a different host in the network, bonding still sends out ARP packets that poison other systems' ARP caches with invalid information. This patch solves this by looking at all incoming ARP packets, and checking if the source IP address is one of the source addresses stored in the rx_hashtbl. If it is, but the MAC addresses differ, the corresponding hash table entries are removed. Thus, when an IP address is migrated, the first ARP broadcast by its new owner will purge the offending entries of rx_hashtbl. The hash table is hashed by ip_dst. To be able to do the above check efficiently (not walking the whole hash table), we need a reverse mapping (by ip_src). I added three new members in struct rlb_client_info: rx_hashtbl[x].src_first will point to the start of a list of entries for which hash(ip_src) == x. The list is linked with src_next and src_prev. When an incoming ARP packet arrives at rlb_arp_recv() rlb_purge_src_ip() can quickly walk only the entries on the corresponding lists, i.e. the entries that are likely to contain the offending IP address. To avoid confusion, I renamed these existing fields of struct rlb_client_info: next -> used_next prev -> used_prev rx_hashtbl_head -> rx_hashtbl_used_head (The current linked list is _not_ a list of hash table entries with colliding ip_dst. It's a list of entries that are being used; its purpose is to avoid walking the whole hash table when looking for used entries.) Signed-off-by: Jiri Bohac <jbohac@suse.cz> Signed-off-by: Jay Vosburgh <fubar@us.ibm.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-11-28 11:42:14 +07:00
u32 index;
spin_lock_bh(&bond->mode_lock);
bonding: delete migrated IP addresses from the rlb hash table Bonding in balance-alb mode records information from ARP packets passing through the bond in a hash table (rx_hashtbl). At certain situations (e.g. link change of a slave), rlb_update_rx_clients() will send out ARP packets to update ARP caches of other hosts on the network to achieve RX load balancing. The problem is that once an IP address is recorded in the hash table, it stays there indefinitely. If this IP address is migrated to a different host in the network, bonding still sends out ARP packets that poison other systems' ARP caches with invalid information. This patch solves this by looking at all incoming ARP packets, and checking if the source IP address is one of the source addresses stored in the rx_hashtbl. If it is, but the MAC addresses differ, the corresponding hash table entries are removed. Thus, when an IP address is migrated, the first ARP broadcast by its new owner will purge the offending entries of rx_hashtbl. The hash table is hashed by ip_dst. To be able to do the above check efficiently (not walking the whole hash table), we need a reverse mapping (by ip_src). I added three new members in struct rlb_client_info: rx_hashtbl[x].src_first will point to the start of a list of entries for which hash(ip_src) == x. The list is linked with src_next and src_prev. When an incoming ARP packet arrives at rlb_arp_recv() rlb_purge_src_ip() can quickly walk only the entries on the corresponding lists, i.e. the entries that are likely to contain the offending IP address. To avoid confusion, I renamed these existing fields of struct rlb_client_info: next -> used_next prev -> used_prev rx_hashtbl_head -> rx_hashtbl_used_head (The current linked list is _not_ a list of hash table entries with colliding ip_dst. It's a list of entries that are being used; its purpose is to avoid walking the whole hash table when looking for used entries.) Signed-off-by: Jiri Bohac <jbohac@suse.cz> Signed-off-by: Jay Vosburgh <fubar@us.ibm.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-11-28 11:42:14 +07:00
index = bond_info->rx_hashtbl[ip_src_hash].src_first;
while (index != RLB_NULL_INDEX) {
struct rlb_client_info *entry = &(bond_info->rx_hashtbl[index]);
u32 next_index = entry->src_next;
if (entry->ip_src == arp->ip_src &&
!ether_addr_equal_64bits(arp->mac_src, entry->mac_src))
rlb_delete_table_entry(bond, index);
index = next_index;
}
spin_unlock_bh(&bond->mode_lock);
}
static int rlb_initialize(struct bonding *bond)
{
struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
struct rlb_client_info *new_hashtbl;
int size = RLB_HASH_TABLE_SIZE * sizeof(struct rlb_client_info);
int i;
new_hashtbl = kmalloc(size, GFP_KERNEL);
if (!new_hashtbl)
return -1;
spin_lock_bh(&bond->mode_lock);
bond_info->rx_hashtbl = new_hashtbl;
bonding: delete migrated IP addresses from the rlb hash table Bonding in balance-alb mode records information from ARP packets passing through the bond in a hash table (rx_hashtbl). At certain situations (e.g. link change of a slave), rlb_update_rx_clients() will send out ARP packets to update ARP caches of other hosts on the network to achieve RX load balancing. The problem is that once an IP address is recorded in the hash table, it stays there indefinitely. If this IP address is migrated to a different host in the network, bonding still sends out ARP packets that poison other systems' ARP caches with invalid information. This patch solves this by looking at all incoming ARP packets, and checking if the source IP address is one of the source addresses stored in the rx_hashtbl. If it is, but the MAC addresses differ, the corresponding hash table entries are removed. Thus, when an IP address is migrated, the first ARP broadcast by its new owner will purge the offending entries of rx_hashtbl. The hash table is hashed by ip_dst. To be able to do the above check efficiently (not walking the whole hash table), we need a reverse mapping (by ip_src). I added three new members in struct rlb_client_info: rx_hashtbl[x].src_first will point to the start of a list of entries for which hash(ip_src) == x. The list is linked with src_next and src_prev. When an incoming ARP packet arrives at rlb_arp_recv() rlb_purge_src_ip() can quickly walk only the entries on the corresponding lists, i.e. the entries that are likely to contain the offending IP address. To avoid confusion, I renamed these existing fields of struct rlb_client_info: next -> used_next prev -> used_prev rx_hashtbl_head -> rx_hashtbl_used_head (The current linked list is _not_ a list of hash table entries with colliding ip_dst. It's a list of entries that are being used; its purpose is to avoid walking the whole hash table when looking for used entries.) Signed-off-by: Jiri Bohac <jbohac@suse.cz> Signed-off-by: Jay Vosburgh <fubar@us.ibm.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-11-28 11:42:14 +07:00
bond_info->rx_hashtbl_used_head = RLB_NULL_INDEX;
for (i = 0; i < RLB_HASH_TABLE_SIZE; i++)
rlb_init_table_entry(bond_info->rx_hashtbl + i);
spin_unlock_bh(&bond->mode_lock);
/* register to receive ARPs */
bond->recv_probe = rlb_arp_recv;
return 0;
}
static void rlb_deinitialize(struct bonding *bond)
{
struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
spin_lock_bh(&bond->mode_lock);
kfree(bond_info->rx_hashtbl);
bond_info->rx_hashtbl = NULL;
bonding: delete migrated IP addresses from the rlb hash table Bonding in balance-alb mode records information from ARP packets passing through the bond in a hash table (rx_hashtbl). At certain situations (e.g. link change of a slave), rlb_update_rx_clients() will send out ARP packets to update ARP caches of other hosts on the network to achieve RX load balancing. The problem is that once an IP address is recorded in the hash table, it stays there indefinitely. If this IP address is migrated to a different host in the network, bonding still sends out ARP packets that poison other systems' ARP caches with invalid information. This patch solves this by looking at all incoming ARP packets, and checking if the source IP address is one of the source addresses stored in the rx_hashtbl. If it is, but the MAC addresses differ, the corresponding hash table entries are removed. Thus, when an IP address is migrated, the first ARP broadcast by its new owner will purge the offending entries of rx_hashtbl. The hash table is hashed by ip_dst. To be able to do the above check efficiently (not walking the whole hash table), we need a reverse mapping (by ip_src). I added three new members in struct rlb_client_info: rx_hashtbl[x].src_first will point to the start of a list of entries for which hash(ip_src) == x. The list is linked with src_next and src_prev. When an incoming ARP packet arrives at rlb_arp_recv() rlb_purge_src_ip() can quickly walk only the entries on the corresponding lists, i.e. the entries that are likely to contain the offending IP address. To avoid confusion, I renamed these existing fields of struct rlb_client_info: next -> used_next prev -> used_prev rx_hashtbl_head -> rx_hashtbl_used_head (The current linked list is _not_ a list of hash table entries with colliding ip_dst. It's a list of entries that are being used; its purpose is to avoid walking the whole hash table when looking for used entries.) Signed-off-by: Jiri Bohac <jbohac@suse.cz> Signed-off-by: Jay Vosburgh <fubar@us.ibm.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-11-28 11:42:14 +07:00
bond_info->rx_hashtbl_used_head = RLB_NULL_INDEX;
spin_unlock_bh(&bond->mode_lock);
}
static void rlb_clear_vlan(struct bonding *bond, unsigned short vlan_id)
{
struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
u32 curr_index;
spin_lock_bh(&bond->mode_lock);
bonding: delete migrated IP addresses from the rlb hash table Bonding in balance-alb mode records information from ARP packets passing through the bond in a hash table (rx_hashtbl). At certain situations (e.g. link change of a slave), rlb_update_rx_clients() will send out ARP packets to update ARP caches of other hosts on the network to achieve RX load balancing. The problem is that once an IP address is recorded in the hash table, it stays there indefinitely. If this IP address is migrated to a different host in the network, bonding still sends out ARP packets that poison other systems' ARP caches with invalid information. This patch solves this by looking at all incoming ARP packets, and checking if the source IP address is one of the source addresses stored in the rx_hashtbl. If it is, but the MAC addresses differ, the corresponding hash table entries are removed. Thus, when an IP address is migrated, the first ARP broadcast by its new owner will purge the offending entries of rx_hashtbl. The hash table is hashed by ip_dst. To be able to do the above check efficiently (not walking the whole hash table), we need a reverse mapping (by ip_src). I added three new members in struct rlb_client_info: rx_hashtbl[x].src_first will point to the start of a list of entries for which hash(ip_src) == x. The list is linked with src_next and src_prev. When an incoming ARP packet arrives at rlb_arp_recv() rlb_purge_src_ip() can quickly walk only the entries on the corresponding lists, i.e. the entries that are likely to contain the offending IP address. To avoid confusion, I renamed these existing fields of struct rlb_client_info: next -> used_next prev -> used_prev rx_hashtbl_head -> rx_hashtbl_used_head (The current linked list is _not_ a list of hash table entries with colliding ip_dst. It's a list of entries that are being used; its purpose is to avoid walking the whole hash table when looking for used entries.) Signed-off-by: Jiri Bohac <jbohac@suse.cz> Signed-off-by: Jay Vosburgh <fubar@us.ibm.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-11-28 11:42:14 +07:00
curr_index = bond_info->rx_hashtbl_used_head;
while (curr_index != RLB_NULL_INDEX) {
struct rlb_client_info *curr = &(bond_info->rx_hashtbl[curr_index]);
bonding: delete migrated IP addresses from the rlb hash table Bonding in balance-alb mode records information from ARP packets passing through the bond in a hash table (rx_hashtbl). At certain situations (e.g. link change of a slave), rlb_update_rx_clients() will send out ARP packets to update ARP caches of other hosts on the network to achieve RX load balancing. The problem is that once an IP address is recorded in the hash table, it stays there indefinitely. If this IP address is migrated to a different host in the network, bonding still sends out ARP packets that poison other systems' ARP caches with invalid information. This patch solves this by looking at all incoming ARP packets, and checking if the source IP address is one of the source addresses stored in the rx_hashtbl. If it is, but the MAC addresses differ, the corresponding hash table entries are removed. Thus, when an IP address is migrated, the first ARP broadcast by its new owner will purge the offending entries of rx_hashtbl. The hash table is hashed by ip_dst. To be able to do the above check efficiently (not walking the whole hash table), we need a reverse mapping (by ip_src). I added three new members in struct rlb_client_info: rx_hashtbl[x].src_first will point to the start of a list of entries for which hash(ip_src) == x. The list is linked with src_next and src_prev. When an incoming ARP packet arrives at rlb_arp_recv() rlb_purge_src_ip() can quickly walk only the entries on the corresponding lists, i.e. the entries that are likely to contain the offending IP address. To avoid confusion, I renamed these existing fields of struct rlb_client_info: next -> used_next prev -> used_prev rx_hashtbl_head -> rx_hashtbl_used_head (The current linked list is _not_ a list of hash table entries with colliding ip_dst. It's a list of entries that are being used; its purpose is to avoid walking the whole hash table when looking for used entries.) Signed-off-by: Jiri Bohac <jbohac@suse.cz> Signed-off-by: Jay Vosburgh <fubar@us.ibm.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-11-28 11:42:14 +07:00
u32 next_index = bond_info->rx_hashtbl[curr_index].used_next;
if (curr->vlan_id == vlan_id)
bonding: delete migrated IP addresses from the rlb hash table Bonding in balance-alb mode records information from ARP packets passing through the bond in a hash table (rx_hashtbl). At certain situations (e.g. link change of a slave), rlb_update_rx_clients() will send out ARP packets to update ARP caches of other hosts on the network to achieve RX load balancing. The problem is that once an IP address is recorded in the hash table, it stays there indefinitely. If this IP address is migrated to a different host in the network, bonding still sends out ARP packets that poison other systems' ARP caches with invalid information. This patch solves this by looking at all incoming ARP packets, and checking if the source IP address is one of the source addresses stored in the rx_hashtbl. If it is, but the MAC addresses differ, the corresponding hash table entries are removed. Thus, when an IP address is migrated, the first ARP broadcast by its new owner will purge the offending entries of rx_hashtbl. The hash table is hashed by ip_dst. To be able to do the above check efficiently (not walking the whole hash table), we need a reverse mapping (by ip_src). I added three new members in struct rlb_client_info: rx_hashtbl[x].src_first will point to the start of a list of entries for which hash(ip_src) == x. The list is linked with src_next and src_prev. When an incoming ARP packet arrives at rlb_arp_recv() rlb_purge_src_ip() can quickly walk only the entries on the corresponding lists, i.e. the entries that are likely to contain the offending IP address. To avoid confusion, I renamed these existing fields of struct rlb_client_info: next -> used_next prev -> used_prev rx_hashtbl_head -> rx_hashtbl_used_head (The current linked list is _not_ a list of hash table entries with colliding ip_dst. It's a list of entries that are being used; its purpose is to avoid walking the whole hash table when looking for used entries.) Signed-off-by: Jiri Bohac <jbohac@suse.cz> Signed-off-by: Jay Vosburgh <fubar@us.ibm.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-11-28 11:42:14 +07:00
rlb_delete_table_entry(bond, curr_index);
curr_index = next_index;
}
spin_unlock_bh(&bond->mode_lock);
}
/*********************** tlb/rlb shared functions *********************/
static void alb_send_lp_vid(struct slave *slave, u8 mac_addr[],
__be16 vlan_proto, u16 vid)
{
struct learning_pkt pkt;
struct sk_buff *skb;
int size = sizeof(struct learning_pkt);
memset(&pkt, 0, size);
ether_addr_copy(pkt.mac_dst, mac_addr);
ether_addr_copy(pkt.mac_src, mac_addr);
pkt.type = cpu_to_be16(ETH_P_LOOPBACK);
skb = dev_alloc_skb(size);
if (!skb)
return;
skb_put_data(skb, &pkt, size);
skb_reset_mac_header(skb);
skb->network_header = skb->mac_header + ETH_HLEN;
skb->protocol = pkt.type;
skb->priority = TC_PRIO_CONTROL;
skb->dev = slave->dev;
slave_dbg(slave->bond->dev, slave->dev,
"Send learning packet: mac %pM vlan %d\n", mac_addr, vid);
if (vid)
__vlan_hwaccel_put_tag(skb, vlan_proto, vid);
dev_queue_xmit(skb);
}
struct alb_walk_data {
struct bonding *bond;
struct slave *slave;
u8 *mac_addr;
bool strict_match;
};
static int alb_upper_dev_walk(struct net_device *upper, void *_data)
{
struct alb_walk_data *data = _data;
bool strict_match = data->strict_match;
struct bonding *bond = data->bond;
struct slave *slave = data->slave;
u8 *mac_addr = data->mac_addr;
struct bond_vlan_tag *tags;
if (is_vlan_dev(upper) &&
bond->dev->lower_level == upper->lower_level - 1) {
if (upper->addr_assign_type == NET_ADDR_STOLEN) {
alb_send_lp_vid(slave, mac_addr,
vlan_dev_vlan_proto(upper),
vlan_dev_vlan_id(upper));
} else {
alb_send_lp_vid(slave, upper->dev_addr,
vlan_dev_vlan_proto(upper),
vlan_dev_vlan_id(upper));
}
}
/* If this is a macvlan device, then only send updates
* when strict_match is turned off.
*/
if (netif_is_macvlan(upper) && !strict_match) {
tags = bond_verify_device_path(bond->dev, upper, 0);
if (IS_ERR_OR_NULL(tags))
BUG();
alb_send_lp_vid(slave, upper->dev_addr,
tags[0].vlan_proto, tags[0].vlan_id);
kfree(tags);
}
return 0;
}
static void alb_send_learning_packets(struct slave *slave, u8 mac_addr[],
bool strict_match)
{
struct bonding *bond = bond_get_bond_by_slave(slave);
struct alb_walk_data data = {
.strict_match = strict_match,
.mac_addr = mac_addr,
.slave = slave,
.bond = bond,
};
/* send untagged */
alb_send_lp_vid(slave, mac_addr, 0, 0);
/* loop through all devices and see if we need to send a packet
* for that device.
