linux_dsm_epyc7002/kernel/trace/ftrace.c

5044 lines
112 KiB
C
Raw Normal View History

/*
* Infrastructure for profiling code inserted by 'gcc -pg'.
*
* Copyright (C) 2007-2008 Steven Rostedt <srostedt@redhat.com>
* Copyright (C) 2004-2008 Ingo Molnar <mingo@redhat.com>
*
* Originally ported from the -rt patch by:
* Copyright (C) 2007 Arnaldo Carvalho de Melo <acme@redhat.com>
*
* Based on code in the latency_tracer, that is:
*
* Copyright (C) 2004-2006 Ingo Molnar
* Copyright (C) 2004 Nadia Yvette Chambers
*/
ftrace: dynamic enabling/disabling of function calls This patch adds a feature to dynamically replace the ftrace code with the jmps to allow a kernel with ftrace configured to run as fast as it can without it configured. The way this works, is on bootup (if ftrace is enabled), a ftrace function is registered to record the instruction pointer of all places that call the function. Later, if there's still any code to patch, a kthread is awoken (rate limited to at most once a second) that performs a stop_machine, and replaces all the code that was called with a jmp over the call to ftrace. It only replaces what was found the previous time. Typically the system reaches equilibrium quickly after bootup and there's no code patching needed at all. e.g. call ftrace /* 5 bytes */ is replaced with jmp 3f /* jmp is 2 bytes and we jump 3 forward */ 3: When we want to enable ftrace for function tracing, the IP recording is removed, and stop_machine is called again to replace all the locations of that were recorded back to the call of ftrace. When it is disabled, we replace the code back to the jmp. Allocation is done by the kthread. If the ftrace recording function is called, and we don't have any record slots available, then we simply skip that call. Once a second a new page (if needed) is allocated for recording new ftrace function calls. A large batch is allocated at boot up to get most of the calls there. Because we do this via stop_machine, we don't have to worry about another CPU executing a ftrace call as we modify it. But we do need to worry about NMI's so all functions that might be called via nmi must be annotated with notrace_nmi. When this code is configured in, the NMI code will not call notrace. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 02:20:42 +07:00
#include <linux/stop_machine.h>
#include <linux/clocksource.h>
#include <linux/kallsyms.h>
ftrace: add filter select functions to trace This patch adds two files to the debugfs system: /debugfs/tracing/available_filter_functions and /debugfs/tracing/set_ftrace_filter The available_filter_functions lists all functions that has been recorded by the ftraced that has called the ftrace_record_ip function. This is to allow users to see what functions have been converted to nops and can be enabled for tracing. To enable functions, simply echo the names (whitespace delimited) into set_ftrace_filter. Simple wildcards are also allowed. echo 'scheduler' > /debugfs/tracing/set_ftrace_filter Will have only the scheduler be activated when tracing is enabled. echo 'sched_*' > /debugfs/tracing/set_ftrace_filter Will have only the functions starting with 'sched_' be activated. echo '*lock' > /debugfs/tracing/set_ftrace_filter Will have only functions ending with 'lock' be activated. echo '*lock*' > /debugfs/tracing/set_ftrace_filter Will have only functions with 'lock' in its name be activated. Note: 'sched*lock' will not work. The only wildcards that are allowed is an asterisk and the beginning and or end of the string passed in. Multiple names can be passed in with whitespace delimited: echo 'scheduler *lock *acpi*' > /debugfs/tracing/set_ftrace_filter is also the same as: echo 'scheduler' > /debugfs/tracing/set_ftrace_filter echo '*lock' >> /debugfs/tracing/set_ftrace_filter echo '*acpi*' >> /debugfs/tracing/set_ftrace_filter Appending does just that. It appends to the list. To disable all filters simply echo an empty line in: echo > /debugfs/tracing/set_ftrace_filter Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 02:20:43 +07:00
#include <linux/seq_file.h>
#include <linux/suspend.h>
ftrace: add filter select functions to trace This patch adds two files to the debugfs system: /debugfs/tracing/available_filter_functions and /debugfs/tracing/set_ftrace_filter The available_filter_functions lists all functions that has been recorded by the ftraced that has called the ftrace_record_ip function. This is to allow users to see what functions have been converted to nops and can be enabled for tracing. To enable functions, simply echo the names (whitespace delimited) into set_ftrace_filter. Simple wildcards are also allowed. echo 'scheduler' > /debugfs/tracing/set_ftrace_filter Will have only the scheduler be activated when tracing is enabled. echo 'sched_*' > /debugfs/tracing/set_ftrace_filter Will have only the functions starting with 'sched_' be activated. echo '*lock' > /debugfs/tracing/set_ftrace_filter Will have only functions ending with 'lock' be activated. echo '*lock*' > /debugfs/tracing/set_ftrace_filter Will have only functions with 'lock' in its name be activated. Note: 'sched*lock' will not work. The only wildcards that are allowed is an asterisk and the beginning and or end of the string passed in. Multiple names can be passed in with whitespace delimited: echo 'scheduler *lock *acpi*' > /debugfs/tracing/set_ftrace_filter is also the same as: echo 'scheduler' > /debugfs/tracing/set_ftrace_filter echo '*lock' >> /debugfs/tracing/set_ftrace_filter echo '*acpi*' >> /debugfs/tracing/set_ftrace_filter Appending does just that. It appends to the list. To disable all filters simply echo an empty line in: echo > /debugfs/tracing/set_ftrace_filter Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 02:20:43 +07:00
#include <linux/debugfs.h>
ftrace: dynamic enabling/disabling of function calls This patch adds a feature to dynamically replace the ftrace code with the jmps to allow a kernel with ftrace configured to run as fast as it can without it configured. The way this works, is on bootup (if ftrace is enabled), a ftrace function is registered to record the instruction pointer of all places that call the function. Later, if there's still any code to patch, a kthread is awoken (rate limited to at most once a second) that performs a stop_machine, and replaces all the code that was called with a jmp over the call to ftrace. It only replaces what was found the previous time. Typically the system reaches equilibrium quickly after bootup and there's no code patching needed at all. e.g. call ftrace /* 5 bytes */ is replaced with jmp 3f /* jmp is 2 bytes and we jump 3 forward */ 3: When we want to enable ftrace for function tracing, the IP recording is removed, and stop_machine is called again to replace all the locations of that were recorded back to the call of ftrace. When it is disabled, we replace the code back to the jmp. Allocation is done by the kthread. If the ftrace recording function is called, and we don't have any record slots available, then we simply skip that call. Once a second a new page (if needed) is allocated for recording new ftrace function calls. A large batch is allocated at boot up to get most of the calls there. Because we do this via stop_machine, we don't have to worry about another CPU executing a ftrace call as we modify it. But we do need to worry about NMI's so all functions that might be called via nmi must be annotated with notrace_nmi. When this code is configured in, the NMI code will not call notrace. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 02:20:42 +07:00
#include <linux/hardirq.h>
#include <linux/kthread.h>
ftrace: add filter select functions to trace This patch adds two files to the debugfs system: /debugfs/tracing/available_filter_functions and /debugfs/tracing/set_ftrace_filter The available_filter_functions lists all functions that has been recorded by the ftraced that has called the ftrace_record_ip function. This is to allow users to see what functions have been converted to nops and can be enabled for tracing. To enable functions, simply echo the names (whitespace delimited) into set_ftrace_filter. Simple wildcards are also allowed. echo 'scheduler' > /debugfs/tracing/set_ftrace_filter Will have only the scheduler be activated when tracing is enabled. echo 'sched_*' > /debugfs/tracing/set_ftrace_filter Will have only the functions starting with 'sched_' be activated. echo '*lock' > /debugfs/tracing/set_ftrace_filter Will have only functions ending with 'lock' be activated. echo '*lock*' > /debugfs/tracing/set_ftrace_filter Will have only functions with 'lock' in its name be activated. Note: 'sched*lock' will not work. The only wildcards that are allowed is an asterisk and the beginning and or end of the string passed in. Multiple names can be passed in with whitespace delimited: echo 'scheduler *lock *acpi*' > /debugfs/tracing/set_ftrace_filter is also the same as: echo 'scheduler' > /debugfs/tracing/set_ftrace_filter echo '*lock' >> /debugfs/tracing/set_ftrace_filter echo '*acpi*' >> /debugfs/tracing/set_ftrace_filter Appending does just that. It appends to the list. To disable all filters simply echo an empty line in: echo > /debugfs/tracing/set_ftrace_filter Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 02:20:43 +07:00
#include <linux/uaccess.h>
#include <linux/bsearch.h>
#include <linux/module.h>
#include <linux/ftrace.h>
#include <linux/sysctl.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 15:04:11 +07:00
#include <linux/slab.h>
ftrace: add filter select functions to trace This patch adds two files to the debugfs system: /debugfs/tracing/available_filter_functions and /debugfs/tracing/set_ftrace_filter The available_filter_functions lists all functions that has been recorded by the ftraced that has called the ftrace_record_ip function. This is to allow users to see what functions have been converted to nops and can be enabled for tracing. To enable functions, simply echo the names (whitespace delimited) into set_ftrace_filter. Simple wildcards are also allowed. echo 'scheduler' > /debugfs/tracing/set_ftrace_filter Will have only the scheduler be activated when tracing is enabled. echo 'sched_*' > /debugfs/tracing/set_ftrace_filter Will have only the functions starting with 'sched_' be activated. echo '*lock' > /debugfs/tracing/set_ftrace_filter Will have only functions ending with 'lock' be activated. echo '*lock*' > /debugfs/tracing/set_ftrace_filter Will have only functions with 'lock' in its name be activated. Note: 'sched*lock' will not work. The only wildcards that are allowed is an asterisk and the beginning and or end of the string passed in. Multiple names can be passed in with whitespace delimited: echo 'scheduler *lock *acpi*' > /debugfs/tracing/set_ftrace_filter is also the same as: echo 'scheduler' > /debugfs/tracing/set_ftrace_filter echo '*lock' >> /debugfs/tracing/set_ftrace_filter echo '*acpi*' >> /debugfs/tracing/set_ftrace_filter Appending does just that. It appends to the list. To disable all filters simply echo an empty line in: echo > /debugfs/tracing/set_ftrace_filter Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 02:20:43 +07:00
#include <linux/ctype.h>
#include <linux/sort.h>
ftrace: dynamic enabling/disabling of function calls This patch adds a feature to dynamically replace the ftrace code with the jmps to allow a kernel with ftrace configured to run as fast as it can without it configured. The way this works, is on bootup (if ftrace is enabled), a ftrace function is registered to record the instruction pointer of all places that call the function. Later, if there's still any code to patch, a kthread is awoken (rate limited to at most once a second) that performs a stop_machine, and replaces all the code that was called with a jmp over the call to ftrace. It only replaces what was found the previous time. Typically the system reaches equilibrium quickly after bootup and there's no code patching needed at all. e.g. call ftrace /* 5 bytes */ is replaced with jmp 3f /* jmp is 2 bytes and we jump 3 forward */ 3: When we want to enable ftrace for function tracing, the IP recording is removed, and stop_machine is called again to replace all the locations of that were recorded back to the call of ftrace. When it is disabled, we replace the code back to the jmp. Allocation is done by the kthread. If the ftrace recording function is called, and we don't have any record slots available, then we simply skip that call. Once a second a new page (if needed) is allocated for recording new ftrace function calls. A large batch is allocated at boot up to get most of the calls there. Because we do this via stop_machine, we don't have to worry about another CPU executing a ftrace call as we modify it. But we do need to worry about NMI's so all functions that might be called via nmi must be annotated with notrace_nmi. When this code is configured in, the NMI code will not call notrace. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 02:20:42 +07:00
#include <linux/list.h>
ftrace: trace different functions with a different tracer Impact: new feature Currently, the function tracer only gives you an ability to hook a tracer to all functions being traced. The dynamic function trace allows you to pick and choose which of those functions will be traced, but all functions being traced will call all tracers that registered with the function tracer. This patch adds a new feature that allows a tracer to hook to specific functions, even when all functions are being traced. It allows for different functions to call different tracer hooks. The way this is accomplished is by a special function that will hook to the function tracer and will set up a hash table knowing which tracer hook to call with which function. This is the most general and easiest method to accomplish this. Later, an arch may choose to supply their own method in changing the mcount call of a function to call a different tracer. But that will be an exercise for the future. To register a function: struct ftrace_hook_ops { void (*func)(unsigned long ip, unsigned long parent_ip, void **data); int (*callback)(unsigned long ip, void **data); void (*free)(void **data); }; int register_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data); glob is a simple glob to search for the functions to hook. ops is a pointer to the operations (listed below) data is the default data to be passed to the hook functions when traced ops: func is the hook function to call when the functions are traced callback is a callback function that is called when setting up the hash. That is, if the tracer needs to do something special for each function, that is being traced, and wants to give each function its own data. The address of the entry data is passed to this callback, so that the callback may wish to update the entry to whatever it would like. free is a callback for when the entry is freed. In case the tracer allocated any data, it is give the chance to free it. To unregister we have three functions: void unregister_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data) This will unregister all hooks that match glob, point to ops, and have its data matching data. (note, if glob is NULL, blank or '*', all functions will be tested). void unregister_ftrace_function_hook_func(char *glob, struct ftrace_hook_ops *ops) This will unregister all functions matching glob that has an entry pointing to ops. void unregister_ftrace_function_hook_all(char *glob) This simply unregisters all funcs. Signed-off-by: Steven Rostedt <srostedt@redhat.com>
2009-02-15 03:29:06 +07:00
#include <linux/hash.h>
#include <linux/rcupdate.h>
ftrace: dynamic enabling/disabling of function calls This patch adds a feature to dynamically replace the ftrace code with the jmps to allow a kernel with ftrace configured to run as fast as it can without it configured. The way this works, is on bootup (if ftrace is enabled), a ftrace function is registered to record the instruction pointer of all places that call the function. Later, if there's still any code to patch, a kthread is awoken (rate limited to at most once a second) that performs a stop_machine, and replaces all the code that was called with a jmp over the call to ftrace. It only replaces what was found the previous time. Typically the system reaches equilibrium quickly after bootup and there's no code patching needed at all. e.g. call ftrace /* 5 bytes */ is replaced with jmp 3f /* jmp is 2 bytes and we jump 3 forward */ 3: When we want to enable ftrace for function tracing, the IP recording is removed, and stop_machine is called again to replace all the locations of that were recorded back to the call of ftrace. When it is disabled, we replace the code back to the jmp. Allocation is done by the kthread. If the ftrace recording function is called, and we don't have any record slots available, then we simply skip that call. Once a second a new page (if needed) is allocated for recording new ftrace function calls. A large batch is allocated at boot up to get most of the calls there. Because we do this via stop_machine, we don't have to worry about another CPU executing a ftrace call as we modify it. But we do need to worry about NMI's so all functions that might be called via nmi must be annotated with notrace_nmi. When this code is configured in, the NMI code will not call notrace. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 02:20:42 +07:00
#include <trace/events/sched.h>
#include <asm/setup.h>
#include "trace_output.h"
#include "trace_stat.h"
#define FTRACE_WARN_ON(cond) \
({ \
int ___r = cond; \
if (WARN_ON(___r)) \
ftrace_kill(); \
___r; \
})
#define FTRACE_WARN_ON_ONCE(cond) \
({ \
int ___r = cond; \
if (WARN_ON_ONCE(___r)) \
ftrace_kill(); \
___r; \
})
/* hash bits for specific function selection */
#define FTRACE_HASH_BITS 7
#define FTRACE_FUNC_HASHSIZE (1 << FTRACE_HASH_BITS)
#define FTRACE_HASH_DEFAULT_BITS 10
#define FTRACE_HASH_MAX_BITS 12
#define FL_GLOBAL_CONTROL_MASK (FTRACE_OPS_FL_GLOBAL | FTRACE_OPS_FL_CONTROL)
ftrace, kprobes: Fix a deadlock on ftrace_regex_lock Fix a deadlock on ftrace_regex_lock which happens when setting an enable_event trigger on dynamic kprobe event as below. ---- sh-2.05b# echo p vfs_symlink > kprobe_events sh-2.05b# echo vfs_symlink:enable_event:kprobes:p_vfs_symlink_0 > set_ftrace_filter ============================================= [ INFO: possible recursive locking detected ] 3.9.0+ #35 Not tainted --------------------------------------------- sh/72 is trying to acquire lock: (ftrace_regex_lock){+.+.+.}, at: [<ffffffff810ba6c1>] ftrace_set_hash+0x81/0x1f0 but task is already holding lock: (ftrace_regex_lock){+.+.+.}, at: [<ffffffff810b7cbd>] ftrace_regex_write.isra.29.part.30+0x3d/0x220 other info that might help us debug this: Possible unsafe locking scenario: CPU0 ---- lock(ftrace_regex_lock); lock(ftrace_regex_lock); *** DEADLOCK *** ---- To fix that, this introduces a finer regex_lock for each ftrace_ops. ftrace_regex_lock is too big of a lock which protects all filter/notrace_hash operations, but it doesn't need to be a global lock after supporting multiple ftrace_ops because each ftrace_ops has its own filter/notrace_hash. Link: http://lkml.kernel.org/r/20130509054417.30398.84254.stgit@mhiramat-M0-7522 Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Tom Zanussi <tom.zanussi@intel.com> Signed-off-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com> [ Added initialization flag and automate mutex initialization for non ftrace.c ftrace_probes. ] Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-05-09 12:44:17 +07:00
#ifdef CONFIG_DYNAMIC_FTRACE
#define INIT_REGEX_LOCK(opsname) \
.regex_lock = __MUTEX_INITIALIZER(opsname.regex_lock),
#else
#define INIT_REGEX_LOCK(opsname)
#endif
static struct ftrace_ops ftrace_list_end __read_mostly = {
.func = ftrace_stub,
ftrace: Do not call stub functions in control loop The function tracing control loop used by perf spits out a warning if the called function is not a control function. This is because the control function references a per cpu allocated data structure on struct ftrace_ops that is not allocated for other types of functions. commit 0a016409e42 "ftrace: Optimize the function tracer list loop" Had an optimization done to all function tracing loops to optimize for a single registered ops. Unfortunately, this allows for a slight race when tracing starts or ends, where the stub function might be called after the current registered ops is removed. In this case we get the following dump: root# perf stat -e ftrace:function sleep 1 [ 74.339105] WARNING: at include/linux/ftrace.h:209 ftrace_ops_control_func+0xde/0xf0() [ 74.349522] Hardware name: PRIMERGY RX200 S6 [ 74.357149] Modules linked in: sg igb iTCO_wdt ptp pps_core iTCO_vendor_support i7core_edac dca lpc_ich i2c_i801 coretemp edac_core crc32c_intel mfd_core ghash_clmulni_intel dm_multipath acpi_power_meter pcspk r microcode vhost_net tun macvtap macvlan nfsd kvm_intel kvm auth_rpcgss nfs_acl lockd sunrpc uinput xfs libcrc32c sd_mod crc_t10dif sr_mod cdrom mgag200 i2c_algo_bit drm_kms_helper ttm qla2xxx mptsas ahci drm li bahci scsi_transport_sas mptscsih libata scsi_transport_fc i2c_core mptbase scsi_tgt dm_mirror dm_region_hash dm_log dm_mod [ 74.446233] Pid: 1377, comm: perf Tainted: G W 3.9.0-rc1 #1 [ 74.453458] Call Trace: [ 74.456233] [<ffffffff81062e3f>] warn_slowpath_common+0x7f/0xc0 [ 74.462997] [<ffffffff810fbc60>] ? rcu_note_context_switch+0xa0/0xa0 [ 74.470272] [<ffffffff811041a2>] ? __unregister_ftrace_function+0xa2/0x1a0 [ 74.478117] [<ffffffff81062e9a>] warn_slowpath_null+0x1a/0x20 [ 74.484681] [<ffffffff81102ede>] ftrace_ops_control_func+0xde/0xf0 [ 74.491760] [<ffffffff8162f400>] ftrace_call+0x5/0x2f [ 74.497511] [<ffffffff8162f400>] ? ftrace_call+0x5/0x2f [ 74.503486] [<ffffffff8162f400>] ? ftrace_call+0x5/0x2f [ 74.509500] [<ffffffff810fbc65>] ? synchronize_sched+0x5/0x50 [ 74.516088] [<ffffffff816254d5>] ? _cond_resched+0x5/0x40 [ 74.522268] [<ffffffff810fbc65>] ? synchronize_sched+0x5/0x50 [ 74.528837] [<ffffffff811041a2>] ? __unregister_ftrace_function+0xa2/0x1a0 [ 74.536696] [<ffffffff816254d5>] ? _cond_resched+0x5/0x40 [ 74.542878] [<ffffffff8162402d>] ? mutex_lock+0x1d/0x50 [ 74.548869] [<ffffffff81105c67>] unregister_ftrace_function+0x27/0x50 [ 74.556243] [<ffffffff8111eadf>] perf_ftrace_event_register+0x9f/0x140 [ 74.563709] [<ffffffff816254d5>] ? _cond_resched+0x5/0x40 [ 74.569887] [<ffffffff8162402d>] ? mutex_lock+0x1d/0x50 [ 74.575898] [<ffffffff8111e94e>] perf_trace_destroy+0x2e/0x50 [ 74.582505] [<ffffffff81127ba9>] tp_perf_event_destroy+0x9/0x10 [ 74.589298] [<ffffffff811295d0>] free_event+0x70/0x1a0 [ 74.595208] [<ffffffff8112a579>] perf_event_release_kernel+0x69/0xa0 [ 74.602460] [<ffffffff816254d5>] ? _cond_resched+0x5/0x40 [ 74.608667] [<ffffffff8112a640>] put_event+0x90/0xc0 [ 74.614373] [<ffffffff8112a740>] perf_release+0x10/0x20 [ 74.620367] [<ffffffff811a3044>] __fput+0xf4/0x280 [ 74.625894] [<ffffffff811a31de>] ____fput+0xe/0x10 [ 74.631387] [<ffffffff81083697>] task_work_run+0xa7/0xe0 [ 74.637452] [<ffffffff81014981>] do_notify_resume+0x71/0xb0 [ 74.643843] [<ffffffff8162fa92>] int_signal+0x12/0x17 To fix this a new ftrace_ops flag is added that denotes the ftrace_list_end ftrace_ops stub as just that, a stub. This flag is now checked in the control loop and the function is not called if the flag is set. Thanks to Jovi for not just reporting the bug, but also pointing out where the bug was in the code. Link: http://lkml.kernel.org/r/514A8855.7090402@redhat.com Link: http://lkml.kernel.org/r/1364377499-1900-15-git-send-email-jovi.zhangwei@huawei.com Tested-by: WANG Chao <chaowang@redhat.com> Reported-by: WANG Chao <chaowang@redhat.com> Reported-by: zhangwei(Jovi) <jovi.zhangwei@huawei.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-03-27 20:31:28 +07:00
.flags = FTRACE_OPS_FL_RECURSION_SAFE | FTRACE_OPS_FL_STUB,
};
/* ftrace_enabled is a method to turn ftrace on or off */
int ftrace_enabled __read_mostly;
static int last_ftrace_enabled;
/* Quick disabling of function tracer. */
int function_trace_stop __read_mostly;
/* Current function tracing op */
struct ftrace_ops *function_trace_op __read_mostly = &ftrace_list_end;
/* List for set_ftrace_pid's pids. */
LIST_HEAD(ftrace_pids);
struct ftrace_pid {
struct list_head list;
struct pid *pid;
};
/*
* ftrace_disabled is set when an anomaly is discovered.
* ftrace_disabled is much stronger than ftrace_enabled.
*/
static int ftrace_disabled __read_mostly;
static DEFINE_MUTEX(ftrace_lock);
static struct ftrace_ops *ftrace_global_list __read_mostly = &ftrace_list_end;
static struct ftrace_ops *ftrace_control_list __read_mostly = &ftrace_list_end;
static struct ftrace_ops *ftrace_ops_list __read_mostly = &ftrace_list_end;
ftrace_func_t ftrace_trace_function __read_mostly = ftrace_stub;
ftrace_func_t ftrace_pid_function __read_mostly = ftrace_stub;
static struct ftrace_ops global_ops;
static struct ftrace_ops control_ops;
#if ARCH_SUPPORTS_FTRACE_OPS
static void ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip,
struct ftrace_ops *op, struct pt_regs *regs);
#else
/* See comment below, where ftrace_ops_list_func is defined */
static void ftrace_ops_no_ops(unsigned long ip, unsigned long parent_ip);
#define ftrace_ops_list_func ((ftrace_func_t)ftrace_ops_no_ops)
#endif
/*
* Traverse the ftrace_global_list, invoking all entries. The reason that we
* can use rcu_dereference_raw_notrace() is that elements removed from this list
* are simply leaked, so there is no need to interact with a grace-period
* mechanism. The rcu_dereference_raw_notrace() calls are needed to handle
* concurrent insertions into the ftrace_global_list.
*
* Silly Alpha and silly pointer-speculation compiler optimizations!
*/
#define do_for_each_ftrace_op(op, list) \
op = rcu_dereference_raw_notrace(list); \
do
/*
* Optimized for just a single item in the list (as that is the normal case).
*/
#define while_for_each_ftrace_op(op) \
while (likely(op = rcu_dereference_raw_notrace((op)->next)) && \
unlikely((op) != &ftrace_list_end))
ftrace, kprobes: Fix a deadlock on ftrace_regex_lock Fix a deadlock on ftrace_regex_lock which happens when setting an enable_event trigger on dynamic kprobe event as below. ---- sh-2.05b# echo p vfs_symlink > kprobe_events sh-2.05b# echo vfs_symlink:enable_event:kprobes:p_vfs_symlink_0 > set_ftrace_filter ============================================= [ INFO: possible recursive locking detected ] 3.9.0+ #35 Not tainted --------------------------------------------- sh/72 is trying to acquire lock: (ftrace_regex_lock){+.+.+.}, at: [<ffffffff810ba6c1>] ftrace_set_hash+0x81/0x1f0 but task is already holding lock: (ftrace_regex_lock){+.+.+.}, at: [<ffffffff810b7cbd>] ftrace_regex_write.isra.29.part.30+0x3d/0x220 other info that might help us debug this: Possible unsafe locking scenario: CPU0 ---- lock(ftrace_regex_lock); lock(ftrace_regex_lock); *** DEADLOCK *** ---- To fix that, this introduces a finer regex_lock for each ftrace_ops. ftrace_regex_lock is too big of a lock which protects all filter/notrace_hash operations, but it doesn't need to be a global lock after supporting multiple ftrace_ops because each ftrace_ops has its own filter/notrace_hash. Link: http://lkml.kernel.org/r/20130509054417.30398.84254.stgit@mhiramat-M0-7522 Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Tom Zanussi <tom.zanussi@intel.com> Signed-off-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com> [ Added initialization flag and automate mutex initialization for non ftrace.c ftrace_probes. ] Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-05-09 12:44:17 +07:00
static inline void ftrace_ops_init(struct ftrace_ops *ops)
{
#ifdef CONFIG_DYNAMIC_FTRACE
if (!(ops->flags & FTRACE_OPS_FL_INITIALIZED)) {
mutex_init(&ops->regex_lock);
ops->flags |= FTRACE_OPS_FL_INITIALIZED;
}
#endif
}
/**
* ftrace_nr_registered_ops - return number of ops registered
*
* Returns the number of ftrace_ops registered and tracing functions
*/
int ftrace_nr_registered_ops(void)
{
struct ftrace_ops *ops;
int cnt = 0;
mutex_lock(&ftrace_lock);
for (ops = ftrace_ops_list;
ops != &ftrace_list_end; ops = ops->next)
cnt++;
mutex_unlock(&ftrace_lock);
return cnt;
}
static void
ftrace_global_list_func(unsigned long ip, unsigned long parent_ip,
struct ftrace_ops *op, struct pt_regs *regs)
{
int bit;
bit = trace_test_and_set_recursion(TRACE_GLOBAL_START, TRACE_GLOBAL_MAX);
if (bit < 0)
ftrace: Add internal recursive checks Witold reported a reboot caused by the selftests of the dynamic function tracer. He sent me a config and I used ktest to do a config_bisect on it (as my config did not cause the crash). It pointed out that the problem config was CONFIG_PROVE_RCU. What happened was that if multiple callbacks are attached to the function tracer, we iterate a list of callbacks. Because the list is managed by synchronize_sched() and preempt_disable, the access to the pointers uses rcu_dereference_raw(). When PROVE_RCU is enabled, the rcu_dereference_raw() calls some debugging functions, which happen to be traced. The tracing of the debug function would then call rcu_dereference_raw() which would then call the debug function and then... well you get the idea. I first wrote two different patches to solve this bug. 1) add a __rcu_dereference_raw() that would not do any checks. 2) add notrace to the offending debug functions. Both of these patches worked. Talking with Paul McKenney on IRC, he suggested to add recursion detection instead. This seemed to be a better solution, so I decided to implement it. As the task_struct already has a trace_recursion to detect recursion in the ring buffer, and that has a very small number it allows, I decided to use that same variable to add flags that can detect the recursion inside the infrastructure of the function tracer. I plan to change it so that the task struct bit can be checked in mcount, but as that requires changes to all archs, I will hold that off to the next merge window. Cc: Ingo Molnar <mingo@elte.hu> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Link: http://lkml.kernel.org/r/1306348063.1465.116.camel@gandalf.stny.rr.com Reported-by: Witold Baryluk <baryluk@smp.if.uj.edu.pl> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2011-05-26 01:27:43 +07:00
return;
do_for_each_ftrace_op(op, ftrace_global_list) {
op->func(ip, parent_ip, op, regs);
} while_for_each_ftrace_op(op);
trace_clear_recursion(bit);
}
static void ftrace_pid_func(unsigned long ip, unsigned long parent_ip,
struct ftrace_ops *op, struct pt_regs *regs)
{
if (!test_tsk_trace_trace(current))
return;
ftrace_pid_function(ip, parent_ip, op, regs);
}
static void set_ftrace_pid_function(ftrace_func_t func)
{
/* do not set ftrace_pid_function to itself! */
if (func != ftrace_pid_func)
ftrace_pid_function = func;
}
/**
ftrace: dynamic enabling/disabling of function calls This patch adds a feature to dynamically replace the ftrace code with the jmps to allow a kernel with ftrace configured to run as fast as it can without it configured. The way this works, is on bootup (if ftrace is enabled), a ftrace function is registered to record the instruction pointer of all places that call the function. Later, if there's still any code to patch, a kthread is awoken (rate limited to at most once a second) that performs a stop_machine, and replaces all the code that was called with a jmp over the call to ftrace. It only replaces what was found the previous time. Typically the system reaches equilibrium quickly after bootup and there's no code patching needed at all. e.g. call ftrace /* 5 bytes */ is replaced with jmp 3f /* jmp is 2 bytes and we jump 3 forward */ 3: When we want to enable ftrace for function tracing, the IP recording is removed, and stop_machine is called again to replace all the locations of that were recorded back to the call of ftrace. When it is disabled, we replace the code back to the jmp. Allocation is done by the kthread. If the ftrace recording function is called, and we don't have any record slots available, then we simply skip that call. Once a second a new page (if needed) is allocated for recording new ftrace function calls. A large batch is allocated at boot up to get most of the calls there. Because we do this via stop_machine, we don't have to worry about another CPU executing a ftrace call as we modify it. But we do need to worry about NMI's so all functions that might be called via nmi must be annotated with notrace_nmi. When this code is configured in, the NMI code will not call notrace. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 02:20:42 +07:00
* clear_ftrace_function - reset the ftrace function
*
ftrace: dynamic enabling/disabling of function calls This patch adds a feature to dynamically replace the ftrace code with the jmps to allow a kernel with ftrace configured to run as fast as it can without it configured. The way this works, is on bootup (if ftrace is enabled), a ftrace function is registered to record the instruction pointer of all places that call the function. Later, if there's still any code to patch, a kthread is awoken (rate limited to at most once a second) that performs a stop_machine, and replaces all the code that was called with a jmp over the call to ftrace. It only replaces what was found the previous time. Typically the system reaches equilibrium quickly after bootup and there's no code patching needed at all. e.g. call ftrace /* 5 bytes */ is replaced with jmp 3f /* jmp is 2 bytes and we jump 3 forward */ 3: When we want to enable ftrace for function tracing, the IP recording is removed, and stop_machine is called again to replace all the locations of that were recorded back to the call of ftrace. When it is disabled, we replace the code back to the jmp. Allocation is done by the kthread. If the ftrace recording function is called, and we don't have any record slots available, then we simply skip that call. Once a second a new page (if needed) is allocated for recording new ftrace function calls. A large batch is allocated at boot up to get most of the calls there. Because we do this via stop_machine, we don't have to worry about another CPU executing a ftrace call as we modify it. But we do need to worry about NMI's so all functions that might be called via nmi must be annotated with notrace_nmi. When this code is configured in, the NMI code will not call notrace. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 02:20:42 +07:00
* This NULLs the ftrace function and in essence stops
* tracing. There may be lag
*/
ftrace: dynamic enabling/disabling of function calls This patch adds a feature to dynamically replace the ftrace code with the jmps to allow a kernel with ftrace configured to run as fast as it can without it configured. The way this works, is on bootup (if ftrace is enabled), a ftrace function is registered to record the instruction pointer of all places that call the function. Later, if there's still any code to patch, a kthread is awoken (rate limited to at most once a second) that performs a stop_machine, and replaces all the code that was called with a jmp over the call to ftrace. It only replaces what was found the previous time. Typically the system reaches equilibrium quickly after bootup and there's no code patching needed at all. e.g. call ftrace /* 5 bytes */ is replaced with jmp 3f /* jmp is 2 bytes and we jump 3 forward */ 3: When we want to enable ftrace for function tracing, the IP recording is removed, and stop_machine is called again to replace all the locations of that were recorded back to the call of ftrace. When it is disabled, we replace the code back to the jmp. Allocation is done by the kthread. If the ftrace recording function is called, and we don't have any record slots available, then we simply skip that call. Once a second a new page (if needed) is allocated for recording new ftrace function calls. A large batch is allocated at boot up to get most of the calls there. Because we do this via stop_machine, we don't have to worry about another CPU executing a ftrace call as we modify it. But we do need to worry about NMI's so all functions that might be called via nmi must be annotated with notrace_nmi. When this code is configured in, the NMI code will not call notrace. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 02:20:42 +07:00
void clear_ftrace_function(void)
{
ftrace: dynamic enabling/disabling of function calls This patch adds a feature to dynamically replace the ftrace code with the jmps to allow a kernel with ftrace configured to run as fast as it can without it configured. The way this works, is on bootup (if ftrace is enabled), a ftrace function is registered to record the instruction pointer of all places that call the function. Later, if there's still any code to patch, a kthread is awoken (rate limited to at most once a second) that performs a stop_machine, and replaces all the code that was called with a jmp over the call to ftrace. It only replaces what was found the previous time. Typically the system reaches equilibrium quickly after bootup and there's no code patching needed at all. e.g. call ftrace /* 5 bytes */ is replaced with jmp 3f /* jmp is 2 bytes and we jump 3 forward */ 3: When we want to enable ftrace for function tracing, the IP recording is removed, and stop_machine is called again to replace all the locations of that were recorded back to the call of ftrace. When it is disabled, we replace the code back to the jmp. Allocation is done by the kthread. If the ftrace recording function is called, and we don't have any record slots available, then we simply skip that call. Once a second a new page (if needed) is allocated for recording new ftrace function calls. A large batch is allocated at boot up to get most of the calls there. Because we do this via stop_machine, we don't have to worry about another CPU executing a ftrace call as we modify it. But we do need to worry about NMI's so all functions that might be called via nmi must be annotated with notrace_nmi. When this code is configured in, the NMI code will not call notrace. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 02:20:42 +07:00
ftrace_trace_function = ftrace_stub;
ftrace_pid_function = ftrace_stub;
ftrace: dynamic enabling/disabling of function calls This patch adds a feature to dynamically replace the ftrace code with the jmps to allow a kernel with ftrace configured to run as fast as it can without it configured. The way this works, is on bootup (if ftrace is enabled), a ftrace function is registered to record the instruction pointer of all places that call the function. Later, if there's still any code to patch, a kthread is awoken (rate limited to at most once a second) that performs a stop_machine, and replaces all the code that was called with a jmp over the call to ftrace. It only replaces what was found the previous time. Typically the system reaches equilibrium quickly after bootup and there's no code patching needed at all. e.g. call ftrace /* 5 bytes */ is replaced with jmp 3f /* jmp is 2 bytes and we jump 3 forward */ 3: When we want to enable ftrace for function tracing, the IP recording is removed, and stop_machine is called again to replace all the locations of that were recorded back to the call of ftrace. When it is disabled, we replace the code back to the jmp. Allocation is done by the kthread. If the ftrace recording function is called, and we don't have any record slots available, then we simply skip that call. Once a second a new page (if needed) is allocated for recording new ftrace function calls. A large batch is allocated at boot up to get most of the calls there. Because we do this via stop_machine, we don't have to worry about another CPU executing a ftrace call as we modify it. But we do need to worry about NMI's so all functions that might be called via nmi must be annotated with notrace_nmi. When this code is configured in, the NMI code will not call notrace. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 02:20:42 +07:00
}
static void control_ops_disable_all(struct ftrace_ops *ops)
{
int cpu;
for_each_possible_cpu(cpu)
*per_cpu_ptr(ops->disabled, cpu) = 1;
}
static int control_ops_alloc(struct ftrace_ops *ops)
{
int __percpu *disabled;
disabled = alloc_percpu(int);
if (!disabled)
return -ENOMEM;
ops->disabled = disabled;
control_ops_disable_all(ops);
return 0;
}
static void control_ops_free(struct ftrace_ops *ops)
{
free_percpu(ops->disabled);
}
static void update_global_ops(void)
{
ftrace_func_t func;
/*
* If there's only one function registered, then call that
* function directly. Otherwise, we need to iterate over the
* registered callers.
*/
if (ftrace_global_list == &ftrace_list_end ||
ftrace_global_list->next == &ftrace_list_end) {
func = ftrace_global_list->func;
/*
* As we are calling the function directly.
* If it does not have recursion protection,
* the function_trace_op needs to be updated
* accordingly.
*/
if (ftrace_global_list->flags & FTRACE_OPS_FL_RECURSION_SAFE)
global_ops.flags |= FTRACE_OPS_FL_RECURSION_SAFE;
else
global_ops.flags &= ~FTRACE_OPS_FL_RECURSION_SAFE;
} else {
func = ftrace_global_list_func;
/* The list has its own recursion protection. */
global_ops.flags |= FTRACE_OPS_FL_RECURSION_SAFE;
}
/* If we filter on pids, update to use the pid function */
if (!list_empty(&ftrace_pids)) {
set_ftrace_pid_function(func);
func = ftrace_pid_func;
}
global_ops.func = func;
}
static void update_ftrace_function(void)
{
ftrace_func_t func;
update_global_ops();
/*
* If we are at the end of the list and this ops is
* recursion safe and not dynamic and the arch supports passing ops,
* then have the mcount trampoline call the function directly.
*/
if (ftrace_ops_list == &ftrace_list_end ||
(ftrace_ops_list->next == &ftrace_list_end &&
!(ftrace_ops_list->flags & FTRACE_OPS_FL_DYNAMIC) &&
(ftrace_ops_list->flags & FTRACE_OPS_FL_RECURSION_SAFE) &&
!FTRACE_FORCE_LIST_FUNC)) {
/* Set the ftrace_ops that the arch callback uses */
if (ftrace_ops_list == &global_ops)
function_trace_op = ftrace_global_list;
else
function_trace_op = ftrace_ops_list;
func = ftrace_ops_list->func;
} else {
/* Just use the default ftrace_ops */
function_trace_op = &ftrace_list_end;
func = ftrace_ops_list_func;
}
ftrace_trace_function = func;
}
static void add_ftrace_ops(struct ftrace_ops **list, struct ftrace_ops *ops)
ftrace: dynamic enabling/disabling of function calls This patch adds a feature to dynamically replace the ftrace code with the jmps to allow a kernel with ftrace configured to run as fast as it can without it configured. The way this works, is on bootup (if ftrace is enabled), a ftrace function is registered to record the instruction pointer of all places that call the function. Later, if there's still any code to patch, a kthread is awoken (rate limited to at most once a second) that performs a stop_machine, and replaces all the code that was called with a jmp over the call to ftrace. It only replaces what was found the previous time. Typically the system reaches equilibrium quickly after bootup and there's no code patching needed at all. e.g. call ftrace /* 5 bytes */ is replaced with jmp 3f /* jmp is 2 bytes and we jump 3 forward */ 3: When we want to enable ftrace for function tracing, the IP recording is removed, and stop_machine is called again to replace all the locations of that were recorded back to the call of ftrace. When it is disabled, we replace the code back to the jmp. Allocation is done by the kthread. If the ftrace recording function is called, and we don't have any record slots available, then we simply skip that call. Once a second a new page (if needed) is allocated for recording new ftrace function calls. A large batch is allocated at boot up to get most of the calls there. Because we do this via stop_machine, we don't have to worry about another CPU executing a ftrace call as we modify it. But we do need to worry about NMI's so all functions that might be called via nmi must be annotated with notrace_nmi. When this code is configured in, the NMI code will not call notrace. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 02:20:42 +07:00
{
ops->next = *list;
/*
* We are entering ops into the list but another
* CPU might be walking that list. We need to make sure
* the ops->next pointer is valid before another CPU sees
* the ops pointer included into the list.
*/
rcu_assign_pointer(*list, ops);
}
static int remove_ftrace_ops(struct ftrace_ops **list, struct ftrace_ops *ops)
{
struct ftrace_ops **p;
/*
ftrace: dynamic enabling/disabling of function calls This patch adds a feature to dynamically replace the ftrace code with the jmps to allow a kernel with ftrace configured to run as fast as it can without it configured. The way this works, is on bootup (if ftrace is enabled), a ftrace function is registered to record the instruction pointer of all places that call the function. Later, if there's still any code to patch, a kthread is awoken (rate limited to at most once a second) that performs a stop_machine, and replaces all the code that was called with a jmp over the call to ftrace. It only replaces what was found the previous time. Typically the system reaches equilibrium quickly after bootup and there's no code patching needed at all. e.g. call ftrace /* 5 bytes */ is replaced with jmp 3f /* jmp is 2 bytes and we jump 3 forward */ 3: When we want to enable ftrace for function tracing, the IP recording is removed, and stop_machine is called again to replace all the locations of that were recorded back to the call of ftrace. When it is disabled, we replace the code back to the jmp. Allocation is done by the kthread. If the ftrace recording function is called, and we don't have any record slots available, then we simply skip that call. Once a second a new page (if needed) is allocated for recording new ftrace function calls. A large batch is allocated at boot up to get most of the calls there. Because we do this via stop_machine, we don't have to worry about another CPU executing a ftrace call as we modify it. But we do need to worry about NMI's so all functions that might be called via nmi must be annotated with notrace_nmi. When this code is configured in, the NMI code will not call notrace. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 02:20:42 +07:00
* If we are removing the last function, then simply point
* to the ftrace_stub.
*/
if (*list == ops && ops->next == &ftrace_list_end) {
*list = &ftrace_list_end;
return 0;
}
for (p = list; *p != &ftrace_list_end; p = &(*p)->next)
if (*p == ops)
break;
if (*p != ops)
return -1;
*p = (*p)->next;
return 0;
}
static void add_ftrace_list_ops(struct ftrace_ops **list,
struct ftrace_ops *main_ops,
struct ftrace_ops *ops)
{
int first = *list == &ftrace_list_end;
add_ftrace_ops(list, ops);
if (first)
add_ftrace_ops(&ftrace_ops_list, main_ops);
}
static int remove_ftrace_list_ops(struct ftrace_ops **list,
struct ftrace_ops *main_ops,
struct ftrace_ops *ops)
{
int ret = remove_ftrace_ops(list, ops);
if (!ret && *list == &ftrace_list_end)
ret = remove_ftrace_ops(&ftrace_ops_list, main_ops);
return ret;
}
static int __register_ftrace_function(struct ftrace_ops *ops)
{
if (unlikely(ftrace_disabled))
return -ENODEV;
if (FTRACE_WARN_ON(ops == &global_ops))
return -EINVAL;
if (WARN_ON(ops->flags & FTRACE_OPS_FL_ENABLED))
return -EBUSY;
/* We don't support both control and global flags set. */
if ((ops->flags & FL_GLOBAL_CONTROL_MASK) == FL_GLOBAL_CONTROL_MASK)
return -EINVAL;
#ifndef CONFIG_DYNAMIC_FTRACE_WITH_REGS
ftrace/x86: Add separate function to save regs Add a way to have different functions calling different trampolines. If a ftrace_ops wants regs saved on the return, then have only the functions with ops registered to save regs. Functions registered by other ops would not be affected, unless the functions overlap. If one ftrace_ops registered functions A, B and C and another ops registered fucntions to save regs on A, and D, then only functions A and D would be saving regs. Function B and C would work as normal. Although A is registered by both ops: normal and saves regs; this is fine as saving the regs is needed to satisfy one of the ops that calls it but the regs are ignored by the other ops function. x86_64 implements the full regs saving, and i386 just passes a NULL for regs to satisfy the ftrace_ops passing. Where an arch must supply both regs and ftrace_ops parameters, even if regs is just NULL. It is OK for an arch to pass NULL regs. All function trace users that require regs passing must add the flag FTRACE_OPS_FL_SAVE_REGS when registering the ftrace_ops. If the arch does not support saving regs then the ftrace_ops will fail to register. The flag FTRACE_OPS_FL_SAVE_REGS_IF_SUPPORTED may be set that will prevent the ftrace_ops from failing to register. In this case, the handler may either check if regs is not NULL or check if ARCH_SUPPORTS_FTRACE_SAVE_REGS. If the arch supports passing regs it will set this macro and pass regs for ops that request them. All other archs will just pass NULL. Link: Link: http://lkml.kernel.org/r/20120711195745.107705970@goodmis.org Cc: Alexander van Heukelum <heukelum@fastmail.fm> Reviewed-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2012-05-01 03:20:23 +07:00
/*
* If the ftrace_ops specifies SAVE_REGS, then it only can be used
* if the arch supports it, or SAVE_REGS_IF_SUPPORTED is also set.
* Setting SAVE_REGS_IF_SUPPORTED makes SAVE_REGS irrelevant.
*/
if (ops->flags & FTRACE_OPS_FL_SAVE_REGS &&
!(ops->flags & FTRACE_OPS_FL_SAVE_REGS_IF_SUPPORTED))
return -EINVAL;
if (ops->flags & FTRACE_OPS_FL_SAVE_REGS_IF_SUPPORTED)
ops->flags |= FTRACE_OPS_FL_SAVE_REGS;
#endif
if (!core_kernel_data((unsigned long)ops))
ops->flags |= FTRACE_OPS_FL_DYNAMIC;
if (ops->flags & FTRACE_OPS_FL_GLOBAL) {
add_ftrace_list_ops(&ftrace_global_list, &global_ops, ops);
ops->flags |= FTRACE_OPS_FL_ENABLED;
} else if (ops->flags & FTRACE_OPS_FL_CONTROL) {
if (control_ops_alloc(ops))
return -ENOMEM;
add_ftrace_list_ops(&ftrace_control_list, &control_ops, ops);
} else
add_ftrace_ops(&ftrace_ops_list, ops);
if (ftrace_enabled)
update_ftrace_function();
return 0;
}
ftrace: Use schedule_on_each_cpu() as a heavy synchronize_sched() The function tracer uses preempt_disable/enable_notrace() for synchronization between reading registered ftrace_ops and unregistering them. Most of the ftrace_ops are global permanent structures that do not require this synchronization. That is, ops may be added and removed from the hlist but are never freed, and wont hurt if a synchronization is missed. But this is not true for dynamically created ftrace_ops or control_ops, which are used by the perf function tracing. The problem here is that the function tracer can be used to trace kernel/user context switches as well as going to and from idle. Basically, it can be used to trace blind spots of the RCU subsystem. This means that even though preempt_disable() is done, a synchronize_sched() will ignore CPUs that haven't made it out of user space or idle. These can include functions that are being traced just before entering or exiting the kernel sections. To implement the RCU synchronization, instead of using synchronize_sched() the use of schedule_on_each_cpu() is performed. This means that when a dynamically allocated ftrace_ops, or a control ops is being unregistered, all CPUs must be touched and execute a ftrace_sync() stub function via the work queues. This will rip CPUs out from idle or in dynamic tick mode. This only happens when a user disables perf function tracing or other dynamically allocated function tracers, but it allows us to continue to debug RCU and context tracking with function tracing. Link: http://lkml.kernel.org/r/1369785676.15552.55.camel@gandalf.local.home Cc: "Paul E. McKenney" <paulmck@us.ibm.com> Cc: Tejun Heo <tj@kernel.org> Cc: Ingo Molnar <mingo@kernel.org> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Acked-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-05-29 07:01:16 +07:00
static void ftrace_sync(struct work_struct *work)
{
/*
* This function is just a stub to implement a hard force
* of synchronize_sched(). This requires synchronizing
* tasks even in userspace and idle.