*/
rcu_read_lock();
netdev_walk_all_upper_dev_rcu(bond->dev, alb_upper_dev_walk, &data);
rcu_read_unlock();
}
bonding: attempt to better support longer hw addresses People are using bonding over Infiniband IPoIB connections, and who knows what else. Infiniband has a hardware address length of 20 octets (INFINIBAND_ALEN), and the network core defines a MAX_ADDR_LEN of 32. Various places in the bonding code are currently hard-wired to 6 octets (ETH_ALEN), such as the 3ad code, which I've left untouched here. Besides, only alb is currently possible on Infiniband links right now anyway, due to commit 1533e7731522, so the alb code is where most of the changes are. One major component of this change is the addition of a bond_hw_addr_copy function that takes a length argument, instead of using ether_addr_copy everywhere that hardware addresses need to be copied about. The other major component of this change is converting the bonding code from using struct sockaddr for address storage to struct sockaddr_storage, as the former has an address storage space of only 14, while the latter is 128 minus a few, which is necessary to support bonding over device with up to MAX_ADDR_LEN octet hardware addresses. Additionally, this probably fixes up some memory corruption issues with the current code, where it's possible to write an infiniband hardware address into a sockaddr declared on the stack. Lightly tested on a dual mlx4 IPoIB setup, which properly shows a 20-octet hardware address now: $ cat /proc/net/bonding/bond0 Ethernet Channel Bonding Driver: v3.7.1 (April 27, 2011) Bonding Mode: fault-tolerance (active-backup) (fail_over_mac active) Primary Slave: mlx4_ib0 (primary_reselect always) Currently Active Slave: mlx4_ib0 MII Status: up MII Polling Interval (ms): 100 Up Delay (ms): 100 Down Delay (ms): 100 Slave Interface: mlx4_ib0 MII Status: up Speed: Unknown Duplex: Unknown Link Failure Count: 0 Permanent HW addr: 80:00:02:08:fe:80:00:00:00:00:00:00:e4:1d:2d:03:00:1d:67:01 Slave queue ID: 0 Slave Interface: mlx4_ib1 MII Status: up Speed: Unknown Duplex: Unknown Link Failure Count: 0 Permanent HW addr: 80:00:02:09:fe:80:00:00:00:00:00:01:e4:1d:2d:03:00:1d:67:02 Slave queue ID: 0 Also tested with a standard 1Gbps NIC bonding setup (with a mix of e1000 and e1000e cards), running LNST's bonding tests. CC: Jay Vosburgh <j.vosburgh@gmail.com> CC: Veaceslav Falico <vfalico@gmail.com> CC: Andy Gospodarek <andy@greyhouse.net> CC: netdev@vger.kernel.org Signed-off-by: Jarod Wilson <jarod@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-04-05 04:32:42 +07:00
static int alb_set_slave_mac_addr(struct slave *slave, u8 addr[],
unsigned int len)
{
struct net_device *dev = slave->dev;
bonding: attempt to better support longer hw addresses People are using bonding over Infiniband IPoIB connections, and who knows what else. Infiniband has a hardware address length of 20 octets (INFINIBAND_ALEN), and the network core defines a MAX_ADDR_LEN of 32. Various places in the bonding code are currently hard-wired to 6 octets (ETH_ALEN), such as the 3ad code, which I've left untouched here. Besides, only alb is currently possible on Infiniband links right now anyway, due to commit 1533e7731522, so the alb code is where most of the changes are. One major component of this change is the addition of a bond_hw_addr_copy function that takes a length argument, instead of using ether_addr_copy everywhere that hardware addresses need to be copied about. The other major component of this change is converting the bonding code from using struct sockaddr for address storage to struct sockaddr_storage, as the former has an address storage space of only 14, while the latter is 128 minus a few, which is necessary to support bonding over device with up to MAX_ADDR_LEN octet hardware addresses. Additionally, this probably fixes up some memory corruption issues with the current code, where it's possible to write an infiniband hardware address into a sockaddr declared on the stack. Lightly tested on a dual mlx4 IPoIB setup, which properly shows a 20-octet hardware address now: $ cat /proc/net/bonding/bond0 Ethernet Channel Bonding Driver: v3.7.1 (April 27, 2011) Bonding Mode: fault-tolerance (active-backup) (fail_over_mac active) Primary Slave: mlx4_ib0 (primary_reselect always) Currently Active Slave: mlx4_ib0 MII Status: up MII Polling Interval (ms): 100 Up Delay (ms): 100 Down Delay (ms): 100 Slave Interface: mlx4_ib0 MII Status: up Speed: Unknown Duplex: Unknown Link Failure Count: 0 Permanent HW addr: 80:00:02:08:fe:80:00:00:00:00:00:00:e4:1d:2d:03:00:1d:67:01 Slave queue ID: 0 Slave Interface: mlx4_ib1 MII Status: up Speed: Unknown Duplex: Unknown Link Failure Count: 0 Permanent HW addr: 80:00:02:09:fe:80:00:00:00:00:00:01:e4:1d:2d:03:00:1d:67:02 Slave queue ID: 0 Also tested with a standard 1Gbps NIC bonding setup (with a mix of e1000 and e1000e cards), running LNST's bonding tests. CC: Jay Vosburgh <j.vosburgh@gmail.com> CC: Veaceslav Falico <vfalico@gmail.com> CC: Andy Gospodarek <andy@greyhouse.net> CC: netdev@vger.kernel.org Signed-off-by: Jarod Wilson <jarod@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-04-05 04:32:42 +07:00
struct sockaddr_storage ss;
if (BOND_MODE(slave->bond) == BOND_MODE_TLB) {
bonding: attempt to better support longer hw addresses People are using bonding over Infiniband IPoIB connections, and who knows what else. Infiniband has a hardware address length of 20 octets (INFINIBAND_ALEN), and the network core defines a MAX_ADDR_LEN of 32. Various places in the bonding code are currently hard-wired to 6 octets (ETH_ALEN), such as the 3ad code, which I've left untouched here. Besides, only alb is currently possible on Infiniband links right now anyway, due to commit 1533e7731522, so the alb code is where most of the changes are. One major component of this change is the addition of a bond_hw_addr_copy function that takes a length argument, instead of using ether_addr_copy everywhere that hardware addresses need to be copied about. The other major component of this change is converting the bonding code from using struct sockaddr for address storage to struct sockaddr_storage, as the former has an address storage space of only 14, while the latter is 128 minus a few, which is necessary to support bonding over device with up to MAX_ADDR_LEN octet hardware addresses. Additionally, this probably fixes up some memory corruption issues with the current code, where it's possible to write an infiniband hardware address into a sockaddr declared on the stack. Lightly tested on a dual mlx4 IPoIB setup, which properly shows a 20-octet hardware address now: $ cat /proc/net/bonding/bond0 Ethernet Channel Bonding Driver: v3.7.1 (April 27, 2011) Bonding Mode: fault-tolerance (active-backup) (fail_over_mac active) Primary Slave: mlx4_ib0 (primary_reselect always) Currently Active Slave: mlx4_ib0 MII Status: up MII Polling Interval (ms): 100 Up Delay (ms): 100 Down Delay (ms): 100 Slave Interface: mlx4_ib0 MII Status: up Speed: Unknown Duplex: Unknown Link Failure Count: 0 Permanent HW addr: 80:00:02:08:fe:80:00:00:00:00:00:00:e4:1d:2d:03:00:1d:67:01 Slave queue ID: 0 Slave Interface: mlx4_ib1 MII Status: up Speed: Unknown Duplex: Unknown Link Failure Count: 0 Permanent HW addr: 80:00:02:09:fe:80:00:00:00:00:00:01:e4:1d:2d:03:00:1d:67:02 Slave queue ID: 0 Also tested with a standard 1Gbps NIC bonding setup (with a mix of e1000 and e1000e cards), running LNST's bonding tests. CC: Jay Vosburgh <j.vosburgh@gmail.com> CC: Veaceslav Falico <vfalico@gmail.com> CC: Andy Gospodarek <andy@greyhouse.net> CC: netdev@vger.kernel.org Signed-off-by: Jarod Wilson <jarod@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-04-05 04:32:42 +07:00
memcpy(dev->dev_addr, addr, len);
return 0;
}
/* for rlb each slave must have a unique hw mac addresses so that
* each slave will receive packets destined to a different mac
*/
bonding: attempt to better support longer hw addresses People are using bonding over Infiniband IPoIB connections, and who knows what else. Infiniband has a hardware address length of 20 octets (INFINIBAND_ALEN), and the network core defines a MAX_ADDR_LEN of 32. Various places in the bonding code are currently hard-wired to 6 octets (ETH_ALEN), such as the 3ad code, which I've left untouched here. Besides, only alb is currently possible on Infiniband links right now anyway, due to commit 1533e7731522, so the alb code is where most of the changes are. One major component of this change is the addition of a bond_hw_addr_copy function that takes a length argument, instead of using ether_addr_copy everywhere that hardware addresses need to be copied about. The other major component of this change is converting the bonding code from using struct sockaddr for address storage to struct sockaddr_storage, as the former has an address storage space of only 14, while the latter is 128 minus a few, which is necessary to support bonding over device with up to MAX_ADDR_LEN octet hardware addresses. Additionally, this probably fixes up some memory corruption issues with the current code, where it's possible to write an infiniband hardware address into a sockaddr declared on the stack. Lightly tested on a dual mlx4 IPoIB setup, which properly shows a 20-octet hardware address now: $ cat /proc/net/bonding/bond0 Ethernet Channel Bonding Driver: v3.7.1 (April 27, 2011) Bonding Mode: fault-tolerance (active-backup) (fail_over_mac active) Primary Slave: mlx4_ib0 (primary_reselect always) Currently Active Slave: mlx4_ib0 MII Status: up MII Polling Interval (ms): 100 Up Delay (ms): 100 Down Delay (ms): 100 Slave Interface: mlx4_ib0 MII Status: up Speed: Unknown Duplex: Unknown Link Failure Count: 0 Permanent HW addr: 80:00:02:08:fe:80:00:00:00:00:00:00:e4:1d:2d:03:00:1d:67:01 Slave queue ID: 0 Slave Interface: mlx4_ib1 MII Status: up Speed: Unknown Duplex: Unknown Link Failure Count: 0 Permanent HW addr: 80:00:02:09:fe:80:00:00:00:00:00:01:e4:1d:2d:03:00:1d:67:02 Slave queue ID: 0 Also tested with a standard 1Gbps NIC bonding setup (with a mix of e1000 and e1000e cards), running LNST's bonding tests. CC: Jay Vosburgh <j.vosburgh@gmail.com> CC: Veaceslav Falico <vfalico@gmail.com> CC: Andy Gospodarek <andy@greyhouse.net> CC: netdev@vger.kernel.org Signed-off-by: Jarod Wilson <jarod@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-04-05 04:32:42 +07:00
memcpy(ss.__data, addr, len);
ss.ss_family = dev->type;
if (dev_set_mac_address(dev, (struct sockaddr *)&ss, NULL)) {
slave_err(slave->bond->dev, dev, "dev_set_mac_address on slave failed! ALB mode requires that the base driver support setting the hw address also when the network device's interface is open\n");
return -EOPNOTSUPP;
}
return 0;
}
/* Swap MAC addresses between two slaves.
*
* Called with RTNL held, and no other locks.
*/
static void alb_swap_mac_addr(struct slave *slave1, struct slave *slave2)
{
bonding: attempt to better support longer hw addresses People are using bonding over Infiniband IPoIB connections, and who knows what else. Infiniband has a hardware address length of 20 octets (INFINIBAND_ALEN), and the network core defines a MAX_ADDR_LEN of 32. Various places in the bonding code are currently hard-wired to 6 octets (ETH_ALEN), such as the 3ad code, which I've left untouched here. Besides, only alb is currently possible on Infiniband links right now anyway, due to commit 1533e7731522, so the alb code is where most of the changes are. One major component of this change is the addition of a bond_hw_addr_copy function that takes a length argument, instead of using ether_addr_copy everywhere that hardware addresses need to be copied about. The other major component of this change is converting the bonding code from using struct sockaddr for address storage to struct sockaddr_storage, as the former has an address storage space of only 14, while the latter is 128 minus a few, which is necessary to support bonding over device with up to MAX_ADDR_LEN octet hardware addresses. Additionally, this probably fixes up some memory corruption issues with the current code, where it's possible to write an infiniband hardware address into a sockaddr declared on the stack. Lightly tested on a dual mlx4 IPoIB setup, which properly shows a 20-octet hardware address now: $ cat /proc/net/bonding/bond0 Ethernet Channel Bonding Driver: v3.7.1 (April 27, 2011) Bonding Mode: fault-tolerance (active-backup) (fail_over_mac active) Primary Slave: mlx4_ib0 (primary_reselect always) Currently Active Slave: mlx4_ib0 MII Status: up MII Polling Interval (ms): 100 Up Delay (ms): 100 Down Delay (ms): 100 Slave Interface: mlx4_ib0 MII Status: up Speed: Unknown Duplex: Unknown Link Failure Count: 0 Permanent HW addr: 80:00:02:08:fe:80:00:00:00:00:00:00:e4:1d:2d:03:00:1d:67:01 Slave queue ID: 0 Slave Interface: mlx4_ib1 MII Status: up Speed: Unknown Duplex: Unknown Link Failure Count: 0 Permanent HW addr: 80:00:02:09:fe:80:00:00:00:00:00:01:e4:1d:2d:03:00:1d:67:02 Slave queue ID: 0 Also tested with a standard 1Gbps NIC bonding setup (with a mix of e1000 and e1000e cards), running LNST's bonding tests. CC: Jay Vosburgh <j.vosburgh@gmail.com> CC: Veaceslav Falico <vfalico@gmail.com> CC: Andy Gospodarek <andy@greyhouse.net> CC: netdev@vger.kernel.org Signed-off-by: Jarod Wilson <jarod@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-04-05 04:32:42 +07:00
u8 tmp_mac_addr[MAX_ADDR_LEN];
bonding: attempt to better support longer hw addresses People are using bonding over Infiniband IPoIB connections, and who knows what else. Infiniband has a hardware address length of 20 octets (INFINIBAND_ALEN), and the network core defines a MAX_ADDR_LEN of 32. Various places in the bonding code are currently hard-wired to 6 octets (ETH_ALEN), such as the 3ad code, which I've left untouched here. Besides, only alb is currently possible on Infiniband links right now anyway, due to commit 1533e7731522, so the alb code is where most of the changes are. One major component of this change is the addition of a bond_hw_addr_copy function that takes a length argument, instead of using ether_addr_copy everywhere that hardware addresses need to be copied about. The other major component of this change is converting the bonding code from using struct sockaddr for address storage to struct sockaddr_storage, as the former has an address storage space of only 14, while the latter is 128 minus a few, which is necessary to support bonding over device with up to MAX_ADDR_LEN octet hardware addresses. Additionally, this probably fixes up some memory corruption issues with the current code, where it's possible to write an infiniband hardware address into a sockaddr declared on the stack. Lightly tested on a dual mlx4 IPoIB setup, which properly shows a 20-octet hardware address now: $ cat /proc/net/bonding/bond0 Ethernet Channel Bonding Driver: v3.7.1 (April 27, 2011) Bonding Mode: fault-tolerance (active-backup) (fail_over_mac active) Primary Slave: mlx4_ib0 (primary_reselect always) Currently Active Slave: mlx4_ib0 MII Status: up MII Polling Interval (ms): 100 Up Delay (ms): 100 Down Delay (ms): 100 Slave Interface: mlx4_ib0 MII Status: up Speed: Unknown Duplex: Unknown Link Failure Count: 0 Permanent HW addr: 80:00:02:08:fe:80:00:00:00:00:00:00:e4:1d:2d:03:00:1d:67:01 Slave queue ID: 0 Slave Interface: mlx4_ib1 MII Status: up Speed: Unknown Duplex: Unknown Link Failure Count: 0 Permanent HW addr: 80:00:02:09:fe:80:00:00:00:00:00:01:e4:1d:2d:03:00:1d:67:02 Slave queue ID: 0 Also tested with a standard 1Gbps NIC bonding setup (with a mix of e1000 and e1000e cards), running LNST's bonding tests. CC: Jay Vosburgh <j.vosburgh@gmail.com> CC: Veaceslav Falico <vfalico@gmail.com> CC: Andy Gospodarek <andy@greyhouse.net> CC: netdev@vger.kernel.org Signed-off-by: Jarod Wilson <jarod@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-04-05 04:32:42 +07:00
bond_hw_addr_copy(tmp_mac_addr, slave1->dev->dev_addr,
slave1->dev->addr_len);
alb_set_slave_mac_addr(slave1, slave2->dev->dev_addr,
slave2->dev->addr_len);
alb_set_slave_mac_addr(slave2, tmp_mac_addr,
slave1->dev->addr_len);
}
/* Send learning packets after MAC address swap.
*
* Called with RTNL and no other locks
*/
static void alb_fasten_mac_swap(struct bonding *bond, struct slave *slave1,
struct slave *slave2)
{
int slaves_state_differ = (bond_slave_can_tx(slave1) != bond_slave_can_tx(slave2));
struct slave *disabled_slave = NULL;
ASSERT_RTNL();
/* fasten the change in the switch */
if (bond_slave_can_tx(slave1)) {
alb_send_learning_packets(slave1, slave1->dev->dev_addr, false);
if (bond->alb_info.rlb_enabled) {
/* inform the clients that the mac address
* has changed
*/
rlb_req_update_slave_clients(bond, slave1);
}
} else {
disabled_slave = slave1;
}
if (bond_slave_can_tx(slave2)) {
alb_send_learning_packets(slave2, slave2->dev->dev_addr, false);
if (bond->alb_info.rlb_enabled) {
/* inform the clients that the mac address
* has changed
*/
rlb_req_update_slave_clients(bond, slave2);
}
} else {
disabled_slave = slave2;
}
if (bond->alb_info.rlb_enabled && slaves_state_differ) {
/* A disabled slave was assigned an active mac addr */
rlb_teach_disabled_mac_on_primary(bond,
disabled_slave->dev->dev_addr);
}
}
/**
* alb_change_hw_addr_on_detach
* @bond: bonding we're working on
* @slave: the slave that was just detached
*
* We assume that @slave was already detached from the slave list.