*
* Yes, function tracing is rude.
*/
}
static int __unregister_ftrace_function(struct ftrace_ops *ops)
{
int ret;
if (ftrace_disabled)
return -ENODEV;
if (WARN_ON(!(ops->flags & FTRACE_OPS_FL_ENABLED)))
return -EBUSY;
if (FTRACE_WARN_ON(ops == &global_ops))
return -EINVAL;
if (ops->flags & FTRACE_OPS_FL_GLOBAL) {
ret = remove_ftrace_list_ops(&ftrace_global_list,
&global_ops, ops);
if (!ret)
ops->flags &= ~FTRACE_OPS_FL_ENABLED;
} else if (ops->flags & FTRACE_OPS_FL_CONTROL) {
ret = remove_ftrace_list_ops(&ftrace_control_list,
&control_ops, ops);
if (!ret) {
/*
* The ftrace_ops is now removed from the list,
* so there'll be no new users. We must ensure
* all current users are done before we free
* the control data.
ftrace: Use schedule_on_each_cpu() as a heavy synchronize_sched() The function tracer uses preempt_disable/enable_notrace() for synchronization between reading registered ftrace_ops and unregistering them. Most of the ftrace_ops are global permanent structures that do not require this synchronization. That is, ops may be added and removed from the hlist but are never freed, and wont hurt if a synchronization is missed. But this is not true for dynamically created ftrace_ops or control_ops, which are used by the perf function tracing. The problem here is that the function tracer can be used to trace kernel/user context switches as well as going to and from idle. Basically, it can be used to trace blind spots of the RCU subsystem. This means that even though preempt_disable() is done, a synchronize_sched() will ignore CPUs that haven't made it out of user space or idle. These can include functions that are being traced just before entering or exiting the kernel sections. To implement the RCU synchronization, instead of using synchronize_sched() the use of schedule_on_each_cpu() is performed. This means that when a dynamically allocated ftrace_ops, or a control ops is being unregistered, all CPUs must be touched and execute a ftrace_sync() stub function via the work queues. This will rip CPUs out from idle or in dynamic tick mode. This only happens when a user disables perf function tracing or other dynamically allocated function tracers, but it allows us to continue to debug RCU and context tracking with function tracing. Link: http://lkml.kernel.org/r/1369785676.15552.55.camel@gandalf.local.home Cc: "Paul E. McKenney" <paulmck@us.ibm.com> Cc: Tejun Heo <tj@kernel.org> Cc: Ingo Molnar <mingo@kernel.org> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Acked-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-05-29 07:01:16 +07:00
* Note synchronize_sched() is not enough, as we
* use preempt_disable() to do RCU, but the function
* tracer can be called where RCU is not active
* (before user_exit()).
*/
ftrace: Use schedule_on_each_cpu() as a heavy synchronize_sched() The function tracer uses preempt_disable/enable_notrace() for synchronization between reading registered ftrace_ops and unregistering them. Most of the ftrace_ops are global permanent structures that do not require this synchronization. That is, ops may be added and removed from the hlist but are never freed, and wont hurt if a synchronization is missed. But this is not true for dynamically created ftrace_ops or control_ops, which are used by the perf function tracing. The problem here is that the function tracer can be used to trace kernel/user context switches as well as going to and from idle. Basically, it can be used to trace blind spots of the RCU subsystem. This means that even though preempt_disable() is done, a synchronize_sched() will ignore CPUs that haven't made it out of user space or idle. These can include functions that are being traced just before entering or exiting the kernel sections. To implement the RCU synchronization, instead of using synchronize_sched() the use of schedule_on_each_cpu() is performed. This means that when a dynamically allocated ftrace_ops, or a control ops is being unregistered, all CPUs must be touched and execute a ftrace_sync() stub function via the work queues. This will rip CPUs out from idle or in dynamic tick mode. This only happens when a user disables perf function tracing or other dynamically allocated function tracers, but it allows us to continue to debug RCU and context tracking with function tracing. Link: http://lkml.kernel.org/r/1369785676.15552.55.camel@gandalf.local.home Cc: "Paul E. McKenney" <paulmck@us.ibm.com> Cc: Tejun Heo <tj@kernel.org> Cc: Ingo Molnar <mingo@kernel.org> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Acked-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-05-29 07:01:16 +07:00
schedule_on_each_cpu(ftrace_sync);
control_ops_free(ops);
}
} else
ret = remove_ftrace_ops(&ftrace_ops_list, ops);
if (ret < 0)
return ret;
if (ftrace_enabled)
update_ftrace_function();
/*
* Dynamic ops may be freed, we must make sure that all
* callers are done before leaving this function.
ftrace: Use schedule_on_each_cpu() as a heavy synchronize_sched() The function tracer uses preempt_disable/enable_notrace() for synchronization between reading registered ftrace_ops and unregistering them. Most of the ftrace_ops are global permanent structures that do not require this synchronization. That is, ops may be added and removed from the hlist but are never freed, and wont hurt if a synchronization is missed. But this is not true for dynamically created ftrace_ops or control_ops, which are used by the perf function tracing. The problem here is that the function tracer can be used to trace kernel/user context switches as well as going to and from idle. Basically, it can be used to trace blind spots of the RCU subsystem. This means that even though preempt_disable() is done, a synchronize_sched() will ignore CPUs that haven't made it out of user space or idle. These can include functions that are being traced just before entering or exiting the kernel sections. To implement the RCU synchronization, instead of using synchronize_sched() the use of schedule_on_each_cpu() is performed. This means that when a dynamically allocated ftrace_ops, or a control ops is being unregistered, all CPUs must be touched and execute a ftrace_sync() stub function via the work queues. This will rip CPUs out from idle or in dynamic tick mode. This only happens when a user disables perf function tracing or other dynamically allocated function tracers, but it allows us to continue to debug RCU and context tracking with function tracing. Link: http://lkml.kernel.org/r/1369785676.15552.55.camel@gandalf.local.home Cc: "Paul E. McKenney" <paulmck@us.ibm.com> Cc: Tejun Heo <tj@kernel.org> Cc: Ingo Molnar <mingo@kernel.org> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Acked-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-05-29 07:01:16 +07:00
*
* Again, normal synchronize_sched() is not good enough.
* We need to do a hard force of sched synchronization.
*/
if (ops->flags & FTRACE_OPS_FL_DYNAMIC)
ftrace: Use schedule_on_each_cpu() as a heavy synchronize_sched() The function tracer uses preempt_disable/enable_notrace() for synchronization between reading registered ftrace_ops and unregistering them. Most of the ftrace_ops are global permanent structures that do not require this synchronization. That is, ops may be added and removed from the hlist but are never freed, and wont hurt if a synchronization is missed. But this is not true for dynamically created ftrace_ops or control_ops, which are used by the perf function tracing. The problem here is that the function tracer can be used to trace kernel/user context switches as well as going to and from idle. Basically, it can be used to trace blind spots of the RCU subsystem. This means that even though preempt_disable() is done, a synchronize_sched() will ignore CPUs that haven't made it out of user space or idle. These can include functions that are being traced just before entering or exiting the kernel sections. To implement the RCU synchronization, instead of using synchronize_sched() the use of schedule_on_each_cpu() is performed. This means that when a dynamically allocated ftrace_ops, or a control ops is being unregistered, all CPUs must be touched and execute a ftrace_sync() stub function via the work queues. This will rip CPUs out from idle or in dynamic tick mode. This only happens when a user disables perf function tracing or other dynamically allocated function tracers, but it allows us to continue to debug RCU and context tracking with function tracing. Link: http://lkml.kernel.org/r/1369785676.15552.55.camel@gandalf.local.home Cc: "Paul E. McKenney" <paulmck@us.ibm.com> Cc: Tejun Heo <tj@kernel.org> Cc: Ingo Molnar <mingo@kernel.org> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Acked-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-05-29 07:01:16 +07:00
schedule_on_each_cpu(ftrace_sync);
return 0;
ftrace: dynamic enabling/disabling of function calls This patch adds a feature to dynamically replace the ftrace code with the jmps to allow a kernel with ftrace configured to run as fast as it can without it configured. The way this works, is on bootup (if ftrace is enabled), a ftrace function is registered to record the instruction pointer of all places that call the function. Later, if there's still any code to patch, a kthread is awoken (rate limited to at most once a second) that performs a stop_machine, and replaces all the code that was called with a jmp over the call to ftrace. It only replaces what was found the previous time. Typically the system reaches equilibrium quickly after bootup and there's no code patching needed at all. e.g. call ftrace /* 5 bytes */ is replaced with jmp 3f /* jmp is 2 bytes and we jump 3 forward */ 3: When we want to enable ftrace for function tracing, the IP recording is removed, and stop_machine is called again to replace all the locations of that were recorded back to the call of ftrace. When it is disabled, we replace the code back to the jmp. Allocation is done by the kthread. If the ftrace recording function is called, and we don't have any record slots available, then we simply skip that call. Once a second a new page (if needed) is allocated for recording new ftrace function calls. A large batch is allocated at boot up to get most of the calls there. Because we do this via stop_machine, we don't have to worry about another CPU executing a ftrace call as we modify it. But we do need to worry about NMI's so all functions that might be called via nmi must be annotated with notrace_nmi. When this code is configured in, the NMI code will not call notrace. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 02:20:42 +07:00
}
static void ftrace_update_pid_func(void)
{
/* Only do something if we are tracing something */
if (ftrace_trace_function == ftrace_stub)
return;
update_ftrace_function();
}
#ifdef CONFIG_FUNCTION_PROFILER
struct ftrace_profile {
struct hlist_node node;
unsigned long ip;
unsigned long counter;
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
unsigned long long time;
unsigned long long time_squared;
#endif
};
struct ftrace_profile_page {
struct ftrace_profile_page *next;
unsigned long index;
struct ftrace_profile records[];
};
struct ftrace_profile_stat {
atomic_t disabled;
struct hlist_head *hash;
struct ftrace_profile_page *pages;
struct ftrace_profile_page *start;
struct tracer_stat stat;
};
#define PROFILE_RECORDS_SIZE \
(PAGE_SIZE - offsetof(struct ftrace_profile_page, records))
ftrace: add filter select functions to trace This patch adds two files to the debugfs system: /debugfs/tracing/available_filter_functions and /debugfs/tracing/set_ftrace_filter The available_filter_functions lists all functions that has been recorded by the ftraced that has called the ftrace_record_ip function. This is to allow users to see what functions have been converted to nops and can be enabled for tracing. To enable functions, simply echo the names (whitespace delimited) into set_ftrace_filter. Simple wildcards are also allowed. echo 'scheduler' > /debugfs/tracing/set_ftrace_filter Will have only the scheduler be activated when tracing is enabled. echo 'sched_*' > /debugfs/tracing/set_ftrace_filter Will have only the functions starting with 'sched_' be activated. echo '*lock' > /debugfs/tracing/set_ftrace_filter Will have only functions ending with 'lock' be activated. echo '*lock*' > /debugfs/tracing/set_ftrace_filter Will have only functions with 'lock' in its name be activated. Note: 'sched*lock' will not work. The only wildcards that are allowed is an asterisk and the beginning and or end of the string passed in. Multiple names can be passed in with whitespace delimited: echo 'scheduler *lock *acpi*' > /debugfs/tracing/set_ftrace_filter is also the same as: echo 'scheduler' > /debugfs/tracing/set_ftrace_filter echo '*lock' >> /debugfs/tracing/set_ftrace_filter echo '*acpi*' >> /debugfs/tracing/set_ftrace_filter Appending does just that. It appends to the list. To disable all filters simply echo an empty line in: echo > /debugfs/tracing/set_ftrace_filter Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 02:20:43 +07:00
#define PROFILES_PER_PAGE \
(PROFILE_RECORDS_SIZE / sizeof(struct ftrace_profile))
ftrace: dynamic enabling/disabling of function calls This patch adds a feature to dynamically replace the ftrace code with the jmps to allow a kernel with ftrace configured to run as fast as it can without it configured. The way this works, is on bootup (if ftrace is enabled), a ftrace function is registered to record the instruction pointer of all places that call the function. Later, if there's still any code to patch, a kthread is awoken (rate limited to at most once a second) that performs a stop_machine, and replaces all the code that was called with a jmp over the call to ftrace. It only replaces what was found the previous time. Typically the system reaches equilibrium quickly after bootup and there's no code patching needed at all. e.g. call ftrace /* 5 bytes */ is replaced with jmp 3f /* jmp is 2 bytes and we jump 3 forward */ 3: When we want to enable ftrace for function tracing, the IP recording is removed, and stop_machine is called again to replace all the locations of that were recorded back to the call of ftrace. When it is disabled, we replace the code back to the jmp. Allocation is done by the kthread. If the ftrace recording function is called, and we don't have any record slots available, then we simply skip that call. Once a second a new page (if needed) is allocated for recording new ftrace function calls. A large batch is allocated at boot up to get most of the calls there. Because we do this via stop_machine, we don't have to worry about another CPU executing a ftrace call as we modify it. But we do need to worry about NMI's so all functions that might be called via nmi must be annotated with notrace_nmi. When this code is configured in, the NMI code will not call notrace. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 02:20:42 +07:00
static int ftrace_profile_enabled __read_mostly;
/* ftrace_profile_lock - synchronize the enable and disable of the profiler */
static DEFINE_MUTEX(ftrace_profile_lock);
static DEFINE_PER_CPU(struct ftrace_profile_stat, ftrace_profile_stats);
#define FTRACE_PROFILE_HASH_BITS 10
#define FTRACE_PROFILE_HASH_SIZE (1 << FTRACE_PROFILE_HASH_BITS)
static void *
function_stat_next(void *v, int idx)
{
struct ftrace_profile *rec = v;
struct ftrace_profile_page *pg;
pg = (struct ftrace_profile_page *)((unsigned long)rec & PAGE_MASK);
again:
if (idx != 0)
rec++;
if ((void *)rec >= (void *)&pg->records[pg->index]) {
pg = pg->next;
if (!pg)
return NULL;
rec = &pg->records[0];
if (!rec->counter)
goto again;
}
return rec;
}
static void *function_stat_start(struct tracer_stat *trace)
{
struct ftrace_profile_stat *stat =
container_of(trace, struct ftrace_profile_stat, stat);
if (!stat || !stat->start)
return NULL;
return function_stat_next(&stat->start->records[0], 0);
}
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
/* function graph compares on total time */
static int function_stat_cmp(void *p1, void *p2)
{
struct ftrace_profile *a = p1;
struct ftrace_profile *b = p2;
if (a->time < b->time)
return -1;
if (a->time > b->time)
return 1;
else
return 0;
}
#else
/* not function graph compares against hits */
static int function_stat_cmp(void *p1, void *p2)
{
struct ftrace_profile *a = p1;
struct ftrace_profile *b = p2;
if (a->counter < b->counter)
return -1;
if (a->counter > b->counter)
return 1;
else
return 0;
}
#endif
static int function_stat_headers(struct seq_file *m)
{
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
seq_printf(m, " Function "
"Hit Time Avg s^2\n"
" -------- "
"--- ---- --- ---\n");
#else
seq_printf(m, " Function Hit\n"
" -------- ---\n");
#endif
return 0;
}
static int function_stat_show(struct seq_file *m, void *v)
{
struct ftrace_profile *rec = v;
char str[KSYM_SYMBOL_LEN];
int ret = 0;
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
static struct trace_seq s;
unsigned long long avg;
unsigned long long stddev;
#endif
mutex_lock(&ftrace_profile_lock);
/* we raced with function_profile_reset() */
if (unlikely(rec->counter == 0)) {
ret = -EBUSY;
goto out;
}
kallsyms_lookup(rec->ip, NULL, NULL, NULL, str);
seq_printf(m, " %-30.30s %10lu", str, rec->counter);
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
seq_printf(m, " ");
avg = rec->time;
do_div(avg, rec->counter);
/* Sample standard deviation (s^2) */
if (rec->counter <= 1)
stddev = 0;
else {
/*
* Apply Welford's method:
* s^2 = 1 / (n * (n-1)) * (n * \Sum (x_i)^2 - (\Sum x_i)^2)
*/
stddev = rec->counter * rec->time_squared -
rec->time * rec->time;
/*
* Divide only 1000 for ns^2 -> us^2 conversion.
* trace_print_graph_duration will divide 1000 again.
*/
do_div(stddev, rec->counter * (rec->counter - 1) * 1000);
}
trace_seq_init(&s);
trace_print_graph_duration(rec->time, &s);
trace_seq_puts(&s, " ");
trace_print_graph_duration(avg, &s);
trace_seq_puts(&s, " ");
trace_print_graph_duration(stddev, &s);
trace_print_seq(m, &s);
#endif
seq_putc(m, '\n');
out:
mutex_unlock(&ftrace_profile_lock);
return ret;
}
static void ftrace_profile_reset(struct ftrace_profile_stat *stat)
{
struct ftrace_profile_page *pg;
pg = stat->pages = stat->start;
while (pg) {
memset(pg->records, 0, PROFILE_RECORDS_SIZE);
pg->index = 0;
pg = pg->next;
}
memset(stat->hash, 0,
FTRACE_PROFILE_HASH_SIZE * sizeof(struct hlist_head));
}
int ftrace_profile_pages_init(struct ftrace_profile_stat *stat)
{
struct ftrace_profile_page *pg;
int functions;
int pages;
int i;
/* If we already allocated, do nothing */
if (stat->pages)
return 0;
stat->pages = (void *)get_zeroed_page(GFP_KERNEL);
if (!stat->pages)
return -ENOMEM;
#ifdef CONFIG_DYNAMIC_FTRACE
functions = ftrace_update_tot_cnt;
#else
/*
* We do not know the number of functions that exist because
* dynamic tracing is what counts them. With past experience
* we have around 20K functions. That should be more than enough.
* It is highly unlikely we will execute every function in
* the kernel.
*/
functions = 20000;
#endif
pg = stat->start = stat->pages;
pages = DIV_ROUND_UP(functions, PROFILES_PER_PAGE);
for (i = 1; i < pages; i++) {
pg->next = (void *)get_zeroed_page(GFP_KERNEL);
if (!pg->next)
goto out_free;
pg = pg->next;
}
return 0;
out_free:
pg = stat->start;
while (pg) {
unsigned long tmp = (unsigned long)pg;
pg = pg->next;
free_page(tmp);
}
stat->pages = NULL;
stat->start = NULL;
return -ENOMEM;
}
static int ftrace_profile_init_cpu(int cpu)
{
struct ftrace_profile_stat *stat;
int size;
stat = &per_cpu(ftrace_profile_stats, cpu);
if (stat->hash) {
/* If the profile is already created, simply reset it */
ftrace_profile_reset(stat);
return 0;
}
/*
* We are profiling all functions, but usually only a few thousand
* functions are hit. We'll make a hash of 1024 items.
*/
size = FTRACE_PROFILE_HASH_SIZE;
stat->hash = kzalloc(sizeof(struct hlist_head) * size, GFP_KERNEL);
if (!stat->hash)
return -ENOMEM;
/* Preallocate the function profiling pages */
if (ftrace_profile_pages_init(stat) < 0) {
kfree(stat->hash);
stat->hash = NULL;
return -ENOMEM;
}
return 0;
}
static int ftrace_profile_init(void)
{
int cpu;
int ret = 0;
for_each_online_cpu(cpu) {
ret = ftrace_profile_init_cpu(cpu);
if (ret)
break;
}
return ret;
}
/* interrupts must be disabled */
static struct ftrace_profile *
ftrace_find_profiled_func(struct ftrace_profile_stat *stat, unsigned long ip)
{
struct ftrace_profile *rec;
struct hlist_head *hhd;
unsigned long key;
key = hash_long(ip, FTRACE_PROFILE_HASH_BITS);
hhd = &stat->hash[key];
if (hlist_empty(hhd))
return NULL;
hlist_for_each_entry_rcu_notrace(rec, hhd, node) {
if (rec->ip == ip)
return rec;
}
return NULL;
}
static void ftrace_add_profile(struct ftrace_profile_stat *stat,
struct ftrace_profile *rec)
{
unsigned long key;
key = hash_long(rec->ip, FTRACE_PROFILE_HASH_BITS);
hlist_add_head_rcu(&rec->node, &stat->hash[key]);
}
/*
* The memory is already allocated, this simply finds a new record to use.
*/
static struct ftrace_profile *
ftrace_profile_alloc(struct ftrace_profile_stat *stat, unsigned long ip)
{
struct ftrace_profile *rec = NULL;
/* prevent recursion (from NMIs) */
if (atomic_inc_return(&stat->disabled) != 1)
goto out;
/*
* Try to find the function again since an NMI
* could have added it
*/
rec = ftrace_find_profiled_func(stat, ip);
if (rec)
goto out;
if (stat->pages->index == PROFILES_PER_PAGE) {
if (!stat->pages->next)
goto out;
stat->pages = stat->pages->next;
}
rec = &stat->pages->records[stat->pages->index++];
rec->ip = ip;
ftrace_add_profile(stat, rec);
out:
atomic_dec(&stat->disabled);
return rec;
}
static void
function_profile_call(unsigned long ip, unsigned long parent_ip,
struct ftrace_ops *ops, struct pt_regs *regs)
{
struct ftrace_profile_stat *stat;
struct ftrace_profile *rec;
unsigned long flags;
if (!ftrace_profile_enabled)
return;
local_irq_save(flags);
stat = &__get_cpu_var(ftrace_profile_stats);
if (!stat->hash || !ftrace_profile_enabled)
goto out;
rec = ftrace_find_profiled_func(stat, ip);
if (!rec) {
rec = ftrace_profile_alloc(stat, ip);
if (!rec)
goto out;
}
rec->counter++;
out:
local_irq_restore(flags);
}
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
static int profile_graph_entry(struct ftrace_graph_ent *trace)
{
function_profile_call(trace->func, 0, NULL, NULL);
return 1;
}
static void profile_graph_return(struct ftrace_graph_ret *trace)
{
struct ftrace_profile_stat *stat;
unsigned long long calltime;
struct ftrace_profile *rec;
unsigned long flags;
local_irq_save(flags);
stat = &__get_cpu_var(ftrace_profile_stats);
if (!stat->hash || !ftrace_profile_enabled)
goto out;
/* If the calltime was zero'd ignore it */
if (!trace->calltime)
goto out;
calltime = trace->rettime - trace->calltime;
if (!(trace_flags & TRACE_ITER_GRAPH_TIME)) {
int index;
index = trace->depth;
/* Append this call time to the parent time to subtract */
if (index)
current->ret_stack[index - 1].subtime += calltime;
if (current->ret_stack[index].subtime < calltime)
calltime -= current->ret_stack[index].subtime;
else
calltime = 0;
}
rec = ftrace_find_profiled_func(stat, trace->func);
if (rec) {
rec->time += calltime;
rec->time_squared += calltime * calltime;
}
out:
local_irq_restore(flags);
}
static int register_ftrace_profiler(void)
{
return register_ftrace_graph(&profile_graph_return,
&profile_graph_entry);
}
static void unregister_ftrace_profiler(void)
{
unregister_ftrace_graph();
}
#else
static struct ftrace_ops ftrace_profile_ops __read_mostly = {
.func = function_profile_call,
ftrace, kprobes: Fix a deadlock on ftrace_regex_lock Fix a deadlock on ftrace_regex_lock which happens when setting an enable_event trigger on dynamic kprobe event as below. ---- sh-2.05b# echo p vfs_symlink > kprobe_events sh-2.05b# echo vfs_symlink:enable_event:kprobes:p_vfs_symlink_0 > set_ftrace_filter ============================================= [ INFO: possible recursive locking detected ] 3.9.0+ #35 Not tainted --------------------------------------------- sh/72 is trying to acquire lock: (ftrace_regex_lock){+.+.+.}, at: [<ffffffff810ba6c1>] ftrace_set_hash+0x81/0x1f0 but task is already holding lock: (ftrace_regex_lock){+.+.+.}, at: [<ffffffff810b7cbd>] ftrace_regex_write.isra.29.part.30+0x3d/0x220 other info that might help us debug this: Possible unsafe locking scenario: CPU0 ---- lock(ftrace_regex_lock); lock(ftrace_regex_lock); *** DEADLOCK *** ---- To fix that, this introduces a finer regex_lock for each ftrace_ops. ftrace_regex_lock is too big of a lock which protects all filter/notrace_hash operations, but it doesn't need to be a global lock after supporting multiple ftrace_ops because each ftrace_ops has its own filter/notrace_hash. Link: http://lkml.kernel.org/r/20130509054417.30398.84254.stgit@mhiramat-M0-7522 Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Tom Zanussi <tom.zanussi@intel.com> Signed-off-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com> [ Added initialization flag and automate mutex initialization for non ftrace.c ftrace_probes. ] Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-05-09 12:44:17 +07:00
.flags = FTRACE_OPS_FL_RECURSION_SAFE | FTRACE_OPS_FL_INITIALIZED,
INIT_REGEX_LOCK(ftrace_profile_ops)
};
static int register_ftrace_profiler(void)
{
return register_ftrace_function(&ftrace_profile_ops);
}
static void unregister_ftrace_profiler(void)
{
unregister_ftrace_function(&ftrace_profile_ops);
}
#endif /* CONFIG_FUNCTION_GRAPH_TRACER */
static ssize_t
ftrace_profile_write(struct file *filp, const char __user *ubuf,
size_t cnt, loff_t *ppos)
{
unsigned long val;
int ret;
ret = kstrtoul_from_user(ubuf, cnt, 10, &val);
if (ret)
return ret;
val = !!val;
mutex_lock(&ftrace_profile_lock);
if (ftrace_profile_enabled ^ val) {
if (val) {
ret = ftrace_profile_init();
if (ret < 0) {
cnt = ret;
goto out;
}
ret = register_ftrace_profiler();
if (ret < 0) {
cnt = ret;
goto out;
}
ftrace_profile_enabled = 1;
} else {
ftrace_profile_enabled = 0;
/*
* unregister_ftrace_profiler calls stop_machine
* so this acts like an synchronize_sched.
*/
unregister_ftrace_profiler();
}
}
out:
mutex_unlock(&ftrace_profile_lock);
*ppos += cnt;
return cnt;
}
static ssize_t
ftrace_profile_read(struct file *filp, char __user *ubuf,
size_t cnt, loff_t *ppos)
{
char buf[64]; /* big enough to hold a number */
int r;
r = sprintf(buf, "%u\n", ftrace_profile_enabled);
return simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
}
static const struct file_operations ftrace_profile_fops = {
.open = tracing_open_generic,
.read = ftrace_profile_read,
.write = ftrace_profile_write,
llseek: automatically add .llseek fop All file_operations should get a .llseek operation so we can make nonseekable_open the default for future file operations without a .llseek pointer. The three cases that we can automatically detect are no_llseek, seq_lseek and default_llseek. For cases where we can we can automatically prove that the file offset is always ignored, we use noop_llseek, which maintains the current behavior of not returning an error from a seek. New drivers should normally not use noop_llseek but instead use no_llseek and call nonseekable_open at open time. Existing drivers can be converted to do the same when the maintainer knows for certain that no user code relies on calling seek on the device file. The generated code is often incorrectly indented and right now contains comments that clarify for each added line why a specific variant was chosen. In the version that gets submitted upstream, the comments will be gone and I will manually fix the indentation, because there does not seem to be a way to do that using coccinelle. Some amount of new code is currently sitting in linux-next that should get the same modifications, which I will do at the end of the merge window. Many thanks to Julia Lawall for helping me learn to write a semantic patch that does all this. ===== begin semantic patch ===== // This adds an llseek= method to all file operations, // as a preparation for making no_llseek the default. // // The rules are // - use no_llseek explicitly if we do nonseekable_open // - use seq_lseek for sequential files // - use default_llseek if we know we access f_pos // - use noop_llseek if we know we don't access f_pos, // but we still want to allow users to call lseek // @ open1 exists @ identifier nested_open; @@ nested_open(...) { <+... nonseekable_open(...) ...+> } @ open exists@ identifier open_f; identifier i, f; identifier open1.nested_open; @@ int open_f(struct inode *i, struct file *f) { <+... ( nonseekable_open(...) | nested_open(...) ) ...+> } @ read disable optional_qualifier exists @ identifier read_f; identifier f, p, s, off; type ssize_t, size_t, loff_t; expression E; identifier func; @@ ssize_t read_f(struct file *f, char *p, size_t s, loff_t *off) { <+... ( *off = E | *off += E | func(..., off, ...) | E = *off ) ...+> } @ read_no_fpos disable optional_qualifier exists @ identifier read_f; identifier f, p, s, off; type ssize_t, size_t, loff_t; @@ ssize_t read_f(struct file *f, char *p, size_t s, loff_t *off) { ... when != off } @ write @ identifier write_f; identifier f, p, s, off; type ssize_t, size_t, loff_t; expression E; identifier func; @@ ssize_t write_f(struct file *f, const char *p, size_t s, loff_t *off) { <+... ( *off = E | *off += E | func(..., off, ...) | E = *off ) ...+> } @ write_no_fpos @ identifier write_f; identifier f, p, s, off; type ssize_t, size_t, loff_t; @@ ssize_t write_f(struct file *f, const char *p, size_t s, loff_t *off) { ... when != off } @ fops0 @ identifier fops; @@ struct file_operations fops = { ... }; @ has_llseek depends on fops0 @ identifier fops0.fops; identifier llseek_f; @@ struct file_operations fops = { ... .llseek = llseek_f, ... }; @ has_read depends on fops0 @ identifier fops0.fops; identifier read_f; @@ struct file_operations fops = { ... .read = read_f, ... }; @ has_write depends on fops0 @ identifier fops0.fops; identifier write_f; @@ struct file_operations fops = { ... .write = write_f, ... }; @ has_open depends on fops0 @ identifier fops0.fops; identifier open_f; @@ struct file_operations fops = { ... .open = open_f, ... }; // use no_llseek if we call nonseekable_open //////////////////////////////////////////// @ nonseekable1 depends on !has_llseek && has_open @ identifier fops0.fops; identifier nso ~= "nonseekable_open"; @@ struct file_operations fops = { ... .open = nso, ... +.llseek = no_llseek, /* nonseekable */ }; @ nonseekable2 depends on !has_llseek @ identifier fops0.fops; identifier open.open_f; @@ struct file_operations fops = { ... .open = open_f, ... +.llseek = no_llseek, /* open uses nonseekable */ }; // use seq_lseek for sequential files ///////////////////////////////////// @ seq depends on !has_llseek @ identifier fops0.fops; identifier sr ~= "seq_read"; @@ struct file_operations fops = { ... .read = sr, ... +.llseek = seq_lseek, /* we have seq_read */ }; // use default_llseek if there is a readdir /////////////////////////////////////////// @ fops1 depends on !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier readdir_e; @@ // any other fop is used that changes pos struct file_operations fops = { ... .readdir = readdir_e, ... +.llseek = default_llseek, /* readdir is present */ }; // use default_llseek if at least one of read/write touches f_pos ///////////////////////////////////////////////////////////////// @ fops2 depends on !fops1 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier read.read_f; @@ // read fops use offset struct file_operations fops = { ... .read = read_f, ... +.llseek = default_llseek, /* read accesses f_pos */ }; @ fops3 depends on !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier write.write_f; @@ // write fops use offset struct file_operations fops = { ... .write = write_f, ... + .llseek = default_llseek, /* write accesses f_pos */ }; // Use noop_llseek if neither read nor write accesses f_pos /////////////////////////////////////////////////////////// @ fops4 depends on !fops1 && !fops2 && !fops3 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier read_no_fpos.read_f; identifier write_no_fpos.write_f; @@ // write fops use offset struct file_operations fops = { ... .write = write_f, .read = read_f, ... +.llseek = noop_llseek, /* read and write both use no f_pos */ }; @ depends on has_write && !has_read && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier write_no_fpos.write_f; @@ struct file_operations fops = { ... .write = write_f, ... +.llseek = noop_llseek, /* write uses no f_pos */ }; @ depends on has_read && !has_write && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier read_no_fpos.read_f; @@ struct file_operations fops = { ... .read = read_f, ... +.llseek = noop_llseek, /* read uses no f_pos */ }; @ depends on !has_read && !has_write && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; @@ struct file_operations fops = { ... +.llseek = noop_llseek, /* no read or write fn */ }; ===== End semantic patch ===== Signed-off-by: Arnd Bergmann <arnd@arndb.de> Cc: Julia Lawall <julia@diku.dk> Cc: Christoph Hellwig <hch@infradead.org>
2010-08-15 23:52:59 +07:00
.llseek = default_llseek,
};
/* used to initialize the real stat files */
static struct tracer_stat function_stats __initdata = {
.name = "functions",
.stat_start = function_stat_start,
.stat_next = function_stat_next,
.stat_cmp = function_stat_cmp,
.stat_headers = function_stat_headers,
.stat_show = function_stat_show
};
static __init void ftrace_profile_debugfs(struct dentry *d_tracer)
{
struct ftrace_profile_stat *stat;
struct dentry *entry;
char *name;
int ret;
int cpu;
for_each_possible_cpu(cpu) {
stat = &per_cpu(ftrace_profile_stats, cpu);
/* allocate enough for function name + cpu number */
name = kmalloc(32, GFP_KERNEL);
if (!name) {
/*
* The files created are permanent, if something happens
* we still do not free memory.
*/
WARN(1,
"Could not allocate stat file for cpu %d\n",
cpu);
return;
}
stat->stat = function_stats;
snprintf(name, 32, "function%d", cpu);
stat->stat.name = name;
ret = register_stat_tracer(&stat->stat);
if (ret) {
WARN(1,
"Could not register function stat for cpu %d\n",
cpu);
kfree(name);
return;
}
}
entry = debugfs_create_file("function_profile_enabled", 0644,
d_tracer, NULL, &ftrace_profile_fops);
if (!entry)
pr_warning("Could not create debugfs "
"'function_profile_enabled' entry\n");
}
#else /* CONFIG_FUNCTION_PROFILER */
static __init void ftrace_profile_debugfs(struct dentry *d_tracer)
{
}
#endif /* CONFIG_FUNCTION_PROFILER */
static struct pid * const ftrace_swapper_pid = &init_struct_pid;
loff_t
ftrace_filter_lseek(struct file *file, loff_t offset, int whence)
{
loff_t ret;
if (file->f_mode & FMODE_READ)
ret = seq_lseek(file, offset, whence);
else
file->f_pos = ret = 1;
return ret;
}
#ifdef CONFIG_DYNAMIC_FTRACE
#ifndef CONFIG_FTRACE_MCOUNT_RECORD
# error Dynamic ftrace depends on MCOUNT_RECORD
#endif
static struct hlist_head ftrace_func_hash[FTRACE_FUNC_HASHSIZE] __read_mostly;
struct ftrace_func_probe {
struct hlist_node node;
struct ftrace_probe_ops *ops;
unsigned long flags;
unsigned long ip;
void *data;
struct list_head free_list;
};
struct ftrace_func_entry {
struct hlist_node hlist;
unsigned long ip;
};
struct ftrace_hash {
unsigned long size_bits;
struct hlist_head *buckets;
unsigned long count;
struct rcu_head rcu;
};
/*
* We make these constant because no one should touch them,
* but they are used as the default "empty hash", to avoid allocating
* it all the time. These are in a read only section such that if
* anyone does try to modify it, it will cause an exception.
*/
static const struct hlist_head empty_buckets[1];
static const struct ftrace_hash empty_hash = {
.buckets = (struct hlist_head *)empty_buckets,
};
#define EMPTY_HASH ((struct ftrace_hash *)&empty_hash)
static struct ftrace_ops global_ops = {
.func = ftrace_stub,
.notrace_hash = EMPTY_HASH,
.filter_hash = EMPTY_HASH,
ftrace, kprobes: Fix a deadlock on ftrace_regex_lock Fix a deadlock on ftrace_regex_lock which happens when setting an enable_event trigger on dynamic kprobe event as below. ---- sh-2.05b# echo p vfs_symlink > kprobe_events sh-2.05b# echo vfs_symlink:enable_event:kprobes:p_vfs_symlink_0 > set_ftrace_filter ============================================= [ INFO: possible recursive locking detected ] 3.9.0+ #35 Not tainted --------------------------------------------- sh/72 is trying to acquire lock: (ftrace_regex_lock){+.+.+.}, at: [<ffffffff810ba6c1>] ftrace_set_hash+0x81/0x1f0 but task is already holding lock: (ftrace_regex_lock){+.+.+.}, at: [<ffffffff810b7cbd>] ftrace_regex_write.isra.29.part.30+0x3d/0x220 other info that might help us debug this: Possible unsafe locking scenario: CPU0 ---- lock(ftrace_regex_lock); lock(ftrace_regex_lock); *** DEADLOCK *** ---- To fix that, this introduces a finer regex_lock for each ftrace_ops. ftrace_regex_lock is too big of a lock which protects all filter/notrace_hash operations, but it doesn't need to be a global lock after supporting multiple ftrace_ops because each ftrace_ops has its own filter/notrace_hash. Link: http://lkml.kernel.org/r/20130509054417.30398.84254.stgit@mhiramat-M0-7522 Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Tom Zanussi <tom.zanussi@intel.com> Signed-off-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com> [ Added initialization flag and automate mutex initialization for non ftrace.c ftrace_probes. ] Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-05-09 12:44:17 +07:00
.flags = FTRACE_OPS_FL_RECURSION_SAFE | FTRACE_OPS_FL_INITIALIZED,
INIT_REGEX_LOCK(global_ops)
};
struct ftrace_page {
struct ftrace_page *next;
struct dyn_ftrace *records;
int index;
int size;
};
static struct ftrace_page *ftrace_new_pgs;
#define ENTRY_SIZE sizeof(struct dyn_ftrace)
#define ENTRIES_PER_PAGE (PAGE_SIZE / ENTRY_SIZE)
/* estimate from running different kernels */
#define NR_TO_INIT 10000
static struct ftrace_page *ftrace_pages_start;
static struct ftrace_page *ftrace_pages;
static bool ftrace_hash_empty(struct ftrace_hash *hash)
{
return !hash || !hash->count;
}
static struct ftrace_func_entry *
ftrace_lookup_ip(struct ftrace_hash *hash, unsigned long ip)
{
unsigned long key;
struct ftrace_func_entry *entry;
struct hlist_head *hhd;
if (ftrace_hash_empty(hash))
return NULL;
if (hash->size_bits > 0)
key = hash_long(ip, hash->size_bits);
else
key = 0;
hhd = &hash->buckets[key];
hlist_for_each_entry_rcu_notrace(entry, hhd, hlist) {
if (entry->ip == ip)
return entry;
}
return NULL;
}
static void __add_hash_entry(struct ftrace_hash *hash,
struct ftrace_func_entry *entry)
{
struct hlist_head *hhd;
unsigned long key;
if (hash->size_bits)
key = hash_long(entry->ip, hash->size_bits);
else
key = 0;
hhd = &hash->buckets[key];
hlist_add_head(&entry->hlist, hhd);
hash->count++;
}
static int add_hash_entry(struct ftrace_hash *hash, unsigned long ip)
{
struct ftrace_func_entry *entry;
entry = kmalloc(sizeof(*entry), GFP_KERNEL);
if (!entry)
return -ENOMEM;
entry->ip = ip;
__add_hash_entry(hash, entry);
return 0;
}
static void
free_hash_entry(struct ftrace_hash *hash,
struct ftrace_func_entry *entry)
{
hlist_del(&entry->hlist);
kfree(entry);
hash->count--;
}
static void
remove_hash_entry(struct ftrace_hash *hash,
struct ftrace_func_entry *entry)
{
hlist_del(&entry->hlist);
hash->count--;
}
static void ftrace_hash_clear(struct ftrace_hash *hash)
{
struct hlist_head *hhd;
hlist: drop the node parameter from iterators I'm not sure why, but the hlist for each entry iterators were conceived list_for_each_entry(pos, head, member) The hlist ones were greedy and wanted an extra parameter: hlist_for_each_entry(tpos, pos, head, member) Why did they need an extra pos parameter? I'm not quite sure. Not only they don't really need it, it also prevents the iterator from looking exactly like the list iterator, which is unfortunate. Besides the semantic patch, there was some manual work required: - Fix up the actual hlist iterators in linux/list.h - Fix up the declaration of other iterators based on the hlist ones. - A very small amount of places were using the 'node' parameter, this was modified to use 'obj->member' instead. - Coccinelle didn't handle the hlist_for_each_entry_safe iterator properly, so those had to be fixed up manually. The semantic patch which is mostly the work of Peter Senna Tschudin is here: @@ iterator name hlist_for_each_entry, hlist_for_each_entry_continue, hlist_for_each_entry_from, hlist_for_each_entry_rcu, hlist_for_each_entry_rcu_bh, hlist_for_each_entry_continue_rcu_bh, for_each_busy_worker, ax25_uid_for_each, ax25_for_each, inet_bind_bucket_for_each, sctp_for_each_hentry, sk_for_each, sk_for_each_rcu, sk_for_each_from, sk_for_each_safe, sk_for_each_bound, hlist_for_each_entry_safe, hlist_for_each_entry_continue_rcu, nr_neigh_for_each, nr_neigh_for_each_safe, nr_node_for_each, nr_node_for_each_safe, for_each_gfn_indirect_valid_sp, for_each_gfn_sp, for_each_host; type T; expression a,c,d,e; identifier b; statement S; @@ -T b; <+... when != b ( hlist_for_each_entry(a, - b, c, d) S | hlist_for_each_entry_continue(a, - b, c) S | hlist_for_each_entry_from(a, - b, c) S | hlist_for_each_entry_rcu(a, - b, c, d) S | hlist_for_each_entry_rcu_bh(a, - b, c, d) S | hlist_for_each_entry_continue_rcu_bh(a, - b, c) S | for_each_busy_worker(a, c, - b, d) S | ax25_uid_for_each(a, - b, c) S | ax25_for_each(a, - b, c) S | inet_bind_bucket_for_each(a, - b, c) S | sctp_for_each_hentry(a, - b, c) S | sk_for_each(a, - b, c) S | sk_for_each_rcu(a, - b, c) S | sk_for_each_from -(a, b) +(a) S + sk_for_each_from(a) S | sk_for_each_safe(a, - b, c, d) S | sk_for_each_bound(a, - b, c) S | hlist_for_each_entry_safe(a, - b, c, d, e) S | hlist_for_each_entry_continue_rcu(a, - b, c) S | nr_neigh_for_each(a, - b, c) S | nr_neigh_for_each_safe(a, - b, c, d) S | nr_node_for_each(a, - b, c) S | nr_node_for_each_safe(a, - b, c, d) S | - for_each_gfn_sp(a, c, d, b) S + for_each_gfn_sp(a, c, d) S | - for_each_gfn_indirect_valid_sp(a, c, d, b) S + for_each_gfn_indirect_valid_sp(a, c, d) S | for_each_host(a, - b, c) S | for_each_host_safe(a, - b, c, d) S | for_each_mesh_entry(a, - b, c, d) S ) ...+> [akpm@linux-foundation.org: drop bogus change from net/ipv4/raw.c] [akpm@linux-foundation.org: drop bogus hunk from net/ipv6/raw.c] [akpm@linux-foundation.org: checkpatch fixes] [akpm@linux-foundation.org: fix warnings] [akpm@linux-foudnation.org: redo intrusive kvm changes] Tested-by: Peter Senna Tschudin <peter.senna@gmail.com> Acked-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Sasha Levin <sasha.levin@oracle.com> Cc: Wu Fengguang <fengguang.wu@intel.com> Cc: Marcelo Tosatti <mtosatti@redhat.com> Cc: Gleb Natapov <gleb@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-02-28 08:06:00 +07:00
struct hlist_node *tn;
struct ftrace_func_entry *entry;
int size = 1 << hash->size_bits;
int i;
if (!hash->count)
return;
for (i = 0; i < size; i++) {
hhd = &hash->buckets[i];
hlist: drop the node parameter from iterators I'm not sure why, but the hlist for each entry iterators were conceived list_for_each_entry(pos, head, member) The hlist ones were greedy and wanted an extra parameter: hlist_for_each_entry(tpos, pos, head, member) Why did they need an extra pos parameter? I'm not quite sure. Not only they don't really need it, it also prevents the iterator from looking exactly like the list iterator, which is unfortunate. Besides the semantic patch, there was some manual work required: - Fix up the actual hlist iterators in linux/list.h - Fix up the declaration of other iterators based on the hlist ones. - A very small amount of places were using the 'node' parameter, this was modified to use 'obj->member' instead. - Coccinelle didn't handle the hlist_for_each_entry_safe iterator properly, so those had to be fixed up manually. The semantic patch which is mostly the work of Peter Senna Tschudin is here: @@ iterator name hlist_for_each_entry, hlist_for_each_entry_continue, hlist_for_each_entry_from, hlist_for_each_entry_rcu, hlist_for_each_entry_rcu_bh, hlist_for_each_entry_continue_rcu_bh, for_each_busy_worker, ax25_uid_for_each, ax25_for_each, inet_bind_bucket_for_each, sctp_for_each_hentry, sk_for_each, sk_for_each_rcu, sk_for_each_from, sk_for_each_safe, sk_for_each_bound, hlist_for_each_entry_safe, hlist_for_each_entry_continue_rcu, nr_neigh_for_each, nr_neigh_for_each_safe, nr_node_for_each, nr_node_for_each_safe, for_each_gfn_indirect_valid_sp, for_each_gfn_sp, for_each_host; type T; expression a,c,d,e; identifier b; statement S; @@ -T b; <+... when != b ( hlist_for_each_entry(a, - b, c, d) S | hlist_for_each_entry_continue(a, - b, c) S | hlist_for_each_entry_from(a, - b, c) S | hlist_for_each_entry_rcu(a, - b, c, d) S | hlist_for_each_entry_rcu_bh(a, - b, c, d) S | hlist_for_each_entry_continue_rcu_bh(a, - b, c) S | for_each_busy_worker(a, c, - b, d) S | ax25_uid_for_each(a, - b, c) S | ax25_for_each(a, - b, c) S | inet_bind_bucket_for_each(a, - b, c) S | sctp_for_each_hentry(a, - b, c) S | sk_for_each(a, - b, c) S | sk_for_each_rcu(a, - b, c) S | sk_for_each_from -(a, b) +(a) S + sk_for_each_from(a) S | sk_for_each_safe(a, - b, c, d) S | sk_for_each_bound(a, - b, c) S | hlist_for_each_entry_safe(a, - b, c, d, e) S | hlist_for_each_entry_continue_rcu(a, - b, c) S | nr_neigh_for_each(a, - b, c) S | nr_neigh_for_each_safe(a, - b, c, d) S | nr_node_for_each(a, - b, c) S | nr_node_for_each_safe(a, - b, c, d) S | - for_each_gfn_sp(a, c, d, b) S + for_each_gfn_sp(a, c, d) S | - for_each_gfn_indirect_valid_sp(a, c, d, b) S + for_each_gfn_indirect_valid_sp(a, c, d) S | for_each_host(a, - b, c) S | for_each_host_safe(a, - b, c, d) S | for_each_mesh_entry(a, - b, c, d) S ) ...+> [akpm@linux-foundation.org: drop bogus change from net/ipv4/raw.c] [akpm@linux-foundation.org: drop bogus hunk from net/ipv6/raw.c] [akpm@linux-foundation.org: checkpatch fixes] [akpm@linux-foundation.org: fix warnings] [akpm@linux-foudnation.org: redo intrusive kvm changes] Tested-by: Peter Senna Tschudin <peter.senna@gmail.com> Acked-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Sasha Levin <sasha.levin@oracle.com> Cc: Wu Fengguang <fengguang.wu@intel.com> Cc: Marcelo Tosatti <mtosatti@redhat.com> Cc: Gleb Natapov <gleb@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-02-28 08:06:00 +07:00
hlist_for_each_entry_safe(entry, tn, hhd, hlist)
free_hash_entry(hash, entry);
}
FTRACE_WARN_ON(hash->count);
}
static void free_ftrace_hash(struct ftrace_hash *hash)
{
if (!hash || hash == EMPTY_HASH)
return;
ftrace_hash_clear(hash);
kfree(hash->buckets);
kfree(hash);
}
static void __free_ftrace_hash_rcu(struct rcu_head *rcu)
{
struct ftrace_hash *hash;
hash = container_of(rcu, struct ftrace_hash, rcu);
free_ftrace_hash(hash);
}
static void free_ftrace_hash_rcu(struct ftrace_hash *hash)
{
if (!hash || hash == EMPTY_HASH)
return;
call_rcu_sched(&hash->rcu, __free_ftrace_hash_rcu);
}
ftrace, perf: Add filter support for function trace event Adding support to filter function trace event via perf interface. It is now possible to use filter interface in the perf tool like: perf record -e ftrace:function --filter="(ip == mm_*)" ls The filter syntax is restricted to the the 'ip' field only, and following operators are accepted '==' '!=' '||', ending up with the filter strings like: ip == f1[, ]f2 ... || ip != f3[, ]f4 ... with comma ',' or space ' ' as a function separator. If the space ' ' is used as a separator, the right side of the assignment needs to be enclosed in double quotes '"', e.g.: perf record -e ftrace:function --filter '(ip == do_execve,sys_*,ext*)' ls perf record -e ftrace:function --filter '(ip == "do_execve,sys_*,ext*")' ls perf record -e ftrace:function --filter '(ip == "do_execve sys_* ext*")' ls The '==' operator adds trace filter with same effect as would be added via set_ftrace_filter file. The '!=' operator adds trace filter with same effect as would be added via set_ftrace_notrace file. The right side of the '!=', '==' operators is list of functions or regexp. to be added to filter separated by space. The '||' operator is used for connecting multiple filter definitions together. It is possible to have more than one '==' and '!=' operators within one filter string. Link: http://lkml.kernel.org/r/1329317514-8131-8-git-send-email-jolsa@redhat.com Signed-off-by: Jiri Olsa <jolsa@redhat.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2012-02-15 21:51:54 +07:00
void ftrace_free_filter(struct ftrace_ops *ops)
{
ftrace, kprobes: Fix a deadlock on ftrace_regex_lock Fix a deadlock on ftrace_regex_lock which happens when setting an enable_event trigger on dynamic kprobe event as below. ---- sh-2.05b# echo p vfs_symlink > kprobe_events sh-2.05b# echo vfs_symlink:enable_event:kprobes:p_vfs_symlink_0 > set_ftrace_filter ============================================= [ INFO: possible recursive locking detected ] 3.9.0+ #35 Not tainted --------------------------------------------- sh/72 is trying to acquire lock: (ftrace_regex_lock){+.+.+.}, at: [<ffffffff810ba6c1>] ftrace_set_hash+0x81/0x1f0 but task is already holding lock: (ftrace_regex_lock){+.+.+.}, at: [<ffffffff810b7cbd>] ftrace_regex_write.isra.29.part.30+0x3d/0x220 other info that might help us debug this: Possible unsafe locking scenario: CPU0 ---- lock(ftrace_regex_lock); lock(ftrace_regex_lock); *** DEADLOCK *** ---- To fix that, this introduces a finer regex_lock for each ftrace_ops. ftrace_regex_lock is too big of a lock which protects all filter/notrace_hash operations, but it doesn't need to be a global lock after supporting multiple ftrace_ops because each ftrace_ops has its own filter/notrace_hash. Link: http://lkml.kernel.org/r/20130509054417.30398.84254.stgit@mhiramat-M0-7522 Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Tom Zanussi <tom.zanussi@intel.com> Signed-off-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com> [ Added initialization flag and automate mutex initialization for non ftrace.c ftrace_probes. ] Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-05-09 12:44:17 +07:00
ftrace_ops_init(ops);
ftrace, perf: Add filter support for function trace event Adding support to filter function trace event via perf interface. It is now possible to use filter interface in the perf tool like: perf record -e ftrace:function --filter="(ip == mm_*)" ls The filter syntax is restricted to the the 'ip' field only, and following operators are accepted '==' '!=' '||', ending up with the filter strings like: ip == f1[, ]f2 ... || ip != f3[, ]f4 ... with comma ',' or space ' ' as a function separator. If the space ' ' is used as a separator, the right side of the assignment needs to be enclosed in double quotes '"', e.g.: perf record -e ftrace:function --filter '(ip == do_execve,sys_*,ext*)' ls perf record -e ftrace:function --filter '(ip == "do_execve,sys_*,ext*")' ls perf record -e ftrace:function --filter '(ip == "do_execve sys_* ext*")' ls The '==' operator adds trace filter with same effect as would be added via set_ftrace_filter file. The '!=' operator adds trace filter with same effect as would be added via set_ftrace_notrace file. The right side of the '!=', '==' operators is list of functions or regexp. to be added to filter separated by space. The '||' operator is used for connecting multiple filter definitions together. It is possible to have more than one '==' and '!=' operators within one filter string. Link: http://lkml.kernel.org/r/1329317514-8131-8-git-send-email-jolsa@redhat.com Signed-off-by: Jiri Olsa <jolsa@redhat.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2012-02-15 21:51:54 +07:00
free_ftrace_hash(ops->filter_hash);
free_ftrace_hash(ops->notrace_hash);
}
static struct ftrace_hash *alloc_ftrace_hash(int size_bits)
{
struct ftrace_hash *hash;
int size;
hash = kzalloc(sizeof(*hash), GFP_KERNEL);
if (!hash)
return NULL;
size = 1 << size_bits;
hash->buckets = kcalloc(size, sizeof(*hash->buckets), GFP_KERNEL);
if (!hash->buckets) {
kfree(hash);
return NULL;
}
hash->size_bits = size_bits;
return hash;
}
static struct ftrace_hash *
alloc_and_copy_ftrace_hash(int size_bits, struct ftrace_hash *hash)
{
struct ftrace_func_entry *entry;
struct ftrace_hash *new_hash;
int size;
int ret;
int i;
new_hash = alloc_ftrace_hash(size_bits);
if (!new_hash)
return NULL;
/* Empty hash? */
if (ftrace_hash_empty(hash))
return new_hash;
size = 1 << hash->size_bits;
for (i = 0; i < size; i++) {
hlist: drop the node parameter from iterators I'm not sure why, but the hlist for each entry iterators were conceived list_for_each_entry(pos, head, member) The hlist ones were greedy and wanted an extra parameter: hlist_for_each_entry(tpos, pos, head, member) Why did they need an extra pos parameter? I'm not quite sure. Not only they don't really need it, it also prevents the iterator from looking exactly like the list iterator, which is unfortunate. Besides the semantic patch, there was some manual work required: - Fix up the actual hlist iterators in linux/list.h - Fix up the declaration of other iterators based on the hlist ones. - A very small amount of places were using the 'node' parameter, this was modified to use 'obj->member' instead. - Coccinelle didn't handle the hlist_for_each_entry_safe iterator properly, so those had to be fixed up manually. The semantic patch which is mostly the work of Peter Senna Tschudin is here: @@ iterator name hlist_for_each_entry, hlist_for_each_entry_continue, hlist_for_each_entry_from, hlist_for_each_entry_rcu, hlist_for_each_entry_rcu_bh, hlist_for_each_entry_continue_rcu_bh, for_each_busy_worker, ax25_uid_for_each, ax25_for_each, inet_bind_bucket_for_each, sctp_for_each_hentry, sk_for_each, sk_for_each_rcu, sk_for_each_from, sk_for_each_safe, sk_for_each_bound, hlist_for_each_entry_safe, hlist_for_each_entry_continue_rcu, nr_neigh_for_each, nr_neigh_for_each_safe, nr_node_for_each, nr_node_for_each_safe, for_each_gfn_indirect_valid_sp, for_each_gfn_sp, for_each_host; type T; expression a,c,d,e; identifier b; statement S; @@ -T b; <+... when != b ( hlist_for_each_entry(a, - b, c, d) S | hlist_for_each_entry_continue(a, - b, c) S | hlist_for_each_entry_from(a, - b, c) S | hlist_for_each_entry_rcu(a, - b, c, d) S | hlist_for_each_entry_rcu_bh(a, - b, c, d) S | hlist_for_each_entry_continue_rcu_bh(a, - b, c) S | for_each_busy_worker(a, c, - b, d) S | ax25_uid_for_each(a, - b, c) S | ax25_for_each(a, - b, c) S | inet_bind_bucket_for_each(a, - b, c) S | sctp_for_each_hentry(a, - b, c) S | sk_for_each(a, - b, c) S | sk_for_each_rcu(a, - b, c) S | sk_for_each_from -(a, b) +(a) S + sk_for_each_from(a) S | sk_for_each_safe(a, - b, c, d) S | sk_for_each_bound(a, - b, c) S | hlist_for_each_entry_safe(a, - b, c, d, e) S | hlist_for_each_entry_continue_rcu(a, - b, c) S | nr_neigh_for_each(a, - b, c) S | nr_neigh_for_each_safe(a, - b, c, d) S | nr_node_for_each(a, - b, c) S | nr_node_for_each_safe(a, - b, c, d) S | - for_each_gfn_sp(a, c, d, b) S + for_each_gfn_sp(a, c, d) S | - for_each_gfn_indirect_valid_sp(a, c, d, b) S + for_each_gfn_indirect_valid_sp(a, c, d) S | for_each_host(a, - b, c) S | for_each_host_safe(a, - b, c, d) S | for_each_mesh_entry(a, - b, c, d) S ) ...+> [akpm@linux-foundation.org: drop bogus change from net/ipv4/raw.c] [akpm@linux-foundation.org: drop bogus hunk from net/ipv6/raw.c] [akpm@linux-foundation.org: checkpatch fixes] [akpm@linux-foundation.org: fix warnings] [akpm@linux-foudnation.org: redo intrusive kvm changes] Tested-by: Peter Senna Tschudin <peter.senna@gmail.com> Acked-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Sasha Levin <sasha.levin@oracle.com> Cc: Wu Fengguang <fengguang.wu@intel.com> Cc: Marcelo Tosatti <mtosatti@redhat.com> Cc: Gleb Natapov <gleb@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-02-28 08:06:00 +07:00
hlist_for_each_entry(entry, &hash->buckets[i], hlist) {
ret = add_hash_entry(new_hash, entry->ip);
if (ret < 0)
goto free_hash;
}
}
FTRACE_WARN_ON(new_hash->count != hash->count);
return new_hash;
free_hash:
free_ftrace_hash(new_hash);
return NULL;
}
static void
ftrace_hash_rec_disable(struct ftrace_ops *ops, int filter_hash);
static void
ftrace_hash_rec_enable(struct ftrace_ops *ops, int filter_hash);
static int
ftrace_hash_move(struct ftrace_ops *ops, int enable,
struct ftrace_hash **dst, struct ftrace_hash *src)
{
struct ftrace_func_entry *entry;
hlist: drop the node parameter from iterators I'm not sure why, but the hlist for each entry iterators were conceived list_for_each_entry(pos, head, member) The hlist ones were greedy and wanted an extra parameter: hlist_for_each_entry(tpos, pos, head, member) Why did they need an extra pos parameter? I'm not quite sure. Not only they don't really need it, it also prevents the iterator from looking exactly like the list iterator, which is unfortunate. Besides the semantic patch, there was some manual work required: - Fix up the actual hlist iterators in linux/list.h - Fix up the declaration of other iterators based on the hlist ones. - A very small amount of places were using the 'node' parameter, this was modified to use 'obj->member' instead. - Coccinelle didn't handle the hlist_for_each_entry_safe iterator properly, so those had to be fixed up manually. The semantic patch which is mostly the work of Peter Senna Tschudin is here: @@ iterator name hlist_for_each_entry, hlist_for_each_entry_continue, hlist_for_each_entry_from, hlist_for_each_entry_rcu, hlist_for_each_entry_rcu_bh, hlist_for_each_entry_continue_rcu_bh, for_each_busy_worker, ax25_uid_for_each, ax25_for_each, inet_bind_bucket_for_each, sctp_for_each_hentry, sk_for_each, sk_for_each_rcu, sk_for_each_from, sk_for_each_safe, sk_for_each_bound, hlist_for_each_entry_safe, hlist_for_each_entry_continue_rcu, nr_neigh_for_each, nr_neigh_for_each_safe, nr_node_for_each, nr_node_for_each_safe, for_each_gfn_indirect_valid_sp, for_each_gfn_sp, for_each_host; type T; expression a,c,d,e; identifier b; statement S; @@ -T b; <+... when != b ( hlist_for_each_entry(a, - b, c, d) S | hlist_for_each_entry_continue(a, - b, c) S | hlist_for_each_entry_from(a, - b, c) S | hlist_for_each_entry_rcu(a, - b, c, d) S | hlist_for_each_entry_rcu_bh(a, - b, c, d) S | hlist_for_each_entry_continue_rcu_bh(a, - b, c) S | for_each_busy_worker(a, c, - b, d) S | ax25_uid_for_each(a, - b, c) S | ax25_for_each(a, - b, c) S | inet_bind_bucket_for_each(a, - b, c) S | sctp_for_each_hentry(a, - b, c) S | sk_for_each(a, - b, c) S | sk_for_each_rcu(a, - b, c) S | sk_for_each_from -(a, b) +(a) S + sk_for_each_from(a) S | sk_for_each_safe(a, - b, c, d) S | sk_for_each_bound(a, - b, c) S | hlist_for_each_entry_safe(a, - b, c, d, e) S | hlist_for_each_entry_continue_rcu(a, - b, c) S | nr_neigh_for_each(a, - b, c) S | nr_neigh_for_each_safe(a, - b, c, d) S | nr_node_for_each(a, - b, c) S | nr_node_for_each_safe(a, - b, c, d) S | - for_each_gfn_sp(a, c, d, b) S + for_each_gfn_sp(a, c, d) S | - for_each_gfn_indirect_valid_sp(a, c, d, b) S + for_each_gfn_indirect_valid_sp(a, c, d) S | for_each_host(a, - b, c) S | for_each_host_safe(a, - b, c, d) S | for_each_mesh_entry(a, - b, c, d) S ) ...+> [akpm@linux-foundation.org: drop bogus change from net/ipv4/raw.c] [akpm@linux-foundation.org: drop bogus hunk from net/ipv6/raw.c] [akpm@linux-foundation.org: checkpatch fixes] [akpm@linux-foundation.org: fix warnings] [akpm@linux-foudnation.org: redo intrusive kvm changes] Tested-by: Peter Senna Tschudin <peter.senna@gmail.com> Acked-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Sasha Levin <sasha.levin@oracle.com> Cc: Wu Fengguang <fengguang.wu@intel.com> Cc: Marcelo Tosatti <mtosatti@redhat.com> Cc: Gleb Natapov <gleb@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-02-28 08:06:00 +07:00
struct hlist_node *tn;
struct hlist_head *hhd;
struct ftrace_hash *old_hash;
struct ftrace_hash *new_hash;
int size = src->count;
int bits = 0;
int ret;
int i;
/*
* Remove the current set, update the hash and add
* them back.
*/
ftrace_hash_rec_disable(ops, enable);
/*
* If the new source is empty, just free dst and assign it
* the empty_hash.
*/
if (!src->count) {
free_ftrace_hash_rcu(*dst);
rcu_assign_pointer(*dst, EMPTY_HASH);
/* still need to update the function records */
ret = 0;
goto out;
}
/*
* Make the hash size about 1/2 the # found
*/
for (size /= 2; size; size >>= 1)
bits++;
/* Don't allocate too much */
if (bits > FTRACE_HASH_MAX_BITS)
bits = FTRACE_HASH_MAX_BITS;
ret = -ENOMEM;
new_hash = alloc_ftrace_hash(bits);
if (!new_hash)
goto out;
size = 1 << src->size_bits;
for (i = 0; i < size; i++) {
hhd = &src->buckets[i];
hlist: drop the node parameter from iterators I'm not sure why, but the hlist for each entry iterators were conceived list_for_each_entry(pos, head, member) The hlist ones were greedy and wanted an extra parameter: hlist_for_each_entry(tpos, pos, head, member) Why did they need an extra pos parameter? I'm not quite sure. Not only they don't really need it, it also prevents the iterator from looking exactly like the list iterator, which is unfortunate. Besides the semantic patch, there was some manual work required: - Fix up the actual hlist iterators in linux/list.h - Fix up the declaration of other iterators based on the hlist ones. - A very small amount of places were using the 'node' parameter, this was modified to use 'obj->member' instead. - Coccinelle didn't handle the hlist_for_each_entry_safe iterator properly, so those had to be fixed up manually. The semantic patch which is mostly the work of Peter Senna Tschudin is here: @@ iterator name hlist_for_each_entry, hlist_for_each_entry_continue, hlist_for_each_entry_from, hlist_for_each_entry_rcu, hlist_for_each_entry_rcu_bh, hlist_for_each_entry_continue_rcu_bh, for_each_busy_worker, ax25_uid_for_each, ax25_for_each, inet_bind_bucket_for_each, sctp_for_each_hentry, sk_for_each, sk_for_each_rcu, sk_for_each_from, sk_for_each_safe, sk_for_each_bound, hlist_for_each_entry_safe, hlist_for_each_entry_continue_rcu, nr_neigh_for_each, nr_neigh_for_each_safe, nr_node_for_each, nr_node_for_each_safe, for_each_gfn_indirect_valid_sp, for_each_gfn_sp, for_each_host; type T; expression a,c,d,e; identifier b; statement S; @@ -T b; <+... when != b ( hlist_for_each_entry(a, - b, c, d) S | hlist_for_each_entry_continue(a, - b, c) S | hlist_for_each_entry_from(a, - b, c) S | hlist_for_each_entry_rcu(a, - b, c, d) S | hlist_for_each_entry_rcu_bh(a, - b, c, d) S | hlist_for_each_entry_continue_rcu_bh(a, - b, c) S | for_each_busy_worker(a, c, - b, d) S | ax25_uid_for_each(a, - b, c) S | ax25_for_each(a, - b, c) S | inet_bind_bucket_for_each(a, - b, c) S | sctp_for_each_hentry(a, - b, c) S | sk_for_each(a, - b, c) S | sk_for_each_rcu(a, - b, c) S | sk_for_each_from -(a, b) +(a) S + sk_for_each_from(a) S | sk_for_each_safe(a, - b, c, d) S | sk_for_each_bound(a, - b, c) S | hlist_for_each_entry_safe(a, - b, c, d, e) S | hlist_for_each_entry_continue_rcu(a, - b, c) S | nr_neigh_for_each(a, - b, c) S | nr_neigh_for_each_safe(a, - b, c, d) S | nr_node_for_each(a, - b, c) S | nr_node_for_each_safe(a, - b, c, d) S | - for_each_gfn_sp(a, c, d, b) S + for_each_gfn_sp(a, c, d) S | - for_each_gfn_indirect_valid_sp(a, c, d, b) S + for_each_gfn_indirect_valid_sp(a, c, d) S | for_each_host(a, - b, c) S | for_each_host_safe(a, - b, c, d) S | for_each_mesh_entry(a, - b, c, d) S ) ...+> [akpm@linux-foundation.org: drop bogus change from net/ipv4/raw.c] [akpm@linux-foundation.org: drop bogus hunk from net/ipv6/raw.c] [akpm@linux-foundation.org: checkpatch fixes] [akpm@linux-foundation.org: fix warnings] [akpm@linux-foudnation.org: redo intrusive kvm changes] Tested-by: Peter Senna Tschudin <peter.senna@gmail.com> Acked-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Sasha Levin <sasha.levin@oracle.com> Cc: Wu Fengguang <fengguang.wu@intel.com> Cc: Marcelo Tosatti <mtosatti@redhat.com> Cc: Gleb Natapov <gleb@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-02-28 08:06:00 +07:00
hlist_for_each_entry_safe(entry, tn, hhd, hlist) {
remove_hash_entry(src, entry);
__add_hash_entry(new_hash, entry);
}
}
old_hash = *dst;
rcu_assign_pointer(*dst, new_hash);
free_ftrace_hash_rcu(old_hash);
ret = 0;
out:
/*
* Enable regardless of ret:
* On success, we enable the new hash.
* On failure, we re-enable the original hash.
*/
ftrace_hash_rec_enable(ops, enable);
return ret;
}
/*
* Test the hashes for this ops to see if we want to call
* the ops->func or not.
*
* It's a match if the ip is in the ops->filter_hash or
* the filter_hash does not exist or is empty,
* AND
* the ip is not in the ops->notrace_hash.
*
* This needs to be called with preemption disabled as
* the hashes are freed with call_rcu_sched().
*/
static int
ftrace_ops_test(struct ftrace_ops *ops, unsigned long ip, void *regs)
{
struct ftrace_hash *filter_hash;
struct ftrace_hash *notrace_hash;
int ret;
#ifdef CONFIG_DYNAMIC_FTRACE_WITH_REGS
/*
* There's a small race when adding ops that the ftrace handler
* that wants regs, may be called without them. We can not
* allow that handler to be called if regs is NULL.
*/
if (regs == NULL && (ops->flags & FTRACE_OPS_FL_SAVE_REGS))
return 0;
#endif
filter_hash = rcu_dereference_raw_notrace(ops->filter_hash);
notrace_hash = rcu_dereference_raw_notrace(ops->notrace_hash);
if ((ftrace_hash_empty(filter_hash) ||
ftrace_lookup_ip(filter_hash, ip)) &&
(ftrace_hash_empty(notrace_hash) ||
!ftrace_lookup_ip(notrace_hash, ip)))
ret = 1;
else
ret = 0;
return ret;
}
/*
* This is a double for. Do not use 'break' to break out of the loop,
* you must use a goto.
*/
#define do_for_each_ftrace_rec(pg, rec) \
for (pg = ftrace_pages_start; pg; pg = pg->next) { \
int _____i; \
for (_____i = 0; _____i < pg->index; _____i++) { \
rec = &pg->records[_____i];
#define while_for_each_ftrace_rec() \
} \
}
static int ftrace_cmp_recs(const void *a, const void *b)
{
const struct dyn_ftrace *key = a;
const struct dyn_ftrace *rec = b;
if (key->flags < rec->ip)
return -1;
if (key->ip >= rec->ip + MCOUNT_INSN_SIZE)
return 1;
return 0;
}
static unsigned long ftrace_location_range(unsigned long start, unsigned long end)
{
struct ftrace_page *pg;
struct dyn_ftrace *rec;
struct dyn_ftrace key;
key.ip = start;
key.flags = end; /* overload flags, as it is unsigned long */
for (pg = ftrace_pages_start; pg; pg = pg->next) {
if (end < pg->records[0].ip ||
start >= (pg->records[pg->index - 1].ip + MCOUNT_INSN_SIZE))
continue;
rec = bsearch(&key, pg->records, pg->index,
sizeof(struct dyn_ftrace),
ftrace_cmp_recs);
if (rec)
return rec->ip;
}
return 0;
}
/**
* ftrace_location - return true if the ip giving is a traced location
* @ip: the instruction pointer to check
*
* Returns rec->ip if @ip given is a pointer to a ftrace location.
* That is, the instruction that is either a NOP or call to
* the function tracer. It checks the ftrace internal tables to
* determine if the address belongs or not.
*/
unsigned long ftrace_location(unsigned long ip)
{
return ftrace_location_range(ip, ip);
}
/**
* ftrace_text_reserved - return true if range contains an ftrace location
* @start: start of range to search
* @end: end of range to search (inclusive). @end points to the last byte to check.
*
* Returns 1 if @start and @end contains a ftrace location.
* That is, the instruction that is either a NOP or call to
* the function tracer. It checks the ftrace internal tables to
* determine if the address belongs or not.
*/
int ftrace_text_reserved(void *start, void *end)
{
unsigned long ret;
ret = ftrace_location_range((unsigned long)start,
(unsigned long)end);
return (int)!!ret;
}
static void __ftrace_hash_rec_update(struct ftrace_ops *ops,
int filter_hash,
bool inc)
{
struct ftrace_hash *hash;
struct ftrace_hash *other_hash;
struct ftrace_page *pg;
struct dyn_ftrace *rec;
int count = 0;
int all = 0;
/* Only update if the ops has been registered */
if (!(ops->flags & FTRACE_OPS_FL_ENABLED))
return;
/*
* In the filter_hash case:
* If the count is zero, we update all records.
* Otherwise we just update the items in the hash.
*
* In the notrace_hash case:
* We enable the update in the hash.
* As disabling notrace means enabling the tracing,
* and enabling notrace means disabling, the inc variable
* gets inversed.
*/
if (filter_hash) {
hash = ops->filter_hash;
other_hash = ops->notrace_hash;
if (ftrace_hash_empty(hash))
all = 1;
} else {
inc = !inc;
hash = ops->notrace_hash;
other_hash = ops->filter_hash;
/*
* If the notrace hash has no items,
* then there's nothing to do.
*/
if (ftrace_hash_empty(hash))
return;
}
do_for_each_ftrace_rec(pg, rec) {
int in_other_hash = 0;
int in_hash = 0;
int match = 0;
if (all) {
/*
* Only the filter_hash affects all records.
* Update if the record is not in the notrace hash.
*/
if (!other_hash || !ftrace_lookup_ip(other_hash, rec->ip))
match = 1;
} else {
in_hash = !!ftrace_lookup_ip(hash, rec->ip);
in_other_hash = !!ftrace_lookup_ip(other_hash, rec->ip);
/*
*
*/
if (filter_hash && in_hash && !in_other_hash)
match = 1;
else if (!filter_hash && in_hash &&
(in_other_hash || ftrace_hash_empty(other_hash)))
match = 1;
}
if (!match)
continue;
if (inc) {
rec->flags++;
if (FTRACE_WARN_ON((rec->flags & ~FTRACE_FL_MASK) == FTRACE_REF_MAX))
return;
ftrace/x86: Add separate function to save regs Add a way to have different functions calling different trampolines. If a ftrace_ops wants regs saved on the return, then have only the functions with ops registered to save regs. Functions registered by other ops would not be affected, unless the functions overlap. If one ftrace_ops registered functions A, B and C and another ops registered fucntions to save regs on A, and D, then only functions A and D would be saving regs. Function B and C would work as normal. Although A is registered by both ops: normal and saves regs; this is fine as saving the regs is needed to satisfy one of the ops that calls it but the regs are ignored by the other ops function. x86_64 implements the full regs saving, and i386 just passes a NULL for regs to satisfy the ftrace_ops passing. Where an arch must supply both regs and ftrace_ops parameters, even if regs is just NULL. It is OK for an arch to pass NULL regs. All function trace users that require regs passing must add the flag FTRACE_OPS_FL_SAVE_REGS when registering the ftrace_ops. If the arch does not support saving regs then the ftrace_ops will fail to register. The flag FTRACE_OPS_FL_SAVE_REGS_IF_SUPPORTED may be set that will prevent the ftrace_ops from failing to register. In this case, the handler may either check if regs is not NULL or check if ARCH_SUPPORTS_FTRACE_SAVE_REGS. If the arch supports passing regs it will set this macro and pass regs for ops that request them. All other archs will just pass NULL. Link: Link: http://lkml.kernel.org/r/20120711195745.107705970@goodmis.org Cc: Alexander van Heukelum <heukelum@fastmail.fm> Reviewed-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2012-05-01 03:20:23 +07:00
/*
* If any ops wants regs saved for this function
* then all ops will get saved regs.
*/
if (ops->flags & FTRACE_OPS_FL_SAVE_REGS)
rec->flags |= FTRACE_FL_REGS;
} else {
if (FTRACE_WARN_ON((rec->flags & ~FTRACE_FL_MASK) == 0))
return;
rec->flags--;
}
count++;
/* Shortcut, if we handled all records, we are done. */
if (!all && count == hash->count)
return;
} while_for_each_ftrace_rec();
}
static void ftrace_hash_rec_disable(struct ftrace_ops *ops,
int filter_hash)
{
__ftrace_hash_rec_update(ops, filter_hash, 0);
}
static void ftrace_hash_rec_enable(struct ftrace_ops *ops,
int filter_hash)
{
__ftrace_hash_rec_update(ops, filter_hash, 1);
}
static void print_ip_ins(const char *fmt, unsigned char *p)
{
int i;
printk(KERN_CONT "%s", fmt);
for (i = 0; i < MCOUNT_INSN_SIZE; i++)
printk(KERN_CONT "%s%02x", i ? ":" : "", p[i]);
}
/**
* ftrace_bug - report and shutdown function tracer
* @failed: The failed type (EFAULT, EINVAL, EPERM)
* @ip: The address that failed
*
* The arch code that enables or disables the function tracing
* can call ftrace_bug() when it has detected a problem in
* modifying the code. @failed should be one of either:
* EFAULT - if the problem happens on reading the @ip address
* EINVAL - if what is read at @ip is not what was expected
* EPERM - if the problem happens on writting to the @ip address
*/
void ftrace_bug(int failed, unsigned long ip)
{
switch (failed) {
case -EFAULT:
FTRACE_WARN_ON_ONCE(1);
pr_info("ftrace faulted on modifying ");
print_ip_sym(ip);
break;
case -EINVAL:
FTRACE_WARN_ON_ONCE(1);
pr_info("ftrace failed to modify ");
print_ip_sym(ip);
print_ip_ins(" actual: ", (unsigned char *)ip);
printk(KERN_CONT "\n");
break;
case -EPERM:
FTRACE_WARN_ON_ONCE(1);
pr_info("ftrace faulted on writing ");
print_ip_sym(ip);
break;
default:
FTRACE_WARN_ON_ONCE(1);
pr_info("ftrace faulted on unknown error ");
print_ip_sym(ip);
}
}
static int ftrace_check_record(struct dyn_ftrace *rec, int enable, int update)
ftrace: add filter select functions to trace This patch adds two files to the debugfs system: /debugfs/tracing/available_filter_functions and /debugfs/tracing/set_ftrace_filter The available_filter_functions lists all functions that has been recorded by the ftraced that has called the ftrace_record_ip function. This is to allow users to see what functions have been converted to nops and can be enabled for tracing. To enable functions, simply echo the names (whitespace delimited) into set_ftrace_filter. Simple wildcards are also allowed. echo 'scheduler' > /debugfs/tracing/set_ftrace_filter Will have only the scheduler be activated when tracing is enabled. echo 'sched_*' > /debugfs/tracing/set_ftrace_filter Will have only the functions starting with 'sched_' be activated. echo '*lock' > /debugfs/tracing/set_ftrace_filter Will have only functions ending with 'lock' be activated. echo '*lock*' > /debugfs/tracing/set_ftrace_filter Will have only functions with 'lock' in its name be activated. Note: 'sched*lock' will not work. The only wildcards that are allowed is an asterisk and the beginning and or end of the string passed in. Multiple names can be passed in with whitespace delimited: echo 'scheduler *lock *acpi*' > /debugfs/tracing/set_ftrace_filter is also the same as: echo 'scheduler' > /debugfs/tracing/set_ftrace_filter echo '*lock' >> /debugfs/tracing/set_ftrace_filter echo '*acpi*' >> /debugfs/tracing/set_ftrace_filter Appending does just that. It appends to the list. To disable all filters simply echo an empty line in: echo > /debugfs/tracing/set_ftrace_filter Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 02:20:43 +07:00
{
unsigned long flag = 0UL;
tracing/function-return-tracer: support for dynamic ftrace on function return tracer This patch adds the support for dynamic tracing on the function return tracer. The whole difference with normal dynamic function tracing is that we don't need to hook on a particular callback. The only pro that we want is to nop or set dynamically the calls to ftrace_caller (which is ftrace_return_caller here). Some security checks ensure that we are not trying to launch dynamic tracing for return tracing while normal function tracing is already running. An example of trace with getnstimeofday set as a filter: ktime_get_ts+0x22/0x50 -> getnstimeofday (2283 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1396 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1382 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1825 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1426 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1464 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1524 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1382 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1382 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1434 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1464 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1502 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1404 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1397 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1051 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1314 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1344 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1163 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1390 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1374 ns) Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-11-16 12:02:06 +07:00
/*
ftrace: Fix unregister ftrace_ops accounting Multiple users of the function tracer can register their functions with the ftrace_ops structure. The accounting within ftrace will update the counter on each function record that is being traced. When the ftrace_ops filtering adds or removes functions, the function records will be updated accordingly if the ftrace_ops is still registered. When a ftrace_ops is removed, the counter of the function records, that the ftrace_ops traces, are decremented. When they reach zero the functions that they represent are modified to stop calling the mcount code. When changes are made, the code is updated via stop_machine() with a command passed to the function to tell it what to do. There is an ENABLE and DISABLE command that tells the called function to enable or disable the functions. But the ENABLE is really a misnomer as it should just update the records, as records that have been enabled and now have a count of zero should be disabled. The DISABLE command is used to disable all functions regardless of their counter values. This is the big off switch and is not the complement of the ENABLE command. To make matters worse, when a ftrace_ops is unregistered and there is another ftrace_ops registered, neither the DISABLE nor the ENABLE command are set when calling into the stop_machine() function and the records will not be updated to match their counter. A command is passed to that function that will update the mcount code to call the registered callback directly if it is the only one left. This means that the ftrace_ops that is still registered will have its callback called by all functions that have been set for it as well as the ftrace_ops that was just unregistered. Here's a way to trigger this bug. Compile the kernel with CONFIG_FUNCTION_PROFILER set and with CONFIG_FUNCTION_GRAPH not set: CONFIG_FUNCTION_PROFILER=y # CONFIG_FUNCTION_GRAPH is not set This will force the function profiler to use the function tracer instead of the function graph tracer. # cd /sys/kernel/debug/tracing # echo schedule > set_ftrace_filter # echo function > current_tracer # cat set_ftrace_filter schedule # cat trace # tracer: nop # # entries-in-buffer/entries-written: 692/68108025 #P:4 # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth # ||| / delay # TASK-PID CPU# |||| TIMESTAMP FUNCTION # | | | |||| | | kworker/0:2-909 [000] .... 531.235574: schedule <-worker_thread <idle>-0 [001] .N.. 531.235575: schedule <-cpu_idle kworker/0:2-909 [000] .... 531.235597: schedule <-worker_thread sshd-2563 [001] .... 531.235647: schedule <-schedule_hrtimeout_range_clock # echo 1 > function_profile_enabled # echo 0 > function_porfile_enabled # cat set_ftrace_filter schedule # cat trace # tracer: function # # entries-in-buffer/entries-written: 159701/118821262 #P:4 # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth # ||| / delay # TASK-PID CPU# |||| TIMESTAMP FUNCTION # | | | |||| | | <idle>-0 [002] ...1 604.870655: local_touch_nmi <-cpu_idle <idle>-0 [002] d..1 604.870655: enter_idle <-cpu_idle <idle>-0 [002] d..1 604.870656: atomic_notifier_call_chain <-enter_idle <idle>-0 [002] d..1 604.870656: __atomic_notifier_call_chain <-atomic_notifier_call_chain The same problem could have happened with the trace_probe_ops, but they are modified with the set_frace_filter file which does the update at closure of the file. The simple solution is to change ENABLE to UPDATE and call it every time an ftrace_ops is unregistered. Link: http://lkml.kernel.org/r/1323105776-26961-3-git-send-email-jolsa@redhat.com Cc: stable@vger.kernel.org # 3.0+ Signed-off-by: Jiri Olsa <jolsa@redhat.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2011-12-06 00:22:48 +07:00
* If we are updating calls:
*
* If the record has a ref count, then we need to enable it
* because someone is using it.
*
* Otherwise we make sure its disabled.
*
ftrace: Fix unregister ftrace_ops accounting Multiple users of the function tracer can register their functions with the ftrace_ops structure. The accounting within ftrace will update the counter on each function record that is being traced. When the ftrace_ops filtering adds or removes functions, the function records will be updated accordingly if the ftrace_ops is still registered. When a ftrace_ops is removed, the counter of the function records, that the ftrace_ops traces, are decremented. When they reach zero the functions that they represent are modified to stop calling the mcount code. When changes are made, the code is updated via stop_machine() with a command passed to the function to tell it what to do. There is an ENABLE and DISABLE command that tells the called function to enable or disable the functions. But the ENABLE is really a misnomer as it should just update the records, as records that have been enabled and now have a count of zero should be disabled. The DISABLE command is used to disable all functions regardless of their counter values. This is the big off switch and is not the complement of the ENABLE command. To make matters worse, when a ftrace_ops is unregistered and there is another ftrace_ops registered, neither the DISABLE nor the ENABLE command are set when calling into the stop_machine() function and the records will not be updated to match their counter. A command is passed to that function that will update the mcount code to call the registered callback directly if it is the only one left. This means that the ftrace_ops that is still registered will have its callback called by all functions that have been set for it as well as the ftrace_ops that was just unregistered. Here's a way to trigger this bug. Compile the kernel with CONFIG_FUNCTION_PROFILER set and with CONFIG_FUNCTION_GRAPH not set: CONFIG_FUNCTION_PROFILER=y # CONFIG_FUNCTION_GRAPH is not set This will force the function profiler to use the function tracer instead of the function graph tracer. # cd /sys/kernel/debug/tracing # echo schedule > set_ftrace_filter # echo function > current_tracer # cat set_ftrace_filter schedule # cat trace # tracer: nop # # entries-in-buffer/entries-written: 692/68108025 #P:4 # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth # ||| / delay # TASK-PID CPU# |||| TIMESTAMP FUNCTION # | | | |||| | | kworker/0:2-909 [000] .... 531.235574: schedule <-worker_thread <idle>-0 [001] .N.. 531.235575: schedule <-cpu_idle kworker/0:2-909 [000] .... 531.235597: schedule <-worker_thread sshd-2563 [001] .... 531.235647: schedule <-schedule_hrtimeout_range_clock # echo 1 > function_profile_enabled # echo 0 > function_porfile_enabled # cat set_ftrace_filter schedule # cat trace # tracer: function # # entries-in-buffer/entries-written: 159701/118821262 #P:4 # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth # ||| / delay # TASK-PID CPU# |||| TIMESTAMP FUNCTION # | | | |||| | | <idle>-0 [002] ...1 604.870655: local_touch_nmi <-cpu_idle <idle>-0 [002] d..1 604.870655: enter_idle <-cpu_idle <idle>-0 [002] d..1 604.870656: atomic_notifier_call_chain <-enter_idle <idle>-0 [002] d..1 604.870656: __atomic_notifier_call_chain <-atomic_notifier_call_chain The same problem could have happened with the trace_probe_ops, but they are modified with the set_frace_filter file which does the update at closure of the file. The simple solution is to change ENABLE to UPDATE and call it every time an ftrace_ops is unregistered. Link: http://lkml.kernel.org/r/1323105776-26961-3-git-send-email-jolsa@redhat.com Cc: stable@vger.kernel.org # 3.0+ Signed-off-by: Jiri Olsa <jolsa@redhat.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2011-12-06 00:22:48 +07:00
* If we are disabling calls, then disable all records that
* are enabled.
*/
if (enable && (rec->flags & ~FTRACE_FL_MASK))
flag = FTRACE_FL_ENABLED;
ftrace/x86: Add separate function to save regs Add a way to have different functions calling different trampolines. If a ftrace_ops wants regs saved on the return, then have only the functions with ops registered to save regs. Functions registered by other ops would not be affected, unless the functions overlap. If one ftrace_ops registered functions A, B and C and another ops registered fucntions to save regs on A, and D, then only functions A and D would be saving regs. Function B and C would work as normal. Although A is registered by both ops: normal and saves regs; this is fine as saving the regs is needed to satisfy one of the ops that calls it but the regs are ignored by the other ops function. x86_64 implements the full regs saving, and i386 just passes a NULL for regs to satisfy the ftrace_ops passing. Where an arch must supply both regs and ftrace_ops parameters, even if regs is just NULL. It is OK for an arch to pass NULL regs. All function trace users that require regs passing must add the flag FTRACE_OPS_FL_SAVE_REGS when registering the ftrace_ops. If the arch does not support saving regs then the ftrace_ops will fail to register. The flag FTRACE_OPS_FL_SAVE_REGS_IF_SUPPORTED may be set that will prevent the ftrace_ops from failing to register. In this case, the handler may either check if regs is not NULL or check if ARCH_SUPPORTS_FTRACE_SAVE_REGS. If the arch supports passing regs it will set this macro and pass regs for ops that request them. All other archs will just pass NULL. Link: Link: http://lkml.kernel.org/r/20120711195745.107705970@goodmis.org Cc: Alexander van Heukelum <heukelum@fastmail.fm> Reviewed-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2012-05-01 03:20:23 +07:00
/*
* If enabling and the REGS flag does not match the REGS_EN, then
* do not ignore this record. Set flags to fail the compare against
* ENABLED.
*/
if (flag &&
(!(rec->flags & FTRACE_FL_REGS) != !(rec->flags & FTRACE_FL_REGS_EN)))
flag |= FTRACE_FL_REGS;
/* If the state of this record hasn't changed, then do nothing */
if ((rec->flags & FTRACE_FL_ENABLED) == flag)
return FTRACE_UPDATE_IGNORE;
if (flag) {
ftrace/x86: Add separate function to save regs Add a way to have different functions calling different trampolines. If a ftrace_ops wants regs saved on the return, then have only the functions with ops registered to save regs. Functions registered by other ops would not be affected, unless the functions overlap. If one ftrace_ops registered functions A, B and C and another ops registered fucntions to save regs on A, and D, then only functions A and D would be saving regs. Function B and C would work as normal. Although A is registered by both ops: normal and saves regs; this is fine as saving the regs is needed to satisfy one of the ops that calls it but the regs are ignored by the other ops function. x86_64 implements the full regs saving, and i386 just passes a NULL for regs to satisfy the ftrace_ops passing. Where an arch must supply both regs and ftrace_ops parameters, even if regs is just NULL. It is OK for an arch to pass NULL regs. All function trace users that require regs passing must add the flag FTRACE_OPS_FL_SAVE_REGS when registering the ftrace_ops. If the arch does not support saving regs then the ftrace_ops will fail to register. The flag FTRACE_OPS_FL_SAVE_REGS_IF_SUPPORTED may be set that will prevent the ftrace_ops from failing to register. In this case, the handler may either check if regs is not NULL or check if ARCH_SUPPORTS_FTRACE_SAVE_REGS. If the arch supports passing regs it will set this macro and pass regs for ops that request them. All other archs will just pass NULL. Link: Link: http://lkml.kernel.org/r/20120711195745.107705970@goodmis.org Cc: Alexander van Heukelum <heukelum@fastmail.fm> Reviewed-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2012-05-01 03:20:23 +07:00
/* Save off if rec is being enabled (for return value) */
flag ^= rec->flags & FTRACE_FL_ENABLED;
if (update) {
rec->flags |= FTRACE_FL_ENABLED;
ftrace/x86: Add separate function to save regs Add a way to have different functions calling different trampolines. If a ftrace_ops wants regs saved on the return, then have only the functions with ops registered to save regs. Functions registered by other ops would not be affected, unless the functions overlap. If one ftrace_ops registered functions A, B and C and another ops registered fucntions to save regs on A, and D, then only functions A and D would be saving regs. Function B and C would work as normal. Although A is registered by both ops: normal and saves regs; this is fine as saving the regs is needed to satisfy one of the ops that calls it but the regs are ignored by the other ops function. x86_64 implements the full regs saving, and i386 just passes a NULL for regs to satisfy the ftrace_ops passing. Where an arch must supply both regs and ftrace_ops parameters, even if regs is just NULL. It is OK for an arch to pass NULL regs. All function trace users that require regs passing must add the flag FTRACE_OPS_FL_SAVE_REGS when registering the ftrace_ops. If the arch does not support saving regs then the ftrace_ops will fail to register. The flag FTRACE_OPS_FL_SAVE_REGS_IF_SUPPORTED may be set that will prevent the ftrace_ops from failing to register. In this case, the handler may either check if regs is not NULL or check if ARCH_SUPPORTS_FTRACE_SAVE_REGS. If the arch supports passing regs it will set this macro and pass regs for ops that request them. All other archs will just pass NULL. Link: Link: http://lkml.kernel.org/r/20120711195745.107705970@goodmis.org Cc: Alexander van Heukelum <heukelum@fastmail.fm> Reviewed-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2012-05-01 03:20:23 +07:00
if (flag & FTRACE_FL_REGS) {
if (rec->flags & FTRACE_FL_REGS)
rec->flags |= FTRACE_FL_REGS_EN;
else
rec->flags &= ~FTRACE_FL_REGS_EN;
}
}
/*
* If this record is being updated from a nop, then
* return UPDATE_MAKE_CALL.
* Otherwise, if the EN flag is set, then return
* UPDATE_MODIFY_CALL_REGS to tell the caller to convert
* from the non-save regs, to a save regs function.
* Otherwise,
* return UPDATE_MODIFY_CALL to tell the caller to convert
* from the save regs, to a non-save regs function.
*/
if (flag & FTRACE_FL_ENABLED)
return FTRACE_UPDATE_MAKE_CALL;
else if (rec->flags & FTRACE_FL_REGS_EN)
return FTRACE_UPDATE_MODIFY_CALL_REGS;
else
return FTRACE_UPDATE_MODIFY_CALL;
}
ftrace/x86: Add separate function to save regs Add a way to have different functions calling different trampolines. If a ftrace_ops wants regs saved on the return, then have only the functions with ops registered to save regs. Functions registered by other ops would not be affected, unless the functions overlap. If one ftrace_ops registered functions A, B and C and another ops registered fucntions to save regs on A, and D, then only functions A and D would be saving regs. Function B and C would work as normal. Although A is registered by both ops: normal and saves regs; this is fine as saving the regs is needed to satisfy one of the ops that calls it but the regs are ignored by the other ops function. x86_64 implements the full regs saving, and i386 just passes a NULL for regs to satisfy the ftrace_ops passing. Where an arch must supply both regs and ftrace_ops parameters, even if regs is just NULL. It is OK for an arch to pass NULL regs. All function trace users that require regs passing must add the flag FTRACE_OPS_FL_SAVE_REGS when registering the ftrace_ops. If the arch does not support saving regs then the ftrace_ops will fail to register. The flag FTRACE_OPS_FL_SAVE_REGS_IF_SUPPORTED may be set that will prevent the ftrace_ops from failing to register. In this case, the handler may either check if regs is not NULL or check if ARCH_SUPPORTS_FTRACE_SAVE_REGS. If the arch supports passing regs it will set this macro and pass regs for ops that request them. All other archs will just pass NULL. Link: Link: http://lkml.kernel.org/r/20120711195745.107705970@goodmis.org Cc: Alexander van Heukelum <heukelum@fastmail.fm> Reviewed-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2012-05-01 03:20:23 +07:00
if (update) {
/* If there's no more users, clear all flags */
if (!(rec->flags & ~FTRACE_FL_MASK))
rec->flags = 0;
else
/* Just disable the record (keep REGS state) */
rec->flags &= ~FTRACE_FL_ENABLED;
}
return FTRACE_UPDATE_MAKE_NOP;
}
/**
* ftrace_update_record, set a record that now is tracing or not
* @rec: the record to update
* @enable: set to 1 if the record is tracing, zero to force disable
*
* The records that represent all functions that can be traced need
* to be updated when tracing has been enabled.