*
* If @slave's permanent hw address is different both from its current
* address and from @bond's address, then somewhere in the bond there's
* a slave that has @slave's permanet address as its current address.
* We'll make sure that that slave no longer uses @slave's permanent address.
*
* Caller must hold RTNL and no other locks
*/
static void alb_change_hw_addr_on_detach(struct bonding *bond, struct slave *slave)
{
int perm_curr_diff;
int perm_bond_diff;
struct slave *found_slave;
perm_curr_diff = !ether_addr_equal_64bits(slave->perm_hwaddr,
slave->dev->dev_addr);
perm_bond_diff = !ether_addr_equal_64bits(slave->perm_hwaddr,
bond->dev->dev_addr);
if (perm_curr_diff && perm_bond_diff) {
found_slave = bond_slave_has_mac(bond, slave->perm_hwaddr);
if (found_slave) {
alb_swap_mac_addr(slave, found_slave);
alb_fasten_mac_swap(bond, slave, found_slave);
}
}
}
/**
* alb_handle_addr_collision_on_attach
* @bond: bonding we're working on
* @slave: the slave that was just attached
*
* checks uniqueness of slave's mac address and handles the case the
* new slave uses the bonds mac address.
*
* If the permanent hw address of @slave is @bond's hw address, we need to
* find a different hw address to give @slave, that isn't in use by any other
* slave in the bond. This address must be, of course, one of the permanent
* addresses of the other slaves.
*
* We go over the slave list, and for each slave there we compare its
* permanent hw address with the current address of all the other slaves.
* If no match was found, then we've found a slave with a permanent address
* that isn't used by any other slave in the bond, so we can assign it to
* @slave.
*
* assumption: this function is called before @slave is attached to the
* bond slave list.
*/
static int alb_handle_addr_collision_on_attach(struct bonding *bond, struct slave *slave)
{
struct slave *has_bond_addr = rcu_access_pointer(bond->curr_active_slave);
struct slave *tmp_slave1, *free_mac_slave = NULL;
struct list_head *iter;
if (!bond_has_slaves(bond)) {
/* this is the first slave */
return 0;
}
/* if slave's mac address differs from bond's mac address
* check uniqueness of slave's mac address against the other
* slaves in the bond.
*/
if (!ether_addr_equal_64bits(slave->perm_hwaddr, bond->dev->dev_addr)) {
if (!bond_slave_has_mac(bond, slave->dev->dev_addr))
return 0;
/* Try setting slave mac to bond address and fall-through
* to code handling that situation below...
*/
bonding: attempt to better support longer hw addresses People are using bonding over Infiniband IPoIB connections, and who knows what else. Infiniband has a hardware address length of 20 octets (INFINIBAND_ALEN), and the network core defines a MAX_ADDR_LEN of 32. Various places in the bonding code are currently hard-wired to 6 octets (ETH_ALEN), such as the 3ad code, which I've left untouched here. Besides, only alb is currently possible on Infiniband links right now anyway, due to commit 1533e7731522, so the alb code is where most of the changes are. One major component of this change is the addition of a bond_hw_addr_copy function that takes a length argument, instead of using ether_addr_copy everywhere that hardware addresses need to be copied about. The other major component of this change is converting the bonding code from using struct sockaddr for address storage to struct sockaddr_storage, as the former has an address storage space of only 14, while the latter is 128 minus a few, which is necessary to support bonding over device with up to MAX_ADDR_LEN octet hardware addresses. Additionally, this probably fixes up some memory corruption issues with the current code, where it's possible to write an infiniband hardware address into a sockaddr declared on the stack. Lightly tested on a dual mlx4 IPoIB setup, which properly shows a 20-octet hardware address now: $ cat /proc/net/bonding/bond0 Ethernet Channel Bonding Driver: v3.7.1 (April 27, 2011) Bonding Mode: fault-tolerance (active-backup) (fail_over_mac active) Primary Slave: mlx4_ib0 (primary_reselect always) Currently Active Slave: mlx4_ib0 MII Status: up MII Polling Interval (ms): 100 Up Delay (ms): 100 Down Delay (ms): 100 Slave Interface: mlx4_ib0 MII Status: up Speed: Unknown Duplex: Unknown Link Failure Count: 0 Permanent HW addr: 80:00:02:08:fe:80:00:00:00:00:00:00:e4:1d:2d:03:00:1d:67:01 Slave queue ID: 0 Slave Interface: mlx4_ib1 MII Status: up Speed: Unknown Duplex: Unknown Link Failure Count: 0 Permanent HW addr: 80:00:02:09:fe:80:00:00:00:00:00:01:e4:1d:2d:03:00:1d:67:02 Slave queue ID: 0 Also tested with a standard 1Gbps NIC bonding setup (with a mix of e1000 and e1000e cards), running LNST's bonding tests. CC: Jay Vosburgh <j.vosburgh@gmail.com> CC: Veaceslav Falico <vfalico@gmail.com> CC: Andy Gospodarek <andy@greyhouse.net> CC: netdev@vger.kernel.org Signed-off-by: Jarod Wilson <jarod@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-04-05 04:32:42 +07:00
alb_set_slave_mac_addr(slave, bond->dev->dev_addr,
bond->dev->addr_len);
}
/* The slave's address is equal to the address of the bond.
* Search for a spare address in the bond for this slave.
*/
bond_for_each_slave(bond, tmp_slave1, iter) {
if (!bond_slave_has_mac(bond, tmp_slave1->perm_hwaddr)) {
/* no slave has tmp_slave1's perm addr
* as its curr addr
*/
free_mac_slave = tmp_slave1;
break;
}
if (!has_bond_addr) {
if (ether_addr_equal_64bits(tmp_slave1->dev->dev_addr,
bond->dev->dev_addr)) {
has_bond_addr = tmp_slave1;
}
}
}
if (free_mac_slave) {
bonding: attempt to better support longer hw addresses People are using bonding over Infiniband IPoIB connections, and who knows what else. Infiniband has a hardware address length of 20 octets (INFINIBAND_ALEN), and the network core defines a MAX_ADDR_LEN of 32. Various places in the bonding code are currently hard-wired to 6 octets (ETH_ALEN), such as the 3ad code, which I've left untouched here. Besides, only alb is currently possible on Infiniband links right now anyway, due to commit 1533e7731522, so the alb code is where most of the changes are. One major component of this change is the addition of a bond_hw_addr_copy function that takes a length argument, instead of using ether_addr_copy everywhere that hardware addresses need to be copied about. The other major component of this change is converting the bonding code from using struct sockaddr for address storage to struct sockaddr_storage, as the former has an address storage space of only 14, while the latter is 128 minus a few, which is necessary to support bonding over device with up to MAX_ADDR_LEN octet hardware addresses. Additionally, this probably fixes up some memory corruption issues with the current code, where it's possible to write an infiniband hardware address into a sockaddr declared on the stack. Lightly tested on a dual mlx4 IPoIB setup, which properly shows a 20-octet hardware address now: $ cat /proc/net/bonding/bond0 Ethernet Channel Bonding Driver: v3.7.1 (April 27, 2011) Bonding Mode: fault-tolerance (active-backup) (fail_over_mac active) Primary Slave: mlx4_ib0 (primary_reselect always) Currently Active Slave: mlx4_ib0 MII Status: up MII Polling Interval (ms): 100 Up Delay (ms): 100 Down Delay (ms): 100 Slave Interface: mlx4_ib0 MII Status: up Speed: Unknown Duplex: Unknown Link Failure Count: 0 Permanent HW addr: 80:00:02:08:fe:80:00:00:00:00:00:00:e4:1d:2d:03:00:1d:67:01 Slave queue ID: 0 Slave Interface: mlx4_ib1 MII Status: up Speed: Unknown Duplex: Unknown Link Failure Count: 0 Permanent HW addr: 80:00:02:09:fe:80:00:00:00:00:00:01:e4:1d:2d:03:00:1d:67:02 Slave queue ID: 0 Also tested with a standard 1Gbps NIC bonding setup (with a mix of e1000 and e1000e cards), running LNST's bonding tests. CC: Jay Vosburgh <j.vosburgh@gmail.com> CC: Veaceslav Falico <vfalico@gmail.com> CC: Andy Gospodarek <andy@greyhouse.net> CC: netdev@vger.kernel.org Signed-off-by: Jarod Wilson <jarod@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-04-05 04:32:42 +07:00
alb_set_slave_mac_addr(slave, free_mac_slave->perm_hwaddr,
free_mac_slave->dev->addr_len);
slave_warn(bond->dev, slave->dev, "the slave hw address is in use by the bond; giving it the hw address of %s\n",
free_mac_slave->dev->name);
} else if (has_bond_addr) {
slave_err(bond->dev, slave->dev, "the slave hw address is in use by the bond; couldn't find a slave with a free hw address to give it (this should not have happened)\n");
return -EFAULT;
}
return 0;
}
/**
* alb_set_mac_address
* @bond:
* @addr:
*
* In TLB mode all slaves are configured to the bond's hw address, but set
* their dev_addr field to different addresses (based on their permanent hw
* addresses).
*
* For each slave, this function sets the interface to the new address and then
* changes its dev_addr field to its previous value.
*
* Unwinding assumes bond's mac address has not yet changed.
*/
static int alb_set_mac_address(struct bonding *bond, void *addr)
{
struct slave *slave, *rollback_slave;
struct list_head *iter;
bonding: attempt to better support longer hw addresses People are using bonding over Infiniband IPoIB connections, and who knows what else. Infiniband has a hardware address length of 20 octets (INFINIBAND_ALEN), and the network core defines a MAX_ADDR_LEN of 32. Various places in the bonding code are currently hard-wired to 6 octets (ETH_ALEN), such as the 3ad code, which I've left untouched here. Besides, only alb is currently possible on Infiniband links right now anyway, due to commit 1533e7731522, so the alb code is where most of the changes are. One major component of this change is the addition of a bond_hw_addr_copy function that takes a length argument, instead of using ether_addr_copy everywhere that hardware addresses need to be copied about. The other major component of this change is converting the bonding code from using struct sockaddr for address storage to struct sockaddr_storage, as the former has an address storage space of only 14, while the latter is 128 minus a few, which is necessary to support bonding over device with up to MAX_ADDR_LEN octet hardware addresses. Additionally, this probably fixes up some memory corruption issues with the current code, where it's possible to write an infiniband hardware address into a sockaddr declared on the stack. Lightly tested on a dual mlx4 IPoIB setup, which properly shows a 20-octet hardware address now: $ cat /proc/net/bonding/bond0 Ethernet Channel Bonding Driver: v3.7.1 (April 27, 2011) Bonding Mode: fault-tolerance (active-backup) (fail_over_mac active) Primary Slave: mlx4_ib0 (primary_reselect always) Currently Active Slave: mlx4_ib0 MII Status: up MII Polling Interval (ms): 100 Up Delay (ms): 100 Down Delay (ms): 100 Slave Interface: mlx4_ib0 MII Status: up Speed: Unknown Duplex: Unknown Link Failure Count: 0 Permanent HW addr: 80:00:02:08:fe:80:00:00:00:00:00:00:e4:1d:2d:03:00:1d:67:01 Slave queue ID: 0 Slave Interface: mlx4_ib1 MII Status: up Speed: Unknown Duplex: Unknown Link Failure Count: 0 Permanent HW addr: 80:00:02:09:fe:80:00:00:00:00:00:01:e4:1d:2d:03:00:1d:67:02 Slave queue ID: 0 Also tested with a standard 1Gbps NIC bonding setup (with a mix of e1000 and e1000e cards), running LNST's bonding tests. CC: Jay Vosburgh <j.vosburgh@gmail.com> CC: Veaceslav Falico <vfalico@gmail.com> CC: Andy Gospodarek <andy@greyhouse.net> CC: netdev@vger.kernel.org Signed-off-by: Jarod Wilson <jarod@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-04-05 04:32:42 +07:00
struct sockaddr_storage ss;
char tmp_addr[MAX_ADDR_LEN];
int res;
if (bond->alb_info.rlb_enabled)
return 0;
bond_for_each_slave(bond, slave, iter) {
/* save net_device's current hw address */
bonding: attempt to better support longer hw addresses People are using bonding over Infiniband IPoIB connections, and who knows what else. Infiniband has a hardware address length of 20 octets (INFINIBAND_ALEN), and the network core defines a MAX_ADDR_LEN of 32. Various places in the bonding code are currently hard-wired to 6 octets (ETH_ALEN), such as the 3ad code, which I've left untouched here. Besides, only alb is currently possible on Infiniband links right now anyway, due to commit 1533e7731522, so the alb code is where most of the changes are. One major component of this change is the addition of a bond_hw_addr_copy function that takes a length argument, instead of using ether_addr_copy everywhere that hardware addresses need to be copied about. The other major component of this change is converting the bonding code from using struct sockaddr for address storage to struct sockaddr_storage, as the former has an address storage space of only 14, while the latter is 128 minus a few, which is necessary to support bonding over device with up to MAX_ADDR_LEN octet hardware addresses. Additionally, this probably fixes up some memory corruption issues with the current code, where it's possible to write an infiniband hardware address into a sockaddr declared on the stack. Lightly tested on a dual mlx4 IPoIB setup, which properly shows a 20-octet hardware address now: $ cat /proc/net/bonding/bond0 Ethernet Channel Bonding Driver: v3.7.1 (April 27, 2011) Bonding Mode: fault-tolerance (active-backup) (fail_over_mac active) Primary Slave: mlx4_ib0 (primary_reselect always) Currently Active Slave: mlx4_ib0 MII Status: up MII Polling Interval (ms): 100 Up Delay (ms): 100 Down Delay (ms): 100 Slave Interface: mlx4_ib0 MII Status: up Speed: Unknown Duplex: Unknown Link Failure Count: 0 Permanent HW addr: 80:00:02:08:fe:80:00:00:00:00:00:00:e4:1d:2d:03:00:1d:67:01 Slave queue ID: 0 Slave Interface: mlx4_ib1 MII Status: up Speed: Unknown Duplex: Unknown Link Failure Count: 0 Permanent HW addr: 80:00:02:09:fe:80:00:00:00:00:00:01:e4:1d:2d:03:00:1d:67:02 Slave queue ID: 0 Also tested with a standard 1Gbps NIC bonding setup (with a mix of e1000 and e1000e cards), running LNST's bonding tests. CC: Jay Vosburgh <j.vosburgh@gmail.com> CC: Veaceslav Falico <vfalico@gmail.com> CC: Andy Gospodarek <andy@greyhouse.net> CC: netdev@vger.kernel.org Signed-off-by: Jarod Wilson <jarod@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-04-05 04:32:42 +07:00
bond_hw_addr_copy(tmp_addr, slave->dev->dev_addr,
slave->dev->addr_len);
res = dev_set_mac_address(slave->dev, addr, NULL);
/* restore net_device's hw address */