*/
int ftrace_update_record(struct dyn_ftrace *rec, int enable)
{
return ftrace_check_record(rec, enable, 1);
}
/**
* ftrace_test_record, check if the record has been enabled or not
* @rec: the record to test
* @enable: set to 1 to check if enabled, 0 if it is disabled
*
* The arch code may need to test if a record is already set to
* tracing to determine how to modify the function code that it
* represents.
*/
int ftrace_test_record(struct dyn_ftrace *rec, int enable)
{
return ftrace_check_record(rec, enable, 0);
}
static int
__ftrace_replace_code(struct dyn_ftrace *rec, int enable)
{
ftrace/x86: Add separate function to save regs Add a way to have different functions calling different trampolines. If a ftrace_ops wants regs saved on the return, then have only the functions with ops registered to save regs. Functions registered by other ops would not be affected, unless the functions overlap. If one ftrace_ops registered functions A, B and C and another ops registered fucntions to save regs on A, and D, then only functions A and D would be saving regs. Function B and C would work as normal. Although A is registered by both ops: normal and saves regs; this is fine as saving the regs is needed to satisfy one of the ops that calls it but the regs are ignored by the other ops function. x86_64 implements the full regs saving, and i386 just passes a NULL for regs to satisfy the ftrace_ops passing. Where an arch must supply both regs and ftrace_ops parameters, even if regs is just NULL. It is OK for an arch to pass NULL regs. All function trace users that require regs passing must add the flag FTRACE_OPS_FL_SAVE_REGS when registering the ftrace_ops. If the arch does not support saving regs then the ftrace_ops will fail to register. The flag FTRACE_OPS_FL_SAVE_REGS_IF_SUPPORTED may be set that will prevent the ftrace_ops from failing to register. In this case, the handler may either check if regs is not NULL or check if ARCH_SUPPORTS_FTRACE_SAVE_REGS. If the arch supports passing regs it will set this macro and pass regs for ops that request them. All other archs will just pass NULL. Link: Link: http://lkml.kernel.org/r/20120711195745.107705970@goodmis.org Cc: Alexander van Heukelum <heukelum@fastmail.fm> Reviewed-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2012-05-01 03:20:23 +07:00
unsigned long ftrace_old_addr;
unsigned long ftrace_addr;
int ret;
ret = ftrace_update_record(rec, enable);
ftrace/x86: Add separate function to save regs Add a way to have different functions calling different trampolines. If a ftrace_ops wants regs saved on the return, then have only the functions with ops registered to save regs. Functions registered by other ops would not be affected, unless the functions overlap. If one ftrace_ops registered functions A, B and C and another ops registered fucntions to save regs on A, and D, then only functions A and D would be saving regs. Function B and C would work as normal. Although A is registered by both ops: normal and saves regs; this is fine as saving the regs is needed to satisfy one of the ops that calls it but the regs are ignored by the other ops function. x86_64 implements the full regs saving, and i386 just passes a NULL for regs to satisfy the ftrace_ops passing. Where an arch must supply both regs and ftrace_ops parameters, even if regs is just NULL. It is OK for an arch to pass NULL regs. All function trace users that require regs passing must add the flag FTRACE_OPS_FL_SAVE_REGS when registering the ftrace_ops. If the arch does not support saving regs then the ftrace_ops will fail to register. The flag FTRACE_OPS_FL_SAVE_REGS_IF_SUPPORTED may be set that will prevent the ftrace_ops from failing to register. In this case, the handler may either check if regs is not NULL or check if ARCH_SUPPORTS_FTRACE_SAVE_REGS. If the arch supports passing regs it will set this macro and pass regs for ops that request them. All other archs will just pass NULL. Link: Link: http://lkml.kernel.org/r/20120711195745.107705970@goodmis.org Cc: Alexander van Heukelum <heukelum@fastmail.fm> Reviewed-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2012-05-01 03:20:23 +07:00
if (rec->flags & FTRACE_FL_REGS)
ftrace_addr = (unsigned long)FTRACE_REGS_ADDR;
else
ftrace_addr = (unsigned long)FTRACE_ADDR;
switch (ret) {
case FTRACE_UPDATE_IGNORE:
return 0;
case FTRACE_UPDATE_MAKE_CALL:
return ftrace_make_call(rec, ftrace_addr);
case FTRACE_UPDATE_MAKE_NOP:
return ftrace_make_nop(NULL, rec, ftrace_addr);
ftrace/x86: Add separate function to save regs Add a way to have different functions calling different trampolines. If a ftrace_ops wants regs saved on the return, then have only the functions with ops registered to save regs. Functions registered by other ops would not be affected, unless the functions overlap. If one ftrace_ops registered functions A, B and C and another ops registered fucntions to save regs on A, and D, then only functions A and D would be saving regs. Function B and C would work as normal. Although A is registered by both ops: normal and saves regs; this is fine as saving the regs is needed to satisfy one of the ops that calls it but the regs are ignored by the other ops function. x86_64 implements the full regs saving, and i386 just passes a NULL for regs to satisfy the ftrace_ops passing. Where an arch must supply both regs and ftrace_ops parameters, even if regs is just NULL. It is OK for an arch to pass NULL regs. All function trace users that require regs passing must add the flag FTRACE_OPS_FL_SAVE_REGS when registering the ftrace_ops. If the arch does not support saving regs then the ftrace_ops will fail to register. The flag FTRACE_OPS_FL_SAVE_REGS_IF_SUPPORTED may be set that will prevent the ftrace_ops from failing to register. In this case, the handler may either check if regs is not NULL or check if ARCH_SUPPORTS_FTRACE_SAVE_REGS. If the arch supports passing regs it will set this macro and pass regs for ops that request them. All other archs will just pass NULL. Link: Link: http://lkml.kernel.org/r/20120711195745.107705970@goodmis.org Cc: Alexander van Heukelum <heukelum@fastmail.fm> Reviewed-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2012-05-01 03:20:23 +07:00
case FTRACE_UPDATE_MODIFY_CALL_REGS:
case FTRACE_UPDATE_MODIFY_CALL:
if (rec->flags & FTRACE_FL_REGS)
ftrace_old_addr = (unsigned long)FTRACE_ADDR;
else
ftrace_old_addr = (unsigned long)FTRACE_REGS_ADDR;
return ftrace_modify_call(rec, ftrace_old_addr, ftrace_addr);
ftrace: add filter select functions to trace This patch adds two files to the debugfs system: /debugfs/tracing/available_filter_functions and /debugfs/tracing/set_ftrace_filter The available_filter_functions lists all functions that has been recorded by the ftraced that has called the ftrace_record_ip function. This is to allow users to see what functions have been converted to nops and can be enabled for tracing. To enable functions, simply echo the names (whitespace delimited) into set_ftrace_filter. Simple wildcards are also allowed. echo 'scheduler' > /debugfs/tracing/set_ftrace_filter Will have only the scheduler be activated when tracing is enabled. echo 'sched_*' > /debugfs/tracing/set_ftrace_filter Will have only the functions starting with 'sched_' be activated. echo '*lock' > /debugfs/tracing/set_ftrace_filter Will have only functions ending with 'lock' be activated. echo '*lock*' > /debugfs/tracing/set_ftrace_filter Will have only functions with 'lock' in its name be activated. Note: 'sched*lock' will not work. The only wildcards that are allowed is an asterisk and the beginning and or end of the string passed in. Multiple names can be passed in with whitespace delimited: echo 'scheduler *lock *acpi*' > /debugfs/tracing/set_ftrace_filter is also the same as: echo 'scheduler' > /debugfs/tracing/set_ftrace_filter echo '*lock' >> /debugfs/tracing/set_ftrace_filter echo '*acpi*' >> /debugfs/tracing/set_ftrace_filter Appending does just that. It appends to the list. To disable all filters simply echo an empty line in: echo > /debugfs/tracing/set_ftrace_filter Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 02:20:43 +07:00
}
return -1; /* unknow ftrace bug */
ftrace: add filter select functions to trace This patch adds two files to the debugfs system: /debugfs/tracing/available_filter_functions and /debugfs/tracing/set_ftrace_filter The available_filter_functions lists all functions that has been recorded by the ftraced that has called the ftrace_record_ip function. This is to allow users to see what functions have been converted to nops and can be enabled for tracing. To enable functions, simply echo the names (whitespace delimited) into set_ftrace_filter. Simple wildcards are also allowed. echo 'scheduler' > /debugfs/tracing/set_ftrace_filter Will have only the scheduler be activated when tracing is enabled. echo 'sched_*' > /debugfs/tracing/set_ftrace_filter Will have only the functions starting with 'sched_' be activated. echo '*lock' > /debugfs/tracing/set_ftrace_filter Will have only functions ending with 'lock' be activated. echo '*lock*' > /debugfs/tracing/set_ftrace_filter Will have only functions with 'lock' in its name be activated. Note: 'sched*lock' will not work. The only wildcards that are allowed is an asterisk and the beginning and or end of the string passed in. Multiple names can be passed in with whitespace delimited: echo 'scheduler *lock *acpi*' > /debugfs/tracing/set_ftrace_filter is also the same as: echo 'scheduler' > /debugfs/tracing/set_ftrace_filter echo '*lock' >> /debugfs/tracing/set_ftrace_filter echo '*acpi*' >> /debugfs/tracing/set_ftrace_filter Appending does just that. It appends to the list. To disable all filters simply echo an empty line in: echo > /debugfs/tracing/set_ftrace_filter Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 02:20:43 +07:00
}
void __weak ftrace_replace_code(int enable)
{
struct dyn_ftrace *rec;
struct ftrace_page *pg;
int failed;
if (unlikely(ftrace_disabled))
return;
do_for_each_ftrace_rec(pg, rec) {
failed = __ftrace_replace_code(rec, enable);
if (failed) {
ftrace_bug(failed, rec->ip);
/* Stop processing */
return;
}
} while_for_each_ftrace_rec();
}
struct ftrace_rec_iter {
struct ftrace_page *pg;
int index;
};
/**
* ftrace_rec_iter_start, start up iterating over traced functions
*
* Returns an iterator handle that is used to iterate over all
* the records that represent address locations where functions
* are traced.
*
* May return NULL if no records are available.
*/
struct ftrace_rec_iter *ftrace_rec_iter_start(void)
{
/*
* We only use a single iterator.
* Protected by the ftrace_lock mutex.
*/
static struct ftrace_rec_iter ftrace_rec_iter;
struct ftrace_rec_iter *iter = &ftrace_rec_iter;
iter->pg = ftrace_pages_start;
iter->index = 0;
/* Could have empty pages */
while (iter->pg && !iter->pg->index)
iter->pg = iter->pg->next;
if (!iter->pg)
return NULL;
return iter;
}
/**
* ftrace_rec_iter_next, get the next record to process.
* @iter: The handle to the iterator.
*
* Returns the next iterator after the given iterator @iter.
*/
struct ftrace_rec_iter *ftrace_rec_iter_next(struct ftrace_rec_iter *iter)
{
iter->index++;
if (iter->index >= iter->pg->index) {
iter->pg = iter->pg->next;
iter->index = 0;
/* Could have empty pages */
while (iter->pg && !iter->pg->index)
iter->pg = iter->pg->next;
}
if (!iter->pg)
return NULL;
return iter;
}
/**
* ftrace_rec_iter_record, get the record at the iterator location
* @iter: The current iterator location
*
* Returns the record that the current @iter is at.
*/
struct dyn_ftrace *ftrace_rec_iter_record(struct ftrace_rec_iter *iter)
{
return &iter->pg->records[iter->index];
}
static int
ftrace: pass module struct to arch dynamic ftrace functions Impact: allow archs more flexibility on dynamic ftrace implementations Dynamic ftrace has largly been developed on x86. Since x86 does not have the same limitations as other architectures, the ftrace interaction between the generic code and the architecture specific code was not flexible enough to handle some of the issues that other architectures have. Most notably, module trampolines. Due to the limited branch distance that archs make in calling kernel core code from modules, the module load code must create a trampoline to jump to what will make the larger jump into core kernel code. The problem arises when this happens to a call to mcount. Ftrace checks all code before modifying it and makes sure the current code is what it expects. Right now, there is not enough information to handle modifying module trampolines. This patch changes the API between generic dynamic ftrace code and the arch dependent code. There is now two functions for modifying code: ftrace_make_nop(mod, rec, addr) - convert the code at rec->ip into a nop, where the original text is calling addr. (mod is the module struct if called by module init) ftrace_make_caller(rec, addr) - convert the code rec->ip that should be a nop into a caller to addr. The record "rec" now has a new field called "arch" where the architecture can add any special attributes to each call site record. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-11-15 07:21:19 +07:00
ftrace_code_disable(struct module *mod, struct dyn_ftrace *rec)
{
unsigned long ip;
int ret;
ip = rec->ip;
if (unlikely(ftrace_disabled))
return 0;
ret = ftrace_make_nop(mod, rec, MCOUNT_ADDR);
if (ret) {
ftrace: pass module struct to arch dynamic ftrace functions Impact: allow archs more flexibility on dynamic ftrace implementations Dynamic ftrace has largly been developed on x86. Since x86 does not have the same limitations as other architectures, the ftrace interaction between the generic code and the architecture specific code was not flexible enough to handle some of the issues that other architectures have. Most notably, module trampolines. Due to the limited branch distance that archs make in calling kernel core code from modules, the module load code must create a trampoline to jump to what will make the larger jump into core kernel code. The problem arises when this happens to a call to mcount. Ftrace checks all code before modifying it and makes sure the current code is what it expects. Right now, there is not enough information to handle modifying module trampolines. This patch changes the API between generic dynamic ftrace code and the arch dependent code. There is now two functions for modifying code: ftrace_make_nop(mod, rec, addr) - convert the code at rec->ip into a nop, where the original text is calling addr. (mod is the module struct if called by module init) ftrace_make_caller(rec, addr) - convert the code rec->ip that should be a nop into a caller to addr. The record "rec" now has a new field called "arch" where the architecture can add any special attributes to each call site record. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-11-15 07:21:19 +07:00
ftrace_bug(ret, ip);
return 0;
}
return 1;
}
/*
* archs can override this function if they must do something
* before the modifying code is performed.
*/
int __weak ftrace_arch_code_modify_prepare(void)
{
return 0;
}
/*
* archs can override this function if they must do something
* after the modifying code is performed.
*/
int __weak ftrace_arch_code_modify_post_process(void)
{
return 0;
}
void ftrace_modify_all_code(int command)
ftrace: dynamic enabling/disabling of function calls This patch adds a feature to dynamically replace the ftrace code with the jmps to allow a kernel with ftrace configured to run as fast as it can without it configured. The way this works, is on bootup (if ftrace is enabled), a ftrace function is registered to record the instruction pointer of all places that call the function. Later, if there's still any code to patch, a kthread is awoken (rate limited to at most once a second) that performs a stop_machine, and replaces all the code that was called with a jmp over the call to ftrace. It only replaces what was found the previous time. Typically the system reaches equilibrium quickly after bootup and there's no code patching needed at all. e.g. call ftrace /* 5 bytes */ is replaced with jmp 3f /* jmp is 2 bytes and we jump 3 forward */ 3: When we want to enable ftrace for function tracing, the IP recording is removed, and stop_machine is called again to replace all the locations of that were recorded back to the call of ftrace. When it is disabled, we replace the code back to the jmp. Allocation is done by the kthread. If the ftrace recording function is called, and we don't have any record slots available, then we simply skip that call. Once a second a new page (if needed) is allocated for recording new ftrace function calls. A large batch is allocated at boot up to get most of the calls there. Because we do this via stop_machine, we don't have to worry about another CPU executing a ftrace call as we modify it. But we do need to worry about NMI's so all functions that might be called via nmi must be annotated with notrace_nmi. When this code is configured in, the NMI code will not call notrace. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 02:20:42 +07:00
{
int update = command & FTRACE_UPDATE_TRACE_FUNC;
/*
* If the ftrace_caller calls a ftrace_ops func directly,
* we need to make sure that it only traces functions it
* expects to trace. When doing the switch of functions,
* we need to update to the ftrace_ops_list_func first
* before the transition between old and new calls are set,
* as the ftrace_ops_list_func will check the ops hashes
* to make sure the ops are having the right functions
* traced.
*/
if (update)
ftrace_update_ftrace_func(ftrace_ops_list_func);
if (command & FTRACE_UPDATE_CALLS)
ftrace_replace_code(1);
else if (command & FTRACE_DISABLE_CALLS)
ftrace_replace_code(0);
if (update && ftrace_trace_function != ftrace_ops_list_func)
ftrace_update_ftrace_func(ftrace_trace_function);
if (command & FTRACE_START_FUNC_RET)
ftrace_enable_ftrace_graph_caller();
else if (command & FTRACE_STOP_FUNC_RET)
ftrace_disable_ftrace_graph_caller();
}
static int __ftrace_modify_code(void *data)
{
int *command = data;
ftrace_modify_all_code(*command);
return 0;
ftrace: dynamic enabling/disabling of function calls This patch adds a feature to dynamically replace the ftrace code with the jmps to allow a kernel with ftrace configured to run as fast as it can without it configured. The way this works, is on bootup (if ftrace is enabled), a ftrace function is registered to record the instruction pointer of all places that call the function. Later, if there's still any code to patch, a kthread is awoken (rate limited to at most once a second) that performs a stop_machine, and replaces all the code that was called with a jmp over the call to ftrace. It only replaces what was found the previous time. Typically the system reaches equilibrium quickly after bootup and there's no code patching needed at all. e.g. call ftrace /* 5 bytes */ is replaced with jmp 3f /* jmp is 2 bytes and we jump 3 forward */ 3: When we want to enable ftrace for function tracing, the IP recording is removed, and stop_machine is called again to replace all the locations of that were recorded back to the call of ftrace. When it is disabled, we replace the code back to the jmp. Allocation is done by the kthread. If the ftrace recording function is called, and we don't have any record slots available, then we simply skip that call. Once a second a new page (if needed) is allocated for recording new ftrace function calls. A large batch is allocated at boot up to get most of the calls there. Because we do this via stop_machine, we don't have to worry about another CPU executing a ftrace call as we modify it. But we do need to worry about NMI's so all functions that might be called via nmi must be annotated with notrace_nmi. When this code is configured in, the NMI code will not call notrace. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 02:20:42 +07:00
}
/**
* ftrace_run_stop_machine, go back to the stop machine method
* @command: The command to tell ftrace what to do
*
* If an arch needs to fall back to the stop machine method, the
* it can call this function.
*/
void ftrace_run_stop_machine(int command)
{
stop_machine(__ftrace_modify_code, &command, NULL);
}
/**
* arch_ftrace_update_code, modify the code to trace or not trace
* @command: The command that needs to be done
*
* Archs can override this function if it does not need to
* run stop_machine() to modify code.
*/
void __weak arch_ftrace_update_code(int command)
{
ftrace_run_stop_machine(command);
}
static void ftrace_run_update_code(int command)
ftrace: dynamic enabling/disabling of function calls This patch adds a feature to dynamically replace the ftrace code with the jmps to allow a kernel with ftrace configured to run as fast as it can without it configured. The way this works, is on bootup (if ftrace is enabled), a ftrace function is registered to record the instruction pointer of all places that call the function. Later, if there's still any code to patch, a kthread is awoken (rate limited to at most once a second) that performs a stop_machine, and replaces all the code that was called with a jmp over the call to ftrace. It only replaces what was found the previous time. Typically the system reaches equilibrium quickly after bootup and there's no code patching needed at all. e.g. call ftrace /* 5 bytes */ is replaced with jmp 3f /* jmp is 2 bytes and we jump 3 forward */ 3: When we want to enable ftrace for function tracing, the IP recording is removed, and stop_machine is called again to replace all the locations of that were recorded back to the call of ftrace. When it is disabled, we replace the code back to the jmp. Allocation is done by the kthread. If the ftrace recording function is called, and we don't have any record slots available, then we simply skip that call. Once a second a new page (if needed) is allocated for recording new ftrace function calls. A large batch is allocated at boot up to get most of the calls there. Because we do this via stop_machine, we don't have to worry about another CPU executing a ftrace call as we modify it. But we do need to worry about NMI's so all functions that might be called via nmi must be annotated with notrace_nmi. When this code is configured in, the NMI code will not call notrace. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 02:20:42 +07:00
{
int ret;
ret = ftrace_arch_code_modify_prepare();
FTRACE_WARN_ON(ret);
if (ret)
return;
/*
* Do not call function tracer while we update the code.
* We are in stop machine.
*/
function_trace_stop++;
/*
* By default we use stop_machine() to modify the code.
* But archs can do what ever they want as long as it
* is safe. The stop_machine() is the safest, but also
* produces the most overhead.
*/
arch_ftrace_update_code(command);
function_trace_stop--;
ret = ftrace_arch_code_modify_post_process();
FTRACE_WARN_ON(ret);
ftrace: dynamic enabling/disabling of function calls This patch adds a feature to dynamically replace the ftrace code with the jmps to allow a kernel with ftrace configured to run as fast as it can without it configured. The way this works, is on bootup (if ftrace is enabled), a ftrace function is registered to record the instruction pointer of all places that call the function. Later, if there's still any code to patch, a kthread is awoken (rate limited to at most once a second) that performs a stop_machine, and replaces all the code that was called with a jmp over the call to ftrace. It only replaces what was found the previous time. Typically the system reaches equilibrium quickly after bootup and there's no code patching needed at all. e.g. call ftrace /* 5 bytes */ is replaced with jmp 3f /* jmp is 2 bytes and we jump 3 forward */ 3: When we want to enable ftrace for function tracing, the IP recording is removed, and stop_machine is called again to replace all the locations of that were recorded back to the call of ftrace. When it is disabled, we replace the code back to the jmp. Allocation is done by the kthread. If the ftrace recording function is called, and we don't have any record slots available, then we simply skip that call. Once a second a new page (if needed) is allocated for recording new ftrace function calls. A large batch is allocated at boot up to get most of the calls there. Because we do this via stop_machine, we don't have to worry about another CPU executing a ftrace call as we modify it. But we do need to worry about NMI's so all functions that might be called via nmi must be annotated with notrace_nmi. When this code is configured in, the NMI code will not call notrace. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 02:20:42 +07:00
}
static ftrace_func_t saved_ftrace_func;
static int ftrace_start_up;
static int global_start_up;
static void ftrace_startup_enable(int command)
{
if (saved_ftrace_func != ftrace_trace_function) {
saved_ftrace_func = ftrace_trace_function;
command |= FTRACE_UPDATE_TRACE_FUNC;
}
if (!command || !ftrace_enabled)
return;
ftrace_run_update_code(command);
}
static int ftrace_startup(struct ftrace_ops *ops, int command)
ftrace: dynamic enabling/disabling of function calls This patch adds a feature to dynamically replace the ftrace code with the jmps to allow a kernel with ftrace configured to run as fast as it can without it configured. The way this works, is on bootup (if ftrace is enabled), a ftrace function is registered to record the instruction pointer of all places that call the function. Later, if there's still any code to patch, a kthread is awoken (rate limited to at most once a second) that performs a stop_machine, and replaces all the code that was called with a jmp over the call to ftrace. It only replaces what was found the previous time. Typically the system reaches equilibrium quickly after bootup and there's no code patching needed at all. e.g. call ftrace /* 5 bytes */ is replaced with jmp 3f /* jmp is 2 bytes and we jump 3 forward */ 3: When we want to enable ftrace for function tracing, the IP recording is removed, and stop_machine is called again to replace all the locations of that were recorded back to the call of ftrace. When it is disabled, we replace the code back to the jmp. Allocation is done by the kthread. If the ftrace recording function is called, and we don't have any record slots available, then we simply skip that call. Once a second a new page (if needed) is allocated for recording new ftrace function calls. A large batch is allocated at boot up to get most of the calls there. Because we do this via stop_machine, we don't have to worry about another CPU executing a ftrace call as we modify it. But we do need to worry about NMI's so all functions that might be called via nmi must be annotated with notrace_nmi. When this code is configured in, the NMI code will not call notrace. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 02:20:42 +07:00
{
bool hash_enable = true;
if (unlikely(ftrace_disabled))
return -ENODEV;
ftrace_start_up++;
ftrace: Fix unregister ftrace_ops accounting Multiple users of the function tracer can register their functions with the ftrace_ops structure. The accounting within ftrace will update the counter on each function record that is being traced. When the ftrace_ops filtering adds or removes functions, the function records will be updated accordingly if the ftrace_ops is still registered. When a ftrace_ops is removed, the counter of the function records, that the ftrace_ops traces, are decremented. When they reach zero the functions that they represent are modified to stop calling the mcount code. When changes are made, the code is updated via stop_machine() with a command passed to the function to tell it what to do. There is an ENABLE and DISABLE command that tells the called function to enable or disable the functions. But the ENABLE is really a misnomer as it should just update the records, as records that have been enabled and now have a count of zero should be disabled. The DISABLE command is used to disable all functions regardless of their counter values. This is the big off switch and is not the complement of the ENABLE command. To make matters worse, when a ftrace_ops is unregistered and there is another ftrace_ops registered, neither the DISABLE nor the ENABLE command are set when calling into the stop_machine() function and the records will not be updated to match their counter. A command is passed to that function that will update the mcount code to call the registered callback directly if it is the only one left. This means that the ftrace_ops that is still registered will have its callback called by all functions that have been set for it as well as the ftrace_ops that was just unregistered. Here's a way to trigger this bug. Compile the kernel with CONFIG_FUNCTION_PROFILER set and with CONFIG_FUNCTION_GRAPH not set: CONFIG_FUNCTION_PROFILER=y # CONFIG_FUNCTION_GRAPH is not set This will force the function profiler to use the function tracer instead of the function graph tracer. # cd /sys/kernel/debug/tracing # echo schedule > set_ftrace_filter # echo function > current_tracer # cat set_ftrace_filter schedule # cat trace # tracer: nop # # entries-in-buffer/entries-written: 692/68108025 #P:4 # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth # ||| / delay # TASK-PID CPU# |||| TIMESTAMP FUNCTION # | | | |||| | | kworker/0:2-909 [000] .... 531.235574: schedule <-worker_thread <idle>-0 [001] .N.. 531.235575: schedule <-cpu_idle kworker/0:2-909 [000] .... 531.235597: schedule <-worker_thread sshd-2563 [001] .... 531.235647: schedule <-schedule_hrtimeout_range_clock # echo 1 > function_profile_enabled # echo 0 > function_porfile_enabled # cat set_ftrace_filter schedule # cat trace # tracer: function # # entries-in-buffer/entries-written: 159701/118821262 #P:4 # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth # ||| / delay # TASK-PID CPU# |||| TIMESTAMP FUNCTION # | | | |||| | | <idle>-0 [002] ...1 604.870655: local_touch_nmi <-cpu_idle <idle>-0 [002] d..1 604.870655: enter_idle <-cpu_idle <idle>-0 [002] d..1 604.870656: atomic_notifier_call_chain <-enter_idle <idle>-0 [002] d..1 604.870656: __atomic_notifier_call_chain <-atomic_notifier_call_chain The same problem could have happened with the trace_probe_ops, but they are modified with the set_frace_filter file which does the update at closure of the file. The simple solution is to change ENABLE to UPDATE and call it every time an ftrace_ops is unregistered. Link: http://lkml.kernel.org/r/1323105776-26961-3-git-send-email-jolsa@redhat.com Cc: stable@vger.kernel.org # 3.0+ Signed-off-by: Jiri Olsa <jolsa@redhat.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2011-12-06 00:22:48 +07:00
command |= FTRACE_UPDATE_CALLS;
/* ops marked global share the filter hashes */
if (ops->flags & FTRACE_OPS_FL_GLOBAL) {
ops = &global_ops;
/* Don't update hash if global is already set */
if (global_start_up)
hash_enable = false;
global_start_up++;
}
ops->flags |= FTRACE_OPS_FL_ENABLED;
if (hash_enable)
ftrace_hash_rec_enable(ops, 1);
ftrace_startup_enable(command);
return 0;
ftrace: dynamic enabling/disabling of function calls This patch adds a feature to dynamically replace the ftrace code with the jmps to allow a kernel with ftrace configured to run as fast as it can without it configured. The way this works, is on bootup (if ftrace is enabled), a ftrace function is registered to record the instruction pointer of all places that call the function. Later, if there's still any code to patch, a kthread is awoken (rate limited to at most once a second) that performs a stop_machine, and replaces all the code that was called with a jmp over the call to ftrace. It only replaces what was found the previous time. Typically the system reaches equilibrium quickly after bootup and there's no code patching needed at all. e.g. call ftrace /* 5 bytes */ is replaced with jmp 3f /* jmp is 2 bytes and we jump 3 forward */ 3: When we want to enable ftrace for function tracing, the IP recording is removed, and stop_machine is called again to replace all the locations of that were recorded back to the call of ftrace. When it is disabled, we replace the code back to the jmp. Allocation is done by the kthread. If the ftrace recording function is called, and we don't have any record slots available, then we simply skip that call. Once a second a new page (if needed) is allocated for recording new ftrace function calls. A large batch is allocated at boot up to get most of the calls there. Because we do this via stop_machine, we don't have to worry about another CPU executing a ftrace call as we modify it. But we do need to worry about NMI's so all functions that might be called via nmi must be annotated with notrace_nmi. When this code is configured in, the NMI code will not call notrace. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 02:20:42 +07:00
}
static void ftrace_shutdown(struct ftrace_ops *ops, int command)
ftrace: dynamic enabling/disabling of function calls This patch adds a feature to dynamically replace the ftrace code with the jmps to allow a kernel with ftrace configured to run as fast as it can without it configured. The way this works, is on bootup (if ftrace is enabled), a ftrace function is registered to record the instruction pointer of all places that call the function. Later, if there's still any code to patch, a kthread is awoken (rate limited to at most once a second) that performs a stop_machine, and replaces all the code that was called with a jmp over the call to ftrace. It only replaces what was found the previous time. Typically the system reaches equilibrium quickly after bootup and there's no code patching needed at all. e.g. call ftrace /* 5 bytes */ is replaced with jmp 3f /* jmp is 2 bytes and we jump 3 forward */ 3: When we want to enable ftrace for function tracing, the IP recording is removed, and stop_machine is called again to replace all the locations of that were recorded back to the call of ftrace. When it is disabled, we replace the code back to the jmp. Allocation is done by the kthread. If the ftrace recording function is called, and we don't have any record slots available, then we simply skip that call. Once a second a new page (if needed) is allocated for recording new ftrace function calls. A large batch is allocated at boot up to get most of the calls there. Because we do this via stop_machine, we don't have to worry about another CPU executing a ftrace call as we modify it. But we do need to worry about NMI's so all functions that might be called via nmi must be annotated with notrace_nmi. When this code is configured in, the NMI code will not call notrace. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 02:20:42 +07:00
{
bool hash_disable = true;
if (unlikely(ftrace_disabled))
return;
ftrace_start_up--;
/*
* Just warn in case of unbalance, no need to kill ftrace, it's not
* critical but the ftrace_call callers may be never nopped again after
* further ftrace uses.
*/
WARN_ON_ONCE(ftrace_start_up < 0);
if (ops->flags & FTRACE_OPS_FL_GLOBAL) {
ops = &global_ops;
global_start_up--;
WARN_ON_ONCE(global_start_up < 0);
/* Don't update hash if global still has users */
if (global_start_up) {
WARN_ON_ONCE(!ftrace_start_up);
hash_disable = false;
}
}
if (hash_disable)
ftrace_hash_rec_disable(ops, 1);
if (ops != &global_ops || !global_start_up)
ops->flags &= ~FTRACE_OPS_FL_ENABLED;
ftrace: Fix unregister ftrace_ops accounting Multiple users of the function tracer can register their functions with the ftrace_ops structure. The accounting within ftrace will update the counter on each function record that is being traced. When the ftrace_ops filtering adds or removes functions, the function records will be updated accordingly if the ftrace_ops is still registered. When a ftrace_ops is removed, the counter of the function records, that the ftrace_ops traces, are decremented. When they reach zero the functions that they represent are modified to stop calling the mcount code. When changes are made, the code is updated via stop_machine() with a command passed to the function to tell it what to do. There is an ENABLE and DISABLE command that tells the called function to enable or disable the functions. But the ENABLE is really a misnomer as it should just update the records, as records that have been enabled and now have a count of zero should be disabled. The DISABLE command is used to disable all functions regardless of their counter values. This is the big off switch and is not the complement of the ENABLE command. To make matters worse, when a ftrace_ops is unregistered and there is another ftrace_ops registered, neither the DISABLE nor the ENABLE command are set when calling into the stop_machine() function and the records will not be updated to match their counter. A command is passed to that function that will update the mcount code to call the registered callback directly if it is the only one left. This means that the ftrace_ops that is still registered will have its callback called by all functions that have been set for it as well as the ftrace_ops that was just unregistered. Here's a way to trigger this bug. Compile the kernel with CONFIG_FUNCTION_PROFILER set and with CONFIG_FUNCTION_GRAPH not set: CONFIG_FUNCTION_PROFILER=y # CONFIG_FUNCTION_GRAPH is not set This will force the function profiler to use the function tracer instead of the function graph tracer. # cd /sys/kernel/debug/tracing # echo schedule > set_ftrace_filter # echo function > current_tracer # cat set_ftrace_filter schedule # cat trace # tracer: nop # # entries-in-buffer/entries-written: 692/68108025 #P:4 # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth # ||| / delay # TASK-PID CPU# |||| TIMESTAMP FUNCTION # | | | |||| | | kworker/0:2-909 [000] .... 531.235574: schedule <-worker_thread <idle>-0 [001] .N.. 531.235575: schedule <-cpu_idle kworker/0:2-909 [000] .... 531.235597: schedule <-worker_thread sshd-2563 [001] .... 531.235647: schedule <-schedule_hrtimeout_range_clock # echo 1 > function_profile_enabled # echo 0 > function_porfile_enabled # cat set_ftrace_filter schedule # cat trace # tracer: function # # entries-in-buffer/entries-written: 159701/118821262 #P:4 # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth # ||| / delay # TASK-PID CPU# |||| TIMESTAMP FUNCTION # | | | |||| | | <idle>-0 [002] ...1 604.870655: local_touch_nmi <-cpu_idle <idle>-0 [002] d..1 604.870655: enter_idle <-cpu_idle <idle>-0 [002] d..1 604.870656: atomic_notifier_call_chain <-enter_idle <idle>-0 [002] d..1 604.870656: __atomic_notifier_call_chain <-atomic_notifier_call_chain The same problem could have happened with the trace_probe_ops, but they are modified with the set_frace_filter file which does the update at closure of the file. The simple solution is to change ENABLE to UPDATE and call it every time an ftrace_ops is unregistered. Link: http://lkml.kernel.org/r/1323105776-26961-3-git-send-email-jolsa@redhat.com Cc: stable@vger.kernel.org # 3.0+ Signed-off-by: Jiri Olsa <jolsa@redhat.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2011-12-06 00:22:48 +07:00
command |= FTRACE_UPDATE_CALLS;
ftrace: dynamic enabling/disabling of function calls This patch adds a feature to dynamically replace the ftrace code with the jmps to allow a kernel with ftrace configured to run as fast as it can without it configured. The way this works, is on bootup (if ftrace is enabled), a ftrace function is registered to record the instruction pointer of all places that call the function. Later, if there's still any code to patch, a kthread is awoken (rate limited to at most once a second) that performs a stop_machine, and replaces all the code that was called with a jmp over the call to ftrace. It only replaces what was found the previous time. Typically the system reaches equilibrium quickly after bootup and there's no code patching needed at all. e.g. call ftrace /* 5 bytes */ is replaced with jmp 3f /* jmp is 2 bytes and we jump 3 forward */ 3: When we want to enable ftrace for function tracing, the IP recording is removed, and stop_machine is called again to replace all the locations of that were recorded back to the call of ftrace. When it is disabled, we replace the code back to the jmp. Allocation is done by the kthread. If the ftrace recording function is called, and we don't have any record slots available, then we simply skip that call. Once a second a new page (if needed) is allocated for recording new ftrace function calls. A large batch is allocated at boot up to get most of the calls there. Because we do this via stop_machine, we don't have to worry about another CPU executing a ftrace call as we modify it. But we do need to worry about NMI's so all functions that might be called via nmi must be annotated with notrace_nmi. When this code is configured in, the NMI code will not call notrace. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 02:20:42 +07:00
if (saved_ftrace_func != ftrace_trace_function) {
saved_ftrace_func = ftrace_trace_function;
command |= FTRACE_UPDATE_TRACE_FUNC;
}
ftrace: dynamic enabling/disabling of function calls This patch adds a feature to dynamically replace the ftrace code with the jmps to allow a kernel with ftrace configured to run as fast as it can without it configured. The way this works, is on bootup (if ftrace is enabled), a ftrace function is registered to record the instruction pointer of all places that call the function. Later, if there's still any code to patch, a kthread is awoken (rate limited to at most once a second) that performs a stop_machine, and replaces all the code that was called with a jmp over the call to ftrace. It only replaces what was found the previous time. Typically the system reaches equilibrium quickly after bootup and there's no code patching needed at all. e.g. call ftrace /* 5 bytes */ is replaced with jmp 3f /* jmp is 2 bytes and we jump 3 forward */ 3: When we want to enable ftrace for function tracing, the IP recording is removed, and stop_machine is called again to replace all the locations of that were recorded back to the call of ftrace. When it is disabled, we replace the code back to the jmp. Allocation is done by the kthread. If the ftrace recording function is called, and we don't have any record slots available, then we simply skip that call. Once a second a new page (if needed) is allocated for recording new ftrace function calls. A large batch is allocated at boot up to get most of the calls there. Because we do this via stop_machine, we don't have to worry about another CPU executing a ftrace call as we modify it. But we do need to worry about NMI's so all functions that might be called via nmi must be annotated with notrace_nmi. When this code is configured in, the NMI code will not call notrace. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 02:20:42 +07:00
if (!command || !ftrace_enabled)
return;
ftrace_run_update_code(command);
ftrace: dynamic enabling/disabling of function calls This patch adds a feature to dynamically replace the ftrace code with the jmps to allow a kernel with ftrace configured to run as fast as it can without it configured. The way this works, is on bootup (if ftrace is enabled), a ftrace function is registered to record the instruction pointer of all places that call the function. Later, if there's still any code to patch, a kthread is awoken (rate limited to at most once a second) that performs a stop_machine, and replaces all the code that was called with a jmp over the call to ftrace. It only replaces what was found the previous time. Typically the system reaches equilibrium quickly after bootup and there's no code patching needed at all. e.g. call ftrace /* 5 bytes */ is replaced with jmp 3f /* jmp is 2 bytes and we jump 3 forward */ 3: When we want to enable ftrace for function tracing, the IP recording is removed, and stop_machine is called again to replace all the locations of that were recorded back to the call of ftrace. When it is disabled, we replace the code back to the jmp. Allocation is done by the kthread. If the ftrace recording function is called, and we don't have any record slots available, then we simply skip that call. Once a second a new page (if needed) is allocated for recording new ftrace function calls. A large batch is allocated at boot up to get most of the calls there. Because we do this via stop_machine, we don't have to worry about another CPU executing a ftrace call as we modify it. But we do need to worry about NMI's so all functions that might be called via nmi must be annotated with notrace_nmi. When this code is configured in, the NMI code will not call notrace. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 02:20:42 +07:00
}
static void ftrace_startup_sysctl(void)
{
if (unlikely(ftrace_disabled))
return;
/* Force update next time */
saved_ftrace_func = NULL;
/* ftrace_start_up is true if we want ftrace running */
if (ftrace_start_up)
ftrace: Fix unregister ftrace_ops accounting Multiple users of the function tracer can register their functions with the ftrace_ops structure. The accounting within ftrace will update the counter on each function record that is being traced. When the ftrace_ops filtering adds or removes functions, the function records will be updated accordingly if the ftrace_ops is still registered. When a ftrace_ops is removed, the counter of the function records, that the ftrace_ops traces, are decremented. When they reach zero the functions that they represent are modified to stop calling the mcount code. When changes are made, the code is updated via stop_machine() with a command passed to the function to tell it what to do. There is an ENABLE and DISABLE command that tells the called function to enable or disable the functions. But the ENABLE is really a misnomer as it should just update the records, as records that have been enabled and now have a count of zero should be disabled. The DISABLE command is used to disable all functions regardless of their counter values. This is the big off switch and is not the complement of the ENABLE command. To make matters worse, when a ftrace_ops is unregistered and there is another ftrace_ops registered, neither the DISABLE nor the ENABLE command are set when calling into the stop_machine() function and the records will not be updated to match their counter. A command is passed to that function that will update the mcount code to call the registered callback directly if it is the only one left. This means that the ftrace_ops that is still registered will have its callback called by all functions that have been set for it as well as the ftrace_ops that was just unregistered. Here's a way to trigger this bug. Compile the kernel with CONFIG_FUNCTION_PROFILER set and with CONFIG_FUNCTION_GRAPH not set: CONFIG_FUNCTION_PROFILER=y # CONFIG_FUNCTION_GRAPH is not set This will force the function profiler to use the function tracer instead of the function graph tracer. # cd /sys/kernel/debug/tracing # echo schedule > set_ftrace_filter # echo function > current_tracer # cat set_ftrace_filter schedule # cat trace # tracer: nop # # entries-in-buffer/entries-written: 692/68108025 #P:4 # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth # ||| / delay # TASK-PID CPU# |||| TIMESTAMP FUNCTION # | | | |||| | | kworker/0:2-909 [000] .... 531.235574: schedule <-worker_thread <idle>-0 [001] .N.. 531.235575: schedule <-cpu_idle kworker/0:2-909 [000] .... 531.235597: schedule <-worker_thread sshd-2563 [001] .... 531.235647: schedule <-schedule_hrtimeout_range_clock # echo 1 > function_profile_enabled # echo 0 > function_porfile_enabled # cat set_ftrace_filter schedule # cat trace # tracer: function # # entries-in-buffer/entries-written: 159701/118821262 #P:4 # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth # ||| / delay # TASK-PID CPU# |||| TIMESTAMP FUNCTION # | | | |||| | | <idle>-0 [002] ...1 604.870655: local_touch_nmi <-cpu_idle <idle>-0 [002] d..1 604.870655: enter_idle <-cpu_idle <idle>-0 [002] d..1 604.870656: atomic_notifier_call_chain <-enter_idle <idle>-0 [002] d..1 604.870656: __atomic_notifier_call_chain <-atomic_notifier_call_chain The same problem could have happened with the trace_probe_ops, but they are modified with the set_frace_filter file which does the update at closure of the file. The simple solution is to change ENABLE to UPDATE and call it every time an ftrace_ops is unregistered. Link: http://lkml.kernel.org/r/1323105776-26961-3-git-send-email-jolsa@redhat.com Cc: stable@vger.kernel.org # 3.0+ Signed-off-by: Jiri Olsa <jolsa@redhat.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2011-12-06 00:22:48 +07:00
ftrace_run_update_code(FTRACE_UPDATE_CALLS);
}
static void ftrace_shutdown_sysctl(void)
{
if (unlikely(ftrace_disabled))
return;
/* ftrace_start_up is true if ftrace is running */
if (ftrace_start_up)
ftrace_run_update_code(FTRACE_DISABLE_CALLS);
}
ftrace: dynamic enabling/disabling of function calls This patch adds a feature to dynamically replace the ftrace code with the jmps to allow a kernel with ftrace configured to run as fast as it can without it configured. The way this works, is on bootup (if ftrace is enabled), a ftrace function is registered to record the instruction pointer of all places that call the function. Later, if there's still any code to patch, a kthread is awoken (rate limited to at most once a second) that performs a stop_machine, and replaces all the code that was called with a jmp over the call to ftrace. It only replaces what was found the previous time. Typically the system reaches equilibrium quickly after bootup and there's no code patching needed at all. e.g. call ftrace /* 5 bytes */ is replaced with jmp 3f /* jmp is 2 bytes and we jump 3 forward */ 3: When we want to enable ftrace for function tracing, the IP recording is removed, and stop_machine is called again to replace all the locations of that were recorded back to the call of ftrace. When it is disabled, we replace the code back to the jmp. Allocation is done by the kthread. If the ftrace recording function is called, and we don't have any record slots available, then we simply skip that call. Once a second a new page (if needed) is allocated for recording new ftrace function calls. A large batch is allocated at boot up to get most of the calls there. Because we do this via stop_machine, we don't have to worry about another CPU executing a ftrace call as we modify it. But we do need to worry about NMI's so all functions that might be called via nmi must be annotated with notrace_nmi. When this code is configured in, the NMI code will not call notrace. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 02:20:42 +07:00
static cycle_t ftrace_update_time;
static unsigned long ftrace_update_cnt;
unsigned long ftrace_update_tot_cnt;
ftrace: Check module functions being traced on reload There's been a nasty bug that would show up and not give much info. The bug displayed the following warning: WARNING: at kernel/trace/ftrace.c:1529 __ftrace_hash_rec_update+0x1e3/0x230() Pid: 20903, comm: bash Tainted: G O 3.6.11+ #38405.trunk Call Trace: [<ffffffff8103e5ff>] warn_slowpath_common+0x7f/0xc0 [<ffffffff8103e65a>] warn_slowpath_null+0x1a/0x20 [<ffffffff810c2ee3>] __ftrace_hash_rec_update+0x1e3/0x230 [<ffffffff810c4f28>] ftrace_hash_move+0x28/0x1d0 [<ffffffff811401cc>] ? kfree+0x2c/0x110 [<ffffffff810c68ee>] ftrace_regex_release+0x8e/0x150 [<ffffffff81149f1e>] __fput+0xae/0x220 [<ffffffff8114a09e>] ____fput+0xe/0x10 [<ffffffff8105fa22>] task_work_run+0x72/0x90 [<ffffffff810028ec>] do_notify_resume+0x6c/0xc0 [<ffffffff8126596e>] ? trace_hardirqs_on_thunk+0x3a/0x3c [<ffffffff815c0f88>] int_signal+0x12/0x17 ---[ end trace 793179526ee09b2c ]--- It was finally narrowed down to unloading a module that was being traced. It was actually more than that. When functions are being traced, there's a table of all functions that have a ref count of the number of active tracers attached to that function. When a function trace callback is registered to a function, the function's record ref count is incremented. When it is unregistered, the function's record ref count is decremented. If an inconsistency is detected (ref count goes below zero) the above warning is shown and the function tracing is permanently disabled until reboot. The ftrace callback ops holds a hash of functions that it filters on (and/or filters off). If the hash is empty, the default means to filter all functions (for the filter_hash) or to disable no functions (for the notrace_hash). When a module is unloaded, it frees the function records that represent the module functions. These records exist on their own pages, that is function records for one module will not exist on the same page as function records for other modules or even the core kernel. Now when a module unloads, the records that represents its functions are freed. When the module is loaded again, the records are recreated with a default ref count of zero (unless there's a callback that traces all functions, then they will also be traced, and the ref count will be incremented). The problem is that if an ftrace callback hash includes functions of the module being unloaded, those hash entries will not be removed. If the module is reloaded in the same location, the hash entries still point to the functions of the module but the module's ref counts do not reflect that. With the help of Steve and Joern, we found a reproducer: Using uinput module and uinput_release function. cd /sys/kernel/debug/tracing modprobe uinput echo uinput_release > set_ftrace_filter echo function > current_tracer rmmod uinput modprobe uinput # check /proc/modules to see if loaded in same addr, otherwise try again echo nop > current_tracer [BOOM] The above loads the uinput module, which creates a table of functions that can be traced within the module. We add uinput_release to the filter_hash to trace just that function. Enable function tracincg, which increments the ref count of the record associated to uinput_release. Remove uinput, which frees the records including the one that represents uinput_release. Load the uinput module again (and make sure it's at the same address). This recreates the function records all with a ref count of zero, including uinput_release. Disable function tracing, which will decrement the ref count for uinput_release which is now zero because of the module removal and reload, and we have a mismatch (below zero ref count). The solution is to check all currently tracing ftrace callbacks to see if any are tracing any of the module's functions when a module is loaded (it already does that with callbacks that trace all functions). If a callback happens to have a module function being traced, it increments that records ref count and starts tracing that function. There may be a strange side effect with this, where tracing module functions on unload and then reloading a new module may have that new module's functions being traced. This may be something that confuses the user, but it's not a big deal. Another approach is to disable all callback hashes on module unload, but this leaves some ftrace callbacks that may not be registered, but can still have hashes tracing the module's function where ftrace doesn't know about it. That situation can cause the same bug. This solution solves that case too. Another benefit of this solution, is it is possible to trace a module's function on unload and load. Link: http://lkml.kernel.org/r/20130705142629.GA325@redhat.com Reported-by: Jörn Engel <joern@logfs.org> Reported-by: Dave Jones <davej@redhat.com> Reported-by: Steve Hodgson <steve@purestorage.com> Tested-by: Steve Hodgson <steve@purestorage.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-07-30 11:04:32 +07:00
static inline int ops_traces_mod(struct ftrace_ops *ops)
ftrace: Fix regression where ftrace breaks when modules are loaded Enabling function tracer to trace all functions, then load a module and then disable function tracing will cause ftrace to fail. This can also happen by enabling function tracing on the command line: ftrace=function and during boot up, modules are loaded, then you disable function tracing with 'echo nop > current_tracer' you will trigger a bug in ftrace that will shut itself down. The reason is, the new ftrace code keeps ref counts of all ftrace_ops that are registered for tracing. When one or more ftrace_ops are registered, all the records that represent the functions that the ftrace_ops will trace have a ref count incremented. If this ref count is not zero, when the code modification runs, that function will be enabled for tracing. If the ref count is zero, that function will be disabled from tracing. To make sure the accounting was working, FTRACE_WARN_ON()s were added to updating of the ref counts. If the ref count hits its max (> 2^30 ftrace_ops added), or if the ref count goes below zero, a FTRACE_WARN_ON() is triggered which disables all modification of code. Since it is common for ftrace_ops to trace all functions in the kernel, instead of creating > 20,000 hash items for the ftrace_ops, the hash count is just set to zero, and it represents that the ftrace_ops is to trace all functions. This is where the issues arrise. If you enable function tracing to trace all functions, and then add a module, the modules function records do not get the ref count updated. When the function tracer is disabled, all function records ref counts are subtracted. Since the modules never had their ref counts incremented, they go below zero and the FTRACE_WARN_ON() is triggered. The solution to this is rather simple. When modules are loaded, and their functions are added to the the ftrace pool, look to see if any ftrace_ops are registered that trace all functions. And for those, update the ref count for the module function records. Reported-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2011-07-15 10:02:27 +07:00
{
ftrace: Check module functions being traced on reload There's been a nasty bug that would show up and not give much info. The bug displayed the following warning: WARNING: at kernel/trace/ftrace.c:1529 __ftrace_hash_rec_update+0x1e3/0x230() Pid: 20903, comm: bash Tainted: G O 3.6.11+ #38405.trunk Call Trace: [<ffffffff8103e5ff>] warn_slowpath_common+0x7f/0xc0 [<ffffffff8103e65a>] warn_slowpath_null+0x1a/0x20 [<ffffffff810c2ee3>] __ftrace_hash_rec_update+0x1e3/0x230 [<ffffffff810c4f28>] ftrace_hash_move+0x28/0x1d0 [<ffffffff811401cc>] ? kfree+0x2c/0x110 [<ffffffff810c68ee>] ftrace_regex_release+0x8e/0x150 [<ffffffff81149f1e>] __fput+0xae/0x220 [<ffffffff8114a09e>] ____fput+0xe/0x10 [<ffffffff8105fa22>] task_work_run+0x72/0x90 [<ffffffff810028ec>] do_notify_resume+0x6c/0xc0 [<ffffffff8126596e>] ? trace_hardirqs_on_thunk+0x3a/0x3c [<ffffffff815c0f88>] int_signal+0x12/0x17 ---[ end trace 793179526ee09b2c ]--- It was finally narrowed down to unloading a module that was being traced. It was actually more than that. When functions are being traced, there's a table of all functions that have a ref count of the number of active tracers attached to that function. When a function trace callback is registered to a function, the function's record ref count is incremented. When it is unregistered, the function's record ref count is decremented. If an inconsistency is detected (ref count goes below zero) the above warning is shown and the function tracing is permanently disabled until reboot. The ftrace callback ops holds a hash of functions that it filters on (and/or filters off). If the hash is empty, the default means to filter all functions (for the filter_hash) or to disable no functions (for the notrace_hash). When a module is unloaded, it frees the function records that represent the module functions. These records exist on their own pages, that is function records for one module will not exist on the same page as function records for other modules or even the core kernel. Now when a module unloads, the records that represents its functions are freed. When the module is loaded again, the records are recreated with a default ref count of zero (unless there's a callback that traces all functions, then they will also be traced, and the ref count will be incremented). The problem is that if an ftrace callback hash includes functions of the module being unloaded, those hash entries will not be removed. If the module is reloaded in the same location, the hash entries still point to the functions of the module but the module's ref counts do not reflect that. With the help of Steve and Joern, we found a reproducer: Using uinput module and uinput_release function. cd /sys/kernel/debug/tracing modprobe uinput echo uinput_release > set_ftrace_filter echo function > current_tracer rmmod uinput modprobe uinput # check /proc/modules to see if loaded in same addr, otherwise try again echo nop > current_tracer [BOOM] The above loads the uinput module, which creates a table of functions that can be traced within the module. We add uinput_release to the filter_hash to trace just that function. Enable function tracincg, which increments the ref count of the record associated to uinput_release. Remove uinput, which frees the records including the one that represents uinput_release. Load the uinput module again (and make sure it's at the same address). This recreates the function records all with a ref count of zero, including uinput_release. Disable function tracing, which will decrement the ref count for uinput_release which is now zero because of the module removal and reload, and we have a mismatch (below zero ref count). The solution is to check all currently tracing ftrace callbacks to see if any are tracing any of the module's functions when a module is loaded (it already does that with callbacks that trace all functions). If a callback happens to have a module function being traced, it increments that records ref count and starts tracing that function. There may be a strange side effect with this, where tracing module functions on unload and then reloading a new module may have that new module's functions being traced. This may be something that confuses the user, but it's not a big deal. Another approach is to disable all callback hashes on module unload, but this leaves some ftrace callbacks that may not be registered, but can still have hashes tracing the module's function where ftrace doesn't know about it. That situation can cause the same bug. This solution solves that case too. Another benefit of this solution, is it is possible to trace a module's function on unload and load. Link: http://lkml.kernel.org/r/20130705142629.GA325@redhat.com Reported-by: Jörn Engel <joern@logfs.org> Reported-by: Dave Jones <davej@redhat.com> Reported-by: Steve Hodgson <steve@purestorage.com> Tested-by: Steve Hodgson <steve@purestorage.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-07-30 11:04:32 +07:00
/*
* Filter_hash being empty will default to trace module.