bonding: attempt to better support longer hw addresses People are using bonding over Infiniband IPoIB connections, and who knows what else. Infiniband has a hardware address length of 20 octets (INFINIBAND_ALEN), and the network core defines a MAX_ADDR_LEN of 32. Various places in the bonding code are currently hard-wired to 6 octets (ETH_ALEN), such as the 3ad code, which I've left untouched here. Besides, only alb is currently possible on Infiniband links right now anyway, due to commit 1533e7731522, so the alb code is where most of the changes are. One major component of this change is the addition of a bond_hw_addr_copy function that takes a length argument, instead of using ether_addr_copy everywhere that hardware addresses need to be copied about. The other major component of this change is converting the bonding code from using struct sockaddr for address storage to struct sockaddr_storage, as the former has an address storage space of only 14, while the latter is 128 minus a few, which is necessary to support bonding over device with up to MAX_ADDR_LEN octet hardware addresses. Additionally, this probably fixes up some memory corruption issues with the current code, where it's possible to write an infiniband hardware address into a sockaddr declared on the stack. Lightly tested on a dual mlx4 IPoIB setup, which properly shows a 20-octet hardware address now: $ cat /proc/net/bonding/bond0 Ethernet Channel Bonding Driver: v3.7.1 (April 27, 2011) Bonding Mode: fault-tolerance (active-backup) (fail_over_mac active) Primary Slave: mlx4_ib0 (primary_reselect always) Currently Active Slave: mlx4_ib0 MII Status: up MII Polling Interval (ms): 100 Up Delay (ms): 100 Down Delay (ms): 100 Slave Interface: mlx4_ib0 MII Status: up Speed: Unknown Duplex: Unknown Link Failure Count: 0 Permanent HW addr: 80:00:02:08:fe:80:00:00:00:00:00:00:e4:1d:2d:03:00:1d:67:01 Slave queue ID: 0 Slave Interface: mlx4_ib1 MII Status: up Speed: Unknown Duplex: Unknown Link Failure Count: 0 Permanent HW addr: 80:00:02:09:fe:80:00:00:00:00:00:01:e4:1d:2d:03:00:1d:67:02 Slave queue ID: 0 Also tested with a standard 1Gbps NIC bonding setup (with a mix of e1000 and e1000e cards), running LNST's bonding tests. CC: Jay Vosburgh <j.vosburgh@gmail.com> CC: Veaceslav Falico <vfalico@gmail.com> CC: Andy Gospodarek <andy@greyhouse.net> CC: netdev@vger.kernel.org Signed-off-by: Jarod Wilson <jarod@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-04-05 04:32:42 +07:00
bond_hw_addr_copy(slave->dev->dev_addr, tmp_addr,
slave->dev->addr_len);
if (res)
goto unwind;
}
return 0;
unwind:
bonding: attempt to better support longer hw addresses People are using bonding over Infiniband IPoIB connections, and who knows what else. Infiniband has a hardware address length of 20 octets (INFINIBAND_ALEN), and the network core defines a MAX_ADDR_LEN of 32. Various places in the bonding code are currently hard-wired to 6 octets (ETH_ALEN), such as the 3ad code, which I've left untouched here. Besides, only alb is currently possible on Infiniband links right now anyway, due to commit 1533e7731522, so the alb code is where most of the changes are. One major component of this change is the addition of a bond_hw_addr_copy function that takes a length argument, instead of using ether_addr_copy everywhere that hardware addresses need to be copied about. The other major component of this change is converting the bonding code from using struct sockaddr for address storage to struct sockaddr_storage, as the former has an address storage space of only 14, while the latter is 128 minus a few, which is necessary to support bonding over device with up to MAX_ADDR_LEN octet hardware addresses. Additionally, this probably fixes up some memory corruption issues with the current code, where it's possible to write an infiniband hardware address into a sockaddr declared on the stack. Lightly tested on a dual mlx4 IPoIB setup, which properly shows a 20-octet hardware address now: $ cat /proc/net/bonding/bond0 Ethernet Channel Bonding Driver: v3.7.1 (April 27, 2011) Bonding Mode: fault-tolerance (active-backup) (fail_over_mac active) Primary Slave: mlx4_ib0 (primary_reselect always) Currently Active Slave: mlx4_ib0 MII Status: up MII Polling Interval (ms): 100 Up Delay (ms): 100 Down Delay (ms): 100 Slave Interface: mlx4_ib0 MII Status: up Speed: Unknown Duplex: Unknown Link Failure Count: 0 Permanent HW addr: 80:00:02:08:fe:80:00:00:00:00:00:00:e4:1d:2d:03:00:1d:67:01 Slave queue ID: 0 Slave Interface: mlx4_ib1 MII Status: up Speed: Unknown Duplex: Unknown Link Failure Count: 0 Permanent HW addr: 80:00:02:09:fe:80:00:00:00:00:00:01:e4:1d:2d:03:00:1d:67:02 Slave queue ID: 0 Also tested with a standard 1Gbps NIC bonding setup (with a mix of e1000 and e1000e cards), running LNST's bonding tests. CC: Jay Vosburgh <j.vosburgh@gmail.com> CC: Veaceslav Falico <vfalico@gmail.com> CC: Andy Gospodarek <andy@greyhouse.net> CC: netdev@vger.kernel.org Signed-off-by: Jarod Wilson <jarod@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-04-05 04:32:42 +07:00
memcpy(ss.__data, bond->dev->dev_addr, bond->dev->addr_len);
ss.ss_family = bond->dev->type;
/* unwind from head to the slave that failed */
bond_for_each_slave(bond, rollback_slave, iter) {
if (rollback_slave == slave)
break;
bonding: attempt to better support longer hw addresses People are using bonding over Infiniband IPoIB connections, and who knows what else. Infiniband has a hardware address length of 20 octets (INFINIBAND_ALEN), and the network core defines a MAX_ADDR_LEN of 32. Various places in the bonding code are currently hard-wired to 6 octets (ETH_ALEN), such as the 3ad code, which I've left untouched here. Besides, only alb is currently possible on Infiniband links right now anyway, due to commit 1533e7731522, so the alb code is where most of the changes are. One major component of this change is the addition of a bond_hw_addr_copy function that takes a length argument, instead of using ether_addr_copy everywhere that hardware addresses need to be copied about. The other major component of this change is converting the bonding code from using struct sockaddr for address storage to struct sockaddr_storage, as the former has an address storage space of only 14, while the latter is 128 minus a few, which is necessary to support bonding over device with up to MAX_ADDR_LEN octet hardware addresses. Additionally, this probably fixes up some memory corruption issues with the current code, where it's possible to write an infiniband hardware address into a sockaddr declared on the stack. Lightly tested on a dual mlx4 IPoIB setup, which properly shows a 20-octet hardware address now: $ cat /proc/net/bonding/bond0 Ethernet Channel Bonding Driver: v3.7.1 (April 27, 2011) Bonding Mode: fault-tolerance (active-backup) (fail_over_mac active) Primary Slave: mlx4_ib0 (primary_reselect always) Currently Active Slave: mlx4_ib0 MII Status: up MII Polling Interval (ms): 100 Up Delay (ms): 100 Down Delay (ms): 100 Slave Interface: mlx4_ib0 MII Status: up Speed: Unknown Duplex: Unknown Link Failure Count: 0 Permanent HW addr: 80:00:02:08:fe:80:00:00:00:00:00:00:e4:1d:2d:03:00:1d:67:01 Slave queue ID: 0 Slave Interface: mlx4_ib1 MII Status: up Speed: Unknown Duplex: Unknown Link Failure Count: 0 Permanent HW addr: 80:00:02:09:fe:80:00:00:00:00:00:01:e4:1d:2d:03:00:1d:67:02 Slave queue ID: 0 Also tested with a standard 1Gbps NIC bonding setup (with a mix of e1000 and e1000e cards), running LNST's bonding tests. CC: Jay Vosburgh <j.vosburgh@gmail.com> CC: Veaceslav Falico <vfalico@gmail.com> CC: Andy Gospodarek <andy@greyhouse.net> CC: netdev@vger.kernel.org Signed-off-by: Jarod Wilson <jarod@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-04-05 04:32:42 +07:00
bond_hw_addr_copy(tmp_addr, rollback_slave->dev->dev_addr,
rollback_slave->dev->addr_len);
dev_set_mac_address(rollback_slave->dev,
(struct sockaddr *)&ss, NULL);
bonding: attempt to better support longer hw addresses People are using bonding over Infiniband IPoIB connections, and who knows what else. Infiniband has a hardware address length of 20 octets (INFINIBAND_ALEN), and the network core defines a MAX_ADDR_LEN of 32. Various places in the bonding code are currently hard-wired to 6 octets (ETH_ALEN), such as the 3ad code, which I've left untouched here. Besides, only alb is currently possible on Infiniband links right now anyway, due to commit 1533e7731522, so the alb code is where most of the changes are. One major component of this change is the addition of a bond_hw_addr_copy function that takes a length argument, instead of using ether_addr_copy everywhere that hardware addresses need to be copied about. The other major component of this change is converting the bonding code from using struct sockaddr for address storage to struct sockaddr_storage, as the former has an address storage space of only 14, while the latter is 128 minus a few, which is necessary to support bonding over device with up to MAX_ADDR_LEN octet hardware addresses. Additionally, this probably fixes up some memory corruption issues with the current code, where it's possible to write an infiniband hardware address into a sockaddr declared on the stack. Lightly tested on a dual mlx4 IPoIB setup, which properly shows a 20-octet hardware address now: $ cat /proc/net/bonding/bond0 Ethernet Channel Bonding Driver: v3.7.1 (April 27, 2011) Bonding Mode: fault-tolerance (active-backup) (fail_over_mac active) Primary Slave: mlx4_ib0 (primary_reselect always) Currently Active Slave: mlx4_ib0 MII Status: up MII Polling Interval (ms): 100 Up Delay (ms): 100 Down Delay (ms): 100 Slave Interface: mlx4_ib0 MII Status: up Speed: Unknown Duplex: Unknown Link Failure Count: 0 Permanent HW addr: 80:00:02:08:fe:80:00:00:00:00:00:00:e4:1d:2d:03:00:1d:67:01 Slave queue ID: 0 Slave Interface: mlx4_ib1 MII Status: up Speed: Unknown Duplex: Unknown Link Failure Count: 0 Permanent HW addr: 80:00:02:09:fe:80:00:00:00:00:00:01:e4:1d:2d:03:00:1d:67:02 Slave queue ID: 0 Also tested with a standard 1Gbps NIC bonding setup (with a mix of e1000 and e1000e cards), running LNST's bonding tests. CC: Jay Vosburgh <j.vosburgh@gmail.com> CC: Veaceslav Falico <vfalico@gmail.com> CC: Andy Gospodarek <andy@greyhouse.net> CC: netdev@vger.kernel.org Signed-off-by: Jarod Wilson <jarod@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-04-05 04:32:42 +07:00
bond_hw_addr_copy(rollback_slave->dev->dev_addr, tmp_addr,
rollback_slave->dev->addr_len);
}
return res;
}
/************************ exported alb funcions ************************/
int bond_alb_initialize(struct bonding *bond, int rlb_enabled)
{
int res;
res = tlb_initialize(bond);
if (res)
return res;
if (rlb_enabled) {
bond->alb_info.rlb_enabled = 1;
res = rlb_initialize(bond);
if (res) {
tlb_deinitialize(bond);
return res;
}
} else {
bond->alb_info.rlb_enabled = 0;
}
return 0;
}
void bond_alb_deinitialize(struct bonding *bond)
{
struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
tlb_deinitialize(bond);
if (bond_info->rlb_enabled)
rlb_deinitialize(bond);
}
static netdev_tx_t bond_do_alb_xmit(struct sk_buff *skb, struct bonding *bond,
struct slave *tx_slave)
{
struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
struct ethhdr *eth_data = eth_hdr(skb);
if (!tx_slave) {
/* unbalanced or unassigned, send through primary */
tx_slave = rcu_dereference(bond->curr_active_slave);
if (bond->params.tlb_dynamic_lb)
bond_info->unbalanced_load += skb->len;
}
if (tx_slave && bond_slave_can_tx(tx_slave)) {
if (tx_slave != rcu_access_pointer(bond->curr_active_slave)) {
ether_addr_copy(eth_data->h_source,
tx_slave->dev->dev_addr);
}
bond_dev_queue_xmit(bond, skb, tx_slave->dev);
goto out;
}
if (tx_slave && bond->params.tlb_dynamic_lb) {
spin_lock(&bond->mode_lock);
__tlb_clear_slave(bond, tx_slave, 0);
spin_unlock(&bond->mode_lock);
}
/* no suitable interface, frame not sent */
bond_tx_drop(bond->dev, skb);
out:
return NETDEV_TX_OK;
}
struct slave *bond_xmit_tlb_slave_get(struct bonding *bond,
struct sk_buff *skb)
{
struct slave *tx_slave = NULL;
struct ethhdr *eth_data;
u32 hash_index;
skb_reset_mac_header(skb);
eth_data = eth_hdr(skb);
/* Do not TX balance any multicast or broadcast */
if (!is_multicast_ether_addr(eth_data->h_dest)) {
switch (skb->protocol) {
case htons(ETH_P_IP):
case htons(ETH_P_IPX):
/* In case of IPX, it will falback to L2 hash */
case htons(ETH_P_IPV6):
hash_index = bond_xmit_hash(bond, skb);
if (bond->params.tlb_dynamic_lb) {
tx_slave = tlb_choose_channel(bond,
hash_index & 0xFF,
skb->len);
} else {
struct bond_up_slave *slaves;
unsigned int count;
slaves = rcu_dereference(bond->usable_slaves);
locking/atomics: COCCINELLE/treewide: Convert trivial ACCESS_ONCE() patterns to READ_ONCE()/WRITE_ONCE() Please do not apply this to mainline directly, instead please re-run the coccinelle script shown below and apply its output. For several reasons, it is desirable to use {READ,WRITE}_ONCE() in preference to ACCESS_ONCE(), and new code is expected to use one of the former. So far, there's been no reason to change most existing uses of ACCESS_ONCE(), as these aren't harmful, and changing them results in churn. However, for some features, the read/write distinction is critical to correct operation. To distinguish these cases, separate read/write accessors must be used. This patch migrates (most) remaining ACCESS_ONCE() instances to {READ,WRITE}_ONCE(), using the following coccinelle script: ---- // Convert trivial ACCESS_ONCE() uses to equivalent READ_ONCE() and // WRITE_ONCE() // $ make coccicheck COCCI=/home/mark/once.cocci SPFLAGS="--include-headers" MODE=patch virtual patch @ depends on patch @ expression E1, E2; @@ - ACCESS_ONCE(E1) = E2 + WRITE_ONCE(E1, E2) @ depends on patch @ expression E; @@ - ACCESS_ONCE(E) + READ_ONCE(E) ---- Signed-off-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: davem@davemloft.net Cc: linux-arch@vger.kernel.org Cc: mpe@ellerman.id.au Cc: shuah@kernel.org Cc: snitzer@redhat.com Cc: thor.thayer@linux.intel.com Cc: tj@kernel.org Cc: viro@zeniv.linux.org.uk Cc: will.deacon@arm.com Link: http://lkml.kernel.org/r/1508792849-3115-19-git-send-email-paulmck@linux.vnet.ibm.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-10-24 04:07:29 +07:00
count = slaves ? READ_ONCE(slaves->count) : 0;
if (likely(count))
tx_slave = slaves->arr[hash_index %
count];
}
break;
}
}
return tx_slave;
}
netdev_tx_t bond_tlb_xmit(struct sk_buff *skb, struct net_device *bond_dev)
{
struct bonding *bond = netdev_priv(bond_dev);
struct slave *tx_slave;
tx_slave = bond_xmit_tlb_slave_get(bond, skb);
return bond_do_alb_xmit(skb, bond, tx_slave);
}
struct slave *bond_xmit_alb_slave_get(struct bonding *bond,
struct sk_buff *skb)
{
struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
static const __be32 ip_bcast = htonl(0xffffffff);
struct slave *tx_slave = NULL;
const u8 *hash_start = NULL;
bool do_tx_balance = true;
struct ethhdr *eth_data;
u32 hash_index = 0;
int hash_size = 0;
skb_reset_mac_header(skb);
eth_data = eth_hdr(skb);
switch (ntohs(skb->protocol)) {
case ETH_P_IP: {
bonding/alb: properly access headers in bond_alb_xmit() syzbot managed to send an IPX packet through bond_alb_xmit() and af_packet and triggered a use-after-free. First, bond_alb_xmit() was using ipx_hdr() helper to reach the IPX header, but ipx_hdr() was using the transport offset instead of the network offset. In the particular syzbot report transport offset was 0xFFFF This patch removes ipx_hdr() since it was only (mis)used from bonding. Then we need to make sure IPv4/IPv6/IPX headers are pulled in skb->head before dereferencing anything. BUG: KASAN: use-after-free in bond_alb_xmit+0x153a/0x1590 drivers/net/bonding/bond_alb.c:1452 Read of size 2 at addr ffff8801ce56dfff by task syz-executor.2/18108 (if (ipx_hdr(skb)->ipx_checksum != IPX_NO_CHECKSUM) ...) Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Call Trace: [<ffffffff8441fc42>] __dump_stack lib/dump_stack.c:17 [inline] [<ffffffff8441fc42>] dump_stack+0x14d/0x20b lib/dump_stack.c:53 [<ffffffff81a7dec4>] print_address_description+0x6f/0x20b mm/kasan/report.c:282 [<ffffffff81a7e0ec>] kasan_report_error mm/kasan/report.c:380 [inline] [<ffffffff81a7e0ec>] kasan_report mm/kasan/report.c:438 [inline] [<ffffffff81a7e0ec>] kasan_report.cold+0x8c/0x2a0 mm/kasan/report.c:422 [<ffffffff81a7dc4f>] __asan_report_load_n_noabort+0xf/0x20 mm/kasan/report.c:469 [<ffffffff82c8c00a>] bond_alb_xmit+0x153a/0x1590 drivers/net/bonding/bond_alb.c:1452 [<ffffffff82c60c74>] __bond_start_xmit drivers/net/bonding/bond_main.c:4199 [inline] [<ffffffff82c60c74>] bond_start_xmit+0x4f4/0x1570 drivers/net/bonding/bond_main.c:4224 [<ffffffff83baa558>] __netdev_start_xmit include/linux/netdevice.h:4525 [inline] [<ffffffff83baa558>] netdev_start_xmit include/linux/netdevice.h:4539 [inline] [<ffffffff83baa558>] xmit_one net/core/dev.c:3611 [inline] [<ffffffff83baa558>] dev_hard_start_xmit+0x168/0x910 net/core/dev.c:3627 [<ffffffff83bacf35>] __dev_queue_xmit+0x1f55/0x33b0 net/core/dev.c:4238 [<ffffffff83bae3a8>] dev_queue_xmit+0x18/0x20 net/core/dev.c:4278 [<ffffffff84339189>] packet_snd net/packet/af_packet.c:3226 [inline] [<ffffffff84339189>] packet_sendmsg+0x4919/0x70b0 net/packet/af_packet.c:3252 [<ffffffff83b1ac0c>] sock_sendmsg_nosec net/socket.c:673 [inline] [<ffffffff83b1ac0c>] sock_sendmsg+0x12c/0x160 net/socket.c:684 [<ffffffff83b1f5a2>] __sys_sendto+0x262/0x380 net/socket.c:1996 [<ffffffff83b1f700>] SYSC_sendto net/socket.c:2008 [inline] [<ffffffff83b1f700>] SyS_sendto+0x40/0x60 net/socket.c:2004 Fixes: 1da177e4c3f4 ("Linux-2.6.12-rc2") Signed-off-by: Eric Dumazet <edumazet@google.com> Reported-by: syzbot <syzkaller@googlegroups.com> Cc: Jay Vosburgh <j.vosburgh@gmail.com> Cc: Veaceslav Falico <vfalico@gmail.com> Cc: Andy Gospodarek <andy@greyhouse.net> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-02-05 10:26:05 +07:00
const struct iphdr *iph;
if (is_broadcast_ether_addr(eth_data->h_dest) ||
bonding/alb: properly access headers in bond_alb_xmit() syzbot managed to send an IPX packet through bond_alb_xmit() and af_packet and triggered a use-after-free. First, bond_alb_xmit() was using ipx_hdr() helper to reach the IPX header, but ipx_hdr() was using the transport offset instead of the network offset. In the particular syzbot report transport offset was 0xFFFF This patch removes ipx_hdr() since it was only (mis)used from bonding. Then we need to make sure IPv4/IPv6/IPX headers are pulled in skb->head before dereferencing anything. BUG: KASAN: use-after-free in bond_alb_xmit+0x153a/0x1590 drivers/net/bonding/bond_alb.c:1452 Read of size 2 at addr ffff8801ce56dfff by task syz-executor.2/18108 (if (ipx_hdr(skb)->ipx_checksum != IPX_NO_CHECKSUM) ...) Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Call Trace: [<ffffffff8441fc42>] __dump_stack lib/dump_stack.c:17 [inline] [<ffffffff8441fc42>] dump_stack+0x14d/0x20b lib/dump_stack.c:53 [<ffffffff81a7dec4>] print_address_description+0x6f/0x20b mm/kasan/report.c:282 [<ffffffff81a7e0ec>] kasan_report_error mm/kasan/report.c:380 [inline] [<ffffffff81a7e0ec>] kasan_report mm/kasan/report.c:438 [inline] [<ffffffff81a7e0ec>] kasan_report.cold+0x8c/0x2a0 mm/kasan/report.c:422 [<ffffffff81a7dc4f>] __asan_report_load_n_noabort+0xf/0x20 mm/kasan/report.c:469 [<ffffffff82c8c00a>] bond_alb_xmit+0x153a/0x1590 drivers/net/bonding/bond_alb.c:1452 [<ffffffff82c60c74>] __bond_start_xmit drivers/net/bonding/bond_main.c:4199 [inline] [<ffffffff82c60c74>] bond_start_xmit+0x4f4/0x1570 drivers/net/bonding/bond_main.c:4224 [<ffffffff83baa558>] __netdev_start_xmit include/linux/netdevice.h:4525 [inline] [<ffffffff83baa558>] netdev_start_xmit include/linux/netdevice.h:4539 [inline] [<ffffffff83baa558>] xmit_one net/core/dev.c:3611 [inline] [<ffffffff83baa558>] dev_hard_start_xmit+0x168/0x910 net/core/dev.c:3627 [<ffffffff83bacf35>] __dev_queue_xmit+0x1f55/0x33b0 net/core/dev.c:4238 [<ffffffff83bae3a8>] dev_queue_xmit+0x18/0x20 net/core/dev.c:4278 [<ffffffff84339189>] packet_snd net/packet/af_packet.c:3226 [inline] [<ffffffff84339189>] packet_sendmsg+0x4919/0x70b0 net/packet/af_packet.c:3252 [<ffffffff83b1ac0c>] sock_sendmsg_nosec net/socket.c:673 [inline] [<ffffffff83b1ac0c>] sock_sendmsg+0x12c/0x160 net/socket.c:684 [<ffffffff83b1f5a2>] __sys_sendto+0x262/0x380 net/socket.c:1996 [<ffffffff83b1f700>] SYSC_sendto net/socket.c:2008 [inline] [<ffffffff83b1f700>] SyS_sendto+0x40/0x60 net/socket.c:2004 Fixes: 1da177e4c3f4 ("Linux-2.6.12-rc2") Signed-off-by: Eric Dumazet <edumazet@google.com> Reported-by: syzbot <syzkaller@googlegroups.com> Cc: Jay Vosburgh <j.vosburgh@gmail.com> Cc: Veaceslav Falico <vfalico@gmail.com> Cc: Andy Gospodarek <andy@greyhouse.net> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-02-05 10:26:05 +07:00
!pskb_network_may_pull(skb, sizeof(*iph))) {
do_tx_balance = false;
break;
}
iph = ip_hdr(skb);
if (iph->daddr == ip_bcast || iph->protocol == IPPROTO_IGMP) {
do_tx_balance = false;
break;
}
hash_start = (char *)&(iph->daddr);
hash_size = sizeof(iph->daddr);
break;
bonding/alb: properly access headers in bond_alb_xmit() syzbot managed to send an IPX packet through bond_alb_xmit() and af_packet and triggered a use-after-free. First, bond_alb_xmit() was using ipx_hdr() helper to reach the IPX header, but ipx_hdr() was using the transport offset instead of the network offset. In the particular syzbot report transport offset was 0xFFFF This patch removes ipx_hdr() since it was only (mis)used from bonding. Then we need to make sure IPv4/IPv6/IPX headers are pulled in skb->head before dereferencing anything. BUG: KASAN: use-after-free in bond_alb_xmit+0x153a/0x1590 drivers/net/bonding/bond_alb.c:1452 Read of size 2 at addr ffff8801ce56dfff by task syz-executor.2/18108 (if (ipx_hdr(skb)->ipx_checksum != IPX_NO_CHECKSUM) ...) Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Call Trace: [<ffffffff8441fc42>] __dump_stack lib/dump_stack.c:17 [inline] [<ffffffff8441fc42>] dump_stack+0x14d/0x20b lib/dump_stack.c:53 [<ffffffff81a7dec4>] print_address_description+0x6f/0x20b mm/kasan/report.c:282 [<ffffffff81a7e0ec>] kasan_report_error mm/kasan/report.c:380 [inline] [<ffffffff81a7e0ec>] kasan_report mm/kasan/report.c:438 [inline] [<ffffffff81a7e0ec>] kasan_report.cold+0x8c/0x2a0 mm/kasan/report.c:422 [<ffffffff81a7dc4f>] __asan_report_load_n_noabort+0xf/0x20 mm/kasan/report.c:469 [<ffffffff82c8c00a>] bond_alb_xmit+0x153a/0x1590 drivers/net/bonding/bond_alb.c:1452 [<ffffffff82c60c74>] __bond_start_xmit drivers/net/bonding/bond_main.c:4199 [inline] [<ffffffff82c60c74>] bond_start_xmit+0x4f4/0x1570 drivers/net/bonding/bond_main.c:4224 [<ffffffff83baa558>] __netdev_start_xmit include/linux/netdevice.h:4525 [inline] [<ffffffff83baa558>] netdev_start_xmit include/linux/netdevice.h:4539 [inline] [<ffffffff83baa558>] xmit_one net/core/dev.c:3611 [inline] [<ffffffff83baa558>] dev_hard_start_xmit+0x168/0x910 net/core/dev.c:3627 [<ffffffff83bacf35>] __dev_queue_xmit+0x1f55/0x33b0 net/core/dev.c:4238 [<ffffffff83bae3a8>] dev_queue_xmit+0x18/0x20 net/core/dev.c:4278 [<ffffffff84339189>] packet_snd net/packet/af_packet.c:3226 [inline] [<ffffffff84339189>] packet_sendmsg+0x4919/0x70b0 net/packet/af_packet.c:3252 [<ffffffff83b1ac0c>] sock_sendmsg_nosec net/socket.c:673 [inline] [<ffffffff83b1ac0c>] sock_sendmsg+0x12c/0x160 net/socket.c:684 [<ffffffff83b1f5a2>] __sys_sendto+0x262/0x380 net/socket.c:1996 [<ffffffff83b1f700>] SYSC_sendto net/socket.c:2008 [inline] [<ffffffff83b1f700>] SyS_sendto+0x40/0x60 net/socket.c:2004 Fixes: 1da177e4c3f4 ("Linux-2.6.12-rc2") Signed-off-by: Eric Dumazet <edumazet@google.com> Reported-by: syzbot <syzkaller@googlegroups.com> Cc: Jay Vosburgh <j.vosburgh@gmail.com> Cc: Veaceslav Falico <vfalico@gmail.com> Cc: Andy Gospodarek <andy@greyhouse.net> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-02-05 10:26:05 +07:00
}
case ETH_P_IPV6: {
const struct ipv6hdr *ip6hdr;
/* IPv6 doesn't really use broadcast mac address, but leave
* that here just in case.
*/
if (is_broadcast_ether_addr(eth_data->h_dest)) {
do_tx_balance = false;
break;
}
/* IPv6 uses all-nodes multicast as an equivalent to
* broadcasts in IPv4.
*/
if (ether_addr_equal_64bits(eth_data->h_dest, mac_v6_allmcast)) {
do_tx_balance = false;
break;
}
bonding/alb: properly access headers in bond_alb_xmit() syzbot managed to send an IPX packet through bond_alb_xmit() and af_packet and triggered a use-after-free. First, bond_alb_xmit() was using ipx_hdr() helper to reach the IPX header, but ipx_hdr() was using the transport offset instead of the network offset. In the particular syzbot report transport offset was 0xFFFF This patch removes ipx_hdr() since it was only (mis)used from bonding. Then we need to make sure IPv4/IPv6/IPX headers are pulled in skb->head before dereferencing anything. BUG: KASAN: use-after-free in bond_alb_xmit+0x153a/0x1590 drivers/net/bonding/bond_alb.c:1452 Read of size 2 at addr ffff8801ce56dfff by task syz-executor.2/18108 (if (ipx_hdr(skb)->ipx_checksum != IPX_NO_CHECKSUM) ...) Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Call Trace: [<ffffffff8441fc42>] __dump_stack lib/dump_stack.c:17 [inline] [<ffffffff8441fc42>] dump_stack+0x14d/0x20b lib/dump_stack.c:53 [<ffffffff81a7dec4>] print_address_description+0x6f/0x20b mm/kasan/report.c:282 [<ffffffff81a7e0ec>] kasan_report_error mm/kasan/report.c:380 [inline] [<ffffffff81a7e0ec>] kasan_report mm/kasan/report.c:438 [inline] [<ffffffff81a7e0ec>] kasan_report.cold+0x8c/0x2a0 mm/kasan/report.c:422 [<ffffffff81a7dc4f>] __asan_report_load_n_noabort+0xf/0x20 mm/kasan/report.c:469 [<ffffffff82c8c00a>] bond_alb_xmit+0x153a/0x1590 drivers/net/bonding/bond_alb.c:1452 [<ffffffff82c60c74>] __bond_start_xmit drivers/net/bonding/bond_main.c:4199 [inline] [<ffffffff82c60c74>] bond_start_xmit+0x4f4/0x1570 drivers/net/bonding/bond_main.c:4224 [<ffffffff83baa558>] __netdev_start_xmit include/linux/netdevice.h:4525 [inline] [<ffffffff83baa558>] netdev_start_xmit include/linux/netdevice.h:4539 [inline] [<ffffffff83baa558>] xmit_one net/core/dev.c:3611 [inline] [<ffffffff83baa558>] dev_hard_start_xmit+0x168/0x910 net/core/dev.c:3627 [<ffffffff83bacf35>] __dev_queue_xmit+0x1f55/0x33b0 net/core/dev.c:4238 [<ffffffff83bae3a8>] dev_queue_xmit+0x18/0x20 net/core/dev.c:4278 [<ffffffff84339189>] packet_snd net/packet/af_packet.c:3226 [inline] [<ffffffff84339189>] packet_sendmsg+0x4919/0x70b0 net/packet/af_packet.c:3252 [<ffffffff83b1ac0c>] sock_sendmsg_nosec net/socket.c:673 [inline] [<ffffffff83b1ac0c>] sock_sendmsg+0x12c/0x160 net/socket.c:684 [<ffffffff83b1f5a2>] __sys_sendto+0x262/0x380 net/socket.c:1996 [<ffffffff83b1f700>] SYSC_sendto net/socket.c:2008 [inline] [<ffffffff83b1f700>] SyS_sendto+0x40/0x60 net/socket.c:2004 Fixes: 1da177e4c3f4 ("Linux-2.6.12-rc2") Signed-off-by: Eric Dumazet <edumazet@google.com> Reported-by: syzbot <syzkaller@googlegroups.com> Cc: Jay Vosburgh <j.vosburgh@gmail.com> Cc: Veaceslav Falico <vfalico@gmail.com> Cc: Andy Gospodarek <andy@greyhouse.net> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-02-05 10:26:05 +07:00
if (!pskb_network_may_pull(skb, sizeof(*ip6hdr))) {
do_tx_balance = false;
break;
}
/* Additionally, DAD probes should not be tx-balanced as that
* will lead to false positives for duplicate addresses and
* prevent address configuration from working.
*/
ip6hdr = ipv6_hdr(skb);
if (ipv6_addr_any(&ip6hdr->saddr)) {
do_tx_balance = false;
break;
}
bonding/alb: properly access headers in bond_alb_xmit() syzbot managed to send an IPX packet through bond_alb_xmit() and af_packet and triggered a use-after-free. First, bond_alb_xmit() was using ipx_hdr() helper to reach the IPX header, but ipx_hdr() was using the transport offset instead of the network offset. In the particular syzbot report transport offset was 0xFFFF This patch removes ipx_hdr() since it was only (mis)used from bonding. Then we need to make sure IPv4/IPv6/IPX headers are pulled in skb->head before dereferencing anything. BUG: KASAN: use-after-free in bond_alb_xmit+0x153a/0x1590 drivers/net/bonding/bond_alb.c:1452 Read of size 2 at addr ffff8801ce56dfff by task syz-executor.2/18108 (if (ipx_hdr(skb)->ipx_checksum != IPX_NO_CHECKSUM) ...) Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Call Trace: [<ffffffff8441fc42>] __dump_stack lib/dump_stack.c:17 [inline] [<ffffffff8441fc42>] dump_stack+0x14d/0x20b lib/dump_stack.c:53 [<ffffffff81a7dec4>] print_address_description+0x6f/0x20b mm/kasan/report.c:282 [<ffffffff81a7e0ec>] kasan_report_error mm/kasan/report.c:380 [inline] [<ffffffff81a7e0ec>] kasan_report mm/kasan/report.c:438 [inline] [<ffffffff81a7e0ec>] kasan_report.cold+0x8c/0x2a0 mm/kasan/report.c:422 [<ffffffff81a7dc4f>] __asan_report_load_n_noabort+0xf/0x20 mm/kasan/report.c:469 [<ffffffff82c8c00a>] bond_alb_xmit+0x153a/0x1590 drivers/net/bonding/bond_alb.c:1452 [<ffffffff82c60c74>] __bond_start_xmit drivers/net/bonding/bond_main.c:4199 [inline] [<ffffffff82c60c74>] bond_start_xmit+0x4f4/0x1570 drivers/net/bonding/bond_main.c:4224 [<ffffffff83baa558>] __netdev_start_xmit include/linux/netdevice.h:4525 [inline] [<ffffffff83baa558>] netdev_start_xmit include/linux/netdevice.h:4539 [inline] [<ffffffff83baa558>] xmit_one net/core/dev.c:3611 [inline] [<ffffffff83baa558>] dev_hard_start_xmit+0x168/0x910 net/core/dev.c:3627 [<ffffffff83bacf35>] __dev_queue_xmit+0x1f55/0x33b0 net/core/dev.c:4238 [<ffffffff83bae3a8>] dev_queue_xmit+0x18/0x20 net/core/dev.c:4278 [<ffffffff84339189>] packet_snd net/packet/af_packet.c:3226 [inline] [<ffffffff84339189>] packet_sendmsg+0x4919/0x70b0 net/packet/af_packet.c:3252 [<ffffffff83b1ac0c>] sock_sendmsg_nosec net/socket.c:673 [inline] [<ffffffff83b1ac0c>] sock_sendmsg+0x12c/0x160 net/socket.c:684 [<ffffffff83b1f5a2>] __sys_sendto+0x262/0x380 net/socket.c:1996 [<ffffffff83b1f700>] SYSC_sendto net/socket.c:2008 [inline] [<ffffffff83b1f700>] SyS_sendto+0x40/0x60 net/socket.c:2004 Fixes: 1da177e4c3f4 ("Linux-2.6.12-rc2") Signed-off-by: Eric Dumazet <edumazet@google.com> Reported-by: syzbot <syzkaller@googlegroups.com> Cc: Jay Vosburgh <j.vosburgh@gmail.com> Cc: Veaceslav Falico <vfalico@gmail.com> Cc: Andy Gospodarek <andy@greyhouse.net> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-02-05 10:26:05 +07:00