* But notrace hash requires a test of individual module functions.
*/
return ftrace_hash_empty(ops->filter_hash) &&
ftrace_hash_empty(ops->notrace_hash);
}
/*
* Check if the current ops references the record.
*
* If the ops traces all functions, then it was already accounted for.
* If the ops does not trace the current record function, skip it.
* If the ops ignores the function via notrace filter, skip it.
*/
static inline bool
ops_references_rec(struct ftrace_ops *ops, struct dyn_ftrace *rec)
{
/* If ops isn't enabled, ignore it */
if (!(ops->flags & FTRACE_OPS_FL_ENABLED))
return 0;
/* If ops traces all mods, we already accounted for it */
if (ops_traces_mod(ops))
return 0;
/* The function must be in the filter */
if (!ftrace_hash_empty(ops->filter_hash) &&
!ftrace_lookup_ip(ops->filter_hash, rec->ip))
return 0;
ftrace: Fix regression where ftrace breaks when modules are loaded Enabling function tracer to trace all functions, then load a module and then disable function tracing will cause ftrace to fail. This can also happen by enabling function tracing on the command line: ftrace=function and during boot up, modules are loaded, then you disable function tracing with 'echo nop > current_tracer' you will trigger a bug in ftrace that will shut itself down. The reason is, the new ftrace code keeps ref counts of all ftrace_ops that are registered for tracing. When one or more ftrace_ops are registered, all the records that represent the functions that the ftrace_ops will trace have a ref count incremented. If this ref count is not zero, when the code modification runs, that function will be enabled for tracing. If the ref count is zero, that function will be disabled from tracing. To make sure the accounting was working, FTRACE_WARN_ON()s were added to updating of the ref counts. If the ref count hits its max (> 2^30 ftrace_ops added), or if the ref count goes below zero, a FTRACE_WARN_ON() is triggered which disables all modification of code. Since it is common for ftrace_ops to trace all functions in the kernel, instead of creating > 20,000 hash items for the ftrace_ops, the hash count is just set to zero, and it represents that the ftrace_ops is to trace all functions. This is where the issues arrise. If you enable function tracing to trace all functions, and then add a module, the modules function records do not get the ref count updated. When the function tracer is disabled, all function records ref counts are subtracted. Since the modules never had their ref counts incremented, they go below zero and the FTRACE_WARN_ON() is triggered. The solution to this is rather simple. When modules are loaded, and their functions are added to the the ftrace pool, look to see if any ftrace_ops are registered that trace all functions. And for those, update the ref count for the module function records. Reported-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2011-07-15 10:02:27 +07:00
ftrace: Check module functions being traced on reload There's been a nasty bug that would show up and not give much info. The bug displayed the following warning: WARNING: at kernel/trace/ftrace.c:1529 __ftrace_hash_rec_update+0x1e3/0x230() Pid: 20903, comm: bash Tainted: G O 3.6.11+ #38405.trunk Call Trace: [<ffffffff8103e5ff>] warn_slowpath_common+0x7f/0xc0 [<ffffffff8103e65a>] warn_slowpath_null+0x1a/0x20 [<ffffffff810c2ee3>] __ftrace_hash_rec_update+0x1e3/0x230 [<ffffffff810c4f28>] ftrace_hash_move+0x28/0x1d0 [<ffffffff811401cc>] ? kfree+0x2c/0x110 [<ffffffff810c68ee>] ftrace_regex_release+0x8e/0x150 [<ffffffff81149f1e>] __fput+0xae/0x220 [<ffffffff8114a09e>] ____fput+0xe/0x10 [<ffffffff8105fa22>] task_work_run+0x72/0x90 [<ffffffff810028ec>] do_notify_resume+0x6c/0xc0 [<ffffffff8126596e>] ? trace_hardirqs_on_thunk+0x3a/0x3c [<ffffffff815c0f88>] int_signal+0x12/0x17 ---[ end trace 793179526ee09b2c ]--- It was finally narrowed down to unloading a module that was being traced. It was actually more than that. When functions are being traced, there's a table of all functions that have a ref count of the number of active tracers attached to that function. When a function trace callback is registered to a function, the function's record ref count is incremented. When it is unregistered, the function's record ref count is decremented. If an inconsistency is detected (ref count goes below zero) the above warning is shown and the function tracing is permanently disabled until reboot. The ftrace callback ops holds a hash of functions that it filters on (and/or filters off). If the hash is empty, the default means to filter all functions (for the filter_hash) or to disable no functions (for the notrace_hash). When a module is unloaded, it frees the function records that represent the module functions. These records exist on their own pages, that is function records for one module will not exist on the same page as function records for other modules or even the core kernel. Now when a module unloads, the records that represents its functions are freed. When the module is loaded again, the records are recreated with a default ref count of zero (unless there's a callback that traces all functions, then they will also be traced, and the ref count will be incremented). The problem is that if an ftrace callback hash includes functions of the module being unloaded, those hash entries will not be removed. If the module is reloaded in the same location, the hash entries still point to the functions of the module but the module's ref counts do not reflect that. With the help of Steve and Joern, we found a reproducer: Using uinput module and uinput_release function. cd /sys/kernel/debug/tracing modprobe uinput echo uinput_release > set_ftrace_filter echo function > current_tracer rmmod uinput modprobe uinput # check /proc/modules to see if loaded in same addr, otherwise try again echo nop > current_tracer [BOOM] The above loads the uinput module, which creates a table of functions that can be traced within the module. We add uinput_release to the filter_hash to trace just that function. Enable function tracincg, which increments the ref count of the record associated to uinput_release. Remove uinput, which frees the records including the one that represents uinput_release. Load the uinput module again (and make sure it's at the same address). This recreates the function records all with a ref count of zero, including uinput_release. Disable function tracing, which will decrement the ref count for uinput_release which is now zero because of the module removal and reload, and we have a mismatch (below zero ref count). The solution is to check all currently tracing ftrace callbacks to see if any are tracing any of the module's functions when a module is loaded (it already does that with callbacks that trace all functions). If a callback happens to have a module function being traced, it increments that records ref count and starts tracing that function. There may be a strange side effect with this, where tracing module functions on unload and then reloading a new module may have that new module's functions being traced. This may be something that confuses the user, but it's not a big deal. Another approach is to disable all callback hashes on module unload, but this leaves some ftrace callbacks that may not be registered, but can still have hashes tracing the module's function where ftrace doesn't know about it. That situation can cause the same bug. This solution solves that case too. Another benefit of this solution, is it is possible to trace a module's function on unload and load. Link: http://lkml.kernel.org/r/20130705142629.GA325@redhat.com Reported-by: Jörn Engel <joern@logfs.org> Reported-by: Dave Jones <davej@redhat.com> Reported-by: Steve Hodgson <steve@purestorage.com> Tested-by: Steve Hodgson <steve@purestorage.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-07-30 11:04:32 +07:00
/* If in notrace hash, we ignore it too */
if (ftrace_lookup_ip(ops->notrace_hash, rec->ip))
return 0;
return 1;
}
static int referenced_filters(struct dyn_ftrace *rec)
{
struct ftrace_ops *ops;
int cnt = 0;
for (ops = ftrace_ops_list; ops != &ftrace_list_end; ops = ops->next) {
if (ops_references_rec(ops, rec))
cnt++;
}
return cnt;
ftrace: Fix regression where ftrace breaks when modules are loaded Enabling function tracer to trace all functions, then load a module and then disable function tracing will cause ftrace to fail. This can also happen by enabling function tracing on the command line: ftrace=function and during boot up, modules are loaded, then you disable function tracing with 'echo nop > current_tracer' you will trigger a bug in ftrace that will shut itself down. The reason is, the new ftrace code keeps ref counts of all ftrace_ops that are registered for tracing. When one or more ftrace_ops are registered, all the records that represent the functions that the ftrace_ops will trace have a ref count incremented. If this ref count is not zero, when the code modification runs, that function will be enabled for tracing. If the ref count is zero, that function will be disabled from tracing. To make sure the accounting was working, FTRACE_WARN_ON()s were added to updating of the ref counts. If the ref count hits its max (> 2^30 ftrace_ops added), or if the ref count goes below zero, a FTRACE_WARN_ON() is triggered which disables all modification of code. Since it is common for ftrace_ops to trace all functions in the kernel, instead of creating > 20,000 hash items for the ftrace_ops, the hash count is just set to zero, and it represents that the ftrace_ops is to trace all functions. This is where the issues arrise. If you enable function tracing to trace all functions, and then add a module, the modules function records do not get the ref count updated. When the function tracer is disabled, all function records ref counts are subtracted. Since the modules never had their ref counts incremented, they go below zero and the FTRACE_WARN_ON() is triggered. The solution to this is rather simple. When modules are loaded, and their functions are added to the the ftrace pool, look to see if any ftrace_ops are registered that trace all functions. And for those, update the ref count for the module function records. Reported-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2011-07-15 10:02:27 +07:00
}
ftrace: pass module struct to arch dynamic ftrace functions Impact: allow archs more flexibility on dynamic ftrace implementations Dynamic ftrace has largly been developed on x86. Since x86 does not have the same limitations as other architectures, the ftrace interaction between the generic code and the architecture specific code was not flexible enough to handle some of the issues that other architectures have. Most notably, module trampolines. Due to the limited branch distance that archs make in calling kernel core code from modules, the module load code must create a trampoline to jump to what will make the larger jump into core kernel code. The problem arises when this happens to a call to mcount. Ftrace checks all code before modifying it and makes sure the current code is what it expects. Right now, there is not enough information to handle modifying module trampolines. This patch changes the API between generic dynamic ftrace code and the arch dependent code. There is now two functions for modifying code: ftrace_make_nop(mod, rec, addr) - convert the code at rec->ip into a nop, where the original text is calling addr. (mod is the module struct if called by module init) ftrace_make_caller(rec, addr) - convert the code rec->ip that should be a nop into a caller to addr. The record "rec" now has a new field called "arch" where the architecture can add any special attributes to each call site record. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-11-15 07:21:19 +07:00
static int ftrace_update_code(struct module *mod)
ftrace: dynamic enabling/disabling of function calls This patch adds a feature to dynamically replace the ftrace code with the jmps to allow a kernel with ftrace configured to run as fast as it can without it configured. The way this works, is on bootup (if ftrace is enabled), a ftrace function is registered to record the instruction pointer of all places that call the function. Later, if there's still any code to patch, a kthread is awoken (rate limited to at most once a second) that performs a stop_machine, and replaces all the code that was called with a jmp over the call to ftrace. It only replaces what was found the previous time. Typically the system reaches equilibrium quickly after bootup and there's no code patching needed at all. e.g. call ftrace /* 5 bytes */ is replaced with jmp 3f /* jmp is 2 bytes and we jump 3 forward */ 3: When we want to enable ftrace for function tracing, the IP recording is removed, and stop_machine is called again to replace all the locations of that were recorded back to the call of ftrace. When it is disabled, we replace the code back to the jmp. Allocation is done by the kthread. If the ftrace recording function is called, and we don't have any record slots available, then we simply skip that call. Once a second a new page (if needed) is allocated for recording new ftrace function calls. A large batch is allocated at boot up to get most of the calls there. Because we do this via stop_machine, we don't have to worry about another CPU executing a ftrace call as we modify it. But we do need to worry about NMI's so all functions that might be called via nmi must be annotated with notrace_nmi. When this code is configured in, the NMI code will not call notrace. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 02:20:42 +07:00
{
struct ftrace_page *pg;
struct dyn_ftrace *p;
cycle_t start, stop;
ftrace: Fix regression where ftrace breaks when modules are loaded Enabling function tracer to trace all functions, then load a module and then disable function tracing will cause ftrace to fail. This can also happen by enabling function tracing on the command line: ftrace=function and during boot up, modules are loaded, then you disable function tracing with 'echo nop > current_tracer' you will trigger a bug in ftrace that will shut itself down. The reason is, the new ftrace code keeps ref counts of all ftrace_ops that are registered for tracing. When one or more ftrace_ops are registered, all the records that represent the functions that the ftrace_ops will trace have a ref count incremented. If this ref count is not zero, when the code modification runs, that function will be enabled for tracing. If the ref count is zero, that function will be disabled from tracing. To make sure the accounting was working, FTRACE_WARN_ON()s were added to updating of the ref counts. If the ref count hits its max (> 2^30 ftrace_ops added), or if the ref count goes below zero, a FTRACE_WARN_ON() is triggered which disables all modification of code. Since it is common for ftrace_ops to trace all functions in the kernel, instead of creating > 20,000 hash items for the ftrace_ops, the hash count is just set to zero, and it represents that the ftrace_ops is to trace all functions. This is where the issues arrise. If you enable function tracing to trace all functions, and then add a module, the modules function records do not get the ref count updated. When the function tracer is disabled, all function records ref counts are subtracted. Since the modules never had their ref counts incremented, they go below zero and the FTRACE_WARN_ON() is triggered. The solution to this is rather simple. When modules are loaded, and their functions are added to the the ftrace pool, look to see if any ftrace_ops are registered that trace all functions. And for those, update the ref count for the module function records. Reported-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2011-07-15 10:02:27 +07:00
unsigned long ref = 0;
ftrace: Check module functions being traced on reload There's been a nasty bug that would show up and not give much info. The bug displayed the following warning: WARNING: at kernel/trace/ftrace.c:1529 __ftrace_hash_rec_update+0x1e3/0x230() Pid: 20903, comm: bash Tainted: G O 3.6.11+ #38405.trunk Call Trace: [<ffffffff8103e5ff>] warn_slowpath_common+0x7f/0xc0 [<ffffffff8103e65a>] warn_slowpath_null+0x1a/0x20 [<ffffffff810c2ee3>] __ftrace_hash_rec_update+0x1e3/0x230 [<ffffffff810c4f28>] ftrace_hash_move+0x28/0x1d0 [<ffffffff811401cc>] ? kfree+0x2c/0x110 [<ffffffff810c68ee>] ftrace_regex_release+0x8e/0x150 [<ffffffff81149f1e>] __fput+0xae/0x220 [<ffffffff8114a09e>] ____fput+0xe/0x10 [<ffffffff8105fa22>] task_work_run+0x72/0x90 [<ffffffff810028ec>] do_notify_resume+0x6c/0xc0 [<ffffffff8126596e>] ? trace_hardirqs_on_thunk+0x3a/0x3c [<ffffffff815c0f88>] int_signal+0x12/0x17 ---[ end trace 793179526ee09b2c ]--- It was finally narrowed down to unloading a module that was being traced. It was actually more than that. When functions are being traced, there's a table of all functions that have a ref count of the number of active tracers attached to that function. When a function trace callback is registered to a function, the function's record ref count is incremented. When it is unregistered, the function's record ref count is decremented. If an inconsistency is detected (ref count goes below zero) the above warning is shown and the function tracing is permanently disabled until reboot. The ftrace callback ops holds a hash of functions that it filters on (and/or filters off). If the hash is empty, the default means to filter all functions (for the filter_hash) or to disable no functions (for the notrace_hash). When a module is unloaded, it frees the function records that represent the module functions. These records exist on their own pages, that is function records for one module will not exist on the same page as function records for other modules or even the core kernel. Now when a module unloads, the records that represents its functions are freed. When the module is loaded again, the records are recreated with a default ref count of zero (unless there's a callback that traces all functions, then they will also be traced, and the ref count will be incremented). The problem is that if an ftrace callback hash includes functions of the module being unloaded, those hash entries will not be removed. If the module is reloaded in the same location, the hash entries still point to the functions of the module but the module's ref counts do not reflect that. With the help of Steve and Joern, we found a reproducer: Using uinput module and uinput_release function. cd /sys/kernel/debug/tracing modprobe uinput echo uinput_release > set_ftrace_filter echo function > current_tracer rmmod uinput modprobe uinput # check /proc/modules to see if loaded in same addr, otherwise try again echo nop > current_tracer [BOOM] The above loads the uinput module, which creates a table of functions that can be traced within the module. We add uinput_release to the filter_hash to trace just that function. Enable function tracincg, which increments the ref count of the record associated to uinput_release. Remove uinput, which frees the records including the one that represents uinput_release. Load the uinput module again (and make sure it's at the same address). This recreates the function records all with a ref count of zero, including uinput_release. Disable function tracing, which will decrement the ref count for uinput_release which is now zero because of the module removal and reload, and we have a mismatch (below zero ref count). The solution is to check all currently tracing ftrace callbacks to see if any are tracing any of the module's functions when a module is loaded (it already does that with callbacks that trace all functions). If a callback happens to have a module function being traced, it increments that records ref count and starts tracing that function. There may be a strange side effect with this, where tracing module functions on unload and then reloading a new module may have that new module's functions being traced. This may be something that confuses the user, but it's not a big deal. Another approach is to disable all callback hashes on module unload, but this leaves some ftrace callbacks that may not be registered, but can still have hashes tracing the module's function where ftrace doesn't know about it. That situation can cause the same bug. This solution solves that case too. Another benefit of this solution, is it is possible to trace a module's function on unload and load. Link: http://lkml.kernel.org/r/20130705142629.GA325@redhat.com Reported-by: Jörn Engel <joern@logfs.org> Reported-by: Dave Jones <davej@redhat.com> Reported-by: Steve Hodgson <steve@purestorage.com> Tested-by: Steve Hodgson <steve@purestorage.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-07-30 11:04:32 +07:00
bool test = false;
int i;
ftrace: Fix regression where ftrace breaks when modules are loaded Enabling function tracer to trace all functions, then load a module and then disable function tracing will cause ftrace to fail. This can also happen by enabling function tracing on the command line: ftrace=function and during boot up, modules are loaded, then you disable function tracing with 'echo nop > current_tracer' you will trigger a bug in ftrace that will shut itself down. The reason is, the new ftrace code keeps ref counts of all ftrace_ops that are registered for tracing. When one or more ftrace_ops are registered, all the records that represent the functions that the ftrace_ops will trace have a ref count incremented. If this ref count is not zero, when the code modification runs, that function will be enabled for tracing. If the ref count is zero, that function will be disabled from tracing. To make sure the accounting was working, FTRACE_WARN_ON()s were added to updating of the ref counts. If the ref count hits its max (> 2^30 ftrace_ops added), or if the ref count goes below zero, a FTRACE_WARN_ON() is triggered which disables all modification of code. Since it is common for ftrace_ops to trace all functions in the kernel, instead of creating > 20,000 hash items for the ftrace_ops, the hash count is just set to zero, and it represents that the ftrace_ops is to trace all functions. This is where the issues arrise. If you enable function tracing to trace all functions, and then add a module, the modules function records do not get the ref count updated. When the function tracer is disabled, all function records ref counts are subtracted. Since the modules never had their ref counts incremented, they go below zero and the FTRACE_WARN_ON() is triggered. The solution to this is rather simple. When modules are loaded, and their functions are added to the the ftrace pool, look to see if any ftrace_ops are registered that trace all functions. And for those, update the ref count for the module function records. Reported-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2011-07-15 10:02:27 +07:00
/*
* When adding a module, we need to check if tracers are
* currently enabled and if they are set to trace all functions.
* If they are, we need to enable the module functions as well
* as update the reference counts for those function records.
*/
if (mod) {
struct ftrace_ops *ops;
for (ops = ftrace_ops_list;
ops != &ftrace_list_end; ops = ops->next) {
ftrace: Check module functions being traced on reload There's been a nasty bug that would show up and not give much info. The bug displayed the following warning: WARNING: at kernel/trace/ftrace.c:1529 __ftrace_hash_rec_update+0x1e3/0x230() Pid: 20903, comm: bash Tainted: G O 3.6.11+ #38405.trunk Call Trace: [<ffffffff8103e5ff>] warn_slowpath_common+0x7f/0xc0 [<ffffffff8103e65a>] warn_slowpath_null+0x1a/0x20 [<ffffffff810c2ee3>] __ftrace_hash_rec_update+0x1e3/0x230 [<ffffffff810c4f28>] ftrace_hash_move+0x28/0x1d0 [<ffffffff811401cc>] ? kfree+0x2c/0x110 [<ffffffff810c68ee>] ftrace_regex_release+0x8e/0x150 [<ffffffff81149f1e>] __fput+0xae/0x220 [<ffffffff8114a09e>] ____fput+0xe/0x10 [<ffffffff8105fa22>] task_work_run+0x72/0x90 [<ffffffff810028ec>] do_notify_resume+0x6c/0xc0 [<ffffffff8126596e>] ? trace_hardirqs_on_thunk+0x3a/0x3c [<ffffffff815c0f88>] int_signal+0x12/0x17 ---[ end trace 793179526ee09b2c ]--- It was finally narrowed down to unloading a module that was being traced. It was actually more than that. When functions are being traced, there's a table of all functions that have a ref count of the number of active tracers attached to that function. When a function trace callback is registered to a function, the function's record ref count is incremented. When it is unregistered, the function's record ref count is decremented. If an inconsistency is detected (ref count goes below zero) the above warning is shown and the function tracing is permanently disabled until reboot. The ftrace callback ops holds a hash of functions that it filters on (and/or filters off). If the hash is empty, the default means to filter all functions (for the filter_hash) or to disable no functions (for the notrace_hash). When a module is unloaded, it frees the function records that represent the module functions. These records exist on their own pages, that is function records for one module will not exist on the same page as function records for other modules or even the core kernel. Now when a module unloads, the records that represents its functions are freed. When the module is loaded again, the records are recreated with a default ref count of zero (unless there's a callback that traces all functions, then they will also be traced, and the ref count will be incremented). The problem is that if an ftrace callback hash includes functions of the module being unloaded, those hash entries will not be removed. If the module is reloaded in the same location, the hash entries still point to the functions of the module but the module's ref counts do not reflect that. With the help of Steve and Joern, we found a reproducer: Using uinput module and uinput_release function. cd /sys/kernel/debug/tracing modprobe uinput echo uinput_release > set_ftrace_filter echo function > current_tracer rmmod uinput modprobe uinput # check /proc/modules to see if loaded in same addr, otherwise try again echo nop > current_tracer [BOOM] The above loads the uinput module, which creates a table of functions that can be traced within the module. We add uinput_release to the filter_hash to trace just that function. Enable function tracincg, which increments the ref count of the record associated to uinput_release. Remove uinput, which frees the records including the one that represents uinput_release. Load the uinput module again (and make sure it's at the same address). This recreates the function records all with a ref count of zero, including uinput_release. Disable function tracing, which will decrement the ref count for uinput_release which is now zero because of the module removal and reload, and we have a mismatch (below zero ref count). The solution is to check all currently tracing ftrace callbacks to see if any are tracing any of the module's functions when a module is loaded (it already does that with callbacks that trace all functions). If a callback happens to have a module function being traced, it increments that records ref count and starts tracing that function. There may be a strange side effect with this, where tracing module functions on unload and then reloading a new module may have that new module's functions being traced. This may be something that confuses the user, but it's not a big deal. Another approach is to disable all callback hashes on module unload, but this leaves some ftrace callbacks that may not be registered, but can still have hashes tracing the module's function where ftrace doesn't know about it. That situation can cause the same bug. This solution solves that case too. Another benefit of this solution, is it is possible to trace a module's function on unload and load. Link: http://lkml.kernel.org/r/20130705142629.GA325@redhat.com Reported-by: Jörn Engel <joern@logfs.org> Reported-by: Dave Jones <davej@redhat.com> Reported-by: Steve Hodgson <steve@purestorage.com> Tested-by: Steve Hodgson <steve@purestorage.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-07-30 11:04:32 +07:00
if (ops->flags & FTRACE_OPS_FL_ENABLED) {
if (ops_traces_mod(ops))
ref++;
else
test = true;
}
ftrace: Fix regression where ftrace breaks when modules are loaded Enabling function tracer to trace all functions, then load a module and then disable function tracing will cause ftrace to fail. This can also happen by enabling function tracing on the command line: ftrace=function and during boot up, modules are loaded, then you disable function tracing with 'echo nop > current_tracer' you will trigger a bug in ftrace that will shut itself down. The reason is, the new ftrace code keeps ref counts of all ftrace_ops that are registered for tracing. When one or more ftrace_ops are registered, all the records that represent the functions that the ftrace_ops will trace have a ref count incremented. If this ref count is not zero, when the code modification runs, that function will be enabled for tracing. If the ref count is zero, that function will be disabled from tracing. To make sure the accounting was working, FTRACE_WARN_ON()s were added to updating of the ref counts. If the ref count hits its max (> 2^30 ftrace_ops added), or if the ref count goes below zero, a FTRACE_WARN_ON() is triggered which disables all modification of code. Since it is common for ftrace_ops to trace all functions in the kernel, instead of creating > 20,000 hash items for the ftrace_ops, the hash count is just set to zero, and it represents that the ftrace_ops is to trace all functions. This is where the issues arrise. If you enable function tracing to trace all functions, and then add a module, the modules function records do not get the ref count updated. When the function tracer is disabled, all function records ref counts are subtracted. Since the modules never had their ref counts incremented, they go below zero and the FTRACE_WARN_ON() is triggered. The solution to this is rather simple. When modules are loaded, and their functions are added to the the ftrace pool, look to see if any ftrace_ops are registered that trace all functions. And for those, update the ref count for the module function records. Reported-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2011-07-15 10:02:27 +07:00
}
}
ftrace: dynamic enabling/disabling of function calls This patch adds a feature to dynamically replace the ftrace code with the jmps to allow a kernel with ftrace configured to run as fast as it can without it configured. The way this works, is on bootup (if ftrace is enabled), a ftrace function is registered to record the instruction pointer of all places that call the function. Later, if there's still any code to patch, a kthread is awoken (rate limited to at most once a second) that performs a stop_machine, and replaces all the code that was called with a jmp over the call to ftrace. It only replaces what was found the previous time. Typically the system reaches equilibrium quickly after bootup and there's no code patching needed at all. e.g. call ftrace /* 5 bytes */ is replaced with jmp 3f /* jmp is 2 bytes and we jump 3 forward */ 3: When we want to enable ftrace for function tracing, the IP recording is removed, and stop_machine is called again to replace all the locations of that were recorded back to the call of ftrace. When it is disabled, we replace the code back to the jmp. Allocation is done by the kthread. If the ftrace recording function is called, and we don't have any record slots available, then we simply skip that call. Once a second a new page (if needed) is allocated for recording new ftrace function calls. A large batch is allocated at boot up to get most of the calls there. Because we do this via stop_machine, we don't have to worry about another CPU executing a ftrace call as we modify it. But we do need to worry about NMI's so all functions that might be called via nmi must be annotated with notrace_nmi. When this code is configured in, the NMI code will not call notrace. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 02:20:42 +07:00
start = ftrace_now(raw_smp_processor_id());
ftrace: dynamic enabling/disabling of function calls This patch adds a feature to dynamically replace the ftrace code with the jmps to allow a kernel with ftrace configured to run as fast as it can without it configured. The way this works, is on bootup (if ftrace is enabled), a ftrace function is registered to record the instruction pointer of all places that call the function. Later, if there's still any code to patch, a kthread is awoken (rate limited to at most once a second) that performs a stop_machine, and replaces all the code that was called with a jmp over the call to ftrace. It only replaces what was found the previous time. Typically the system reaches equilibrium quickly after bootup and there's no code patching needed at all. e.g. call ftrace /* 5 bytes */ is replaced with jmp 3f /* jmp is 2 bytes and we jump 3 forward */ 3: When we want to enable ftrace for function tracing, the IP recording is removed, and stop_machine is called again to replace all the locations of that were recorded back to the call of ftrace. When it is disabled, we replace the code back to the jmp. Allocation is done by the kthread. If the ftrace recording function is called, and we don't have any record slots available, then we simply skip that call. Once a second a new page (if needed) is allocated for recording new ftrace function calls. A large batch is allocated at boot up to get most of the calls there. Because we do this via stop_machine, we don't have to worry about another CPU executing a ftrace call as we modify it. But we do need to worry about NMI's so all functions that might be called via nmi must be annotated with notrace_nmi. When this code is configured in, the NMI code will not call notrace. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 02:20:42 +07:00
ftrace_update_cnt = 0;
for (pg = ftrace_new_pgs; pg; pg = pg->next) {
ftrace: dynamic enabling/disabling of function calls This patch adds a feature to dynamically replace the ftrace code with the jmps to allow a kernel with ftrace configured to run as fast as it can without it configured. The way this works, is on bootup (if ftrace is enabled), a ftrace function is registered to record the instruction pointer of all places that call the function. Later, if there's still any code to patch, a kthread is awoken (rate limited to at most once a second) that performs a stop_machine, and replaces all the code that was called with a jmp over the call to ftrace. It only replaces what was found the previous time. Typically the system reaches equilibrium quickly after bootup and there's no code patching needed at all. e.g. call ftrace /* 5 bytes */ is replaced with jmp 3f /* jmp is 2 bytes and we jump 3 forward */ 3: When we want to enable ftrace for function tracing, the IP recording is removed, and stop_machine is called again to replace all the locations of that were recorded back to the call of ftrace. When it is disabled, we replace the code back to the jmp. Allocation is done by the kthread. If the ftrace recording function is called, and we don't have any record slots available, then we simply skip that call. Once a second a new page (if needed) is allocated for recording new ftrace function calls. A large batch is allocated at boot up to get most of the calls there. Because we do this via stop_machine, we don't have to worry about another CPU executing a ftrace call as we modify it. But we do need to worry about NMI's so all functions that might be called via nmi must be annotated with notrace_nmi. When this code is configured in, the NMI code will not call notrace. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 02:20:42 +07:00
for (i = 0; i < pg->index; i++) {
ftrace: Check module functions being traced on reload There's been a nasty bug that would show up and not give much info. The bug displayed the following warning: WARNING: at kernel/trace/ftrace.c:1529 __ftrace_hash_rec_update+0x1e3/0x230() Pid: 20903, comm: bash Tainted: G O 3.6.11+ #38405.trunk Call Trace: [<ffffffff8103e5ff>] warn_slowpath_common+0x7f/0xc0 [<ffffffff8103e65a>] warn_slowpath_null+0x1a/0x20 [<ffffffff810c2ee3>] __ftrace_hash_rec_update+0x1e3/0x230 [<ffffffff810c4f28>] ftrace_hash_move+0x28/0x1d0 [<ffffffff811401cc>] ? kfree+0x2c/0x110 [<ffffffff810c68ee>] ftrace_regex_release+0x8e/0x150 [<ffffffff81149f1e>] __fput+0xae/0x220 [<ffffffff8114a09e>] ____fput+0xe/0x10 [<ffffffff8105fa22>] task_work_run+0x72/0x90 [<ffffffff810028ec>] do_notify_resume+0x6c/0xc0 [<ffffffff8126596e>] ? trace_hardirqs_on_thunk+0x3a/0x3c [<ffffffff815c0f88>] int_signal+0x12/0x17 ---[ end trace 793179526ee09b2c ]--- It was finally narrowed down to unloading a module that was being traced. It was actually more than that. When functions are being traced, there's a table of all functions that have a ref count of the number of active tracers attached to that function. When a function trace callback is registered to a function, the function's record ref count is incremented. When it is unregistered, the function's record ref count is decremented. If an inconsistency is detected (ref count goes below zero) the above warning is shown and the function tracing is permanently disabled until reboot. The ftrace callback ops holds a hash of functions that it filters on (and/or filters off). If the hash is empty, the default means to filter all functions (for the filter_hash) or to disable no functions (for the notrace_hash). When a module is unloaded, it frees the function records that represent the module functions. These records exist on their own pages, that is function records for one module will not exist on the same page as function records for other modules or even the core kernel. Now when a module unloads, the records that represents its functions are freed. When the module is loaded again, the records are recreated with a default ref count of zero (unless there's a callback that traces all functions, then they will also be traced, and the ref count will be incremented). The problem is that if an ftrace callback hash includes functions of the module being unloaded, those hash entries will not be removed. If the module is reloaded in the same location, the hash entries still point to the functions of the module but the module's ref counts do not reflect that. With the help of Steve and Joern, we found a reproducer: Using uinput module and uinput_release function. cd /sys/kernel/debug/tracing modprobe uinput echo uinput_release > set_ftrace_filter echo function > current_tracer rmmod uinput modprobe uinput # check /proc/modules to see if loaded in same addr, otherwise try again echo nop > current_tracer [BOOM] The above loads the uinput module, which creates a table of functions that can be traced within the module. We add uinput_release to the filter_hash to trace just that function. Enable function tracincg, which increments the ref count of the record associated to uinput_release. Remove uinput, which frees the records including the one that represents uinput_release. Load the uinput module again (and make sure it's at the same address). This recreates the function records all with a ref count of zero, including uinput_release. Disable function tracing, which will decrement the ref count for uinput_release which is now zero because of the module removal and reload, and we have a mismatch (below zero ref count). The solution is to check all currently tracing ftrace callbacks to see if any are tracing any of the module's functions when a module is loaded (it already does that with callbacks that trace all functions). If a callback happens to have a module function being traced, it increments that records ref count and starts tracing that function. There may be a strange side effect with this, where tracing module functions on unload and then reloading a new module may have that new module's functions being traced. This may be something that confuses the user, but it's not a big deal. Another approach is to disable all callback hashes on module unload, but this leaves some ftrace callbacks that may not be registered, but can still have hashes tracing the module's function where ftrace doesn't know about it. That situation can cause the same bug. This solution solves that case too. Another benefit of this solution, is it is possible to trace a module's function on unload and load. Link: http://lkml.kernel.org/r/20130705142629.GA325@redhat.com Reported-by: Jörn Engel <joern@logfs.org> Reported-by: Dave Jones <davej@redhat.com> Reported-by: Steve Hodgson <steve@purestorage.com> Tested-by: Steve Hodgson <steve@purestorage.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-07-30 11:04:32 +07:00
int cnt = ref;
/* If something went wrong, bail without enabling anything */
if (unlikely(ftrace_disabled))
return -1;
p = &pg->records[i];
ftrace: Check module functions being traced on reload There's been a nasty bug that would show up and not give much info. The bug displayed the following warning: WARNING: at kernel/trace/ftrace.c:1529 __ftrace_hash_rec_update+0x1e3/0x230() Pid: 20903, comm: bash Tainted: G O 3.6.11+ #38405.trunk Call Trace: [<ffffffff8103e5ff>] warn_slowpath_common+0x7f/0xc0 [<ffffffff8103e65a>] warn_slowpath_null+0x1a/0x20 [<ffffffff810c2ee3>] __ftrace_hash_rec_update+0x1e3/0x230 [<ffffffff810c4f28>] ftrace_hash_move+0x28/0x1d0 [<ffffffff811401cc>] ? kfree+0x2c/0x110 [<ffffffff810c68ee>] ftrace_regex_release+0x8e/0x150 [<ffffffff81149f1e>] __fput+0xae/0x220 [<ffffffff8114a09e>] ____fput+0xe/0x10 [<ffffffff8105fa22>] task_work_run+0x72/0x90 [<ffffffff810028ec>] do_notify_resume+0x6c/0xc0 [<ffffffff8126596e>] ? trace_hardirqs_on_thunk+0x3a/0x3c [<ffffffff815c0f88>] int_signal+0x12/0x17 ---[ end trace 793179526ee09b2c ]--- It was finally narrowed down to unloading a module that was being traced. It was actually more than that. When functions are being traced, there's a table of all functions that have a ref count of the number of active tracers attached to that function. When a function trace callback is registered to a function, the function's record ref count is incremented. When it is unregistered, the function's record ref count is decremented. If an inconsistency is detected (ref count goes below zero) the above warning is shown and the function tracing is permanently disabled until reboot. The ftrace callback ops holds a hash of functions that it filters on (and/or filters off). If the hash is empty, the default means to filter all functions (for the filter_hash) or to disable no functions (for the notrace_hash). When a module is unloaded, it frees the function records that represent the module functions. These records exist on their own pages, that is function records for one module will not exist on the same page as function records for other modules or even the core kernel. Now when a module unloads, the records that represents its functions are freed. When the module is loaded again, the records are recreated with a default ref count of zero (unless there's a callback that traces all functions, then they will also be traced, and the ref count will be incremented). The problem is that if an ftrace callback hash includes functions of the module being unloaded, those hash entries will not be removed. If the module is reloaded in the same location, the hash entries still point to the functions of the module but the module's ref counts do not reflect that. With the help of Steve and Joern, we found a reproducer: Using uinput module and uinput_release function. cd /sys/kernel/debug/tracing modprobe uinput echo uinput_release > set_ftrace_filter echo function > current_tracer rmmod uinput modprobe uinput # check /proc/modules to see if loaded in same addr, otherwise try again echo nop > current_tracer [BOOM] The above loads the uinput module, which creates a table of functions that can be traced within the module. We add uinput_release to the filter_hash to trace just that function. Enable function tracincg, which increments the ref count of the record associated to uinput_release. Remove uinput, which frees the records including the one that represents uinput_release. Load the uinput module again (and make sure it's at the same address). This recreates the function records all with a ref count of zero, including uinput_release. Disable function tracing, which will decrement the ref count for uinput_release which is now zero because of the module removal and reload, and we have a mismatch (below zero ref count). The solution is to check all currently tracing ftrace callbacks to see if any are tracing any of the module's functions when a module is loaded (it already does that with callbacks that trace all functions). If a callback happens to have a module function being traced, it increments that records ref count and starts tracing that function. There may be a strange side effect with this, where tracing module functions on unload and then reloading a new module may have that new module's functions being traced. This may be something that confuses the user, but it's not a big deal. Another approach is to disable all callback hashes on module unload, but this leaves some ftrace callbacks that may not be registered, but can still have hashes tracing the module's function where ftrace doesn't know about it. That situation can cause the same bug. This solution solves that case too. Another benefit of this solution, is it is possible to trace a module's function on unload and load. Link: http://lkml.kernel.org/r/20130705142629.GA325@redhat.com Reported-by: Jörn Engel <joern@logfs.org> Reported-by: Dave Jones <davej@redhat.com> Reported-by: Steve Hodgson <steve@purestorage.com> Tested-by: Steve Hodgson <steve@purestorage.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-07-30 11:04:32 +07:00
if (test)
cnt += referenced_filters(p);
p->flags = cnt;
/*
* Do the initial record conversion from mcount jump
* to the NOP instructions.
*/
if (!ftrace_code_disable(mod, p))
break;
ftrace_update_cnt++;
/*
* If the tracing is enabled, go ahead and enable the record.
*
* The reason not to enable the record immediatelly is the
* inherent check of ftrace_make_nop/ftrace_make_call for
* correct previous instructions. Making first the NOP
* conversion puts the module to the correct state, thus
* passing the ftrace_make_call check.