hash_start = (char *)&ip6hdr->daddr;
hash_size = sizeof(ip6hdr->daddr);
break;
bonding/alb: properly access headers in bond_alb_xmit() syzbot managed to send an IPX packet through bond_alb_xmit() and af_packet and triggered a use-after-free. First, bond_alb_xmit() was using ipx_hdr() helper to reach the IPX header, but ipx_hdr() was using the transport offset instead of the network offset. In the particular syzbot report transport offset was 0xFFFF This patch removes ipx_hdr() since it was only (mis)used from bonding. Then we need to make sure IPv4/IPv6/IPX headers are pulled in skb->head before dereferencing anything. BUG: KASAN: use-after-free in bond_alb_xmit+0x153a/0x1590 drivers/net/bonding/bond_alb.c:1452 Read of size 2 at addr ffff8801ce56dfff by task syz-executor.2/18108 (if (ipx_hdr(skb)->ipx_checksum != IPX_NO_CHECKSUM) ...) Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Call Trace: [<ffffffff8441fc42>] __dump_stack lib/dump_stack.c:17 [inline] [<ffffffff8441fc42>] dump_stack+0x14d/0x20b lib/dump_stack.c:53 [<ffffffff81a7dec4>] print_address_description+0x6f/0x20b mm/kasan/report.c:282 [<ffffffff81a7e0ec>] kasan_report_error mm/kasan/report.c:380 [inline] [<ffffffff81a7e0ec>] kasan_report mm/kasan/report.c:438 [inline] [<ffffffff81a7e0ec>] kasan_report.cold+0x8c/0x2a0 mm/kasan/report.c:422 [<ffffffff81a7dc4f>] __asan_report_load_n_noabort+0xf/0x20 mm/kasan/report.c:469 [<ffffffff82c8c00a>] bond_alb_xmit+0x153a/0x1590 drivers/net/bonding/bond_alb.c:1452 [<ffffffff82c60c74>] __bond_start_xmit drivers/net/bonding/bond_main.c:4199 [inline] [<ffffffff82c60c74>] bond_start_xmit+0x4f4/0x1570 drivers/net/bonding/bond_main.c:4224 [<ffffffff83baa558>] __netdev_start_xmit include/linux/netdevice.h:4525 [inline] [<ffffffff83baa558>] netdev_start_xmit include/linux/netdevice.h:4539 [inline] [<ffffffff83baa558>] xmit_one net/core/dev.c:3611 [inline] [<ffffffff83baa558>] dev_hard_start_xmit+0x168/0x910 net/core/dev.c:3627 [<ffffffff83bacf35>] __dev_queue_xmit+0x1f55/0x33b0 net/core/dev.c:4238 [<ffffffff83bae3a8>] dev_queue_xmit+0x18/0x20 net/core/dev.c:4278 [<ffffffff84339189>] packet_snd net/packet/af_packet.c:3226 [inline] [<ffffffff84339189>] packet_sendmsg+0x4919/0x70b0 net/packet/af_packet.c:3252 [<ffffffff83b1ac0c>] sock_sendmsg_nosec net/socket.c:673 [inline] [<ffffffff83b1ac0c>] sock_sendmsg+0x12c/0x160 net/socket.c:684 [<ffffffff83b1f5a2>] __sys_sendto+0x262/0x380 net/socket.c:1996 [<ffffffff83b1f700>] SYSC_sendto net/socket.c:2008 [inline] [<ffffffff83b1f700>] SyS_sendto+0x40/0x60 net/socket.c:2004 Fixes: 1da177e4c3f4 ("Linux-2.6.12-rc2") Signed-off-by: Eric Dumazet <edumazet@google.com> Reported-by: syzbot <syzkaller@googlegroups.com> Cc: Jay Vosburgh <j.vosburgh@gmail.com> Cc: Veaceslav Falico <vfalico@gmail.com> Cc: Andy Gospodarek <andy@greyhouse.net> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-02-05 10:26:05 +07:00
}
case ETH_P_IPX: {
const struct ipxhdr *ipxhdr;
if (pskb_network_may_pull(skb, sizeof(*ipxhdr))) {
do_tx_balance = false;
break;
}
ipxhdr = (struct ipxhdr *)skb_network_header(skb);
if (ipxhdr->ipx_checksum != IPX_NO_CHECKSUM) {
/* something is wrong with this packet */
do_tx_balance = false;
break;
}
bonding/alb: properly access headers in bond_alb_xmit() syzbot managed to send an IPX packet through bond_alb_xmit() and af_packet and triggered a use-after-free. First, bond_alb_xmit() was using ipx_hdr() helper to reach the IPX header, but ipx_hdr() was using the transport offset instead of the network offset. In the particular syzbot report transport offset was 0xFFFF This patch removes ipx_hdr() since it was only (mis)used from bonding. Then we need to make sure IPv4/IPv6/IPX headers are pulled in skb->head before dereferencing anything. BUG: KASAN: use-after-free in bond_alb_xmit+0x153a/0x1590 drivers/net/bonding/bond_alb.c:1452 Read of size 2 at addr ffff8801ce56dfff by task syz-executor.2/18108 (if (ipx_hdr(skb)->ipx_checksum != IPX_NO_CHECKSUM) ...) Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Call Trace: [<ffffffff8441fc42>] __dump_stack lib/dump_stack.c:17 [inline] [<ffffffff8441fc42>] dump_stack+0x14d/0x20b lib/dump_stack.c:53 [<ffffffff81a7dec4>] print_address_description+0x6f/0x20b mm/kasan/report.c:282 [<ffffffff81a7e0ec>] kasan_report_error mm/kasan/report.c:380 [inline] [<ffffffff81a7e0ec>] kasan_report mm/kasan/report.c:438 [inline] [<ffffffff81a7e0ec>] kasan_report.cold+0x8c/0x2a0 mm/kasan/report.c:422 [<ffffffff81a7dc4f>] __asan_report_load_n_noabort+0xf/0x20 mm/kasan/report.c:469 [<ffffffff82c8c00a>] bond_alb_xmit+0x153a/0x1590 drivers/net/bonding/bond_alb.c:1452 [<ffffffff82c60c74>] __bond_start_xmit drivers/net/bonding/bond_main.c:4199 [inline] [<ffffffff82c60c74>] bond_start_xmit+0x4f4/0x1570 drivers/net/bonding/bond_main.c:4224 [<ffffffff83baa558>] __netdev_start_xmit include/linux/netdevice.h:4525 [inline] [<ffffffff83baa558>] netdev_start_xmit include/linux/netdevice.h:4539 [inline] [<ffffffff83baa558>] xmit_one net/core/dev.c:3611 [inline] [<ffffffff83baa558>] dev_hard_start_xmit+0x168/0x910 net/core/dev.c:3627 [<ffffffff83bacf35>] __dev_queue_xmit+0x1f55/0x33b0 net/core/dev.c:4238 [<ffffffff83bae3a8>] dev_queue_xmit+0x18/0x20 net/core/dev.c:4278 [<ffffffff84339189>] packet_snd net/packet/af_packet.c:3226 [inline] [<ffffffff84339189>] packet_sendmsg+0x4919/0x70b0 net/packet/af_packet.c:3252 [<ffffffff83b1ac0c>] sock_sendmsg_nosec net/socket.c:673 [inline] [<ffffffff83b1ac0c>] sock_sendmsg+0x12c/0x160 net/socket.c:684 [<ffffffff83b1f5a2>] __sys_sendto+0x262/0x380 net/socket.c:1996 [<ffffffff83b1f700>] SYSC_sendto net/socket.c:2008 [inline] [<ffffffff83b1f700>] SyS_sendto+0x40/0x60 net/socket.c:2004 Fixes: 1da177e4c3f4 ("Linux-2.6.12-rc2") Signed-off-by: Eric Dumazet <edumazet@google.com> Reported-by: syzbot <syzkaller@googlegroups.com> Cc: Jay Vosburgh <j.vosburgh@gmail.com> Cc: Veaceslav Falico <vfalico@gmail.com> Cc: Andy Gospodarek <andy@greyhouse.net> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-02-05 10:26:05 +07:00
if (ipxhdr->ipx_type != IPX_TYPE_NCP) {
/* The only protocol worth balancing in
* this family since it has an "ARP" like
* mechanism
*/
do_tx_balance = false;
break;
}
bonding/alb: properly access headers in bond_alb_xmit() syzbot managed to send an IPX packet through bond_alb_xmit() and af_packet and triggered a use-after-free. First, bond_alb_xmit() was using ipx_hdr() helper to reach the IPX header, but ipx_hdr() was using the transport offset instead of the network offset. In the particular syzbot report transport offset was 0xFFFF This patch removes ipx_hdr() since it was only (mis)used from bonding. Then we need to make sure IPv4/IPv6/IPX headers are pulled in skb->head before dereferencing anything. BUG: KASAN: use-after-free in bond_alb_xmit+0x153a/0x1590 drivers/net/bonding/bond_alb.c:1452 Read of size 2 at addr ffff8801ce56dfff by task syz-executor.2/18108 (if (ipx_hdr(skb)->ipx_checksum != IPX_NO_CHECKSUM) ...) Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Call Trace: [<ffffffff8441fc42>] __dump_stack lib/dump_stack.c:17 [inline] [<ffffffff8441fc42>] dump_stack+0x14d/0x20b lib/dump_stack.c:53 [<ffffffff81a7dec4>] print_address_description+0x6f/0x20b mm/kasan/report.c:282 [<ffffffff81a7e0ec>] kasan_report_error mm/kasan/report.c:380 [inline] [<ffffffff81a7e0ec>] kasan_report mm/kasan/report.c:438 [inline] [<ffffffff81a7e0ec>] kasan_report.cold+0x8c/0x2a0 mm/kasan/report.c:422 [<ffffffff81a7dc4f>] __asan_report_load_n_noabort+0xf/0x20 mm/kasan/report.c:469 [<ffffffff82c8c00a>] bond_alb_xmit+0x153a/0x1590 drivers/net/bonding/bond_alb.c:1452 [<ffffffff82c60c74>] __bond_start_xmit drivers/net/bonding/bond_main.c:4199 [inline] [<ffffffff82c60c74>] bond_start_xmit+0x4f4/0x1570 drivers/net/bonding/bond_main.c:4224 [<ffffffff83baa558>] __netdev_start_xmit include/linux/netdevice.h:4525 [inline] [<ffffffff83baa558>] netdev_start_xmit include/linux/netdevice.h:4539 [inline] [<ffffffff83baa558>] xmit_one net/core/dev.c:3611 [inline] [<ffffffff83baa558>] dev_hard_start_xmit+0x168/0x910 net/core/dev.c:3627 [<ffffffff83bacf35>] __dev_queue_xmit+0x1f55/0x33b0 net/core/dev.c:4238 [<ffffffff83bae3a8>] dev_queue_xmit+0x18/0x20 net/core/dev.c:4278 [<ffffffff84339189>] packet_snd net/packet/af_packet.c:3226 [inline] [<ffffffff84339189>] packet_sendmsg+0x4919/0x70b0 net/packet/af_packet.c:3252 [<ffffffff83b1ac0c>] sock_sendmsg_nosec net/socket.c:673 [inline] [<ffffffff83b1ac0c>] sock_sendmsg+0x12c/0x160 net/socket.c:684 [<ffffffff83b1f5a2>] __sys_sendto+0x262/0x380 net/socket.c:1996 [<ffffffff83b1f700>] SYSC_sendto net/socket.c:2008 [inline] [<ffffffff83b1f700>] SyS_sendto+0x40/0x60 net/socket.c:2004 Fixes: 1da177e4c3f4 ("Linux-2.6.12-rc2") Signed-off-by: Eric Dumazet <edumazet@google.com> Reported-by: syzbot <syzkaller@googlegroups.com> Cc: Jay Vosburgh <j.vosburgh@gmail.com> Cc: Veaceslav Falico <vfalico@gmail.com> Cc: Andy Gospodarek <andy@greyhouse.net> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-02-05 10:26:05 +07:00
eth_data = eth_hdr(skb);
hash_start = (char *)eth_data->h_dest;
hash_size = ETH_ALEN;
break;
bonding/alb: properly access headers in bond_alb_xmit() syzbot managed to send an IPX packet through bond_alb_xmit() and af_packet and triggered a use-after-free. First, bond_alb_xmit() was using ipx_hdr() helper to reach the IPX header, but ipx_hdr() was using the transport offset instead of the network offset. In the particular syzbot report transport offset was 0xFFFF This patch removes ipx_hdr() since it was only (mis)used from bonding. Then we need to make sure IPv4/IPv6/IPX headers are pulled in skb->head before dereferencing anything. BUG: KASAN: use-after-free in bond_alb_xmit+0x153a/0x1590 drivers/net/bonding/bond_alb.c:1452 Read of size 2 at addr ffff8801ce56dfff by task syz-executor.2/18108 (if (ipx_hdr(skb)->ipx_checksum != IPX_NO_CHECKSUM) ...) Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Call Trace: [<ffffffff8441fc42>] __dump_stack lib/dump_stack.c:17 [inline] [<ffffffff8441fc42>] dump_stack+0x14d/0x20b lib/dump_stack.c:53 [<ffffffff81a7dec4>] print_address_description+0x6f/0x20b mm/kasan/report.c:282 [<ffffffff81a7e0ec>] kasan_report_error mm/kasan/report.c:380 [inline] [<ffffffff81a7e0ec>] kasan_report mm/kasan/report.c:438 [inline] [<ffffffff81a7e0ec>] kasan_report.cold+0x8c/0x2a0 mm/kasan/report.c:422 [<ffffffff81a7dc4f>] __asan_report_load_n_noabort+0xf/0x20 mm/kasan/report.c:469 [<ffffffff82c8c00a>] bond_alb_xmit+0x153a/0x1590 drivers/net/bonding/bond_alb.c:1452 [<ffffffff82c60c74>] __bond_start_xmit drivers/net/bonding/bond_main.c:4199 [inline] [<ffffffff82c60c74>] bond_start_xmit+0x4f4/0x1570 drivers/net/bonding/bond_main.c:4224 [<ffffffff83baa558>] __netdev_start_xmit include/linux/netdevice.h:4525 [inline] [<ffffffff83baa558>] netdev_start_xmit include/linux/netdevice.h:4539 [inline] [<ffffffff83baa558>] xmit_one net/core/dev.c:3611 [inline] [<ffffffff83baa558>] dev_hard_start_xmit+0x168/0x910 net/core/dev.c:3627 [<ffffffff83bacf35>] __dev_queue_xmit+0x1f55/0x33b0 net/core/dev.c:4238 [<ffffffff83bae3a8>] dev_queue_xmit+0x18/0x20 net/core/dev.c:4278 [<ffffffff84339189>] packet_snd net/packet/af_packet.c:3226 [inline] [<ffffffff84339189>] packet_sendmsg+0x4919/0x70b0 net/packet/af_packet.c:3252 [<ffffffff83b1ac0c>] sock_sendmsg_nosec net/socket.c:673 [inline] [<ffffffff83b1ac0c>] sock_sendmsg+0x12c/0x160 net/socket.c:684 [<ffffffff83b1f5a2>] __sys_sendto+0x262/0x380 net/socket.c:1996 [<ffffffff83b1f700>] SYSC_sendto net/socket.c:2008 [inline] [<ffffffff83b1f700>] SyS_sendto+0x40/0x60 net/socket.c:2004 Fixes: 1da177e4c3f4 ("Linux-2.6.12-rc2") Signed-off-by: Eric Dumazet <edumazet@google.com> Reported-by: syzbot <syzkaller@googlegroups.com> Cc: Jay Vosburgh <j.vosburgh@gmail.com> Cc: Veaceslav Falico <vfalico@gmail.com> Cc: Andy Gospodarek <andy@greyhouse.net> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-02-05 10:26:05 +07:00
}
case ETH_P_ARP:
do_tx_balance = false;
if (bond_info->rlb_enabled)
tx_slave = rlb_arp_xmit(skb, bond);
break;
default:
do_tx_balance = false;
break;
}
if (do_tx_balance) {
if (bond->params.tlb_dynamic_lb) {
hash_index = _simple_hash(hash_start, hash_size);
tx_slave = tlb_choose_channel(bond, hash_index, skb->len);
} else {
/*
* do_tx_balance means we are free to select the tx_slave
* So we do exactly what tlb would do for hash selection
*/
struct bond_up_slave *slaves;
unsigned int count;
slaves = rcu_dereference(bond->usable_slaves);
count = slaves ? READ_ONCE(slaves->count) : 0;
if (likely(count))
tx_slave = slaves->arr[bond_xmit_hash(bond, skb) %
count];
}
}
return tx_slave;
}
netdev_tx_t bond_alb_xmit(struct sk_buff *skb, struct net_device *bond_dev)
{
struct bonding *bond = netdev_priv(bond_dev);
struct slave *tx_slave = NULL;
tx_slave = bond_xmit_alb_slave_get(bond, skb);
return bond_do_alb_xmit(skb, bond, tx_slave);
}
void bond_alb_monitor(struct work_struct *work)
{
struct bonding *bond = container_of(work, struct bonding,
alb_work.work);
struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
struct list_head *iter;
struct slave *slave;
if (!bond_has_slaves(bond)) {
bond_info->tx_rebalance_counter = 0;
bond_info->lp_counter = 0;
goto re_arm;
}
rcu_read_lock();
bond_info->tx_rebalance_counter++;
bond_info->lp_counter++;
/* send learning packets */
if (bond_info->lp_counter >= BOND_ALB_LP_TICKS(bond)) {
bool strict_match;
bond_for_each_slave_rcu(bond, slave, iter) {
/* If updating current_active, use all currently
* user mac addreses (!strict_match). Otherwise, only
* use mac of the slave device.
* In RLB mode, we always use strict matches.
*/
strict_match = (slave != rcu_access_pointer(bond->curr_active_slave) ||
bond_info->rlb_enabled);
alb_send_learning_packets(slave, slave->dev->dev_addr,
strict_match);
}
bond_info->lp_counter = 0;
}
/* rebalance tx traffic */
if (bond_info->tx_rebalance_counter >= BOND_TLB_REBALANCE_TICKS) {
bond_for_each_slave_rcu(bond, slave, iter) {
tlb_clear_slave(bond, slave, 1);
if (slave == rcu_access_pointer(bond->curr_active_slave)) {
SLAVE_TLB_INFO(slave).load =
bond_info->unbalanced_load /
BOND_TLB_REBALANCE_INTERVAL;
bond_info->unbalanced_load = 0;
}
}
bond_info->tx_rebalance_counter = 0;
}
if (bond_info->rlb_enabled) {
if (bond_info->primary_is_promisc &&
(++bond_info->rlb_promisc_timeout_counter >= RLB_PROMISC_TIMEOUT)) {
/* dev_set_promiscuity requires rtnl and
* nothing else. Avoid race with bond_close.
*/
rcu_read_unlock();
if (!rtnl_trylock())
goto re_arm;
bond_info->rlb_promisc_timeout_counter = 0;
/* If the primary was set to promiscuous mode
* because a slave was disabled then
* it can now leave promiscuous mode.
*/
dev_set_promiscuity(rtnl_dereference(bond->curr_active_slave)->dev,
-1);
bond_info->primary_is_promisc = 0;
rtnl_unlock();
rcu_read_lock();
}
if (bond_info->rlb_rebalance) {
bond_info->rlb_rebalance = 0;
rlb_rebalance(bond);
}
/* check if clients need updating */
if (bond_info->rx_ntt) {
if (bond_info->rlb_update_delay_counter) {
--bond_info->rlb_update_delay_counter;
} else {
rlb_update_rx_clients(bond);
if (bond_info->rlb_update_retry_counter)
--bond_info->rlb_update_retry_counter;
else
bond_info->rx_ntt = 0;
}
}
}
rcu_read_unlock();
re_arm:
bonding: eliminate bond_close race conditions This patch resolves two sets of race conditions. Mitsuo Hayasaka <mitsuo.hayasaka.hu@hitachi.com> reported the first, as follows: The bond_close() calls cancel_delayed_work() to cancel delayed works. It, however, cannot cancel works that were already queued in workqueue. The bond_open() initializes work->data, and proccess_one_work() refers get_work_cwq(work)->wq->flags. The get_work_cwq() returns NULL when work->data has been initialized. Thus, a panic occurs. He included a patch that converted the cancel_delayed_work calls in bond_close to flush_delayed_work_sync, which eliminated the above problem. His patch is incorporated, at least in principle, into this patch. In this patch, we use cancel_delayed_work_sync in place of flush_delayed_work_sync, and also convert bond_uninit in addition to bond_close. This conversion to _sync, however, opens new races between bond_close and three periodically executing workqueue functions: bond_mii_monitor, bond_alb_monitor and bond_activebackup_arp_mon. The race occurs because bond_close and bond_uninit are always called with RTNL held, and these workqueue functions may acquire RTNL to perform failover-related activities. If bond_close or bond_uninit is waiting in cancel_delayed_work_sync, deadlock occurs. These deadlocks are resolved by having the workqueue functions acquire RTNL conditionally. If the rtnl_trylock() fails, the functions reschedule and return immediately. For the cases that are attempting to perform link failover, a delay of 1 is used; for the other cases, the normal interval is used (as those activities are not as time critical). Additionally, the bond_mii_monitor function now stores the delay in a variable (mimicing the structure of activebackup_arp_mon). Lastly, all of the above renders the kill_timers sentinel moot, and therefore it has been removed. Tested-by: Mitsuo Hayasaka <mitsuo.hayasaka.hu@hitachi.com> Signed-off-by: Jay Vosburgh <fubar@us.ibm.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-10-28 22:42:50 +07:00
queue_delayed_work(bond->wq, &bond->alb_work, alb_delta_in_ticks);
}
/* assumption: called before the slave is attached to the bond
* and not locked by the bond lock
*/
int bond_alb_init_slave(struct bonding *bond, struct slave *slave)
{
int res;
bonding: attempt to better support longer hw addresses People are using bonding over Infiniband IPoIB connections, and who knows what else. Infiniband has a hardware address length of 20 octets (INFINIBAND_ALEN), and the network core defines a MAX_ADDR_LEN of 32. Various places in the bonding code are currently hard-wired to 6 octets (ETH_ALEN), such as the 3ad code, which I've left untouched here. Besides, only alb is currently possible on Infiniband links right now anyway, due to commit 1533e7731522, so the alb code is where most of the changes are. One major component of this change is the addition of a bond_hw_addr_copy function that takes a length argument, instead of using ether_addr_copy everywhere that hardware addresses need to be copied about. The other major component of this change is converting the bonding code from using struct sockaddr for address storage to struct sockaddr_storage, as the former has an address storage space of only 14, while the latter is 128 minus a few, which is necessary to support bonding over device with up to MAX_ADDR_LEN octet hardware addresses. Additionally, this probably fixes up some memory corruption issues with the current code, where it's possible to write an infiniband hardware address into a sockaddr declared on the stack. Lightly tested on a dual mlx4 IPoIB setup, which properly shows a 20-octet hardware address now: $ cat /proc/net/bonding/bond0 Ethernet Channel Bonding Driver: v3.7.1 (April 27, 2011) Bonding Mode: fault-tolerance (active-backup) (fail_over_mac active) Primary Slave: mlx4_ib0 (primary_reselect always) Currently Active Slave: mlx4_ib0 MII Status: up MII Polling Interval (ms): 100 Up Delay (ms): 100 Down Delay (ms): 100 Slave Interface: mlx4_ib0 MII Status: up Speed: Unknown Duplex: Unknown Link Failure Count: 0 Permanent HW addr: 80:00:02:08:fe:80:00:00:00:00:00:00:e4:1d:2d:03:00:1d:67:01 Slave queue ID: 0 Slave Interface: mlx4_ib1 MII Status: up Speed: Unknown Duplex: Unknown Link Failure Count: 0 Permanent HW addr: 80:00:02:09:fe:80:00:00:00:00:00:01:e4:1d:2d:03:00:1d:67:02 Slave queue ID: 0 Also tested with a standard 1Gbps NIC bonding setup (with a mix of e1000 and e1000e cards), running LNST's bonding tests. CC: Jay Vosburgh <j.vosburgh@gmail.com> CC: Veaceslav Falico <vfalico@gmail.com> CC: Andy Gospodarek <andy@greyhouse.net> CC: netdev@vger.kernel.org Signed-off-by: Jarod Wilson <jarod@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-04-05 04:32:42 +07:00
res = alb_set_slave_mac_addr(slave, slave->perm_hwaddr,
slave->dev->addr_len);
if (res)
return res;
res = alb_handle_addr_collision_on_attach(bond, slave);
if (res)
return res;
tlb_init_slave(slave);
/* order a rebalance ASAP */
bond->alb_info.tx_rebalance_counter = BOND_TLB_REBALANCE_TICKS;
if (bond->alb_info.rlb_enabled)
bond->alb_info.rlb_rebalance = 1;
return 0;
}
/* Remove slave from tlb and rlb hash tables, and fix up MAC addresses
* if necessary.
*
* Caller must hold RTNL and no other locks
*/
void bond_alb_deinit_slave(struct bonding *bond, struct slave *slave)
{
if (bond_has_slaves(bond))
alb_change_hw_addr_on_detach(bond, slave);
tlb_clear_slave(bond, slave, 0);
if (bond->alb_info.rlb_enabled) {
bond->alb_info.rx_slave = NULL;
rlb_clear_slave(bond, slave);
}
}
void bond_alb_handle_link_change(struct bonding *bond, struct slave *slave, char link)
{
struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
if (link == BOND_LINK_DOWN) {
tlb_clear_slave(bond, slave, 0);
if (bond->alb_info.rlb_enabled)
rlb_clear_slave(bond, slave);
} else if (link == BOND_LINK_UP) {
/* order a rebalance ASAP */
bond_info->tx_rebalance_counter = BOND_TLB_REBALANCE_TICKS;
if (bond->alb_info.rlb_enabled) {
bond->alb_info.rlb_rebalance = 1;
/* If the updelay module parameter is smaller than the
* forwarding delay of the switch the rebalance will
* not work because the rebalance arp replies will
* not be forwarded to the clients..
*/
}
}
if (bond_is_nondyn_tlb(bond)) {
if (bond_update_slave_arr(bond, NULL))
pr_err("Failed to build slave-array for TLB mode.\n");
}
}
/**
* bond_alb_handle_active_change - assign new curr_active_slave
* @bond: our bonding struct
* @new_slave: new slave to assign
*
* Set the bond->curr_active_slave to @new_slave and handle
* mac address swapping and promiscuity changes as needed.
*
* Caller must hold RTNL
*/
void bond_alb_handle_active_change(struct bonding *bond, struct slave *new_slave)
{
struct slave *swap_slave;
struct slave *curr_active;
curr_active = rtnl_dereference(bond->curr_active_slave);
if (curr_active == new_slave)
return;
if (curr_active && bond->alb_info.primary_is_promisc) {
dev_set_promiscuity(curr_active->dev, -1);
bond->alb_info.primary_is_promisc = 0;
bond->alb_info.rlb_promisc_timeout_counter = 0;
}
swap_slave = curr_active;
bonding: initial RCU conversion This patch does the initial bonding conversion to RCU. After it the following modes are protected by RCU alone: roundrobin, active-backup, broadcast and xor. Modes ALB/TLB and 3ad still acquire bond->lock for reading, and will be dealt with later. curr_active_slave needs to be dereferenced via rcu in the converted modes because the only thing protecting the slave after this patch is rcu_read_lock, so we need the proper barrier for weakly ordered archs and to make sure we don't have stale pointer. It's not tagged with __rcu yet because there's still work to be done to remove the curr_slave_lock, so sparse will complain when rcu_assign_pointer and rcu_dereference are used, but the alternative to use rcu_dereference_protected would've created much bigger code churn which is more difficult to test and review. That will be converted in time. 1. Active-backup mode 1.1 Perf recording while doing iperf -P 4 - old bonding: iperf spent 0.55% in bonding, system spent 0.29% CPU in bonding - new bonding: iperf spent 0.29% in bonding, system spent 0.15% CPU in bonding 1.2. Bandwidth measurements - old bonding: 16.1 gbps consistently - new bonding: 17.5 gbps consistently 2. Round-robin mode 2.1 Perf recording while doing iperf -P 4 - old bonding: iperf spent 0.51% in bonding, system spent 0.24% CPU in bonding - new bonding: iperf spent 0.16% in bonding, system spent 0.11% CPU in bonding 2.2 Bandwidth measurements - old bonding: 8 gbps (variable due to packet reorderings) - new bonding: 10 gbps (variable due to packet reorderings) Of course the latency has improved in all converted modes, and moreover while doing enslave/release (since it doesn't affect tx anymore). Also I've stress tested all modes doing enslave/release in a loop while transmitting traffic. Signed-off-by: Nikolay Aleksandrov <nikolay@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2013-08-01 21:54:51 +07:00
rcu_assign_pointer(bond->curr_active_slave, new_slave);
if (!new_slave || !bond_has_slaves(bond))
return;
/* set the new curr_active_slave to the bonds mac address
* i.e. swap mac addresses of old curr_active_slave and new curr_active_slave
*/
if (!swap_slave)
swap_slave = bond_slave_has_mac(bond, bond->dev->dev_addr);
/* Arrange for swap_slave and new_slave to temporarily be
* ignored so we can mess with their MAC addresses without
* fear of interference from transmit activity.
*/
if (swap_slave)
tlb_clear_slave(bond, swap_slave, 1);
tlb_clear_slave(bond, new_slave, 1);
/* in TLB mode, the slave might flip down/up with the old dev_addr,
* and thus filter bond->dev_addr's packets, so force bond's mac
*/
if (BOND_MODE(bond) == BOND_MODE_TLB) {
bonding: attempt to better support longer hw addresses People are using bonding over Infiniband IPoIB connections, and who knows what else. Infiniband has a hardware address length of 20 octets (INFINIBAND_ALEN), and the network core defines a MAX_ADDR_LEN of 32. Various places in the bonding code are currently hard-wired to 6 octets (ETH_ALEN), such as the 3ad code, which I've left untouched here. Besides, only alb is currently possible on Infiniband links right now anyway, due to commit 1533e7731522, so the alb code is where most of the changes are. One major component of this change is the addition of a bond_hw_addr_copy function that takes a length argument, instead of using ether_addr_copy everywhere that hardware addresses need to be copied about. The other major component of this change is converting the bonding code from using struct sockaddr for address storage to struct sockaddr_storage, as the former has an address storage space of only 14, while the latter is 128 minus a few, which is necessary to support bonding over device with up to MAX_ADDR_LEN octet hardware addresses. Additionally, this probably fixes up some memory corruption issues with the current code, where it's possible to write an infiniband hardware address into a sockaddr declared on the stack. Lightly tested on a dual mlx4 IPoIB setup, which properly shows a 20-octet hardware address now: $ cat /proc/net/bonding/bond0 Ethernet Channel Bonding Driver: v3.7.1 (April 27, 2011) Bonding Mode: fault-tolerance (active-backup) (fail_over_mac active) Primary Slave: mlx4_ib0 (primary_reselect always) Currently Active Slave: mlx4_ib0 MII Status: up MII Polling Interval (ms): 100 Up Delay (ms): 100 Down Delay (ms): 100 Slave Interface: mlx4_ib0 MII Status: up Speed: Unknown Duplex: Unknown Link Failure Count: 0 Permanent HW addr: 80:00:02:08:fe:80:00:00:00:00:00:00:e4:1d:2d:03:00:1d:67:01 Slave queue ID: 0 Slave Interface: mlx4_ib1 MII Status: up Speed: Unknown Duplex: Unknown Link Failure Count: 0 Permanent HW addr: 80:00:02:09:fe:80:00:00:00:00:00:01:e4:1d:2d:03:00:1d:67:02 Slave queue ID: 0 Also tested with a standard 1Gbps NIC bonding setup (with a mix of e1000 and e1000e cards), running LNST's bonding tests. CC: Jay Vosburgh <j.vosburgh@gmail.com> CC: Veaceslav Falico <vfalico@gmail.com> CC: Andy Gospodarek <andy@greyhouse.net> CC: netdev@vger.kernel.org Signed-off-by: Jarod Wilson <jarod@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-04-05 04:32:42 +07:00
struct sockaddr_storage ss;
u8 tmp_addr[MAX_ADDR_LEN];
bonding: attempt to better support longer hw addresses People are using bonding over Infiniband IPoIB connections, and who knows what else. Infiniband has a hardware address length of 20 octets (INFINIBAND_ALEN), and the network core defines a MAX_ADDR_LEN of 32. Various places in the bonding code are currently hard-wired to 6 octets (ETH_ALEN), such as the 3ad code, which I've left untouched here. Besides, only alb is currently possible on Infiniband links right now anyway, due to commit 1533e7731522, so the alb code is where most of the changes are. One major component of this change is the addition of a bond_hw_addr_copy function that takes a length argument, instead of using ether_addr_copy everywhere that hardware addresses need to be copied about. The other major component of this change is converting the bonding code from using struct sockaddr for address storage to struct sockaddr_storage, as the former has an address storage space of only 14, while the latter is 128 minus a few, which is necessary to support bonding over device with up to MAX_ADDR_LEN octet hardware addresses. Additionally, this probably fixes up some memory corruption issues with the current code, where it's possible to write an infiniband hardware address into a sockaddr declared on the stack. Lightly tested on a dual mlx4 IPoIB setup, which properly shows a 20-octet hardware address now: $ cat /proc/net/bonding/bond0 Ethernet Channel Bonding Driver: v3.7.1 (April 27, 2011) Bonding Mode: fault-tolerance (active-backup) (fail_over_mac active) Primary Slave: mlx4_ib0 (primary_reselect always) Currently Active Slave: mlx4_ib0 MII Status: up MII Polling Interval (ms): 100 Up Delay (ms): 100 Down Delay (ms): 100 Slave Interface: mlx4_ib0 MII Status: up Speed: Unknown Duplex: Unknown Link Failure Count: 0 Permanent HW addr: 80:00:02:08:fe:80:00:00:00:00:00:00:e4:1d:2d:03:00:1d:67:01 Slave queue ID: 0 Slave Interface: mlx4_ib1 MII Status: up Speed: Unknown Duplex: Unknown Link Failure Count: 0 Permanent HW addr: 80:00:02:09:fe:80:00:00:00:00:00:01:e4:1d:2d:03:00:1d:67:02 Slave queue ID: 0 Also tested with a standard 1Gbps NIC bonding setup (with a mix of e1000 and e1000e cards), running LNST's bonding tests. CC: Jay Vosburgh <j.vosburgh@gmail.com> CC: Veaceslav Falico <vfalico@gmail.com> CC: Andy Gospodarek <andy@greyhouse.net> CC: netdev@vger.kernel.org Signed-off-by: Jarod Wilson <jarod@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-04-05 04:32:42 +07:00
bond_hw_addr_copy(tmp_addr, new_slave->dev->dev_addr,
new_slave->dev->addr_len);
bonding: attempt to better support longer hw addresses People are using bonding over Infiniband IPoIB connections, and who knows what else. Infiniband has a hardware address length of 20 octets (INFINIBAND_ALEN), and the network core defines a MAX_ADDR_LEN of 32. Various places in the bonding code are currently hard-wired to 6 octets (ETH_ALEN), such as the 3ad code, which I've left untouched here. Besides, only alb is currently possible on Infiniband links right now anyway, due to commit 1533e7731522, so the alb code is where most of the changes are. One major component of this change is the addition of a bond_hw_addr_copy function that takes a length argument, instead of using ether_addr_copy everywhere that hardware addresses need to be copied about. The other major component of this change is converting the bonding code from using struct sockaddr for address storage to struct sockaddr_storage, as the former has an address storage space of only 14, while the latter is 128 minus a few, which is necessary to support bonding over device with up to MAX_ADDR_LEN octet hardware addresses. Additionally, this probably fixes up some memory corruption issues with the current code, where it's possible to write an infiniband hardware address into a sockaddr declared on the stack. Lightly tested on a dual mlx4 IPoIB setup, which properly shows a 20-octet hardware address now: $ cat /proc/net/bonding/bond0 Ethernet Channel Bonding Driver: v3.7.1 (April 27, 2011) Bonding Mode: fault-tolerance (active-backup) (fail_over_mac active) Primary Slave: mlx4_ib0 (primary_reselect always) Currently Active Slave: mlx4_ib0 MII Status: up MII Polling Interval (ms): 100 Up Delay (ms): 100 Down Delay (ms): 100 Slave Interface: mlx4_ib0 MII Status: up Speed: Unknown Duplex: Unknown Link Failure Count: 0 Permanent HW addr: 80:00:02:08:fe:80:00:00:00:00:00:00:e4:1d:2d:03:00:1d:67:01 Slave queue ID: 0 Slave Interface: mlx4_ib1 MII Status: up Speed: Unknown Duplex: Unknown Link Failure Count: 0 Permanent HW addr: 80:00:02:09:fe:80:00:00:00:00:00:01:e4:1d:2d:03:00:1d:67:02 Slave queue ID: 0 Also tested with a standard 1Gbps NIC bonding setup (with a mix of e1000 and e1000e cards), running LNST's bonding tests. CC: Jay Vosburgh <j.vosburgh@gmail.com> CC: Veaceslav Falico <vfalico@gmail.com> CC: Andy Gospodarek <andy@greyhouse.net> CC: netdev@vger.kernel.org Signed-off-by: Jarod Wilson <jarod@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-04-05 04:32:42 +07:00