*/
ftrace: Check module functions being traced on reload There's been a nasty bug that would show up and not give much info. The bug displayed the following warning: WARNING: at kernel/trace/ftrace.c:1529 __ftrace_hash_rec_update+0x1e3/0x230() Pid: 20903, comm: bash Tainted: G O 3.6.11+ #38405.trunk Call Trace: [<ffffffff8103e5ff>] warn_slowpath_common+0x7f/0xc0 [<ffffffff8103e65a>] warn_slowpath_null+0x1a/0x20 [<ffffffff810c2ee3>] __ftrace_hash_rec_update+0x1e3/0x230 [<ffffffff810c4f28>] ftrace_hash_move+0x28/0x1d0 [<ffffffff811401cc>] ? kfree+0x2c/0x110 [<ffffffff810c68ee>] ftrace_regex_release+0x8e/0x150 [<ffffffff81149f1e>] __fput+0xae/0x220 [<ffffffff8114a09e>] ____fput+0xe/0x10 [<ffffffff8105fa22>] task_work_run+0x72/0x90 [<ffffffff810028ec>] do_notify_resume+0x6c/0xc0 [<ffffffff8126596e>] ? trace_hardirqs_on_thunk+0x3a/0x3c [<ffffffff815c0f88>] int_signal+0x12/0x17 ---[ end trace 793179526ee09b2c ]--- It was finally narrowed down to unloading a module that was being traced. It was actually more than that. When functions are being traced, there's a table of all functions that have a ref count of the number of active tracers attached to that function. When a function trace callback is registered to a function, the function's record ref count is incremented. When it is unregistered, the function's record ref count is decremented. If an inconsistency is detected (ref count goes below zero) the above warning is shown and the function tracing is permanently disabled until reboot. The ftrace callback ops holds a hash of functions that it filters on (and/or filters off). If the hash is empty, the default means to filter all functions (for the filter_hash) or to disable no functions (for the notrace_hash). When a module is unloaded, it frees the function records that represent the module functions. These records exist on their own pages, that is function records for one module will not exist on the same page as function records for other modules or even the core kernel. Now when a module unloads, the records that represents its functions are freed. When the module is loaded again, the records are recreated with a default ref count of zero (unless there's a callback that traces all functions, then they will also be traced, and the ref count will be incremented). The problem is that if an ftrace callback hash includes functions of the module being unloaded, those hash entries will not be removed. If the module is reloaded in the same location, the hash entries still point to the functions of the module but the module's ref counts do not reflect that. With the help of Steve and Joern, we found a reproducer: Using uinput module and uinput_release function. cd /sys/kernel/debug/tracing modprobe uinput echo uinput_release > set_ftrace_filter echo function > current_tracer rmmod uinput modprobe uinput # check /proc/modules to see if loaded in same addr, otherwise try again echo nop > current_tracer [BOOM] The above loads the uinput module, which creates a table of functions that can be traced within the module. We add uinput_release to the filter_hash to trace just that function. Enable function tracincg, which increments the ref count of the record associated to uinput_release. Remove uinput, which frees the records including the one that represents uinput_release. Load the uinput module again (and make sure it's at the same address). This recreates the function records all with a ref count of zero, including uinput_release. Disable function tracing, which will decrement the ref count for uinput_release which is now zero because of the module removal and reload, and we have a mismatch (below zero ref count). The solution is to check all currently tracing ftrace callbacks to see if any are tracing any of the module's functions when a module is loaded (it already does that with callbacks that trace all functions). If a callback happens to have a module function being traced, it increments that records ref count and starts tracing that function. There may be a strange side effect with this, where tracing module functions on unload and then reloading a new module may have that new module's functions being traced. This may be something that confuses the user, but it's not a big deal. Another approach is to disable all callback hashes on module unload, but this leaves some ftrace callbacks that may not be registered, but can still have hashes tracing the module's function where ftrace doesn't know about it. That situation can cause the same bug. This solution solves that case too. Another benefit of this solution, is it is possible to trace a module's function on unload and load. Link: http://lkml.kernel.org/r/20130705142629.GA325@redhat.com Reported-by: Jörn Engel <joern@logfs.org> Reported-by: Dave Jones <davej@redhat.com> Reported-by: Steve Hodgson <steve@purestorage.com> Tested-by: Steve Hodgson <steve@purestorage.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-07-30 11:04:32 +07:00
if (ftrace_start_up && cnt) {
int failed = __ftrace_replace_code(p, 1);
if (failed)
ftrace_bug(failed, p->ip);
}
}
ftrace: dynamic enabling/disabling of function calls This patch adds a feature to dynamically replace the ftrace code with the jmps to allow a kernel with ftrace configured to run as fast as it can without it configured. The way this works, is on bootup (if ftrace is enabled), a ftrace function is registered to record the instruction pointer of all places that call the function. Later, if there's still any code to patch, a kthread is awoken (rate limited to at most once a second) that performs a stop_machine, and replaces all the code that was called with a jmp over the call to ftrace. It only replaces what was found the previous time. Typically the system reaches equilibrium quickly after bootup and there's no code patching needed at all. e.g. call ftrace /* 5 bytes */ is replaced with jmp 3f /* jmp is 2 bytes and we jump 3 forward */ 3: When we want to enable ftrace for function tracing, the IP recording is removed, and stop_machine is called again to replace all the locations of that were recorded back to the call of ftrace. When it is disabled, we replace the code back to the jmp. Allocation is done by the kthread. If the ftrace recording function is called, and we don't have any record slots available, then we simply skip that call. Once a second a new page (if needed) is allocated for recording new ftrace function calls. A large batch is allocated at boot up to get most of the calls there. Because we do this via stop_machine, we don't have to worry about another CPU executing a ftrace call as we modify it. But we do need to worry about NMI's so all functions that might be called via nmi must be annotated with notrace_nmi. When this code is configured in, the NMI code will not call notrace. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 02:20:42 +07:00
}
ftrace_new_pgs = NULL;
stop = ftrace_now(raw_smp_processor_id());
ftrace: dynamic enabling/disabling of function calls This patch adds a feature to dynamically replace the ftrace code with the jmps to allow a kernel with ftrace configured to run as fast as it can without it configured. The way this works, is on bootup (if ftrace is enabled), a ftrace function is registered to record the instruction pointer of all places that call the function. Later, if there's still any code to patch, a kthread is awoken (rate limited to at most once a second) that performs a stop_machine, and replaces all the code that was called with a jmp over the call to ftrace. It only replaces what was found the previous time. Typically the system reaches equilibrium quickly after bootup and there's no code patching needed at all. e.g. call ftrace /* 5 bytes */ is replaced with jmp 3f /* jmp is 2 bytes and we jump 3 forward */ 3: When we want to enable ftrace for function tracing, the IP recording is removed, and stop_machine is called again to replace all the locations of that were recorded back to the call of ftrace. When it is disabled, we replace the code back to the jmp. Allocation is done by the kthread. If the ftrace recording function is called, and we don't have any record slots available, then we simply skip that call. Once a second a new page (if needed) is allocated for recording new ftrace function calls. A large batch is allocated at boot up to get most of the calls there. Because we do this via stop_machine, we don't have to worry about another CPU executing a ftrace call as we modify it. But we do need to worry about NMI's so all functions that might be called via nmi must be annotated with notrace_nmi. When this code is configured in, the NMI code will not call notrace. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 02:20:42 +07:00
ftrace_update_time = stop - start;
ftrace_update_tot_cnt += ftrace_update_cnt;
return 0;
}
static int ftrace_allocate_records(struct ftrace_page *pg, int count)
{
int order;
int cnt;
if (WARN_ON(!count))
return -EINVAL;
order = get_count_order(DIV_ROUND_UP(count, ENTRIES_PER_PAGE));
/*
* We want to fill as much as possible. No more than a page
* may be empty.
*/
while ((PAGE_SIZE << order) / ENTRY_SIZE >= count + ENTRIES_PER_PAGE)
order--;
again:
pg->records = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, order);
if (!pg->records) {
/* if we can't allocate this size, try something smaller */
if (!order)
return -ENOMEM;
order >>= 1;
goto again;
}
cnt = (PAGE_SIZE << order) / ENTRY_SIZE;
pg->size = cnt;
if (cnt > count)
cnt = count;
return cnt;
}
static struct ftrace_page *
ftrace_allocate_pages(unsigned long num_to_init)
{
struct ftrace_page *start_pg;
struct ftrace_page *pg;
int order;
int cnt;
if (!num_to_init)
return 0;
start_pg = pg = kzalloc(sizeof(*pg), GFP_KERNEL);
if (!pg)
return NULL;
/*
* Try to allocate as much as possible in one continues
* location that fills in all of the space. We want to
* waste as little space as possible.
*/
for (;;) {
cnt = ftrace_allocate_records(pg, num_to_init);
if (cnt < 0)
goto free_pages;
num_to_init -= cnt;
if (!num_to_init)
break;
pg->next = kzalloc(sizeof(*pg), GFP_KERNEL);
if (!pg->next)
goto free_pages;
pg = pg->next;
}
return start_pg;
free_pages:
while (start_pg) {
order = get_count_order(pg->size / ENTRIES_PER_PAGE);
free_pages((unsigned long)pg->records, order);
start_pg = pg->next;
kfree(pg);
pg = start_pg;
}
pr_info("ftrace: FAILED to allocate memory for functions\n");
return NULL;
}
static int __init ftrace_dyn_table_alloc(unsigned long num_to_init)
{
int cnt;
if (!num_to_init) {
pr_info("ftrace: No functions to be traced?\n");
return -1;
}
cnt = num_to_init / ENTRIES_PER_PAGE;
pr_info("ftrace: allocating %ld entries in %d pages\n",
num_to_init, cnt + 1);
return 0;
}
ftrace: add filter select functions to trace This patch adds two files to the debugfs system: /debugfs/tracing/available_filter_functions and /debugfs/tracing/set_ftrace_filter The available_filter_functions lists all functions that has been recorded by the ftraced that has called the ftrace_record_ip function. This is to allow users to see what functions have been converted to nops and can be enabled for tracing. To enable functions, simply echo the names (whitespace delimited) into set_ftrace_filter. Simple wildcards are also allowed. echo 'scheduler' > /debugfs/tracing/set_ftrace_filter Will have only the scheduler be activated when tracing is enabled. echo 'sched_*' > /debugfs/tracing/set_ftrace_filter Will have only the functions starting with 'sched_' be activated. echo '*lock' > /debugfs/tracing/set_ftrace_filter Will have only functions ending with 'lock' be activated. echo '*lock*' > /debugfs/tracing/set_ftrace_filter Will have only functions with 'lock' in its name be activated. Note: 'sched*lock' will not work. The only wildcards that are allowed is an asterisk and the beginning and or end of the string passed in. Multiple names can be passed in with whitespace delimited: echo 'scheduler *lock *acpi*' > /debugfs/tracing/set_ftrace_filter is also the same as: echo 'scheduler' > /debugfs/tracing/set_ftrace_filter echo '*lock' >> /debugfs/tracing/set_ftrace_filter echo '*acpi*' >> /debugfs/tracing/set_ftrace_filter Appending does just that. It appends to the list. To disable all filters simply echo an empty line in: echo > /debugfs/tracing/set_ftrace_filter Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 02:20:43 +07:00
#define FTRACE_BUFF_MAX (KSYM_SYMBOL_LEN+4) /* room for wildcards */
struct ftrace_iterator {
loff_t pos;
loff_t func_pos;
struct ftrace_page *pg;
struct dyn_ftrace *func;
struct ftrace_func_probe *probe;
struct trace_parser parser;
struct ftrace_hash *hash;
struct ftrace_ops *ops;
int hidx;
int idx;
unsigned flags;
ftrace: add filter select functions to trace This patch adds two files to the debugfs system: /debugfs/tracing/available_filter_functions and /debugfs/tracing/set_ftrace_filter The available_filter_functions lists all functions that has been recorded by the ftraced that has called the ftrace_record_ip function. This is to allow users to see what functions have been converted to nops and can be enabled for tracing. To enable functions, simply echo the names (whitespace delimited) into set_ftrace_filter. Simple wildcards are also allowed. echo 'scheduler' > /debugfs/tracing/set_ftrace_filter Will have only the scheduler be activated when tracing is enabled. echo 'sched_*' > /debugfs/tracing/set_ftrace_filter Will have only the functions starting with 'sched_' be activated. echo '*lock' > /debugfs/tracing/set_ftrace_filter Will have only functions ending with 'lock' be activated. echo '*lock*' > /debugfs/tracing/set_ftrace_filter Will have only functions with 'lock' in its name be activated. Note: 'sched*lock' will not work. The only wildcards that are allowed is an asterisk and the beginning and or end of the string passed in. Multiple names can be passed in with whitespace delimited: echo 'scheduler *lock *acpi*' > /debugfs/tracing/set_ftrace_filter is also the same as: echo 'scheduler' > /debugfs/tracing/set_ftrace_filter echo '*lock' >> /debugfs/tracing/set_ftrace_filter echo '*acpi*' >> /debugfs/tracing/set_ftrace_filter Appending does just that. It appends to the list. To disable all filters simply echo an empty line in: echo > /debugfs/tracing/set_ftrace_filter Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 02:20:43 +07:00
};
static void *
t_hash_next(struct seq_file *m, loff_t *pos)
{
struct ftrace_iterator *iter = m->private;
struct hlist_node *hnd = NULL;
struct hlist_head *hhd;
(*pos)++;
iter->pos = *pos;
if (iter->probe)
hnd = &iter->probe->node;
retry:
if (iter->hidx >= FTRACE_FUNC_HASHSIZE)
return NULL;
hhd = &ftrace_func_hash[iter->hidx];
if (hlist_empty(hhd)) {
iter->hidx++;
hnd = NULL;
goto retry;
}
if (!hnd)
hnd = hhd->first;
else {
hnd = hnd->next;
if (!hnd) {
iter->hidx++;
goto retry;
}
}
if (WARN_ON_ONCE(!hnd))
return NULL;
iter->probe = hlist_entry(hnd, struct ftrace_func_probe, node);
return iter;
}
static void *t_hash_start(struct seq_file *m, loff_t *pos)
{
struct ftrace_iterator *iter = m->private;
void *p = NULL;
loff_t l;
if (!(iter->flags & FTRACE_ITER_DO_HASH))
return NULL;
if (iter->func_pos > *pos)
return NULL;
iter->hidx = 0;
for (l = 0; l <= (*pos - iter->func_pos); ) {
p = t_hash_next(m, &l);
if (!p)
break;
}
if (!p)
return NULL;
/* Only set this if we have an item */
iter->flags |= FTRACE_ITER_HASH;
return iter;
}
static int
t_hash_show(struct seq_file *m, struct ftrace_iterator *iter)
{
struct ftrace_func_probe *rec;
rec = iter->probe;
if (WARN_ON_ONCE(!rec))
return -EIO;
if (rec->ops->print)
return rec->ops->print(m, rec->ip, rec->ops, rec->data);
seq_printf(m, "%ps:%ps", (void *)rec->ip, (void *)rec->ops->func);
if (rec->data)
seq_printf(m, ":%p", rec->data);
seq_putc(m, '\n');
return 0;
}
static void *
ftrace: add filter select functions to trace This patch adds two files to the debugfs system: /debugfs/tracing/available_filter_functions and /debugfs/tracing/set_ftrace_filter The available_filter_functions lists all functions that has been recorded by the ftraced that has called the ftrace_record_ip function. This is to allow users to see what functions have been converted to nops and can be enabled for tracing. To enable functions, simply echo the names (whitespace delimited) into set_ftrace_filter. Simple wildcards are also allowed. echo 'scheduler' > /debugfs/tracing/set_ftrace_filter Will have only the scheduler be activated when tracing is enabled. echo 'sched_*' > /debugfs/tracing/set_ftrace_filter Will have only the functions starting with 'sched_' be activated. echo '*lock' > /debugfs/tracing/set_ftrace_filter Will have only functions ending with 'lock' be activated. echo '*lock*' > /debugfs/tracing/set_ftrace_filter Will have only functions with 'lock' in its name be activated. Note: 'sched*lock' will not work. The only wildcards that are allowed is an asterisk and the beginning and or end of the string passed in. Multiple names can be passed in with whitespace delimited: echo 'scheduler *lock *acpi*' > /debugfs/tracing/set_ftrace_filter is also the same as: echo 'scheduler' > /debugfs/tracing/set_ftrace_filter echo '*lock' >> /debugfs/tracing/set_ftrace_filter echo '*acpi*' >> /debugfs/tracing/set_ftrace_filter Appending does just that. It appends to the list. To disable all filters simply echo an empty line in: echo > /debugfs/tracing/set_ftrace_filter Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 02:20:43 +07:00
t_next(struct seq_file *m, void *v, loff_t *pos)
{
struct ftrace_iterator *iter = m->private;
struct ftrace_ops *ops = iter->ops;
ftrace: add filter select functions to trace This patch adds two files to the debugfs system: /debugfs/tracing/available_filter_functions and /debugfs/tracing/set_ftrace_filter The available_filter_functions lists all functions that has been recorded by the ftraced that has called the ftrace_record_ip function. This is to allow users to see what functions have been converted to nops and can be enabled for tracing. To enable functions, simply echo the names (whitespace delimited) into set_ftrace_filter. Simple wildcards are also allowed. echo 'scheduler' > /debugfs/tracing/set_ftrace_filter Will have only the scheduler be activated when tracing is enabled. echo 'sched_*' > /debugfs/tracing/set_ftrace_filter Will have only the functions starting with 'sched_' be activated. echo '*lock' > /debugfs/tracing/set_ftrace_filter Will have only functions ending with 'lock' be activated. echo '*lock*' > /debugfs/tracing/set_ftrace_filter Will have only functions with 'lock' in its name be activated. Note: 'sched*lock' will not work. The only wildcards that are allowed is an asterisk and the beginning and or end of the string passed in. Multiple names can be passed in with whitespace delimited: echo 'scheduler *lock *acpi*' > /debugfs/tracing/set_ftrace_filter is also the same as: echo 'scheduler' > /debugfs/tracing/set_ftrace_filter echo '*lock' >> /debugfs/tracing/set_ftrace_filter echo '*acpi*' >> /debugfs/tracing/set_ftrace_filter Appending does just that. It appends to the list. To disable all filters simply echo an empty line in: echo > /debugfs/tracing/set_ftrace_filter Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 02:20:43 +07:00
struct dyn_ftrace *rec = NULL;
if (unlikely(ftrace_disabled))
return NULL;
if (iter->flags & FTRACE_ITER_HASH)
return t_hash_next(m, pos);
ftrace: add filter select functions to trace This patch adds two files to the debugfs system: /debugfs/tracing/available_filter_functions and /debugfs/tracing/set_ftrace_filter The available_filter_functions lists all functions that has been recorded by the ftraced that has called the ftrace_record_ip function. This is to allow users to see what functions have been converted to nops and can be enabled for tracing. To enable functions, simply echo the names (whitespace delimited) into set_ftrace_filter. Simple wildcards are also allowed. echo 'scheduler' > /debugfs/tracing/set_ftrace_filter Will have only the scheduler be activated when tracing is enabled. echo 'sched_*' > /debugfs/tracing/set_ftrace_filter Will have only the functions starting with 'sched_' be activated. echo '*lock' > /debugfs/tracing/set_ftrace_filter Will have only functions ending with 'lock' be activated. echo '*lock*' > /debugfs/tracing/set_ftrace_filter Will have only functions with 'lock' in its name be activated. Note: 'sched*lock' will not work. The only wildcards that are allowed is an asterisk and the beginning and or end of the string passed in. Multiple names can be passed in with whitespace delimited: echo 'scheduler *lock *acpi*' > /debugfs/tracing/set_ftrace_filter is also the same as: echo 'scheduler' > /debugfs/tracing/set_ftrace_filter echo '*lock' >> /debugfs/tracing/set_ftrace_filter echo '*acpi*' >> /debugfs/tracing/set_ftrace_filter Appending does just that. It appends to the list. To disable all filters simply echo an empty line in: echo > /debugfs/tracing/set_ftrace_filter Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 02:20:43 +07:00
(*pos)++;
iter->pos = iter->func_pos = *pos;
ftrace: add filter select functions to trace This patch adds two files to the debugfs system: /debugfs/tracing/available_filter_functions and /debugfs/tracing/set_ftrace_filter The available_filter_functions lists all functions that has been recorded by the ftraced that has called the ftrace_record_ip function. This is to allow users to see what functions have been converted to nops and can be enabled for tracing. To enable functions, simply echo the names (whitespace delimited) into set_ftrace_filter. Simple wildcards are also allowed. echo 'scheduler' > /debugfs/tracing/set_ftrace_filter Will have only the scheduler be activated when tracing is enabled. echo 'sched_*' > /debugfs/tracing/set_ftrace_filter Will have only the functions starting with 'sched_' be activated. echo '*lock' > /debugfs/tracing/set_ftrace_filter Will have only functions ending with 'lock' be activated. echo '*lock*' > /debugfs/tracing/set_ftrace_filter Will have only functions with 'lock' in its name be activated. Note: 'sched*lock' will not work. The only wildcards that are allowed is an asterisk and the beginning and or end of the string passed in. Multiple names can be passed in with whitespace delimited: echo 'scheduler *lock *acpi*' > /debugfs/tracing/set_ftrace_filter is also the same as: echo 'scheduler' > /debugfs/tracing/set_ftrace_filter echo '*lock' >> /debugfs/tracing/set_ftrace_filter echo '*acpi*' >> /debugfs/tracing/set_ftrace_filter Appending does just that. It appends to the list. To disable all filters simply echo an empty line in: echo > /debugfs/tracing/set_ftrace_filter Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 02:20:43 +07:00
if (iter->flags & FTRACE_ITER_PRINTALL)
return t_hash_start(m, pos);
ftrace: add filter select functions to trace This patch adds two files to the debugfs system: /debugfs/tracing/available_filter_functions and /debugfs/tracing/set_ftrace_filter The available_filter_functions lists all functions that has been recorded by the ftraced that has called the ftrace_record_ip function. This is to allow users to see what functions have been converted to nops and can be enabled for tracing. To enable functions, simply echo the names (whitespace delimited) into set_ftrace_filter. Simple wildcards are also allowed. echo 'scheduler' > /debugfs/tracing/set_ftrace_filter Will have only the scheduler be activated when tracing is enabled. echo 'sched_*' > /debugfs/tracing/set_ftrace_filter Will have only the functions starting with 'sched_' be activated. echo '*lock' > /debugfs/tracing/set_ftrace_filter Will have only functions ending with 'lock' be activated. echo '*lock*' > /debugfs/tracing/set_ftrace_filter Will have only functions with 'lock' in its name be activated. Note: 'sched*lock' will not work. The only wildcards that are allowed is an asterisk and the beginning and or end of the string passed in. Multiple names can be passed in with whitespace delimited: echo 'scheduler *lock *acpi*' > /debugfs/tracing/set_ftrace_filter is also the same as: echo 'scheduler' > /debugfs/tracing/set_ftrace_filter echo '*lock' >> /debugfs/tracing/set_ftrace_filter echo '*acpi*' >> /debugfs/tracing/set_ftrace_filter Appending does just that. It appends to the list. To disable all filters simply echo an empty line in: echo > /debugfs/tracing/set_ftrace_filter Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 02:20:43 +07:00
retry:
if (iter->idx >= iter->pg->index) {
if (iter->pg->next) {
iter->pg = iter->pg->next;
iter->idx = 0;
goto retry;
}
} else {
rec = &iter->pg->records[iter->idx++];
if (((iter->flags & FTRACE_ITER_FILTER) &&
!(ftrace_lookup_ip(ops->filter_hash, rec->ip))) ||
((iter->flags & FTRACE_ITER_NOTRACE) &&
!ftrace_lookup_ip(ops->notrace_hash, rec->ip)) ||
((iter->flags & FTRACE_ITER_ENABLED) &&
!(rec->flags & FTRACE_FL_ENABLED))) {
ftrace: add filter select functions to trace This patch adds two files to the debugfs system: /debugfs/tracing/available_filter_functions and /debugfs/tracing/set_ftrace_filter The available_filter_functions lists all functions that has been recorded by the ftraced that has called the ftrace_record_ip function. This is to allow users to see what functions have been converted to nops and can be enabled for tracing. To enable functions, simply echo the names (whitespace delimited) into set_ftrace_filter. Simple wildcards are also allowed. echo 'scheduler' > /debugfs/tracing/set_ftrace_filter Will have only the scheduler be activated when tracing is enabled. echo 'sched_*' > /debugfs/tracing/set_ftrace_filter Will have only the functions starting with 'sched_' be activated. echo '*lock' > /debugfs/tracing/set_ftrace_filter Will have only functions ending with 'lock' be activated. echo '*lock*' > /debugfs/tracing/set_ftrace_filter Will have only functions with 'lock' in its name be activated. Note: 'sched*lock' will not work. The only wildcards that are allowed is an asterisk and the beginning and or end of the string passed in. Multiple names can be passed in with whitespace delimited: echo 'scheduler *lock *acpi*' > /debugfs/tracing/set_ftrace_filter is also the same as: echo 'scheduler' > /debugfs/tracing/set_ftrace_filter echo '*lock' >> /debugfs/tracing/set_ftrace_filter echo '*acpi*' >> /debugfs/tracing/set_ftrace_filter Appending does just that. It appends to the list. To disable all filters simply echo an empty line in: echo > /debugfs/tracing/set_ftrace_filter Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 02:20:43 +07:00
rec = NULL;
goto retry;
}
}
if (!rec)
return t_hash_start(m, pos);
iter->func = rec;
return iter;
ftrace: add filter select functions to trace This patch adds two files to the debugfs system: /debugfs/tracing/available_filter_functions and /debugfs/tracing/set_ftrace_filter The available_filter_functions lists all functions that has been recorded by the ftraced that has called the ftrace_record_ip function. This is to allow users to see what functions have been converted to nops and can be enabled for tracing. To enable functions, simply echo the names (whitespace delimited) into set_ftrace_filter. Simple wildcards are also allowed. echo 'scheduler' > /debugfs/tracing/set_ftrace_filter Will have only the scheduler be activated when tracing is enabled. echo 'sched_*' > /debugfs/tracing/set_ftrace_filter Will have only the functions starting with 'sched_' be activated. echo '*lock' > /debugfs/tracing/set_ftrace_filter Will have only functions ending with 'lock' be activated. echo '*lock*' > /debugfs/tracing/set_ftrace_filter Will have only functions with 'lock' in its name be activated. Note: 'sched*lock' will not work. The only wildcards that are allowed is an asterisk and the beginning and or end of the string passed in. Multiple names can be passed in with whitespace delimited: echo 'scheduler *lock *acpi*' > /debugfs/tracing/set_ftrace_filter is also the same as: echo 'scheduler' > /debugfs/tracing/set_ftrace_filter echo '*lock' >> /debugfs/tracing/set_ftrace_filter echo '*acpi*' >> /debugfs/tracing/set_ftrace_filter Appending does just that. It appends to the list. To disable all filters simply echo an empty line in: echo > /debugfs/tracing/set_ftrace_filter Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 02:20:43 +07:00
}
static void reset_iter_read(struct ftrace_iterator *iter)
{
iter->pos = 0;
iter->func_pos = 0;
iter->flags &= ~(FTRACE_ITER_PRINTALL | FTRACE_ITER_HASH);
ftrace: add filter select functions to trace This patch adds two files to the debugfs system: /debugfs/tracing/available_filter_functions and /debugfs/tracing/set_ftrace_filter The available_filter_functions lists all functions that has been recorded by the ftraced that has called the ftrace_record_ip function. This is to allow users to see what functions have been converted to nops and can be enabled for tracing. To enable functions, simply echo the names (whitespace delimited) into set_ftrace_filter. Simple wildcards are also allowed. echo 'scheduler' > /debugfs/tracing/set_ftrace_filter Will have only the scheduler be activated when tracing is enabled. echo 'sched_*' > /debugfs/tracing/set_ftrace_filter Will have only the functions starting with 'sched_' be activated. echo '*lock' > /debugfs/tracing/set_ftrace_filter Will have only functions ending with 'lock' be activated. echo '*lock*' > /debugfs/tracing/set_ftrace_filter Will have only functions with 'lock' in its name be activated. Note: 'sched*lock' will not work. The only wildcards that are allowed is an asterisk and the beginning and or end of the string passed in. Multiple names can be passed in with whitespace delimited: echo 'scheduler *lock *acpi*' > /debugfs/tracing/set_ftrace_filter is also the same as: echo 'scheduler' > /debugfs/tracing/set_ftrace_filter echo '*lock' >> /debugfs/tracing/set_ftrace_filter echo '*acpi*' >> /debugfs/tracing/set_ftrace_filter Appending does just that. It appends to the list. To disable all filters simply echo an empty line in: echo > /debugfs/tracing/set_ftrace_filter Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 02:20:43 +07:00
}
static void *t_start(struct seq_file *m, loff_t *pos)
{
struct ftrace_iterator *iter = m->private;
struct ftrace_ops *ops = iter->ops;
ftrace: add filter select functions to trace This patch adds two files to the debugfs system: /debugfs/tracing/available_filter_functions and /debugfs/tracing/set_ftrace_filter The available_filter_functions lists all functions that has been recorded by the ftraced that has called the ftrace_record_ip function. This is to allow users to see what functions have been converted to nops and can be enabled for tracing. To enable functions, simply echo the names (whitespace delimited) into set_ftrace_filter. Simple wildcards are also allowed. echo 'scheduler' > /debugfs/tracing/set_ftrace_filter Will have only the scheduler be activated when tracing is enabled. echo 'sched_*' > /debugfs/tracing/set_ftrace_filter Will have only the functions starting with 'sched_' be activated. echo '*lock' > /debugfs/tracing/set_ftrace_filter Will have only functions ending with 'lock' be activated. echo '*lock*' > /debugfs/tracing/set_ftrace_filter Will have only functions with 'lock' in its name be activated. Note: 'sched*lock' will not work. The only wildcards that are allowed is an asterisk and the beginning and or end of the string passed in. Multiple names can be passed in with whitespace delimited: echo 'scheduler *lock *acpi*' > /debugfs/tracing/set_ftrace_filter is also the same as: echo 'scheduler' > /debugfs/tracing/set_ftrace_filter echo '*lock' >> /debugfs/tracing/set_ftrace_filter echo '*acpi*' >> /debugfs/tracing/set_ftrace_filter Appending does just that. It appends to the list. To disable all filters simply echo an empty line in: echo > /debugfs/tracing/set_ftrace_filter Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 02:20:43 +07:00
void *p = NULL;
loff_t l;
ftrace: add filter select functions to trace This patch adds two files to the debugfs system: /debugfs/tracing/available_filter_functions and /debugfs/tracing/set_ftrace_filter The available_filter_functions lists all functions that has been recorded by the ftraced that has called the ftrace_record_ip function. This is to allow users to see what functions have been converted to nops and can be enabled for tracing. To enable functions, simply echo the names (whitespace delimited) into set_ftrace_filter. Simple wildcards are also allowed. echo 'scheduler' > /debugfs/tracing/set_ftrace_filter Will have only the scheduler be activated when tracing is enabled. echo 'sched_*' > /debugfs/tracing/set_ftrace_filter Will have only the functions starting with 'sched_' be activated. echo '*lock' > /debugfs/tracing/set_ftrace_filter Will have only functions ending with 'lock' be activated. echo '*lock*' > /debugfs/tracing/set_ftrace_filter Will have only functions with 'lock' in its name be activated. Note: 'sched*lock' will not work. The only wildcards that are allowed is an asterisk and the beginning and or end of the string passed in. Multiple names can be passed in with whitespace delimited: echo 'scheduler *lock *acpi*' > /debugfs/tracing/set_ftrace_filter is also the same as: echo 'scheduler' > /debugfs/tracing/set_ftrace_filter echo '*lock' >> /debugfs/tracing/set_ftrace_filter echo '*acpi*' >> /debugfs/tracing/set_ftrace_filter Appending does just that. It appends to the list. To disable all filters simply echo an empty line in: echo > /debugfs/tracing/set_ftrace_filter Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 02:20:43 +07:00
mutex_lock(&ftrace_lock);
if (unlikely(ftrace_disabled))
return NULL;
/*
* If an lseek was done, then reset and start from beginning.
*/
if (*pos < iter->pos)
reset_iter_read(iter);
/*
* For set_ftrace_filter reading, if we have the filter
* off, we can short cut and just print out that all
* functions are enabled.
*/
if (iter->flags & FTRACE_ITER_FILTER &&
ftrace_hash_empty(ops->filter_hash)) {
if (*pos > 0)
return t_hash_start(m, pos);
iter->flags |= FTRACE_ITER_PRINTALL;
/* reset in case of seek/pread */
iter->flags &= ~FTRACE_ITER_HASH;
return iter;
}
if (iter->flags & FTRACE_ITER_HASH)
return t_hash_start(m, pos);
/*
* Unfortunately, we need to restart at ftrace_pages_start
* every time we let go of the ftrace_mutex. This is because
* those pointers can change without the lock.
*/
iter->pg = ftrace_pages_start;
iter->idx = 0;
for (l = 0; l <= *pos; ) {
p = t_next(m, p, &l);
if (!p)
break;
}
if (!p)
return t_hash_start(m, pos);
return iter;
ftrace: add filter select functions to trace This patch adds two files to the debugfs system: /debugfs/tracing/available_filter_functions and /debugfs/tracing/set_ftrace_filter The available_filter_functions lists all functions that has been recorded by the ftraced that has called the ftrace_record_ip function. This is to allow users to see what functions have been converted to nops and can be enabled for tracing. To enable functions, simply echo the names (whitespace delimited) into set_ftrace_filter. Simple wildcards are also allowed. echo 'scheduler' > /debugfs/tracing/set_ftrace_filter Will have only the scheduler be activated when tracing is enabled. echo 'sched_*' > /debugfs/tracing/set_ftrace_filter Will have only the functions starting with 'sched_' be activated. echo '*lock' > /debugfs/tracing/set_ftrace_filter Will have only functions ending with 'lock' be activated. echo '*lock*' > /debugfs/tracing/set_ftrace_filter Will have only functions with 'lock' in its name be activated. Note: 'sched*lock' will not work. The only wildcards that are allowed is an asterisk and the beginning and or end of the string passed in. Multiple names can be passed in with whitespace delimited: echo 'scheduler *lock *acpi*' > /debugfs/tracing/set_ftrace_filter is also the same as: echo 'scheduler' > /debugfs/tracing/set_ftrace_filter echo '*lock' >> /debugfs/tracing/set_ftrace_filter echo '*acpi*' >> /debugfs/tracing/set_ftrace_filter Appending does just that. It appends to the list. To disable all filters simply echo an empty line in: echo > /debugfs/tracing/set_ftrace_filter Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 02:20:43 +07:00
}
static void t_stop(struct seq_file *m, void *p)
{
mutex_unlock(&ftrace_lock);
ftrace: add filter select functions to trace This patch adds two files to the debugfs system: /debugfs/tracing/available_filter_functions and /debugfs/tracing/set_ftrace_filter The available_filter_functions lists all functions that has been recorded by the ftraced that has called the ftrace_record_ip function. This is to allow users to see what functions have been converted to nops and can be enabled for tracing. To enable functions, simply echo the names (whitespace delimited) into set_ftrace_filter. Simple wildcards are also allowed. echo 'scheduler' > /debugfs/tracing/set_ftrace_filter Will have only the scheduler be activated when tracing is enabled. echo 'sched_*' > /debugfs/tracing/set_ftrace_filter Will have only the functions starting with 'sched_' be activated. echo '*lock' > /debugfs/tracing/set_ftrace_filter Will have only functions ending with 'lock' be activated. echo '*lock*' > /debugfs/tracing/set_ftrace_filter Will have only functions with 'lock' in its name be activated. Note: 'sched*lock' will not work. The only wildcards that are allowed is an asterisk and the beginning and or end of the string passed in. Multiple names can be passed in with whitespace delimited: echo 'scheduler *lock *acpi*' > /debugfs/tracing/set_ftrace_filter is also the same as: echo 'scheduler' > /debugfs/tracing/set_ftrace_filter echo '*lock' >> /debugfs/tracing/set_ftrace_filter echo '*acpi*' >> /debugfs/tracing/set_ftrace_filter Appending does just that. It appends to the list. To disable all filters simply echo an empty line in: echo > /debugfs/tracing/set_ftrace_filter Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 02:20:43 +07:00
}
static int t_show(struct seq_file *m, void *v)
{
struct ftrace_iterator *iter = m->private;
struct dyn_ftrace *rec;
ftrace: add filter select functions to trace This patch adds two files to the debugfs system: /debugfs/tracing/available_filter_functions and /debugfs/tracing/set_ftrace_filter The available_filter_functions lists all functions that has been recorded by the ftraced that has called the ftrace_record_ip function. This is to allow users to see what functions have been converted to nops and can be enabled for tracing. To enable functions, simply echo the names (whitespace delimited) into set_ftrace_filter. Simple wildcards are also allowed. echo 'scheduler' > /debugfs/tracing/set_ftrace_filter Will have only the scheduler be activated when tracing is enabled. echo 'sched_*' > /debugfs/tracing/set_ftrace_filter Will have only the functions starting with 'sched_' be activated. echo '*lock' > /debugfs/tracing/set_ftrace_filter Will have only functions ending with 'lock' be activated. echo '*lock*' > /debugfs/tracing/set_ftrace_filter Will have only functions with 'lock' in its name be activated. Note: 'sched*lock' will not work. The only wildcards that are allowed is an asterisk and the beginning and or end of the string passed in. Multiple names can be passed in with whitespace delimited: echo 'scheduler *lock *acpi*' > /debugfs/tracing/set_ftrace_filter is also the same as: echo 'scheduler' > /debugfs/tracing/set_ftrace_filter echo '*lock' >> /debugfs/tracing/set_ftrace_filter echo '*acpi*' >> /debugfs/tracing/set_ftrace_filter Appending does just that. It appends to the list. To disable all filters simply echo an empty line in: echo > /debugfs/tracing/set_ftrace_filter Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 02:20:43 +07:00
if (iter->flags & FTRACE_ITER_HASH)
return t_hash_show(m, iter);
if (iter->flags & FTRACE_ITER_PRINTALL) {
seq_printf(m, "#### all functions enabled ####\n");
return 0;
}
rec = iter->func;
ftrace: add filter select functions to trace This patch adds two files to the debugfs system: /debugfs/tracing/available_filter_functions and /debugfs/tracing/set_ftrace_filter The available_filter_functions lists all functions that has been recorded by the ftraced that has called the ftrace_record_ip function. This is to allow users to see what functions have been converted to nops and can be enabled for tracing. To enable functions, simply echo the names (whitespace delimited) into set_ftrace_filter. Simple wildcards are also allowed. echo 'scheduler' > /debugfs/tracing/set_ftrace_filter Will have only the scheduler be activated when tracing is enabled. echo 'sched_*' > /debugfs/tracing/set_ftrace_filter Will have only the functions starting with 'sched_' be activated. echo '*lock' > /debugfs/tracing/set_ftrace_filter Will have only functions ending with 'lock' be activated. echo '*lock*' > /debugfs/tracing/set_ftrace_filter Will have only functions with 'lock' in its name be activated. Note: 'sched*lock' will not work. The only wildcards that are allowed is an asterisk and the beginning and or end of the string passed in. Multiple names can be passed in with whitespace delimited: echo 'scheduler *lock *acpi*' > /debugfs/tracing/set_ftrace_filter is also the same as: echo 'scheduler' > /debugfs/tracing/set_ftrace_filter echo '*lock' >> /debugfs/tracing/set_ftrace_filter echo '*acpi*' >> /debugfs/tracing/set_ftrace_filter Appending does just that. It appends to the list. To disable all filters simply echo an empty line in: echo > /debugfs/tracing/set_ftrace_filter Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 02:20:43 +07:00
if (!rec)
return 0;
seq_printf(m, "%ps", (void *)rec->ip);
if (iter->flags & FTRACE_ITER_ENABLED)
ftrace/x86: Add separate function to save regs Add a way to have different functions calling different trampolines. If a ftrace_ops wants regs saved on the return, then have only the functions with ops registered to save regs. Functions registered by other ops would not be affected, unless the functions overlap. If one ftrace_ops registered functions A, B and C and another ops registered fucntions to save regs on A, and D, then only functions A and D would be saving regs. Function B and C would work as normal. Although A is registered by both ops: normal and saves regs; this is fine as saving the regs is needed to satisfy one of the ops that calls it but the regs are ignored by the other ops function. x86_64 implements the full regs saving, and i386 just passes a NULL for regs to satisfy the ftrace_ops passing. Where an arch must supply both regs and ftrace_ops parameters, even if regs is just NULL. It is OK for an arch to pass NULL regs. All function trace users that require regs passing must add the flag FTRACE_OPS_FL_SAVE_REGS when registering the ftrace_ops. If the arch does not support saving regs then the ftrace_ops will fail to register. The flag FTRACE_OPS_FL_SAVE_REGS_IF_SUPPORTED may be set that will prevent the ftrace_ops from failing to register. In this case, the handler may either check if regs is not NULL or check if ARCH_SUPPORTS_FTRACE_SAVE_REGS. If the arch supports passing regs it will set this macro and pass regs for ops that request them. All other archs will just pass NULL. Link: Link: http://lkml.kernel.org/r/20120711195745.107705970@goodmis.org Cc: Alexander van Heukelum <heukelum@fastmail.fm> Reviewed-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2012-05-01 03:20:23 +07:00
seq_printf(m, " (%ld)%s",
rec->flags & ~FTRACE_FL_MASK,
rec->flags & FTRACE_FL_REGS ? " R" : "");
seq_printf(m, "\n");
ftrace: add filter select functions to trace This patch adds two files to the debugfs system: /debugfs/tracing/available_filter_functions and /debugfs/tracing/set_ftrace_filter The available_filter_functions lists all functions that has been recorded by the ftraced that has called the ftrace_record_ip function. This is to allow users to see what functions have been converted to nops and can be enabled for tracing. To enable functions, simply echo the names (whitespace delimited) into set_ftrace_filter. Simple wildcards are also allowed. echo 'scheduler' > /debugfs/tracing/set_ftrace_filter Will have only the scheduler be activated when tracing is enabled. echo 'sched_*' > /debugfs/tracing/set_ftrace_filter Will have only the functions starting with 'sched_' be activated. echo '*lock' > /debugfs/tracing/set_ftrace_filter Will have only functions ending with 'lock' be activated. echo '*lock*' > /debugfs/tracing/set_ftrace_filter Will have only functions with 'lock' in its name be activated. Note: 'sched*lock' will not work. The only wildcards that are allowed is an asterisk and the beginning and or end of the string passed in. Multiple names can be passed in with whitespace delimited: echo 'scheduler *lock *acpi*' > /debugfs/tracing/set_ftrace_filter is also the same as: echo 'scheduler' > /debugfs/tracing/set_ftrace_filter echo '*lock' >> /debugfs/tracing/set_ftrace_filter echo '*acpi*' >> /debugfs/tracing/set_ftrace_filter Appending does just that. It appends to the list. To disable all filters simply echo an empty line in: echo > /debugfs/tracing/set_ftrace_filter Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 02:20:43 +07:00
return 0;
}
static const struct seq_operations show_ftrace_seq_ops = {
ftrace: add filter select functions to trace This patch adds two files to the debugfs system: /debugfs/tracing/available_filter_functions and /debugfs/tracing/set_ftrace_filter The available_filter_functions lists all functions that has been recorded by the ftraced that has called the ftrace_record_ip function. This is to allow users to see what functions have been converted to nops and can be enabled for tracing. To enable functions, simply echo the names (whitespace delimited) into set_ftrace_filter. Simple wildcards are also allowed. echo 'scheduler' > /debugfs/tracing/set_ftrace_filter Will have only the scheduler be activated when tracing is enabled. echo 'sched_*' > /debugfs/tracing/set_ftrace_filter Will have only the functions starting with 'sched_' be activated. echo '*lock' > /debugfs/tracing/set_ftrace_filter Will have only functions ending with 'lock' be activated. echo '*lock*' > /debugfs/tracing/set_ftrace_filter Will have only functions with 'lock' in its name be activated. Note: 'sched*lock' will not work. The only wildcards that are allowed is an asterisk and the beginning and or end of the string passed in. Multiple names can be passed in with whitespace delimited: echo 'scheduler *lock *acpi*' > /debugfs/tracing/set_ftrace_filter is also the same as: echo 'scheduler' > /debugfs/tracing/set_ftrace_filter echo '*lock' >> /debugfs/tracing/set_ftrace_filter echo '*acpi*' >> /debugfs/tracing/set_ftrace_filter Appending does just that. It appends to the list. To disable all filters simply echo an empty line in: echo > /debugfs/tracing/set_ftrace_filter Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 02:20:43 +07:00
.start = t_start,
.next = t_next,
.stop = t_stop,
.show = t_show,
};
static int
ftrace: add filter select functions to trace This patch adds two files to the debugfs system: /debugfs/tracing/available_filter_functions and /debugfs/tracing/set_ftrace_filter The available_filter_functions lists all functions that has been recorded by the ftraced that has called the ftrace_record_ip function. This is to allow users to see what functions have been converted to nops and can be enabled for tracing. To enable functions, simply echo the names (whitespace delimited) into set_ftrace_filter. Simple wildcards are also allowed. echo 'scheduler' > /debugfs/tracing/set_ftrace_filter Will have only the scheduler be activated when tracing is enabled. echo 'sched_*' > /debugfs/tracing/set_ftrace_filter Will have only the functions starting with 'sched_' be activated. echo '*lock' > /debugfs/tracing/set_ftrace_filter Will have only functions ending with 'lock' be activated. echo '*lock*' > /debugfs/tracing/set_ftrace_filter Will have only functions with 'lock' in its name be activated. Note: 'sched*lock' will not work. The only wildcards that are allowed is an asterisk and the beginning and or end of the string passed in. Multiple names can be passed in with whitespace delimited: echo 'scheduler *lock *acpi*' > /debugfs/tracing/set_ftrace_filter is also the same as: echo 'scheduler' > /debugfs/tracing/set_ftrace_filter echo '*lock' >> /debugfs/tracing/set_ftrace_filter echo '*acpi*' >> /debugfs/tracing/set_ftrace_filter Appending does just that. It appends to the list. To disable all filters simply echo an empty line in: echo > /debugfs/tracing/set_ftrace_filter Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 02:20:43 +07:00
ftrace_avail_open(struct inode *inode, struct file *file)
{
struct ftrace_iterator *iter;
if (unlikely(ftrace_disabled))
return -ENODEV;
iter = __seq_open_private(file, &show_ftrace_seq_ops, sizeof(*iter));
if (iter) {
iter->pg = ftrace_pages_start;
iter->ops = &global_ops;
}
ftrace: add filter select functions to trace This patch adds two files to the debugfs system: /debugfs/tracing/available_filter_functions and /debugfs/tracing/set_ftrace_filter The available_filter_functions lists all functions that has been recorded by the ftraced that has called the ftrace_record_ip function. This is to allow users to see what functions have been converted to nops and can be enabled for tracing. To enable functions, simply echo the names (whitespace delimited) into set_ftrace_filter. Simple wildcards are also allowed. echo 'scheduler' > /debugfs/tracing/set_ftrace_filter Will have only the scheduler be activated when tracing is enabled. echo 'sched_*' > /debugfs/tracing/set_ftrace_filter Will have only the functions starting with 'sched_' be activated. echo '*lock' > /debugfs/tracing/set_ftrace_filter Will have only functions ending with 'lock' be activated. echo '*lock*' > /debugfs/tracing/set_ftrace_filter Will have only functions with 'lock' in its name be activated. Note: 'sched*lock' will not work. The only wildcards that are allowed is an asterisk and the beginning and or end of the string passed in. Multiple names can be passed in with whitespace delimited: echo 'scheduler *lock *acpi*' > /debugfs/tracing/set_ftrace_filter is also the same as: echo 'scheduler' > /debugfs/tracing/set_ftrace_filter echo '*lock' >> /debugfs/tracing/set_ftrace_filter echo '*acpi*' >> /debugfs/tracing/set_ftrace_filter Appending does just that. It appends to the list. To disable all filters simply echo an empty line in: echo > /debugfs/tracing/set_ftrace_filter Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 02:20:43 +07:00
return iter ? 0 : -ENOMEM;
ftrace: add filter select functions to trace This patch adds two files to the debugfs system: /debugfs/tracing/available_filter_functions and /debugfs/tracing/set_ftrace_filter The available_filter_functions lists all functions that has been recorded by the ftraced that has called the ftrace_record_ip function. This is to allow users to see what functions have been converted to nops and can be enabled for tracing. To enable functions, simply echo the names (whitespace delimited) into set_ftrace_filter. Simple wildcards are also allowed. echo 'scheduler' > /debugfs/tracing/set_ftrace_filter Will have only the scheduler be activated when tracing is enabled. echo 'sched_*' > /debugfs/tracing/set_ftrace_filter Will have only the functions starting with 'sched_' be activated. echo '*lock' > /debugfs/tracing/set_ftrace_filter Will have only functions ending with 'lock' be activated. echo '*lock*' > /debugfs/tracing/set_ftrace_filter Will have only functions with 'lock' in its name be activated. Note: 'sched*lock' will not work. The only wildcards that are allowed is an asterisk and the beginning and or end of the string passed in. Multiple names can be passed in with whitespace delimited: echo 'scheduler *lock *acpi*' > /debugfs/tracing/set_ftrace_filter is also the same as: echo 'scheduler' > /debugfs/tracing/set_ftrace_filter echo '*lock' >> /debugfs/tracing/set_ftrace_filter echo '*acpi*' >> /debugfs/tracing/set_ftrace_filter Appending does just that. It appends to the list. To disable all filters simply echo an empty line in: echo > /debugfs/tracing/set_ftrace_filter Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 02:20:43 +07:00
}
static int
ftrace_enabled_open(struct inode *inode, struct file *file)
{
struct ftrace_iterator *iter;
if (unlikely(ftrace_disabled))
return -ENODEV;
iter = __seq_open_private(file, &show_ftrace_seq_ops, sizeof(*iter));
if (iter) {
iter->pg = ftrace_pages_start;
iter->flags = FTRACE_ITER_ENABLED;
iter->ops = &global_ops;
}
return iter ? 0 : -ENOMEM;
}
static void ftrace_filter_reset(struct ftrace_hash *hash)
ftrace: add filter select functions to trace This patch adds two files to the debugfs system: /debugfs/tracing/available_filter_functions and /debugfs/tracing/set_ftrace_filter The available_filter_functions lists all functions that has been recorded by the ftraced that has called the ftrace_record_ip function. This is to allow users to see what functions have been converted to nops and can be enabled for tracing. To enable functions, simply echo the names (whitespace delimited) into set_ftrace_filter. Simple wildcards are also allowed. echo 'scheduler' > /debugfs/tracing/set_ftrace_filter Will have only the scheduler be activated when tracing is enabled. echo 'sched_*' > /debugfs/tracing/set_ftrace_filter Will have only the functions starting with 'sched_' be activated. echo '*lock' > /debugfs/tracing/set_ftrace_filter Will have only functions ending with 'lock' be activated. echo '*lock*' > /debugfs/tracing/set_ftrace_filter Will have only functions with 'lock' in its name be activated. Note: 'sched*lock' will not work. The only wildcards that are allowed is an asterisk and the beginning and or end of the string passed in. Multiple names can be passed in with whitespace delimited: echo 'scheduler *lock *acpi*' > /debugfs/tracing/set_ftrace_filter is also the same as: echo 'scheduler' > /debugfs/tracing/set_ftrace_filter echo '*lock' >> /debugfs/tracing/set_ftrace_filter echo '*acpi*' >> /debugfs/tracing/set_ftrace_filter Appending does just that. It appends to the list. To disable all filters simply echo an empty line in: echo > /debugfs/tracing/set_ftrace_filter Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 02:20:43 +07:00
{
mutex_lock(&ftrace_lock);
ftrace_hash_clear(hash);
mutex_unlock(&ftrace_lock);
ftrace: add filter select functions to trace This patch adds two files to the debugfs system: /debugfs/tracing/available_filter_functions and /debugfs/tracing/set_ftrace_filter The available_filter_functions lists all functions that has been recorded by the ftraced that has called the ftrace_record_ip function. This is to allow users to see what functions have been converted to nops and can be enabled for tracing. To enable functions, simply echo the names (whitespace delimited) into set_ftrace_filter. Simple wildcards are also allowed. echo 'scheduler' > /debugfs/tracing/set_ftrace_filter Will have only the scheduler be activated when tracing is enabled. echo 'sched_*' > /debugfs/tracing/set_ftrace_filter Will have only the functions starting with 'sched_' be activated. echo '*lock' > /debugfs/tracing/set_ftrace_filter Will have only functions ending with 'lock' be activated. echo '*lock*' > /debugfs/tracing/set_ftrace_filter Will have only functions with 'lock' in its name be activated. Note: 'sched*lock' will not work. The only wildcards that are allowed is an asterisk and the beginning and or end of the string passed in. Multiple names can be passed in with whitespace delimited: echo 'scheduler *lock *acpi*' > /debugfs/tracing/set_ftrace_filter is also the same as: echo 'scheduler' > /debugfs/tracing/set_ftrace_filter echo '*lock' >> /debugfs/tracing/set_ftrace_filter echo '*acpi*' >> /debugfs/tracing/set_ftrace_filter Appending does just that. It appends to the list. To disable all filters simply echo an empty line in: echo > /debugfs/tracing/set_ftrace_filter Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 02:20:43 +07:00
}
/**
* ftrace_regex_open - initialize function tracer filter files
* @ops: The ftrace_ops that hold the hash filters
* @flag: The type of filter to process
* @inode: The inode, usually passed in to your open routine
* @file: The file, usually passed in to your open routine
*
* ftrace_regex_open() initializes the filter files for the
* @ops. Depending on @flag it may process the filter hash or
* the notrace hash of @ops. With this called from the open
* routine, you can use ftrace_filter_write() for the write
* routine if @flag has FTRACE_ITER_FILTER set, or
* ftrace_notrace_write() if @flag has FTRACE_ITER_NOTRACE set.
* ftrace_filter_lseek() should be used as the lseek routine, and
* release must call ftrace_regex_release().
*/
int
ftrace_regex_open(struct ftrace_ops *ops, int flag,
struct inode *inode, struct file *file)
ftrace: add filter select functions to trace This patch adds two files to the debugfs system: /debugfs/tracing/available_filter_functions and /debugfs/tracing/set_ftrace_filter The available_filter_functions lists all functions that has been recorded by the ftraced that has called the ftrace_record_ip function. This is to allow users to see what functions have been converted to nops and can be enabled for tracing. To enable functions, simply echo the names (whitespace delimited) into set_ftrace_filter. Simple wildcards are also allowed. echo 'scheduler' > /debugfs/tracing/set_ftrace_filter Will have only the scheduler be activated when tracing is enabled. echo 'sched_*' > /debugfs/tracing/set_ftrace_filter Will have only the functions starting with 'sched_' be activated. echo '*lock' > /debugfs/tracing/set_ftrace_filter Will have only functions ending with 'lock' be activated. echo '*lock*' > /debugfs/tracing/set_ftrace_filter Will have only functions with 'lock' in its name be activated. Note: 'sched*lock' will not work. The only wildcards that are allowed is an asterisk and the beginning and or end of the string passed in. Multiple names can be passed in with whitespace delimited: echo 'scheduler *lock *acpi*' > /debugfs/tracing/set_ftrace_filter is also the same as: echo 'scheduler' > /debugfs/tracing/set_ftrace_filter echo '*lock' >> /debugfs/tracing/set_ftrace_filter echo '*acpi*' >> /debugfs/tracing/set_ftrace_filter Appending does just that. It appends to the list. To disable all filters simply echo an empty line in: echo > /debugfs/tracing/set_ftrace_filter Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 02:20:43 +07:00
{
struct ftrace_iterator *iter;
struct ftrace_hash *hash;
ftrace: add filter select functions to trace This patch adds two files to the debugfs system: /debugfs/tracing/available_filter_functions and /debugfs/tracing/set_ftrace_filter The available_filter_functions lists all functions that has been recorded by the ftraced that has called the ftrace_record_ip function. This is to allow users to see what functions have been converted to nops and can be enabled for tracing. To enable functions, simply echo the names (whitespace delimited) into set_ftrace_filter. Simple wildcards are also allowed. echo 'scheduler' > /debugfs/tracing/set_ftrace_filter Will have only the scheduler be activated when tracing is enabled. echo 'sched_*' > /debugfs/tracing/set_ftrace_filter Will have only the functions starting with 'sched_' be activated. echo '*lock' > /debugfs/tracing/set_ftrace_filter Will have only functions ending with 'lock' be activated. echo '*lock*' > /debugfs/tracing/set_ftrace_filter Will have only functions with 'lock' in its name be activated. Note: 'sched*lock' will not work. The only wildcards that are allowed is an asterisk and the beginning and or end of the string passed in. Multiple names can be passed in with whitespace delimited: echo 'scheduler *lock *acpi*' > /debugfs/tracing/set_ftrace_filter is also the same as: echo 'scheduler' > /debugfs/tracing/set_ftrace_filter echo '*lock' >> /debugfs/tracing/set_ftrace_filter echo '*acpi*' >> /debugfs/tracing/set_ftrace_filter Appending does just that. It appends to the list. To disable all filters simply echo an empty line in: echo > /debugfs/tracing/set_ftrace_filter Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 02:20:43 +07:00
int ret = 0;
ftrace, kprobes: Fix a deadlock on ftrace_regex_lock Fix a deadlock on ftrace_regex_lock which happens when setting an enable_event trigger on dynamic kprobe event as below. ---- sh-2.05b# echo p vfs_symlink > kprobe_events sh-2.05b# echo vfs_symlink:enable_event:kprobes:p_vfs_symlink_0 > set_ftrace_filter ============================================= [ INFO: possible recursive locking detected ] 3.9.0+ #35 Not tainted --------------------------------------------- sh/72 is trying to acquire lock: (ftrace_regex_lock){+.+.+.}, at: [<ffffffff810ba6c1>] ftrace_set_hash+0x81/0x1f0 but task is already holding lock: (ftrace_regex_lock){+.+.+.}, at: [<ffffffff810b7cbd>] ftrace_regex_write.isra.29.part.30+0x3d/0x220 other info that might help us debug this: Possible unsafe locking scenario: CPU0 ---- lock(ftrace_regex_lock); lock(ftrace_regex_lock); *** DEADLOCK *** ---- To fix that, this introduces a finer regex_lock for each ftrace_ops. ftrace_regex_lock is too big of a lock which protects all filter/notrace_hash operations, but it doesn't need to be a global lock after supporting multiple ftrace_ops because each ftrace_ops has its own filter/notrace_hash. Link: http://lkml.kernel.org/r/20130509054417.30398.84254.stgit@mhiramat-M0-7522 Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Tom Zanussi <tom.zanussi@intel.com> Signed-off-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com> [ Added initialization flag and automate mutex initialization for non ftrace.c ftrace_probes. ] Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-05-09 12:44:17 +07:00
ftrace_ops_init(ops);
if (unlikely(ftrace_disabled))
return -ENODEV;
ftrace: add filter select functions to trace This patch adds two files to the debugfs system: /debugfs/tracing/available_filter_functions and /debugfs/tracing/set_ftrace_filter The available_filter_functions lists all functions that has been recorded by the ftraced that has called the ftrace_record_ip function. This is to allow users to see what functions have been converted to nops and can be enabled for tracing. To enable functions, simply echo the names (whitespace delimited) into set_ftrace_filter. Simple wildcards are also allowed. echo 'scheduler' > /debugfs/tracing/set_ftrace_filter Will have only the scheduler be activated when tracing is enabled. echo 'sched_*' > /debugfs/tracing/set_ftrace_filter Will have only the functions starting with 'sched_' be activated. echo '*lock' > /debugfs/tracing/set_ftrace_filter Will have only functions ending with 'lock' be activated. echo '*lock*' > /debugfs/tracing/set_ftrace_filter Will have only functions with 'lock' in its name be activated. Note: 'sched*lock' will not work. The only wildcards that are allowed is an asterisk and the beginning and or end of the string passed in. Multiple names can be passed in with whitespace delimited: echo 'scheduler *lock *acpi*' > /debugfs/tracing/set_ftrace_filter is also the same as: echo 'scheduler' > /debugfs/tracing/set_ftrace_filter echo '*lock' >> /debugfs/tracing/set_ftrace_filter echo '*acpi*' >> /debugfs/tracing/set_ftrace_filter Appending does just that. It appends to the list. To disable all filters simply echo an empty line in: echo > /debugfs/tracing/set_ftrace_filter Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 02:20:43 +07:00
iter = kzalloc(sizeof(*iter), GFP_KERNEL);
if (!iter)
return -ENOMEM;
if (trace_parser_get_init(&iter->parser, FTRACE_BUFF_MAX)) {
kfree(iter);
return -ENOMEM;
}
iter->ops = ops;
iter->flags = flag;
mutex_lock(&ops->regex_lock);
if (flag & FTRACE_ITER_NOTRACE)
hash = ops->notrace_hash;
else
hash = ops->filter_hash;
if (file->f_mode & FMODE_WRITE) {
iter->hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, hash);
if (!iter->hash) {
trace_parser_put(&iter->parser);
kfree(iter);
ret = -ENOMEM;
goto out_unlock;
}
}
ftrace: add filter select functions to trace This patch adds two files to the debugfs system: /debugfs/tracing/available_filter_functions and /debugfs/tracing/set_ftrace_filter The available_filter_functions lists all functions that has been recorded by the ftraced that has called the ftrace_record_ip function. This is to allow users to see what functions have been converted to nops and can be enabled for tracing. To enable functions, simply echo the names (whitespace delimited) into set_ftrace_filter. Simple wildcards are also allowed. echo 'scheduler' > /debugfs/tracing/set_ftrace_filter Will have only the scheduler be activated when tracing is enabled. echo 'sched_*' > /debugfs/tracing/set_ftrace_filter Will have only the functions starting with 'sched_' be activated. echo '*lock' > /debugfs/tracing/set_ftrace_filter Will have only functions ending with 'lock' be activated. echo '*lock*' > /debugfs/tracing/set_ftrace_filter Will have only functions with 'lock' in its name be activated. Note: 'sched*lock' will not work. The only wildcards that are allowed is an asterisk and the beginning and or end of the string passed in. Multiple names can be passed in with whitespace delimited: echo 'scheduler *lock *acpi*' > /debugfs/tracing/set_ftrace_filter is also the same as: echo 'scheduler' > /debugfs/tracing/set_ftrace_filter echo '*lock' >> /debugfs/tracing/set_ftrace_filter echo '*acpi*' >> /debugfs/tracing/set_ftrace_filter Appending does just that. It appends to the list. To disable all filters simply echo an empty line in: echo > /debugfs/tracing/set_ftrace_filter Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 02:20:43 +07:00
if ((file->f_mode & FMODE_WRITE) &&
(file->f_flags & O_TRUNC))
ftrace_filter_reset(iter->hash);
ftrace: add filter select functions to trace This patch adds two files to the debugfs system: /debugfs/tracing/available_filter_functions and /debugfs/tracing/set_ftrace_filter The available_filter_functions lists all functions that has been recorded by the ftraced that has called the ftrace_record_ip function. This is to allow users to see what functions have been converted to nops and can be enabled for tracing. To enable functions, simply echo the names (whitespace delimited) into set_ftrace_filter. Simple wildcards are also allowed. echo 'scheduler' > /debugfs/tracing/set_ftrace_filter Will have only the scheduler be activated when tracing is enabled. echo 'sched_*' > /debugfs/tracing/set_ftrace_filter Will have only the functions starting with 'sched_' be activated. echo '*lock' > /debugfs/tracing/set_ftrace_filter Will have only functions ending with 'lock' be activated. echo '*lock*' > /debugfs/tracing/set_ftrace_filter Will have only functions with 'lock' in its name be activated. Note: 'sched*lock' will not work. The only wildcards that are allowed is an asterisk and the beginning and or end of the string passed in. Multiple names can be passed in with whitespace delimited: echo 'scheduler *lock *acpi*' > /debugfs/tracing/set_ftrace_filter is also the same as: echo 'scheduler' > /debugfs/tracing/set_ftrace_filter echo '*lock' >> /debugfs/tracing/set_ftrace_filter echo '*acpi*' >> /debugfs/tracing/set_ftrace_filter Appending does just that. It appends to the list. To disable all filters simply echo an empty line in: echo > /debugfs/tracing/set_ftrace_filter Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 02:20:43 +07:00
if (file->f_mode & FMODE_READ) {
iter->pg = ftrace_pages_start;
ret = seq_open(file, &show_ftrace_seq_ops);
if (!ret) {
struct seq_file *m = file->private_data;
m->private = iter;
} else {
/* Failed */
free_ftrace_hash(iter->hash);
trace_parser_put(&iter->parser);
ftrace: add filter select functions to trace This patch adds two files to the debugfs system: /debugfs/tracing/available_filter_functions and /debugfs/tracing/set_ftrace_filter The available_filter_functions lists all functions that has been recorded by the ftraced that has called the ftrace_record_ip function. This is to allow users to see what functions have been converted to nops and can be enabled for tracing. To enable functions, simply echo the names (whitespace delimited) into set_ftrace_filter. Simple wildcards are also allowed. echo 'scheduler' > /debugfs/tracing/set_ftrace_filter Will have only the scheduler be activated when tracing is enabled. echo 'sched_*' > /debugfs/tracing/set_ftrace_filter Will have only the functions starting with 'sched_' be activated. echo '*lock' > /debugfs/tracing/set_ftrace_filter Will have only functions ending with 'lock' be activated. echo '*lock*' > /debugfs/tracing/set_ftrace_filter Will have only functions with 'lock' in its name be activated. Note: 'sched*lock' will not work. The only wildcards that are allowed is an asterisk and the beginning and or end of the string passed in. Multiple names can be passed in with whitespace delimited: echo 'scheduler *lock *acpi*' > /debugfs/tracing/set_ftrace_filter is also the same as: echo 'scheduler' > /debugfs/tracing/set_ftrace_filter echo '*lock' >> /debugfs/tracing/set_ftrace_filter echo '*acpi*' >> /debugfs/tracing/set_ftrace_filter Appending does just that. It appends to the list. To disable all filters simply echo an empty line in: echo > /debugfs/tracing/set_ftrace_filter Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 02:20:43 +07:00
kfree(iter);
}
ftrace: add filter select functions to trace This patch adds two files to the debugfs system: /debugfs/tracing/available_filter_functions and /debugfs/tracing/set_ftrace_filter The available_filter_functions lists all functions that has been recorded by the ftraced that has called the ftrace_record_ip function. This is to allow users to see what functions have been converted to nops and can be enabled for tracing. To enable functions, simply echo the names (whitespace delimited) into set_ftrace_filter. Simple wildcards are also allowed. echo 'scheduler' > /debugfs/tracing/set_ftrace_filter Will have only the scheduler be activated when tracing is enabled. echo 'sched_*' > /debugfs/tracing/set_ftrace_filter Will have only the functions starting with 'sched_' be activated. echo '*lock' > /debugfs/tracing/set_ftrace_filter Will have only functions ending with 'lock' be activated. echo '*lock*' > /debugfs/tracing/set_ftrace_filter Will have only functions with 'lock' in its name be activated. Note: 'sched*lock' will not work. The only wildcards that are allowed is an asterisk and the beginning and or end of the string passed in. Multiple names can be passed in with whitespace delimited: echo 'scheduler *lock *acpi*' > /debugfs/tracing/set_ftrace_filter is also the same as: echo 'scheduler' > /debugfs/tracing/set_ftrace_filter echo '*lock' >> /debugfs/tracing/set_ftrace_filter echo '*acpi*' >> /debugfs/tracing/set_ftrace_filter Appending does just that. It appends to the list. To disable all filters simply echo an empty line in: echo > /debugfs/tracing/set_ftrace_filter Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 02:20:43 +07:00
} else
file->private_data = iter;
out_unlock:
ftrace, kprobes: Fix a deadlock on ftrace_regex_lock Fix a deadlock on ftrace_regex_lock which happens when setting an enable_event trigger on dynamic kprobe event as below. ---- sh-2.05b# echo p vfs_symlink > kprobe_events sh-2.05b# echo vfs_symlink:enable_event:kprobes:p_vfs_symlink_0 > set_ftrace_filter ============================================= [ INFO: possible recursive locking detected ] 3.9.0+ #35 Not tainted --------------------------------------------- sh/72 is trying to acquire lock: (ftrace_regex_lock){+.+.+.}, at: [<ffffffff810ba6c1>] ftrace_set_hash+0x81/0x1f0 but task is already holding lock: (ftrace_regex_lock){+.+.+.}, at: [<ffffffff810b7cbd>] ftrace_regex_write.isra.29.part.30+0x3d/0x220 other info that might help us debug this: Possible unsafe locking scenario: CPU0 ---- lock(ftrace_regex_lock); lock(ftrace_regex_lock); *** DEADLOCK *** ---- To fix that, this introduces a finer regex_lock for each ftrace_ops. ftrace_regex_lock is too big of a lock which protects all filter/notrace_hash operations, but it doesn't need to be a global lock after supporting multiple ftrace_ops because each ftrace_ops has its own filter/notrace_hash. Link: http://lkml.kernel.org/r/20130509054417.30398.84254.stgit@mhiramat-M0-7522 Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Tom Zanussi <tom.zanussi@intel.com> Signed-off-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com> [ Added initialization flag and automate mutex initialization for non ftrace.c ftrace_probes. ] Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-05-09 12:44:17 +07:00
mutex_unlock(&ops->regex_lock);
ftrace: add filter select functions to trace This patch adds two files to the debugfs system: /debugfs/tracing/available_filter_functions and /debugfs/tracing/set_ftrace_filter The available_filter_functions lists all functions that has been recorded by the ftraced that has called the ftrace_record_ip function. This is to allow users to see what functions have been converted to nops and can be enabled for tracing. To enable functions, simply echo the names (whitespace delimited) into set_ftrace_filter. Simple wildcards are also allowed. echo 'scheduler' > /debugfs/tracing/set_ftrace_filter Will have only the scheduler be activated when tracing is enabled. echo 'sched_*' > /debugfs/tracing/set_ftrace_filter Will have only the functions starting with 'sched_' be activated. echo '*lock' > /debugfs/tracing/set_ftrace_filter Will have only functions ending with 'lock' be activated. echo '*lock*' > /debugfs/tracing/set_ftrace_filter Will have only functions with 'lock' in its name be activated. Note: 'sched*lock' will not work. The only wildcards that are allowed is an asterisk and the beginning and or end of the string passed in. Multiple names can be passed in with whitespace delimited: echo 'scheduler *lock *acpi*' > /debugfs/tracing/set_ftrace_filter is also the same as: echo 'scheduler' > /debugfs/tracing/set_ftrace_filter echo '*lock' >> /debugfs/tracing/set_ftrace_filter echo '*acpi*' >> /debugfs/tracing/set_ftrace_filter Appending does just that. It appends to the list. To disable all filters simply echo an empty line in: echo > /debugfs/tracing/set_ftrace_filter Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 02:20:43 +07:00
return ret;
}
static int
ftrace_filter_open(struct inode *inode, struct file *file)
{
return ftrace_regex_open(&global_ops,
FTRACE_ITER_FILTER | FTRACE_ITER_DO_HASH,
inode, file);
}
static int
ftrace_notrace_open(struct inode *inode, struct file *file)
{
return ftrace_regex_open(&global_ops, FTRACE_ITER_NOTRACE,
inode, file);
}
static int ftrace_match(char *str, char *regex, int len, int type)
{
int matched = 0;
int slen;
switch (type) {
case MATCH_FULL:
if (strcmp(str, regex) == 0)
matched = 1;
break;
case MATCH_FRONT_ONLY:
if (strncmp(str, regex, len) == 0)
matched = 1;
break;
case MATCH_MIDDLE_ONLY:
if (strstr(str, regex))
matched = 1;
break;
case MATCH_END_ONLY:
slen = strlen(str);
if (slen >= len && memcmp(str + slen - len, regex, len) == 0)
matched = 1;
break;
}
return matched;
}
static int
enter_record(struct ftrace_hash *hash, struct dyn_ftrace *rec, int not)
{
struct ftrace_func_entry *entry;
int ret = 0;
entry = ftrace_lookup_ip(hash, rec->ip);
if (not) {
/* Do nothing if it doesn't exist */
if (!entry)
return 0;
free_hash_entry(hash, entry);
} else {
/* Do nothing if it exists */
if (entry)
return 0;
ret = add_hash_entry(hash, rec->ip);
}
return ret;
}
static int
ftrace_match_record(struct dyn_ftrace *rec, char *mod,
char *regex, int len, int type)
{
char str[KSYM_SYMBOL_LEN];
char *modname;
kallsyms_lookup(rec->ip, NULL, NULL, &modname, str);
if (mod) {
/* module lookup requires matching the module */
if (!modname || strcmp(modname, mod))
return 0;
/* blank search means to match all funcs in the mod */
if (!len)
return 1;
}
return ftrace_match(str, regex, len, type);
}
static int
match_records(struct ftrace_hash *hash, char *buff,
int len, char *mod, int not)
{
unsigned search_len = 0;
struct ftrace_page *pg;
struct dyn_ftrace *rec;
int type = MATCH_FULL;
char *search = buff;
int found = 0;
int ret;
if (len) {
type = filter_parse_regex(buff, len, &search, &not);
search_len = strlen(search);
}
mutex_lock(&ftrace_lock);
if (unlikely(ftrace_disabled))
goto out_unlock;
do_for_each_ftrace_rec(pg, rec) {
if (ftrace_match_record(rec, mod, search, search_len, type)) {
ret = enter_record(hash, rec, not);
if (ret < 0) {
found = ret;
goto out_unlock;
}
found = 1;
}
} while_for_each_ftrace_rec();
out_unlock:
mutex_unlock(&ftrace_lock);
return found;
ftrace: add filter select functions to trace This patch adds two files to the debugfs system: /debugfs/tracing/available_filter_functions and /debugfs/tracing/set_ftrace_filter The available_filter_functions lists all functions that has been recorded by the ftraced that has called the ftrace_record_ip function. This is to allow users to see what functions have been converted to nops and can be enabled for tracing. To enable functions, simply echo the names (whitespace delimited) into set_ftrace_filter. Simple wildcards are also allowed. echo 'scheduler' > /debugfs/tracing/set_ftrace_filter Will have only the scheduler be activated when tracing is enabled. echo 'sched_*' > /debugfs/tracing/set_ftrace_filter Will have only the functions starting with 'sched_' be activated. echo '*lock' > /debugfs/tracing/set_ftrace_filter Will have only functions ending with 'lock' be activated. echo '*lock*' > /debugfs/tracing/set_ftrace_filter Will have only functions with 'lock' in its name be activated. Note: 'sched*lock' will not work. The only wildcards that are allowed is an asterisk and the beginning and or end of the string passed in. Multiple names can be passed in with whitespace delimited: echo 'scheduler *lock *acpi*' > /debugfs/tracing/set_ftrace_filter is also the same as: echo 'scheduler' > /debugfs/tracing/set_ftrace_filter echo '*lock' >> /debugfs/tracing/set_ftrace_filter echo '*acpi*' >> /debugfs/tracing/set_ftrace_filter Appending does just that. It appends to the list. To disable all filters simply echo an empty line in: echo > /debugfs/tracing/set_ftrace_filter Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 02:20:43 +07:00
}
static int
ftrace_match_records(struct ftrace_hash *hash, char *buff, int len)
{
return match_records(hash, buff, len, NULL, 0);
}
static int
ftrace_match_module_records(struct ftrace_hash *hash, char *buff, char *mod)
{
int not = 0;
/* blank or '*' mean the same */
if (strcmp(buff, "*") == 0)
buff[0] = 0;
/* handle the case of 'dont filter this module' */
if (strcmp(buff, "!") == 0 || strcmp(buff, "!*") == 0) {
buff[0] = 0;
not = 1;
}
return match_records(hash, buff, strlen(buff), mod, not);
}
/*
* We register the module command as a template to show others how
* to register the a command as well.
*/
static int
ftrace: Fix regression of :mod:module function enabling The new code that allows different utilities to pick and choose what functions they trace broke the :mod: hook that allows users to trace only functions of a particular module. The reason is that the :mod: hook bypasses the hash that is setup to allow individual users to trace their own functions and uses the global hash directly. But if the global hash has not been set up, it will cause a bug: echo '*:mod:radeon' > /sys/kernel/debug/set_ftrace_filter produces: [drm:drm_mode_getfb] *ERROR* invalid framebuffer id [drm:radeon_crtc_page_flip] *ERROR* failed to reserve new rbo buffer before flip BUG: unable to handle kernel paging request at ffffffff8160ec90 IP: [<ffffffff810d9136>] add_hash_entry+0x66/0xd0 PGD 1a05067 PUD 1a09063 PMD 80000000016001e1 Oops: 0003 [#1] SMP Jul 7 04:02:28 phyllis kernel: [55303.858604] CPU 1 Modules linked in: cryptd aes_x86_64 aes_generic binfmt_misc rfcomm bnep ip6table_filter hid radeon r8169 ahci libahci mii ttm drm_kms_helper drm video i2c_algo_bit intel_agp intel_gtt Pid: 10344, comm: bash Tainted: G WC 3.0.0-rc5 #1 Dell Inc. Inspiron N5010/0YXXJJ RIP: 0010:[<ffffffff810d9136>] [<ffffffff810d9136>] add_hash_entry+0x66/0xd0 RSP: 0018:ffff88003a96bda8 EFLAGS: 00010246 RAX: ffff8801301735c0 RBX: ffffffff8160ec80 RCX: 0000000000306ee0 RDX: 0000000000000000 RSI: 0000000000000000 RDI: ffff880137c92940 RBP: ffff88003a96bdb8 R08: ffff880137c95680 R09: 0000000000000000 R10: 0000000000000001 R11: 0000000000000000 R12: ffffffff81c9df78 R13: ffff8801153d1000 R14: 0000000000000000 R15: 0000000000000000 FS: 00007f329c18a700(0000) GS:ffff880137c80000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: ffffffff8160ec90 CR3: 000000003002b000 CR4: 00000000000006e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000ffff0ff0 DR7: 0000000000000400 Process bash (pid: 10344, threadinfo ffff88003a96a000, task ffff88012fcfc470) Stack: 0000000000000fd0 00000000000000fc ffff88003a96be38 ffffffff810d92f5 ffff88011c4c4e00 ffff880000000000 000000000b69f4d0 ffffffff8160ec80 ffff8800300e6f06 0000000081130295 0000000000000282 ffff8800300e6f00 Call Trace: [<ffffffff810d92f5>] match_records+0x155/0x1b0 [<ffffffff810d940c>] ftrace_mod_callback+0xbc/0x100 [<ffffffff810dafdf>] ftrace_regex_write+0x16f/0x210 [<ffffffff810db09f>] ftrace_filter_write+0xf/0x20 [<ffffffff81166e48>] vfs_write+0xc8/0x190 [<ffffffff81167001>] sys_write+0x51/0x90 [<ffffffff815c7e02>] system_call_fastpath+0x16/0x1b Code: 48 8b 33 31 d2 48 85 f6 75 33 49 89 d4 4c 03 63 08 49 8b 14 24 48 85 d2 48 89 10 74 04 48 89 42 08 49 89 04 24 4c 89 60 08 31 d2 RIP [<ffffffff810d9136>] add_hash_entry+0x66/0xd0 RSP <ffff88003a96bda8> CR2: ffffffff8160ec90 ---[ end trace a5d031828efdd88e ]--- Reported-by: Brian Marete <marete@toshnix.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2011-07-07 22:09:22 +07:00
ftrace_mod_callback(struct ftrace_hash *hash,
char *func, char *cmd, char *param, int enable)
{
char *mod;
int ret = -EINVAL;
/*
* cmd == 'mod' because we only registered this func
* for the 'mod' ftrace_func_command.
* But if you register one func with multiple commands,
* you can tell which command was used by the cmd
* parameter.
*/
/* we must have a module name */
if (!param)
return ret;
mod = strsep(&param, ":");
if (!strlen(mod))
return ret;
ret = ftrace_match_module_records(hash, func, mod);
if (!ret)
ret = -EINVAL;
if (ret < 0)
return ret;
return 0;
}
static struct ftrace_func_command ftrace_mod_cmd = {
.name = "mod",
.func = ftrace_mod_callback,
};
static int __init ftrace_mod_cmd_init(void)
{
return register_ftrace_command(&ftrace_mod_cmd);
}
core_initcall(ftrace_mod_cmd_init);
static void function_trace_probe_call(unsigned long ip, unsigned long parent_ip,
struct ftrace_ops *op, struct pt_regs *pt_regs)
ftrace: trace different functions with a different tracer Impact: new feature Currently, the function tracer only gives you an ability to hook a tracer to all functions being traced. The dynamic function trace allows you to pick and choose which of those functions will be traced, but all functions being traced will call all tracers that registered with the function tracer. This patch adds a new feature that allows a tracer to hook to specific functions, even when all functions are being traced. It allows for different functions to call different tracer hooks. The way this is accomplished is by a special function that will hook to the function tracer and will set up a hash table knowing which tracer hook to call with which function. This is the most general and easiest method to accomplish this. Later, an arch may choose to supply their own method in changing the mcount call of a function to call a different tracer. But that will be an exercise for the future. To register a function: struct ftrace_hook_ops { void (*func)(unsigned long ip, unsigned long parent_ip, void **data); int (*callback)(unsigned long ip, void **data); void (*free)(void **data); }; int register_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data); glob is a simple glob to search for the functions to hook. ops is a pointer to the operations (listed below) data is the default data to be passed to the hook functions when traced ops: func is the hook function to call when the functions are traced callback is a callback function that is called when setting up the hash. That is, if the tracer needs to do something special for each function, that is being traced, and wants to give each function its own data. The address of the entry data is passed to this callback, so that the callback may wish to update the entry to whatever it would like. free is a callback for when the entry is freed. In case the tracer allocated any data, it is give the chance to free it. To unregister we have three functions: void unregister_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data) This will unregister all hooks that match glob, point to ops, and have its data matching data. (note, if glob is NULL, blank or '*', all functions will be tested). void unregister_ftrace_function_hook_func(char *glob, struct ftrace_hook_ops *ops) This will unregister all functions matching glob that has an entry pointing to ops. void unregister_ftrace_function_hook_all(char *glob) This simply unregisters all funcs. Signed-off-by: Steven Rostedt <srostedt@redhat.com>
2009-02-15 03:29:06 +07:00
{
struct ftrace_func_probe *entry;
ftrace: trace different functions with a different tracer Impact: new feature Currently, the function tracer only gives you an ability to hook a tracer to all functions being traced. The dynamic function trace allows you to pick and choose which of those functions will be traced, but all functions being traced will call all tracers that registered with the function tracer. This patch adds a new feature that allows a tracer to hook to specific functions, even when all functions are being traced. It allows for different functions to call different tracer hooks. The way this is accomplished is by a special function that will hook to the function tracer and will set up a hash table knowing which tracer hook to call with which function. This is the most general and easiest method to accomplish this. Later, an arch may choose to supply their own method in changing the mcount call of a function to call a different tracer. But that will be an exercise for the future. To register a function: struct ftrace_hook_ops { void (*func)(unsigned long ip, unsigned long parent_ip, void **data); int (*callback)(unsigned long ip, void **data); void (*free)(void **data); }; int register_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data); glob is a simple glob to search for the functions to hook. ops is a pointer to the operations (listed below) data is the default data to be passed to the hook functions when traced ops: func is the hook function to call when the functions are traced callback is a callback function that is called when setting up the hash. That is, if the tracer needs to do something special for each function, that is being traced, and wants to give each function its own data. The address of the entry data is passed to this callback, so that the callback may wish to update the entry to whatever it would like. free is a callback for when the entry is freed. In case the tracer allocated any data, it is give the chance to free it. To unregister we have three functions: void unregister_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data) This will unregister all hooks that match glob, point to ops, and have its data matching data. (note, if glob is NULL, blank or '*', all functions will be tested). void unregister_ftrace_function_hook_func(char *glob, struct ftrace_hook_ops *ops) This will unregister all functions matching glob that has an entry pointing to ops. void unregister_ftrace_function_hook_all(char *glob) This simply unregisters all funcs. Signed-off-by: Steven Rostedt <srostedt@redhat.com>
2009-02-15 03:29:06 +07:00
struct hlist_head *hhd;
unsigned long key;
key = hash_long(ip, FTRACE_HASH_BITS);
hhd = &ftrace_func_hash[key];
if (hlist_empty(hhd))
return;
/*
* Disable preemption for these calls to prevent a RCU grace
* period. This syncs the hash iteration and freeing of items
* on the hash. rcu_read_lock is too dangerous here.