bond_hw_addr_copy(ss.__data, bond->dev->dev_addr,
bond->dev->addr_len);
ss.ss_family = bond->dev->type;
/* we don't care if it can't change its mac, best effort */
dev_set_mac_address(new_slave->dev, (struct sockaddr *)&ss,
NULL);
bonding: attempt to better support longer hw addresses People are using bonding over Infiniband IPoIB connections, and who knows what else. Infiniband has a hardware address length of 20 octets (INFINIBAND_ALEN), and the network core defines a MAX_ADDR_LEN of 32. Various places in the bonding code are currently hard-wired to 6 octets (ETH_ALEN), such as the 3ad code, which I've left untouched here. Besides, only alb is currently possible on Infiniband links right now anyway, due to commit 1533e7731522, so the alb code is where most of the changes are. One major component of this change is the addition of a bond_hw_addr_copy function that takes a length argument, instead of using ether_addr_copy everywhere that hardware addresses need to be copied about. The other major component of this change is converting the bonding code from using struct sockaddr for address storage to struct sockaddr_storage, as the former has an address storage space of only 14, while the latter is 128 minus a few, which is necessary to support bonding over device with up to MAX_ADDR_LEN octet hardware addresses. Additionally, this probably fixes up some memory corruption issues with the current code, where it's possible to write an infiniband hardware address into a sockaddr declared on the stack. Lightly tested on a dual mlx4 IPoIB setup, which properly shows a 20-octet hardware address now: $ cat /proc/net/bonding/bond0 Ethernet Channel Bonding Driver: v3.7.1 (April 27, 2011) Bonding Mode: fault-tolerance (active-backup) (fail_over_mac active) Primary Slave: mlx4_ib0 (primary_reselect always) Currently Active Slave: mlx4_ib0 MII Status: up MII Polling Interval (ms): 100 Up Delay (ms): 100 Down Delay (ms): 100 Slave Interface: mlx4_ib0 MII Status: up Speed: Unknown Duplex: Unknown Link Failure Count: 0 Permanent HW addr: 80:00:02:08:fe:80:00:00:00:00:00:00:e4:1d:2d:03:00:1d:67:01 Slave queue ID: 0 Slave Interface: mlx4_ib1 MII Status: up Speed: Unknown Duplex: Unknown Link Failure Count: 0 Permanent HW addr: 80:00:02:09:fe:80:00:00:00:00:00:01:e4:1d:2d:03:00:1d:67:02 Slave queue ID: 0 Also tested with a standard 1Gbps NIC bonding setup (with a mix of e1000 and e1000e cards), running LNST's bonding tests. CC: Jay Vosburgh <j.vosburgh@gmail.com> CC: Veaceslav Falico <vfalico@gmail.com> CC: Andy Gospodarek <andy@greyhouse.net> CC: netdev@vger.kernel.org Signed-off-by: Jarod Wilson <jarod@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-04-05 04:32:42 +07:00
bond_hw_addr_copy(new_slave->dev->dev_addr, tmp_addr,
new_slave->dev->addr_len);
}
/* curr_active_slave must be set before calling alb_swap_mac_addr */
if (swap_slave) {
/* swap mac address */
alb_swap_mac_addr(swap_slave, new_slave);
alb_fasten_mac_swap(bond, swap_slave, new_slave);
} else {
/* set the new_slave to the bond mac address */
bonding: attempt to better support longer hw addresses People are using bonding over Infiniband IPoIB connections, and who knows what else. Infiniband has a hardware address length of 20 octets (INFINIBAND_ALEN), and the network core defines a MAX_ADDR_LEN of 32. Various places in the bonding code are currently hard-wired to 6 octets (ETH_ALEN), such as the 3ad code, which I've left untouched here. Besides, only alb is currently possible on Infiniband links right now anyway, due to commit 1533e7731522, so the alb code is where most of the changes are. One major component of this change is the addition of a bond_hw_addr_copy function that takes a length argument, instead of using ether_addr_copy everywhere that hardware addresses need to be copied about. The other major component of this change is converting the bonding code from using struct sockaddr for address storage to struct sockaddr_storage, as the former has an address storage space of only 14, while the latter is 128 minus a few, which is necessary to support bonding over device with up to MAX_ADDR_LEN octet hardware addresses. Additionally, this probably fixes up some memory corruption issues with the current code, where it's possible to write an infiniband hardware address into a sockaddr declared on the stack. Lightly tested on a dual mlx4 IPoIB setup, which properly shows a 20-octet hardware address now: $ cat /proc/net/bonding/bond0 Ethernet Channel Bonding Driver: v3.7.1 (April 27, 2011) Bonding Mode: fault-tolerance (active-backup) (fail_over_mac active) Primary Slave: mlx4_ib0 (primary_reselect always) Currently Active Slave: mlx4_ib0 MII Status: up MII Polling Interval (ms): 100 Up Delay (ms): 100 Down Delay (ms): 100 Slave Interface: mlx4_ib0 MII Status: up Speed: Unknown Duplex: Unknown Link Failure Count: 0 Permanent HW addr: 80:00:02:08:fe:80:00:00:00:00:00:00:e4:1d:2d:03:00:1d:67:01 Slave queue ID: 0 Slave Interface: mlx4_ib1 MII Status: up Speed: Unknown Duplex: Unknown Link Failure Count: 0 Permanent HW addr: 80:00:02:09:fe:80:00:00:00:00:00:01:e4:1d:2d:03:00:1d:67:02 Slave queue ID: 0 Also tested with a standard 1Gbps NIC bonding setup (with a mix of e1000 and e1000e cards), running LNST's bonding tests. CC: Jay Vosburgh <j.vosburgh@gmail.com> CC: Veaceslav Falico <vfalico@gmail.com> CC: Andy Gospodarek <andy@greyhouse.net> CC: netdev@vger.kernel.org Signed-off-by: Jarod Wilson <jarod@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-04-05 04:32:42 +07:00
alb_set_slave_mac_addr(new_slave, bond->dev->dev_addr,
bond->dev->addr_len);
alb_send_learning_packets(new_slave, bond->dev->dev_addr,
false);
}
}
/* Called with RTNL */
int bond_alb_set_mac_address(struct net_device *bond_dev, void *addr)
{
struct bonding *bond = netdev_priv(bond_dev);
bonding: attempt to better support longer hw addresses People are using bonding over Infiniband IPoIB connections, and who knows what else. Infiniband has a hardware address length of 20 octets (INFINIBAND_ALEN), and the network core defines a MAX_ADDR_LEN of 32. Various places in the bonding code are currently hard-wired to 6 octets (ETH_ALEN), such as the 3ad code, which I've left untouched here. Besides, only alb is currently possible on Infiniband links right now anyway, due to commit 1533e7731522, so the alb code is where most of the changes are. One major component of this change is the addition of a bond_hw_addr_copy function that takes a length argument, instead of using ether_addr_copy everywhere that hardware addresses need to be copied about. The other major component of this change is converting the bonding code from using struct sockaddr for address storage to struct sockaddr_storage, as the former has an address storage space of only 14, while the latter is 128 minus a few, which is necessary to support bonding over device with up to MAX_ADDR_LEN octet hardware addresses. Additionally, this probably fixes up some memory corruption issues with the current code, where it's possible to write an infiniband hardware address into a sockaddr declared on the stack. Lightly tested on a dual mlx4 IPoIB setup, which properly shows a 20-octet hardware address now: $ cat /proc/net/bonding/bond0 Ethernet Channel Bonding Driver: v3.7.1 (April 27, 2011) Bonding Mode: fault-tolerance (active-backup) (fail_over_mac active) Primary Slave: mlx4_ib0 (primary_reselect always) Currently Active Slave: mlx4_ib0 MII Status: up MII Polling Interval (ms): 100 Up Delay (ms): 100 Down Delay (ms): 100 Slave Interface: mlx4_ib0 MII Status: up Speed: Unknown Duplex: Unknown Link Failure Count: 0 Permanent HW addr: 80:00:02:08:fe:80:00:00:00:00:00:00:e4:1d:2d:03:00:1d:67:01 Slave queue ID: 0 Slave Interface: mlx4_ib1 MII Status: up Speed: Unknown Duplex: Unknown Link Failure Count: 0 Permanent HW addr: 80:00:02:09:fe:80:00:00:00:00:00:01:e4:1d:2d:03:00:1d:67:02 Slave queue ID: 0 Also tested with a standard 1Gbps NIC bonding setup (with a mix of e1000 and e1000e cards), running LNST's bonding tests. CC: Jay Vosburgh <j.vosburgh@gmail.com> CC: Veaceslav Falico <vfalico@gmail.com> CC: Andy Gospodarek <andy@greyhouse.net> CC: netdev@vger.kernel.org Signed-off-by: Jarod Wilson <jarod@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-04-05 04:32:42 +07:00
struct sockaddr_storage *ss = addr;
struct slave *curr_active;
struct slave *swap_slave;
int res;
bonding: attempt to better support longer hw addresses People are using bonding over Infiniband IPoIB connections, and who knows what else. Infiniband has a hardware address length of 20 octets (INFINIBAND_ALEN), and the network core defines a MAX_ADDR_LEN of 32. Various places in the bonding code are currently hard-wired to 6 octets (ETH_ALEN), such as the 3ad code, which I've left untouched here. Besides, only alb is currently possible on Infiniband links right now anyway, due to commit 1533e7731522, so the alb code is where most of the changes are. One major component of this change is the addition of a bond_hw_addr_copy function that takes a length argument, instead of using ether_addr_copy everywhere that hardware addresses need to be copied about. The other major component of this change is converting the bonding code from using struct sockaddr for address storage to struct sockaddr_storage, as the former has an address storage space of only 14, while the latter is 128 minus a few, which is necessary to support bonding over device with up to MAX_ADDR_LEN octet hardware addresses. Additionally, this probably fixes up some memory corruption issues with the current code, where it's possible to write an infiniband hardware address into a sockaddr declared on the stack. Lightly tested on a dual mlx4 IPoIB setup, which properly shows a 20-octet hardware address now: $ cat /proc/net/bonding/bond0 Ethernet Channel Bonding Driver: v3.7.1 (April 27, 2011) Bonding Mode: fault-tolerance (active-backup) (fail_over_mac active) Primary Slave: mlx4_ib0 (primary_reselect always) Currently Active Slave: mlx4_ib0 MII Status: up MII Polling Interval (ms): 100 Up Delay (ms): 100 Down Delay (ms): 100 Slave Interface: mlx4_ib0 MII Status: up Speed: Unknown Duplex: Unknown Link Failure Count: 0 Permanent HW addr: 80:00:02:08:fe:80:00:00:00:00:00:00:e4:1d:2d:03:00:1d:67:01 Slave queue ID: 0 Slave Interface: mlx4_ib1 MII Status: up Speed: Unknown Duplex: Unknown Link Failure Count: 0 Permanent HW addr: 80:00:02:09:fe:80:00:00:00:00:00:01:e4:1d:2d:03:00:1d:67:02 Slave queue ID: 0 Also tested with a standard 1Gbps NIC bonding setup (with a mix of e1000 and e1000e cards), running LNST's bonding tests. CC: Jay Vosburgh <j.vosburgh@gmail.com> CC: Veaceslav Falico <vfalico@gmail.com> CC: Andy Gospodarek <andy@greyhouse.net> CC: netdev@vger.kernel.org Signed-off-by: Jarod Wilson <jarod@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-04-05 04:32:42 +07:00
if (!is_valid_ether_addr(ss->__data))
return -EADDRNOTAVAIL;
res = alb_set_mac_address(bond, addr);
if (res)
return res;
bonding: attempt to better support longer hw addresses People are using bonding over Infiniband IPoIB connections, and who knows what else. Infiniband has a hardware address length of 20 octets (INFINIBAND_ALEN), and the network core defines a MAX_ADDR_LEN of 32. Various places in the bonding code are currently hard-wired to 6 octets (ETH_ALEN), such as the 3ad code, which I've left untouched here. Besides, only alb is currently possible on Infiniband links right now anyway, due to commit 1533e7731522, so the alb code is where most of the changes are. One major component of this change is the addition of a bond_hw_addr_copy function that takes a length argument, instead of using ether_addr_copy everywhere that hardware addresses need to be copied about. The other major component of this change is converting the bonding code from using struct sockaddr for address storage to struct sockaddr_storage, as the former has an address storage space of only 14, while the latter is 128 minus a few, which is necessary to support bonding over device with up to MAX_ADDR_LEN octet hardware addresses. Additionally, this probably fixes up some memory corruption issues with the current code, where it's possible to write an infiniband hardware address into a sockaddr declared on the stack. Lightly tested on a dual mlx4 IPoIB setup, which properly shows a 20-octet hardware address now: $ cat /proc/net/bonding/bond0 Ethernet Channel Bonding Driver: v3.7.1 (April 27, 2011) Bonding Mode: fault-tolerance (active-backup) (fail_over_mac active) Primary Slave: mlx4_ib0 (primary_reselect always) Currently Active Slave: mlx4_ib0 MII Status: up MII Polling Interval (ms): 100 Up Delay (ms): 100 Down Delay (ms): 100 Slave Interface: mlx4_ib0 MII Status: up Speed: Unknown Duplex: Unknown Link Failure Count: 0 Permanent HW addr: 80:00:02:08:fe:80:00:00:00:00:00:00:e4:1d:2d:03:00:1d:67:01 Slave queue ID: 0 Slave Interface: mlx4_ib1 MII Status: up Speed: Unknown Duplex: Unknown Link Failure Count: 0 Permanent HW addr: 80:00:02:09:fe:80:00:00:00:00:00:01:e4:1d:2d:03:00:1d:67:02 Slave queue ID: 0 Also tested with a standard 1Gbps NIC bonding setup (with a mix of e1000 and e1000e cards), running LNST's bonding tests. CC: Jay Vosburgh <j.vosburgh@gmail.com> CC: Veaceslav Falico <vfalico@gmail.com> CC: Andy Gospodarek <andy@greyhouse.net> CC: netdev@vger.kernel.org Signed-off-by: Jarod Wilson <jarod@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-04-05 04:32:42 +07:00
bond_hw_addr_copy(bond_dev->dev_addr, ss->__data, bond_dev->addr_len);
/* If there is no curr_active_slave there is nothing else to do.
* Otherwise we'll need to pass the new address to it and handle
* duplications.
*/
curr_active = rtnl_dereference(bond->curr_active_slave);
if (!curr_active)
return 0;
swap_slave = bond_slave_has_mac(bond, bond_dev->dev_addr);
if (swap_slave) {
alb_swap_mac_addr(swap_slave, curr_active);
alb_fasten_mac_swap(bond, swap_slave, curr_active);
} else {
bonding: attempt to better support longer hw addresses People are using bonding over Infiniband IPoIB connections, and who knows what else. Infiniband has a hardware address length of 20 octets (INFINIBAND_ALEN), and the network core defines a MAX_ADDR_LEN of 32. Various places in the bonding code are currently hard-wired to 6 octets (ETH_ALEN), such as the 3ad code, which I've left untouched here. Besides, only alb is currently possible on Infiniband links right now anyway, due to commit 1533e7731522, so the alb code is where most of the changes are. One major component of this change is the addition of a bond_hw_addr_copy function that takes a length argument, instead of using ether_addr_copy everywhere that hardware addresses need to be copied about. The other major component of this change is converting the bonding code from using struct sockaddr for address storage to struct sockaddr_storage, as the former has an address storage space of only 14, while the latter is 128 minus a few, which is necessary to support bonding over device with up to MAX_ADDR_LEN octet hardware addresses. Additionally, this probably fixes up some memory corruption issues with the current code, where it's possible to write an infiniband hardware address into a sockaddr declared on the stack. Lightly tested on a dual mlx4 IPoIB setup, which properly shows a 20-octet hardware address now: $ cat /proc/net/bonding/bond0 Ethernet Channel Bonding Driver: v3.7.1 (April 27, 2011) Bonding Mode: fault-tolerance (active-backup) (fail_over_mac active) Primary Slave: mlx4_ib0 (primary_reselect always) Currently Active Slave: mlx4_ib0 MII Status: up MII Polling Interval (ms): 100 Up Delay (ms): 100 Down Delay (ms): 100 Slave Interface: mlx4_ib0 MII Status: up Speed: Unknown Duplex: Unknown Link Failure Count: 0 Permanent HW addr: 80:00:02:08:fe:80:00:00:00:00:00:00:e4:1d:2d:03:00:1d:67:01 Slave queue ID: 0 Slave Interface: mlx4_ib1 MII Status: up Speed: Unknown Duplex: Unknown Link Failure Count: 0 Permanent HW addr: 80:00:02:09:fe:80:00:00:00:00:00:01:e4:1d:2d:03:00:1d:67:02 Slave queue ID: 0 Also tested with a standard 1Gbps NIC bonding setup (with a mix of e1000 and e1000e cards), running LNST's bonding tests. CC: Jay Vosburgh <j.vosburgh@gmail.com> CC: Veaceslav Falico <vfalico@gmail.com> CC: Andy Gospodarek <andy@greyhouse.net> CC: netdev@vger.kernel.org Signed-off-by: Jarod Wilson <jarod@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-04-05 04:32:42 +07:00
alb_set_slave_mac_addr(curr_active, bond_dev->dev_addr,
bond_dev->addr_len);
alb_send_learning_packets(curr_active,
bond_dev->dev_addr, false);
if (bond->alb_info.rlb_enabled) {
/* inform clients mac address has changed */
rlb_req_update_slave_clients(bond, curr_active);
}
}
return 0;
}
void bond_alb_clear_vlan(struct bonding *bond, unsigned short vlan_id)
{
if (bond->alb_info.rlb_enabled)
rlb_clear_vlan(bond, vlan_id);
}