*/
tracing: Remove ftrace_preempt_disable/enable The ftrace_preempt_disable/enable functions were to address a recursive race caused by the function tracer. The function tracer traces all functions which makes it easily susceptible to recursion. One area was preempt_enable(). This would call the scheduler and the schedulre would call the function tracer and loop. (So was it thought). The ftrace_preempt_disable/enable was made to protect against recursion inside the scheduler by storing the NEED_RESCHED flag. If it was set before the ftrace_preempt_disable() it would not call schedule on ftrace_preempt_enable(), thinking that if it was set before then it would have already scheduled unless it was already in the scheduler. This worked fine except in the case of SMP, where another task would set the NEED_RESCHED flag for a task on another CPU, and then kick off an IPI to trigger it. This could cause the NEED_RESCHED to be saved at ftrace_preempt_disable() but the IPI to arrive in the the preempt disabled section. The ftrace_preempt_enable() would not call the scheduler because the flag was already set before entring the section. This bug would cause a missed preemption check and cause lower latencies. Investigating further, I found that the recusion caused by the function tracer was not due to schedule(), but due to preempt_schedule(). Now that preempt_schedule is completely annotated with notrace, the recusion no longer is an issue. Reported-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2010-06-03 20:36:50 +07:00
preempt_disable_notrace();
hlist_for_each_entry_rcu_notrace(entry, hhd, node) {
ftrace: trace different functions with a different tracer Impact: new feature Currently, the function tracer only gives you an ability to hook a tracer to all functions being traced. The dynamic function trace allows you to pick and choose which of those functions will be traced, but all functions being traced will call all tracers that registered with the function tracer. This patch adds a new feature that allows a tracer to hook to specific functions, even when all functions are being traced. It allows for different functions to call different tracer hooks. The way this is accomplished is by a special function that will hook to the function tracer and will set up a hash table knowing which tracer hook to call with which function. This is the most general and easiest method to accomplish this. Later, an arch may choose to supply their own method in changing the mcount call of a function to call a different tracer. But that will be an exercise for the future. To register a function: struct ftrace_hook_ops { void (*func)(unsigned long ip, unsigned long parent_ip, void **data); int (*callback)(unsigned long ip, void **data); void (*free)(void **data); }; int register_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data); glob is a simple glob to search for the functions to hook. ops is a pointer to the operations (listed below) data is the default data to be passed to the hook functions when traced ops: func is the hook function to call when the functions are traced callback is a callback function that is called when setting up the hash. That is, if the tracer needs to do something special for each function, that is being traced, and wants to give each function its own data. The address of the entry data is passed to this callback, so that the callback may wish to update the entry to whatever it would like. free is a callback for when the entry is freed. In case the tracer allocated any data, it is give the chance to free it. To unregister we have three functions: void unregister_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data) This will unregister all hooks that match glob, point to ops, and have its data matching data. (note, if glob is NULL, blank or '*', all functions will be tested). void unregister_ftrace_function_hook_func(char *glob, struct ftrace_hook_ops *ops) This will unregister all functions matching glob that has an entry pointing to ops. void unregister_ftrace_function_hook_all(char *glob) This simply unregisters all funcs. Signed-off-by: Steven Rostedt <srostedt@redhat.com>
2009-02-15 03:29:06 +07:00
if (entry->ip == ip)
entry->ops->func(ip, parent_ip, &entry->data);
}
tracing: Remove ftrace_preempt_disable/enable The ftrace_preempt_disable/enable functions were to address a recursive race caused by the function tracer. The function tracer traces all functions which makes it easily susceptible to recursion. One area was preempt_enable(). This would call the scheduler and the schedulre would call the function tracer and loop. (So was it thought). The ftrace_preempt_disable/enable was made to protect against recursion inside the scheduler by storing the NEED_RESCHED flag. If it was set before the ftrace_preempt_disable() it would not call schedule on ftrace_preempt_enable(), thinking that if it was set before then it would have already scheduled unless it was already in the scheduler. This worked fine except in the case of SMP, where another task would set the NEED_RESCHED flag for a task on another CPU, and then kick off an IPI to trigger it. This could cause the NEED_RESCHED to be saved at ftrace_preempt_disable() but the IPI to arrive in the the preempt disabled section. The ftrace_preempt_enable() would not call the scheduler because the flag was already set before entring the section. This bug would cause a missed preemption check and cause lower latencies. Investigating further, I found that the recusion caused by the function tracer was not due to schedule(), but due to preempt_schedule(). Now that preempt_schedule is completely annotated with notrace, the recusion no longer is an issue. Reported-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2010-06-03 20:36:50 +07:00
preempt_enable_notrace();
ftrace: trace different functions with a different tracer Impact: new feature Currently, the function tracer only gives you an ability to hook a tracer to all functions being traced. The dynamic function trace allows you to pick and choose which of those functions will be traced, but all functions being traced will call all tracers that registered with the function tracer. This patch adds a new feature that allows a tracer to hook to specific functions, even when all functions are being traced. It allows for different functions to call different tracer hooks. The way this is accomplished is by a special function that will hook to the function tracer and will set up a hash table knowing which tracer hook to call with which function. This is the most general and easiest method to accomplish this. Later, an arch may choose to supply their own method in changing the mcount call of a function to call a different tracer. But that will be an exercise for the future. To register a function: struct ftrace_hook_ops { void (*func)(unsigned long ip, unsigned long parent_ip, void **data); int (*callback)(unsigned long ip, void **data); void (*free)(void **data); }; int register_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data); glob is a simple glob to search for the functions to hook. ops is a pointer to the operations (listed below) data is the default data to be passed to the hook functions when traced ops: func is the hook function to call when the functions are traced callback is a callback function that is called when setting up the hash. That is, if the tracer needs to do something special for each function, that is being traced, and wants to give each function its own data. The address of the entry data is passed to this callback, so that the callback may wish to update the entry to whatever it would like. free is a callback for when the entry is freed. In case the tracer allocated any data, it is give the chance to free it. To unregister we have three functions: void unregister_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data) This will unregister all hooks that match glob, point to ops, and have its data matching data. (note, if glob is NULL, blank or '*', all functions will be tested). void unregister_ftrace_function_hook_func(char *glob, struct ftrace_hook_ops *ops) This will unregister all functions matching glob that has an entry pointing to ops. void unregister_ftrace_function_hook_all(char *glob) This simply unregisters all funcs. Signed-off-by: Steven Rostedt <srostedt@redhat.com>
2009-02-15 03:29:06 +07:00
}
static struct ftrace_ops trace_probe_ops __read_mostly =
ftrace: trace different functions with a different tracer Impact: new feature Currently, the function tracer only gives you an ability to hook a tracer to all functions being traced. The dynamic function trace allows you to pick and choose which of those functions will be traced, but all functions being traced will call all tracers that registered with the function tracer. This patch adds a new feature that allows a tracer to hook to specific functions, even when all functions are being traced. It allows for different functions to call different tracer hooks. The way this is accomplished is by a special function that will hook to the function tracer and will set up a hash table knowing which tracer hook to call with which function. This is the most general and easiest method to accomplish this. Later, an arch may choose to supply their own method in changing the mcount call of a function to call a different tracer. But that will be an exercise for the future. To register a function: struct ftrace_hook_ops { void (*func)(unsigned long ip, unsigned long parent_ip, void **data); int (*callback)(unsigned long ip, void **data); void (*free)(void **data); }; int register_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data); glob is a simple glob to search for the functions to hook. ops is a pointer to the operations (listed below) data is the default data to be passed to the hook functions when traced ops: func is the hook function to call when the functions are traced callback is a callback function that is called when setting up the hash. That is, if the tracer needs to do something special for each function, that is being traced, and wants to give each function its own data. The address of the entry data is passed to this callback, so that the callback may wish to update the entry to whatever it would like. free is a callback for when the entry is freed. In case the tracer allocated any data, it is give the chance to free it. To unregister we have three functions: void unregister_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data) This will unregister all hooks that match glob, point to ops, and have its data matching data. (note, if glob is NULL, blank or '*', all functions will be tested). void unregister_ftrace_function_hook_func(char *glob, struct ftrace_hook_ops *ops) This will unregister all functions matching glob that has an entry pointing to ops. void unregister_ftrace_function_hook_all(char *glob) This simply unregisters all funcs. Signed-off-by: Steven Rostedt <srostedt@redhat.com>
2009-02-15 03:29:06 +07:00
{
.func = function_trace_probe_call,
ftrace, kprobes: Fix a deadlock on ftrace_regex_lock Fix a deadlock on ftrace_regex_lock which happens when setting an enable_event trigger on dynamic kprobe event as below. ---- sh-2.05b# echo p vfs_symlink > kprobe_events sh-2.05b# echo vfs_symlink:enable_event:kprobes:p_vfs_symlink_0 > set_ftrace_filter ============================================= [ INFO: possible recursive locking detected ] 3.9.0+ #35 Not tainted --------------------------------------------- sh/72 is trying to acquire lock: (ftrace_regex_lock){+.+.+.}, at: [<ffffffff810ba6c1>] ftrace_set_hash+0x81/0x1f0 but task is already holding lock: (ftrace_regex_lock){+.+.+.}, at: [<ffffffff810b7cbd>] ftrace_regex_write.isra.29.part.30+0x3d/0x220 other info that might help us debug this: Possible unsafe locking scenario: CPU0 ---- lock(ftrace_regex_lock); lock(ftrace_regex_lock); *** DEADLOCK *** ---- To fix that, this introduces a finer regex_lock for each ftrace_ops. ftrace_regex_lock is too big of a lock which protects all filter/notrace_hash operations, but it doesn't need to be a global lock after supporting multiple ftrace_ops because each ftrace_ops has its own filter/notrace_hash. Link: http://lkml.kernel.org/r/20130509054417.30398.84254.stgit@mhiramat-M0-7522 Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Tom Zanussi <tom.zanussi@intel.com> Signed-off-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com> [ Added initialization flag and automate mutex initialization for non ftrace.c ftrace_probes. ] Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-05-09 12:44:17 +07:00
.flags = FTRACE_OPS_FL_INITIALIZED,
INIT_REGEX_LOCK(trace_probe_ops)
ftrace: trace different functions with a different tracer Impact: new feature Currently, the function tracer only gives you an ability to hook a tracer to all functions being traced. The dynamic function trace allows you to pick and choose which of those functions will be traced, but all functions being traced will call all tracers that registered with the function tracer. This patch adds a new feature that allows a tracer to hook to specific functions, even when all functions are being traced. It allows for different functions to call different tracer hooks. The way this is accomplished is by a special function that will hook to the function tracer and will set up a hash table knowing which tracer hook to call with which function. This is the most general and easiest method to accomplish this. Later, an arch may choose to supply their own method in changing the mcount call of a function to call a different tracer. But that will be an exercise for the future. To register a function: struct ftrace_hook_ops { void (*func)(unsigned long ip, unsigned long parent_ip, void **data); int (*callback)(unsigned long ip, void **data); void (*free)(void **data); }; int register_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data); glob is a simple glob to search for the functions to hook. ops is a pointer to the operations (listed below) data is the default data to be passed to the hook functions when traced ops: func is the hook function to call when the functions are traced callback is a callback function that is called when setting up the hash. That is, if the tracer needs to do something special for each function, that is being traced, and wants to give each function its own data. The address of the entry data is passed to this callback, so that the callback may wish to update the entry to whatever it would like. free is a callback for when the entry is freed. In case the tracer allocated any data, it is give the chance to free it. To unregister we have three functions: void unregister_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data) This will unregister all hooks that match glob, point to ops, and have its data matching data. (note, if glob is NULL, blank or '*', all functions will be tested). void unregister_ftrace_function_hook_func(char *glob, struct ftrace_hook_ops *ops) This will unregister all functions matching glob that has an entry pointing to ops. void unregister_ftrace_function_hook_all(char *glob) This simply unregisters all funcs. Signed-off-by: Steven Rostedt <srostedt@redhat.com>
2009-02-15 03:29:06 +07:00
};
static int ftrace_probe_registered;
ftrace: trace different functions with a different tracer Impact: new feature Currently, the function tracer only gives you an ability to hook a tracer to all functions being traced. The dynamic function trace allows you to pick and choose which of those functions will be traced, but all functions being traced will call all tracers that registered with the function tracer. This patch adds a new feature that allows a tracer to hook to specific functions, even when all functions are being traced. It allows for different functions to call different tracer hooks. The way this is accomplished is by a special function that will hook to the function tracer and will set up a hash table knowing which tracer hook to call with which function. This is the most general and easiest method to accomplish this. Later, an arch may choose to supply their own method in changing the mcount call of a function to call a different tracer. But that will be an exercise for the future. To register a function: struct ftrace_hook_ops { void (*func)(unsigned long ip, unsigned long parent_ip, void **data); int (*callback)(unsigned long ip, void **data); void (*free)(void **data); }; int register_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data); glob is a simple glob to search for the functions to hook. ops is a pointer to the operations (listed below) data is the default data to be passed to the hook functions when traced ops: func is the hook function to call when the functions are traced callback is a callback function that is called when setting up the hash. That is, if the tracer needs to do something special for each function, that is being traced, and wants to give each function its own data. The address of the entry data is passed to this callback, so that the callback may wish to update the entry to whatever it would like. free is a callback for when the entry is freed. In case the tracer allocated any data, it is give the chance to free it. To unregister we have three functions: void unregister_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data) This will unregister all hooks that match glob, point to ops, and have its data matching data. (note, if glob is NULL, blank or '*', all functions will be tested). void unregister_ftrace_function_hook_func(char *glob, struct ftrace_hook_ops *ops) This will unregister all functions matching glob that has an entry pointing to ops. void unregister_ftrace_function_hook_all(char *glob) This simply unregisters all funcs. Signed-off-by: Steven Rostedt <srostedt@redhat.com>
2009-02-15 03:29:06 +07:00
static void __enable_ftrace_function_probe(void)
ftrace: trace different functions with a different tracer Impact: new feature Currently, the function tracer only gives you an ability to hook a tracer to all functions being traced. The dynamic function trace allows you to pick and choose which of those functions will be traced, but all functions being traced will call all tracers that registered with the function tracer. This patch adds a new feature that allows a tracer to hook to specific functions, even when all functions are being traced. It allows for different functions to call different tracer hooks. The way this is accomplished is by a special function that will hook to the function tracer and will set up a hash table knowing which tracer hook to call with which function. This is the most general and easiest method to accomplish this. Later, an arch may choose to supply their own method in changing the mcount call of a function to call a different tracer. But that will be an exercise for the future. To register a function: struct ftrace_hook_ops { void (*func)(unsigned long ip, unsigned long parent_ip, void **data); int (*callback)(unsigned long ip, void **data); void (*free)(void **data); }; int register_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data); glob is a simple glob to search for the functions to hook. ops is a pointer to the operations (listed below) data is the default data to be passed to the hook functions when traced ops: func is the hook function to call when the functions are traced callback is a callback function that is called when setting up the hash. That is, if the tracer needs to do something special for each function, that is being traced, and wants to give each function its own data. The address of the entry data is passed to this callback, so that the callback may wish to update the entry to whatever it would like. free is a callback for when the entry is freed. In case the tracer allocated any data, it is give the chance to free it. To unregister we have three functions: void unregister_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data) This will unregister all hooks that match glob, point to ops, and have its data matching data. (note, if glob is NULL, blank or '*', all functions will be tested). void unregister_ftrace_function_hook_func(char *glob, struct ftrace_hook_ops *ops) This will unregister all functions matching glob that has an entry pointing to ops. void unregister_ftrace_function_hook_all(char *glob) This simply unregisters all funcs. Signed-off-by: Steven Rostedt <srostedt@redhat.com>
2009-02-15 03:29:06 +07:00
{
int ret;
ftrace: trace different functions with a different tracer Impact: new feature Currently, the function tracer only gives you an ability to hook a tracer to all functions being traced. The dynamic function trace allows you to pick and choose which of those functions will be traced, but all functions being traced will call all tracers that registered with the function tracer. This patch adds a new feature that allows a tracer to hook to specific functions, even when all functions are being traced. It allows for different functions to call different tracer hooks. The way this is accomplished is by a special function that will hook to the function tracer and will set up a hash table knowing which tracer hook to call with which function. This is the most general and easiest method to accomplish this. Later, an arch may choose to supply their own method in changing the mcount call of a function to call a different tracer. But that will be an exercise for the future. To register a function: struct ftrace_hook_ops { void (*func)(unsigned long ip, unsigned long parent_ip, void **data); int (*callback)(unsigned long ip, void **data); void (*free)(void **data); }; int register_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data); glob is a simple glob to search for the functions to hook. ops is a pointer to the operations (listed below) data is the default data to be passed to the hook functions when traced ops: func is the hook function to call when the functions are traced callback is a callback function that is called when setting up the hash. That is, if the tracer needs to do something special for each function, that is being traced, and wants to give each function its own data. The address of the entry data is passed to this callback, so that the callback may wish to update the entry to whatever it would like. free is a callback for when the entry is freed. In case the tracer allocated any data, it is give the chance to free it. To unregister we have three functions: void unregister_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data) This will unregister all hooks that match glob, point to ops, and have its data matching data. (note, if glob is NULL, blank or '*', all functions will be tested). void unregister_ftrace_function_hook_func(char *glob, struct ftrace_hook_ops *ops) This will unregister all functions matching glob that has an entry pointing to ops. void unregister_ftrace_function_hook_all(char *glob) This simply unregisters all funcs. Signed-off-by: Steven Rostedt <srostedt@redhat.com>
2009-02-15 03:29:06 +07:00
int i;
ftrace: Fix function probe when more than one probe is added When the first function probe is added and the function tracer is updated the functions are modified to call the probe. But when a second function is added, it updates the function records to have the second function also update, but it fails to update the actual function itself. This prevents the second (or third or forth and so on) probes from having their functions called. # echo vfs_symlink:enable_event:sched:sched_switch > set_ftrace_filter # echo vfs_unlink:enable_event:sched:sched_switch > set_ftrace_filter # cat trace # tracer: nop # # entries-in-buffer/entries-written: 0/0 #P:4 # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth # ||| / delay # TASK-PID CPU# |||| TIMESTAMP FUNCTION # | | | |||| | | # touch /tmp/a # rm /tmp/a # cat trace # tracer: nop # # entries-in-buffer/entries-written: 0/0 #P:4 # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth # ||| / delay # TASK-PID CPU# |||| TIMESTAMP FUNCTION # | | | |||| | | # ln -s /tmp/a # cat trace # tracer: nop # # entries-in-buffer/entries-written: 414/414 #P:4 # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth # ||| / delay # TASK-PID CPU# |||| TIMESTAMP FUNCTION # | | | |||| | | <idle>-0 [000] d..3 2847.923031: sched_switch: prev_comm=swapper/0 prev_pid=0 prev_prio=120 prev_state=R ==> next_comm=bash next_pid=2786 next_prio=120 <...>-3114 [001] d..4 2847.923035: sched_switch: prev_comm=ln prev_pid=3114 prev_prio=120 prev_state=x ==> next_comm=swapper/1 next_pid=0 next_prio=120 bash-2786 [000] d..3 2847.923535: sched_switch: prev_comm=bash prev_pid=2786 prev_prio=120 prev_state=S ==> next_comm=kworker/0:1 next_pid=34 next_prio=120 kworker/0:1-34 [000] d..3 2847.923552: sched_switch: prev_comm=kworker/0:1 prev_pid=34 prev_prio=120 prev_state=S ==> next_comm=swapper/0 next_pid=0 next_prio=120 <idle>-0 [002] d..3 2847.923554: sched_switch: prev_comm=swapper/2 prev_pid=0 prev_prio=120 prev_state=R ==> next_comm=sshd next_pid=2783 next_prio=120 sshd-2783 [002] d..3 2847.923660: sched_switch: prev_comm=sshd prev_pid=2783 prev_prio=120 prev_state=S ==> next_comm=swapper/2 next_pid=0 next_prio=120 Still need to update the functions even though the probe itself does not need to be registered again when added a new probe. Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-05-10 06:37:36 +07:00
if (ftrace_probe_registered) {
/* still need to update the function call sites */
if (ftrace_enabled)
ftrace_run_update_code(FTRACE_UPDATE_CALLS);
ftrace: trace different functions with a different tracer Impact: new feature Currently, the function tracer only gives you an ability to hook a tracer to all functions being traced. The dynamic function trace allows you to pick and choose which of those functions will be traced, but all functions being traced will call all tracers that registered with the function tracer. This patch adds a new feature that allows a tracer to hook to specific functions, even when all functions are being traced. It allows for different functions to call different tracer hooks. The way this is accomplished is by a special function that will hook to the function tracer and will set up a hash table knowing which tracer hook to call with which function. This is the most general and easiest method to accomplish this. Later, an arch may choose to supply their own method in changing the mcount call of a function to call a different tracer. But that will be an exercise for the future. To register a function: struct ftrace_hook_ops { void (*func)(unsigned long ip, unsigned long parent_ip, void **data); int (*callback)(unsigned long ip, void **data); void (*free)(void **data); }; int register_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data); glob is a simple glob to search for the functions to hook. ops is a pointer to the operations (listed below) data is the default data to be passed to the hook functions when traced ops: func is the hook function to call when the functions are traced callback is a callback function that is called when setting up the hash. That is, if the tracer needs to do something special for each function, that is being traced, and wants to give each function its own data. The address of the entry data is passed to this callback, so that the callback may wish to update the entry to whatever it would like. free is a callback for when the entry is freed. In case the tracer allocated any data, it is give the chance to free it. To unregister we have three functions: void unregister_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data) This will unregister all hooks that match glob, point to ops, and have its data matching data. (note, if glob is NULL, blank or '*', all functions will be tested). void unregister_ftrace_function_hook_func(char *glob, struct ftrace_hook_ops *ops) This will unregister all functions matching glob that has an entry pointing to ops. void unregister_ftrace_function_hook_all(char *glob) This simply unregisters all funcs. Signed-off-by: Steven Rostedt <srostedt@redhat.com>
2009-02-15 03:29:06 +07:00
return;
ftrace: Fix function probe when more than one probe is added When the first function probe is added and the function tracer is updated the functions are modified to call the probe. But when a second function is added, it updates the function records to have the second function also update, but it fails to update the actual function itself. This prevents the second (or third or forth and so on) probes from having their functions called. # echo vfs_symlink:enable_event:sched:sched_switch > set_ftrace_filter # echo vfs_unlink:enable_event:sched:sched_switch > set_ftrace_filter # cat trace # tracer: nop # # entries-in-buffer/entries-written: 0/0 #P:4 # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth # ||| / delay # TASK-PID CPU# |||| TIMESTAMP FUNCTION # | | | |||| | | # touch /tmp/a # rm /tmp/a # cat trace # tracer: nop # # entries-in-buffer/entries-written: 0/0 #P:4 # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth # ||| / delay # TASK-PID CPU# |||| TIMESTAMP FUNCTION # | | | |||| | | # ln -s /tmp/a # cat trace # tracer: nop # # entries-in-buffer/entries-written: 414/414 #P:4 # # _-----=> irqs-off # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth # ||| / delay # TASK-PID CPU# |||| TIMESTAMP FUNCTION # | | | |||| | | <idle>-0 [000] d..3 2847.923031: sched_switch: prev_comm=swapper/0 prev_pid=0 prev_prio=120 prev_state=R ==> next_comm=bash next_pid=2786 next_prio=120 <...>-3114 [001] d..4 2847.923035: sched_switch: prev_comm=ln prev_pid=3114 prev_prio=120 prev_state=x ==> next_comm=swapper/1 next_pid=0 next_prio=120 bash-2786 [000] d..3 2847.923535: sched_switch: prev_comm=bash prev_pid=2786 prev_prio=120 prev_state=S ==> next_comm=kworker/0:1 next_pid=34 next_prio=120 kworker/0:1-34 [000] d..3 2847.923552: sched_switch: prev_comm=kworker/0:1 prev_pid=34 prev_prio=120 prev_state=S ==> next_comm=swapper/0 next_pid=0 next_prio=120 <idle>-0 [002] d..3 2847.923554: sched_switch: prev_comm=swapper/2 prev_pid=0 prev_prio=120 prev_state=R ==> next_comm=sshd next_pid=2783 next_prio=120 sshd-2783 [002] d..3 2847.923660: sched_switch: prev_comm=sshd prev_pid=2783 prev_prio=120 prev_state=S ==> next_comm=swapper/2 next_pid=0 next_prio=120 Still need to update the functions even though the probe itself does not need to be registered again when added a new probe. Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-05-10 06:37:36 +07:00
}
ftrace: trace different functions with a different tracer Impact: new feature Currently, the function tracer only gives you an ability to hook a tracer to all functions being traced. The dynamic function trace allows you to pick and choose which of those functions will be traced, but all functions being traced will call all tracers that registered with the function tracer. This patch adds a new feature that allows a tracer to hook to specific functions, even when all functions are being traced. It allows for different functions to call different tracer hooks. The way this is accomplished is by a special function that will hook to the function tracer and will set up a hash table knowing which tracer hook to call with which function. This is the most general and easiest method to accomplish this. Later, an arch may choose to supply their own method in changing the mcount call of a function to call a different tracer. But that will be an exercise for the future. To register a function: struct ftrace_hook_ops { void (*func)(unsigned long ip, unsigned long parent_ip, void **data); int (*callback)(unsigned long ip, void **data); void (*free)(void **data); }; int register_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data); glob is a simple glob to search for the functions to hook. ops is a pointer to the operations (listed below) data is the default data to be passed to the hook functions when traced ops: func is the hook function to call when the functions are traced callback is a callback function that is called when setting up the hash. That is, if the tracer needs to do something special for each function, that is being traced, and wants to give each function its own data. The address of the entry data is passed to this callback, so that the callback may wish to update the entry to whatever it would like. free is a callback for when the entry is freed. In case the tracer allocated any data, it is give the chance to free it. To unregister we have three functions: void unregister_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data) This will unregister all hooks that match glob, point to ops, and have its data matching data. (note, if glob is NULL, blank or '*', all functions will be tested). void unregister_ftrace_function_hook_func(char *glob, struct ftrace_hook_ops *ops) This will unregister all functions matching glob that has an entry pointing to ops. void unregister_ftrace_function_hook_all(char *glob) This simply unregisters all funcs. Signed-off-by: Steven Rostedt <srostedt@redhat.com>
2009-02-15 03:29:06 +07:00
for (i = 0; i < FTRACE_FUNC_HASHSIZE; i++) {
struct hlist_head *hhd = &ftrace_func_hash[i];
if (hhd->first)
break;
}
/* Nothing registered? */
if (i == FTRACE_FUNC_HASHSIZE)
return;
ret = __register_ftrace_function(&trace_probe_ops);
if (!ret)
ret = ftrace_startup(&trace_probe_ops, 0);
ftrace_probe_registered = 1;
ftrace: trace different functions with a different tracer Impact: new feature Currently, the function tracer only gives you an ability to hook a tracer to all functions being traced. The dynamic function trace allows you to pick and choose which of those functions will be traced, but all functions being traced will call all tracers that registered with the function tracer. This patch adds a new feature that allows a tracer to hook to specific functions, even when all functions are being traced. It allows for different functions to call different tracer hooks. The way this is accomplished is by a special function that will hook to the function tracer and will set up a hash table knowing which tracer hook to call with which function. This is the most general and easiest method to accomplish this. Later, an arch may choose to supply their own method in changing the mcount call of a function to call a different tracer. But that will be an exercise for the future. To register a function: struct ftrace_hook_ops { void (*func)(unsigned long ip, unsigned long parent_ip, void **data); int (*callback)(unsigned long ip, void **data); void (*free)(void **data); }; int register_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data); glob is a simple glob to search for the functions to hook. ops is a pointer to the operations (listed below) data is the default data to be passed to the hook functions when traced ops: func is the hook function to call when the functions are traced callback is a callback function that is called when setting up the hash. That is, if the tracer needs to do something special for each function, that is being traced, and wants to give each function its own data. The address of the entry data is passed to this callback, so that the callback may wish to update the entry to whatever it would like. free is a callback for when the entry is freed. In case the tracer allocated any data, it is give the chance to free it. To unregister we have three functions: void unregister_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data) This will unregister all hooks that match glob, point to ops, and have its data matching data. (note, if glob is NULL, blank or '*', all functions will be tested). void unregister_ftrace_function_hook_func(char *glob, struct ftrace_hook_ops *ops) This will unregister all functions matching glob that has an entry pointing to ops. void unregister_ftrace_function_hook_all(char *glob) This simply unregisters all funcs. Signed-off-by: Steven Rostedt <srostedt@redhat.com>
2009-02-15 03:29:06 +07:00
}
static void __disable_ftrace_function_probe(void)
ftrace: trace different functions with a different tracer Impact: new feature Currently, the function tracer only gives you an ability to hook a tracer to all functions being traced. The dynamic function trace allows you to pick and choose which of those functions will be traced, but all functions being traced will call all tracers that registered with the function tracer. This patch adds a new feature that allows a tracer to hook to specific functions, even when all functions are being traced. It allows for different functions to call different tracer hooks. The way this is accomplished is by a special function that will hook to the function tracer and will set up a hash table knowing which tracer hook to call with which function. This is the most general and easiest method to accomplish this. Later, an arch may choose to supply their own method in changing the mcount call of a function to call a different tracer. But that will be an exercise for the future. To register a function: struct ftrace_hook_ops { void (*func)(unsigned long ip, unsigned long parent_ip, void **data); int (*callback)(unsigned long ip, void **data); void (*free)(void **data); }; int register_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data); glob is a simple glob to search for the functions to hook. ops is a pointer to the operations (listed below) data is the default data to be passed to the hook functions when traced ops: func is the hook function to call when the functions are traced callback is a callback function that is called when setting up the hash. That is, if the tracer needs to do something special for each function, that is being traced, and wants to give each function its own data. The address of the entry data is passed to this callback, so that the callback may wish to update the entry to whatever it would like. free is a callback for when the entry is freed. In case the tracer allocated any data, it is give the chance to free it. To unregister we have three functions: void unregister_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data) This will unregister all hooks that match glob, point to ops, and have its data matching data. (note, if glob is NULL, blank or '*', all functions will be tested). void unregister_ftrace_function_hook_func(char *glob, struct ftrace_hook_ops *ops) This will unregister all functions matching glob that has an entry pointing to ops. void unregister_ftrace_function_hook_all(char *glob) This simply unregisters all funcs. Signed-off-by: Steven Rostedt <srostedt@redhat.com>
2009-02-15 03:29:06 +07:00
{
int ret;
ftrace: trace different functions with a different tracer Impact: new feature Currently, the function tracer only gives you an ability to hook a tracer to all functions being traced. The dynamic function trace allows you to pick and choose which of those functions will be traced, but all functions being traced will call all tracers that registered with the function tracer. This patch adds a new feature that allows a tracer to hook to specific functions, even when all functions are being traced. It allows for different functions to call different tracer hooks. The way this is accomplished is by a special function that will hook to the function tracer and will set up a hash table knowing which tracer hook to call with which function. This is the most general and easiest method to accomplish this. Later, an arch may choose to supply their own method in changing the mcount call of a function to call a different tracer. But that will be an exercise for the future. To register a function: struct ftrace_hook_ops { void (*func)(unsigned long ip, unsigned long parent_ip, void **data); int (*callback)(unsigned long ip, void **data); void (*free)(void **data); }; int register_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data); glob is a simple glob to search for the functions to hook. ops is a pointer to the operations (listed below) data is the default data to be passed to the hook functions when traced ops: func is the hook function to call when the functions are traced callback is a callback function that is called when setting up the hash. That is, if the tracer needs to do something special for each function, that is being traced, and wants to give each function its own data. The address of the entry data is passed to this callback, so that the callback may wish to update the entry to whatever it would like. free is a callback for when the entry is freed. In case the tracer allocated any data, it is give the chance to free it. To unregister we have three functions: void unregister_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data) This will unregister all hooks that match glob, point to ops, and have its data matching data. (note, if glob is NULL, blank or '*', all functions will be tested). void unregister_ftrace_function_hook_func(char *glob, struct ftrace_hook_ops *ops) This will unregister all functions matching glob that has an entry pointing to ops. void unregister_ftrace_function_hook_all(char *glob) This simply unregisters all funcs. Signed-off-by: Steven Rostedt <srostedt@redhat.com>
2009-02-15 03:29:06 +07:00
int i;
if (!ftrace_probe_registered)
ftrace: trace different functions with a different tracer Impact: new feature Currently, the function tracer only gives you an ability to hook a tracer to all functions being traced. The dynamic function trace allows you to pick and choose which of those functions will be traced, but all functions being traced will call all tracers that registered with the function tracer. This patch adds a new feature that allows a tracer to hook to specific functions, even when all functions are being traced. It allows for different functions to call different tracer hooks. The way this is accomplished is by a special function that will hook to the function tracer and will set up a hash table knowing which tracer hook to call with which function. This is the most general and easiest method to accomplish this. Later, an arch may choose to supply their own method in changing the mcount call of a function to call a different tracer. But that will be an exercise for the future. To register a function: struct ftrace_hook_ops { void (*func)(unsigned long ip, unsigned long parent_ip, void **data); int (*callback)(unsigned long ip, void **data); void (*free)(void **data); }; int register_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data); glob is a simple glob to search for the functions to hook. ops is a pointer to the operations (listed below) data is the default data to be passed to the hook functions when traced ops: func is the hook function to call when the functions are traced callback is a callback function that is called when setting up the hash. That is, if the tracer needs to do something special for each function, that is being traced, and wants to give each function its own data. The address of the entry data is passed to this callback, so that the callback may wish to update the entry to whatever it would like. free is a callback for when the entry is freed. In case the tracer allocated any data, it is give the chance to free it. To unregister we have three functions: void unregister_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data) This will unregister all hooks that match glob, point to ops, and have its data matching data. (note, if glob is NULL, blank or '*', all functions will be tested). void unregister_ftrace_function_hook_func(char *glob, struct ftrace_hook_ops *ops) This will unregister all functions matching glob that has an entry pointing to ops. void unregister_ftrace_function_hook_all(char *glob) This simply unregisters all funcs. Signed-off-by: Steven Rostedt <srostedt@redhat.com>
2009-02-15 03:29:06 +07:00
return;
for (i = 0; i < FTRACE_FUNC_HASHSIZE; i++) {
struct hlist_head *hhd = &ftrace_func_hash[i];
if (hhd->first)
return;
}
/* no more funcs left */
ret = __unregister_ftrace_function(&trace_probe_ops);
if (!ret)
ftrace_shutdown(&trace_probe_ops, 0);
ftrace_probe_registered = 0;
ftrace: trace different functions with a different tracer Impact: new feature Currently, the function tracer only gives you an ability to hook a tracer to all functions being traced. The dynamic function trace allows you to pick and choose which of those functions will be traced, but all functions being traced will call all tracers that registered with the function tracer. This patch adds a new feature that allows a tracer to hook to specific functions, even when all functions are being traced. It allows for different functions to call different tracer hooks. The way this is accomplished is by a special function that will hook to the function tracer and will set up a hash table knowing which tracer hook to call with which function. This is the most general and easiest method to accomplish this. Later, an arch may choose to supply their own method in changing the mcount call of a function to call a different tracer. But that will be an exercise for the future. To register a function: struct ftrace_hook_ops { void (*func)(unsigned long ip, unsigned long parent_ip, void **data); int (*callback)(unsigned long ip, void **data); void (*free)(void **data); }; int register_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data); glob is a simple glob to search for the functions to hook. ops is a pointer to the operations (listed below) data is the default data to be passed to the hook functions when traced ops: func is the hook function to call when the functions are traced callback is a callback function that is called when setting up the hash. That is, if the tracer needs to do something special for each function, that is being traced, and wants to give each function its own data. The address of the entry data is passed to this callback, so that the callback may wish to update the entry to whatever it would like. free is a callback for when the entry is freed. In case the tracer allocated any data, it is give the chance to free it. To unregister we have three functions: void unregister_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data) This will unregister all hooks that match glob, point to ops, and have its data matching data. (note, if glob is NULL, blank or '*', all functions will be tested). void unregister_ftrace_function_hook_func(char *glob, struct ftrace_hook_ops *ops) This will unregister all functions matching glob that has an entry pointing to ops. void unregister_ftrace_function_hook_all(char *glob) This simply unregisters all funcs. Signed-off-by: Steven Rostedt <srostedt@redhat.com>
2009-02-15 03:29:06 +07:00
}
static void ftrace_free_entry(struct ftrace_func_probe *entry)
ftrace: trace different functions with a different tracer Impact: new feature Currently, the function tracer only gives you an ability to hook a tracer to all functions being traced. The dynamic function trace allows you to pick and choose which of those functions will be traced, but all functions being traced will call all tracers that registered with the function tracer. This patch adds a new feature that allows a tracer to hook to specific functions, even when all functions are being traced. It allows for different functions to call different tracer hooks. The way this is accomplished is by a special function that will hook to the function tracer and will set up a hash table knowing which tracer hook to call with which function. This is the most general and easiest method to accomplish this. Later, an arch may choose to supply their own method in changing the mcount call of a function to call a different tracer. But that will be an exercise for the future. To register a function: struct ftrace_hook_ops { void (*func)(unsigned long ip, unsigned long parent_ip, void **data); int (*callback)(unsigned long ip, void **data); void (*free)(void **data); }; int register_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data); glob is a simple glob to search for the functions to hook. ops is a pointer to the operations (listed below) data is the default data to be passed to the hook functions when traced ops: func is the hook function to call when the functions are traced callback is a callback function that is called when setting up the hash. That is, if the tracer needs to do something special for each function, that is being traced, and wants to give each function its own data. The address of the entry data is passed to this callback, so that the callback may wish to update the entry to whatever it would like. free is a callback for when the entry is freed. In case the tracer allocated any data, it is give the chance to free it. To unregister we have three functions: void unregister_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data) This will unregister all hooks that match glob, point to ops, and have its data matching data. (note, if glob is NULL, blank or '*', all functions will be tested). void unregister_ftrace_function_hook_func(char *glob, struct ftrace_hook_ops *ops) This will unregister all functions matching glob that has an entry pointing to ops. void unregister_ftrace_function_hook_all(char *glob) This simply unregisters all funcs. Signed-off-by: Steven Rostedt <srostedt@redhat.com>
2009-02-15 03:29:06 +07:00
{
if (entry->ops->free)
entry->ops->free(entry->ops, entry->ip, &entry->data);
ftrace: trace different functions with a different tracer Impact: new feature Currently, the function tracer only gives you an ability to hook a tracer to all functions being traced. The dynamic function trace allows you to pick and choose which of those functions will be traced, but all functions being traced will call all tracers that registered with the function tracer. This patch adds a new feature that allows a tracer to hook to specific functions, even when all functions are being traced. It allows for different functions to call different tracer hooks. The way this is accomplished is by a special function that will hook to the function tracer and will set up a hash table knowing which tracer hook to call with which function. This is the most general and easiest method to accomplish this. Later, an arch may choose to supply their own method in changing the mcount call of a function to call a different tracer. But that will be an exercise for the future. To register a function: struct ftrace_hook_ops { void (*func)(unsigned long ip, unsigned long parent_ip, void **data); int (*callback)(unsigned long ip, void **data); void (*free)(void **data); }; int register_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data); glob is a simple glob to search for the functions to hook. ops is a pointer to the operations (listed below) data is the default data to be passed to the hook functions when traced ops: func is the hook function to call when the functions are traced callback is a callback function that is called when setting up the hash. That is, if the tracer needs to do something special for each function, that is being traced, and wants to give each function its own data. The address of the entry data is passed to this callback, so that the callback may wish to update the entry to whatever it would like. free is a callback for when the entry is freed. In case the tracer allocated any data, it is give the chance to free it. To unregister we have three functions: void unregister_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data) This will unregister all hooks that match glob, point to ops, and have its data matching data. (note, if glob is NULL, blank or '*', all functions will be tested). void unregister_ftrace_function_hook_func(char *glob, struct ftrace_hook_ops *ops) This will unregister all functions matching glob that has an entry pointing to ops. void unregister_ftrace_function_hook_all(char *glob) This simply unregisters all funcs. Signed-off-by: Steven Rostedt <srostedt@redhat.com>
2009-02-15 03:29:06 +07:00
kfree(entry);
}
int
register_ftrace_function_probe(char *glob, struct ftrace_probe_ops *ops,
ftrace: trace different functions with a different tracer Impact: new feature Currently, the function tracer only gives you an ability to hook a tracer to all functions being traced. The dynamic function trace allows you to pick and choose which of those functions will be traced, but all functions being traced will call all tracers that registered with the function tracer. This patch adds a new feature that allows a tracer to hook to specific functions, even when all functions are being traced. It allows for different functions to call different tracer hooks. The way this is accomplished is by a special function that will hook to the function tracer and will set up a hash table knowing which tracer hook to call with which function. This is the most general and easiest method to accomplish this. Later, an arch may choose to supply their own method in changing the mcount call of a function to call a different tracer. But that will be an exercise for the future. To register a function: struct ftrace_hook_ops { void (*func)(unsigned long ip, unsigned long parent_ip, void **data); int (*callback)(unsigned long ip, void **data); void (*free)(void **data); }; int register_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data); glob is a simple glob to search for the functions to hook. ops is a pointer to the operations (listed below) data is the default data to be passed to the hook functions when traced ops: func is the hook function to call when the functions are traced callback is a callback function that is called when setting up the hash. That is, if the tracer needs to do something special for each function, that is being traced, and wants to give each function its own data. The address of the entry data is passed to this callback, so that the callback may wish to update the entry to whatever it would like. free is a callback for when the entry is freed. In case the tracer allocated any data, it is give the chance to free it. To unregister we have three functions: void unregister_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data) This will unregister all hooks that match glob, point to ops, and have its data matching data. (note, if glob is NULL, blank or '*', all functions will be tested). void unregister_ftrace_function_hook_func(char *glob, struct ftrace_hook_ops *ops) This will unregister all functions matching glob that has an entry pointing to ops. void unregister_ftrace_function_hook_all(char *glob) This simply unregisters all funcs. Signed-off-by: Steven Rostedt <srostedt@redhat.com>
2009-02-15 03:29:06 +07:00
void *data)
{
struct ftrace_func_probe *entry;
struct ftrace_hash **orig_hash = &trace_probe_ops.filter_hash;
struct ftrace_hash *hash;
ftrace: trace different functions with a different tracer Impact: new feature Currently, the function tracer only gives you an ability to hook a tracer to all functions being traced. The dynamic function trace allows you to pick and choose which of those functions will be traced, but all functions being traced will call all tracers that registered with the function tracer. This patch adds a new feature that allows a tracer to hook to specific functions, even when all functions are being traced. It allows for different functions to call different tracer hooks. The way this is accomplished is by a special function that will hook to the function tracer and will set up a hash table knowing which tracer hook to call with which function. This is the most general and easiest method to accomplish this. Later, an arch may choose to supply their own method in changing the mcount call of a function to call a different tracer. But that will be an exercise for the future. To register a function: struct ftrace_hook_ops { void (*func)(unsigned long ip, unsigned long parent_ip, void **data); int (*callback)(unsigned long ip, void **data); void (*free)(void **data); }; int register_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data); glob is a simple glob to search for the functions to hook. ops is a pointer to the operations (listed below) data is the default data to be passed to the hook functions when traced ops: func is the hook function to call when the functions are traced callback is a callback function that is called when setting up the hash. That is, if the tracer needs to do something special for each function, that is being traced, and wants to give each function its own data. The address of the entry data is passed to this callback, so that the callback may wish to update the entry to whatever it would like. free is a callback for when the entry is freed. In case the tracer allocated any data, it is give the chance to free it. To unregister we have three functions: void unregister_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data) This will unregister all hooks that match glob, point to ops, and have its data matching data. (note, if glob is NULL, blank or '*', all functions will be tested). void unregister_ftrace_function_hook_func(char *glob, struct ftrace_hook_ops *ops) This will unregister all functions matching glob that has an entry pointing to ops. void unregister_ftrace_function_hook_all(char *glob) This simply unregisters all funcs. Signed-off-by: Steven Rostedt <srostedt@redhat.com>
2009-02-15 03:29:06 +07:00
struct ftrace_page *pg;
struct dyn_ftrace *rec;
int type, len, not;
unsigned long key;
ftrace: trace different functions with a different tracer Impact: new feature Currently, the function tracer only gives you an ability to hook a tracer to all functions being traced. The dynamic function trace allows you to pick and choose which of those functions will be traced, but all functions being traced will call all tracers that registered with the function tracer. This patch adds a new feature that allows a tracer to hook to specific functions, even when all functions are being traced. It allows for different functions to call different tracer hooks. The way this is accomplished is by a special function that will hook to the function tracer and will set up a hash table knowing which tracer hook to call with which function. This is the most general and easiest method to accomplish this. Later, an arch may choose to supply their own method in changing the mcount call of a function to call a different tracer. But that will be an exercise for the future. To register a function: struct ftrace_hook_ops { void (*func)(unsigned long ip, unsigned long parent_ip, void **data); int (*callback)(unsigned long ip, void **data); void (*free)(void **data); }; int register_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data); glob is a simple glob to search for the functions to hook. ops is a pointer to the operations (listed below) data is the default data to be passed to the hook functions when traced ops: func is the hook function to call when the functions are traced callback is a callback function that is called when setting up the hash. That is, if the tracer needs to do something special for each function, that is being traced, and wants to give each function its own data. The address of the entry data is passed to this callback, so that the callback may wish to update the entry to whatever it would like. free is a callback for when the entry is freed. In case the tracer allocated any data, it is give the chance to free it. To unregister we have three functions: void unregister_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data) This will unregister all hooks that match glob, point to ops, and have its data matching data. (note, if glob is NULL, blank or '*', all functions will be tested). void unregister_ftrace_function_hook_func(char *glob, struct ftrace_hook_ops *ops) This will unregister all functions matching glob that has an entry pointing to ops. void unregister_ftrace_function_hook_all(char *glob) This simply unregisters all funcs. Signed-off-by: Steven Rostedt <srostedt@redhat.com>
2009-02-15 03:29:06 +07:00
int count = 0;
char *search;
int ret;
ftrace: trace different functions with a different tracer Impact: new feature Currently, the function tracer only gives you an ability to hook a tracer to all functions being traced. The dynamic function trace allows you to pick and choose which of those functions will be traced, but all functions being traced will call all tracers that registered with the function tracer. This patch adds a new feature that allows a tracer to hook to specific functions, even when all functions are being traced. It allows for different functions to call different tracer hooks. The way this is accomplished is by a special function that will hook to the function tracer and will set up a hash table knowing which tracer hook to call with which function. This is the most general and easiest method to accomplish this. Later, an arch may choose to supply their own method in changing the mcount call of a function to call a different tracer. But that will be an exercise for the future. To register a function: struct ftrace_hook_ops { void (*func)(unsigned long ip, unsigned long parent_ip, void **data); int (*callback)(unsigned long ip, void **data); void (*free)(void **data); }; int register_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data); glob is a simple glob to search for the functions to hook. ops is a pointer to the operations (listed below) data is the default data to be passed to the hook functions when traced ops: func is the hook function to call when the functions are traced callback is a callback function that is called when setting up the hash. That is, if the tracer needs to do something special for each function, that is being traced, and wants to give each function its own data. The address of the entry data is passed to this callback, so that the callback may wish to update the entry to whatever it would like. free is a callback for when the entry is freed. In case the tracer allocated any data, it is give the chance to free it. To unregister we have three functions: void unregister_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data) This will unregister all hooks that match glob, point to ops, and have its data matching data. (note, if glob is NULL, blank or '*', all functions will be tested). void unregister_ftrace_function_hook_func(char *glob, struct ftrace_hook_ops *ops) This will unregister all functions matching glob that has an entry pointing to ops. void unregister_ftrace_function_hook_all(char *glob) This simply unregisters all funcs. Signed-off-by: Steven Rostedt <srostedt@redhat.com>
2009-02-15 03:29:06 +07:00
type = filter_parse_regex(glob, strlen(glob), &search, &not);
ftrace: trace different functions with a different tracer Impact: new feature Currently, the function tracer only gives you an ability to hook a tracer to all functions being traced. The dynamic function trace allows you to pick and choose which of those functions will be traced, but all functions being traced will call all tracers that registered with the function tracer. This patch adds a new feature that allows a tracer to hook to specific functions, even when all functions are being traced. It allows for different functions to call different tracer hooks. The way this is accomplished is by a special function that will hook to the function tracer and will set up a hash table knowing which tracer hook to call with which function. This is the most general and easiest method to accomplish this. Later, an arch may choose to supply their own method in changing the mcount call of a function to call a different tracer. But that will be an exercise for the future. To register a function: struct ftrace_hook_ops { void (*func)(unsigned long ip, unsigned long parent_ip, void **data); int (*callback)(unsigned long ip, void **data); void (*free)(void **data); }; int register_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data); glob is a simple glob to search for the functions to hook. ops is a pointer to the operations (listed below) data is the default data to be passed to the hook functions when traced ops: func is the hook function to call when the functions are traced callback is a callback function that is called when setting up the hash. That is, if the tracer needs to do something special for each function, that is being traced, and wants to give each function its own data. The address of the entry data is passed to this callback, so that the callback may wish to update the entry to whatever it would like. free is a callback for when the entry is freed. In case the tracer allocated any data, it is give the chance to free it. To unregister we have three functions: void unregister_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data) This will unregister all hooks that match glob, point to ops, and have its data matching data. (note, if glob is NULL, blank or '*', all functions will be tested). void unregister_ftrace_function_hook_func(char *glob, struct ftrace_hook_ops *ops) This will unregister all functions matching glob that has an entry pointing to ops. void unregister_ftrace_function_hook_all(char *glob) This simply unregisters all funcs. Signed-off-by: Steven Rostedt <srostedt@redhat.com>
2009-02-15 03:29:06 +07:00
len = strlen(search);
/* we do not support '!' for function probes */
ftrace: trace different functions with a different tracer Impact: new feature Currently, the function tracer only gives you an ability to hook a tracer to all functions being traced. The dynamic function trace allows you to pick and choose which of those functions will be traced, but all functions being traced will call all tracers that registered with the function tracer. This patch adds a new feature that allows a tracer to hook to specific functions, even when all functions are being traced. It allows for different functions to call different tracer hooks. The way this is accomplished is by a special function that will hook to the function tracer and will set up a hash table knowing which tracer hook to call with which function. This is the most general and easiest method to accomplish this. Later, an arch may choose to supply their own method in changing the mcount call of a function to call a different tracer. But that will be an exercise for the future. To register a function: struct ftrace_hook_ops { void (*func)(unsigned long ip, unsigned long parent_ip, void **data); int (*callback)(unsigned long ip, void **data); void (*free)(void **data); }; int register_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data); glob is a simple glob to search for the functions to hook. ops is a pointer to the operations (listed below) data is the default data to be passed to the hook functions when traced ops: func is the hook function to call when the functions are traced callback is a callback function that is called when setting up the hash. That is, if the tracer needs to do something special for each function, that is being traced, and wants to give each function its own data. The address of the entry data is passed to this callback, so that the callback may wish to update the entry to whatever it would like. free is a callback for when the entry is freed. In case the tracer allocated any data, it is give the chance to free it. To unregister we have three functions: void unregister_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data) This will unregister all hooks that match glob, point to ops, and have its data matching data. (note, if glob is NULL, blank or '*', all functions will be tested). void unregister_ftrace_function_hook_func(char *glob, struct ftrace_hook_ops *ops) This will unregister all functions matching glob that has an entry pointing to ops. void unregister_ftrace_function_hook_all(char *glob) This simply unregisters all funcs. Signed-off-by: Steven Rostedt <srostedt@redhat.com>
2009-02-15 03:29:06 +07:00
if (WARN_ON(not))
return -EINVAL;
mutex_lock(&trace_probe_ops.regex_lock);
ftrace: trace different functions with a different tracer Impact: new feature Currently, the function tracer only gives you an ability to hook a tracer to all functions being traced. The dynamic function trace allows you to pick and choose which of those functions will be traced, but all functions being traced will call all tracers that registered with the function tracer. This patch adds a new feature that allows a tracer to hook to specific functions, even when all functions are being traced. It allows for different functions to call different tracer hooks. The way this is accomplished is by a special function that will hook to the function tracer and will set up a hash table knowing which tracer hook to call with which function. This is the most general and easiest method to accomplish this. Later, an arch may choose to supply their own method in changing the mcount call of a function to call a different tracer. But that will be an exercise for the future. To register a function: struct ftrace_hook_ops { void (*func)(unsigned long ip, unsigned long parent_ip, void **data); int (*callback)(unsigned long ip, void **data); void (*free)(void **data); }; int register_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data); glob is a simple glob to search for the functions to hook. ops is a pointer to the operations (listed below) data is the default data to be passed to the hook functions when traced ops: func is the hook function to call when the functions are traced callback is a callback function that is called when setting up the hash. That is, if the tracer needs to do something special for each function, that is being traced, and wants to give each function its own data. The address of the entry data is passed to this callback, so that the callback may wish to update the entry to whatever it would like. free is a callback for when the entry is freed. In case the tracer allocated any data, it is give the chance to free it. To unregister we have three functions: void unregister_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data) This will unregister all hooks that match glob, point to ops, and have its data matching data. (note, if glob is NULL, blank or '*', all functions will be tested). void unregister_ftrace_function_hook_func(char *glob, struct ftrace_hook_ops *ops) This will unregister all functions matching glob that has an entry pointing to ops. void unregister_ftrace_function_hook_all(char *glob) This simply unregisters all funcs. Signed-off-by: Steven Rostedt <srostedt@redhat.com>
2009-02-15 03:29:06 +07:00
hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, *orig_hash);
if (!hash) {
count = -ENOMEM;
goto out;
}
if (unlikely(ftrace_disabled)) {
count = -ENODEV;
goto out;
}
ftrace: trace different functions with a different tracer Impact: new feature Currently, the function tracer only gives you an ability to hook a tracer to all functions being traced. The dynamic function trace allows you to pick and choose which of those functions will be traced, but all functions being traced will call all tracers that registered with the function tracer. This patch adds a new feature that allows a tracer to hook to specific functions, even when all functions are being traced. It allows for different functions to call different tracer hooks. The way this is accomplished is by a special function that will hook to the function tracer and will set up a hash table knowing which tracer hook to call with which function. This is the most general and easiest method to accomplish this. Later, an arch may choose to supply their own method in changing the mcount call of a function to call a different tracer. But that will be an exercise for the future. To register a function: struct ftrace_hook_ops { void (*func)(unsigned long ip, unsigned long parent_ip, void **data); int (*callback)(unsigned long ip, void **data); void (*free)(void **data); }; int register_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data); glob is a simple glob to search for the functions to hook. ops is a pointer to the operations (listed below) data is the default data to be passed to the hook functions when traced ops: func is the hook function to call when the functions are traced callback is a callback function that is called when setting up the hash. That is, if the tracer needs to do something special for each function, that is being traced, and wants to give each function its own data. The address of the entry data is passed to this callback, so that the callback may wish to update the entry to whatever it would like. free is a callback for when the entry is freed. In case the tracer allocated any data, it is give the chance to free it. To unregister we have three functions: void unregister_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data) This will unregister all hooks that match glob, point to ops, and have its data matching data. (note, if glob is NULL, blank or '*', all functions will be tested). void unregister_ftrace_function_hook_func(char *glob, struct ftrace_hook_ops *ops) This will unregister all functions matching glob that has an entry pointing to ops. void unregister_ftrace_function_hook_all(char *glob) This simply unregisters all funcs. Signed-off-by: Steven Rostedt <srostedt@redhat.com>
2009-02-15 03:29:06 +07:00
mutex_lock(&ftrace_lock);
do_for_each_ftrace_rec(pg, rec) {
ftrace: trace different functions with a different tracer Impact: new feature Currently, the function tracer only gives you an ability to hook a tracer to all functions being traced. The dynamic function trace allows you to pick and choose which of those functions will be traced, but all functions being traced will call all tracers that registered with the function tracer. This patch adds a new feature that allows a tracer to hook to specific functions, even when all functions are being traced. It allows for different functions to call different tracer hooks. The way this is accomplished is by a special function that will hook to the function tracer and will set up a hash table knowing which tracer hook to call with which function. This is the most general and easiest method to accomplish this. Later, an arch may choose to supply their own method in changing the mcount call of a function to call a different tracer. But that will be an exercise for the future. To register a function: struct ftrace_hook_ops { void (*func)(unsigned long ip, unsigned long parent_ip, void **data); int (*callback)(unsigned long ip, void **data); void (*free)(void **data); }; int register_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data); glob is a simple glob to search for the functions to hook. ops is a pointer to the operations (listed below) data is the default data to be passed to the hook functions when traced ops: func is the hook function to call when the functions are traced callback is a callback function that is called when setting up the hash. That is, if the tracer needs to do something special for each function, that is being traced, and wants to give each function its own data. The address of the entry data is passed to this callback, so that the callback may wish to update the entry to whatever it would like. free is a callback for when the entry is freed. In case the tracer allocated any data, it is give the chance to free it. To unregister we have three functions: void unregister_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data) This will unregister all hooks that match glob, point to ops, and have its data matching data. (note, if glob is NULL, blank or '*', all functions will be tested). void unregister_ftrace_function_hook_func(char *glob, struct ftrace_hook_ops *ops) This will unregister all functions matching glob that has an entry pointing to ops. void unregister_ftrace_function_hook_all(char *glob) This simply unregisters all funcs. Signed-off-by: Steven Rostedt <srostedt@redhat.com>
2009-02-15 03:29:06 +07:00
if (!ftrace_match_record(rec, NULL, search, len, type))
ftrace: trace different functions with a different tracer Impact: new feature Currently, the function tracer only gives you an ability to hook a tracer to all functions being traced. The dynamic function trace allows you to pick and choose which of those functions will be traced, but all functions being traced will call all tracers that registered with the function tracer. This patch adds a new feature that allows a tracer to hook to specific functions, even when all functions are being traced. It allows for different functions to call different tracer hooks. The way this is accomplished is by a special function that will hook to the function tracer and will set up a hash table knowing which tracer hook to call with which function. This is the most general and easiest method to accomplish this. Later, an arch may choose to supply their own method in changing the mcount call of a function to call a different tracer. But that will be an exercise for the future. To register a function: struct ftrace_hook_ops { void (*func)(unsigned long ip, unsigned long parent_ip, void **data); int (*callback)(unsigned long ip, void **data); void (*free)(void **data); }; int register_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data); glob is a simple glob to search for the functions to hook. ops is a pointer to the operations (listed below) data is the default data to be passed to the hook functions when traced ops: func is the hook function to call when the functions are traced callback is a callback function that is called when setting up the hash. That is, if the tracer needs to do something special for each function, that is being traced, and wants to give each function its own data. The address of the entry data is passed to this callback, so that the callback may wish to update the entry to whatever it would like. free is a callback for when the entry is freed. In case the tracer allocated any data, it is give the chance to free it. To unregister we have three functions: void unregister_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data) This will unregister all hooks that match glob, point to ops, and have its data matching data. (note, if glob is NULL, blank or '*', all functions will be tested). void unregister_ftrace_function_hook_func(char *glob, struct ftrace_hook_ops *ops) This will unregister all functions matching glob that has an entry pointing to ops. void unregister_ftrace_function_hook_all(char *glob) This simply unregisters all funcs. Signed-off-by: Steven Rostedt <srostedt@redhat.com>
2009-02-15 03:29:06 +07:00
continue;
entry = kmalloc(sizeof(*entry), GFP_KERNEL);
if (!entry) {
/* If we did not process any, then return error */
ftrace: trace different functions with a different tracer Impact: new feature Currently, the function tracer only gives you an ability to hook a tracer to all functions being traced. The dynamic function trace allows you to pick and choose which of those functions will be traced, but all functions being traced will call all tracers that registered with the function tracer. This patch adds a new feature that allows a tracer to hook to specific functions, even when all functions are being traced. It allows for different functions to call different tracer hooks. The way this is accomplished is by a special function that will hook to the function tracer and will set up a hash table knowing which tracer hook to call with which function. This is the most general and easiest method to accomplish this. Later, an arch may choose to supply their own method in changing the mcount call of a function to call a different tracer. But that will be an exercise for the future. To register a function: struct ftrace_hook_ops { void (*func)(unsigned long ip, unsigned long parent_ip, void **data); int (*callback)(unsigned long ip, void **data); void (*free)(void **data); }; int register_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data); glob is a simple glob to search for the functions to hook. ops is a pointer to the operations (listed below) data is the default data to be passed to the hook functions when traced ops: func is the hook function to call when the functions are traced callback is a callback function that is called when setting up the hash. That is, if the tracer needs to do something special for each function, that is being traced, and wants to give each function its own data. The address of the entry data is passed to this callback, so that the callback may wish to update the entry to whatever it would like. free is a callback for when the entry is freed. In case the tracer allocated any data, it is give the chance to free it. To unregister we have three functions: void unregister_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data) This will unregister all hooks that match glob, point to ops, and have its data matching data. (note, if glob is NULL, blank or '*', all functions will be tested). void unregister_ftrace_function_hook_func(char *glob, struct ftrace_hook_ops *ops) This will unregister all functions matching glob that has an entry pointing to ops. void unregister_ftrace_function_hook_all(char *glob) This simply unregisters all funcs. Signed-off-by: Steven Rostedt <srostedt@redhat.com>
2009-02-15 03:29:06 +07:00
if (!count)
count = -ENOMEM;
goto out_unlock;
}
count++;
entry->data = data;
/*
* The caller might want to do something special
* for each function we find. We call the callback
* to give the caller an opportunity to do so.
*/
if (ops->init) {
if (ops->init(ops, rec->ip, &entry->data) < 0) {
ftrace: trace different functions with a different tracer Impact: new feature Currently, the function tracer only gives you an ability to hook a tracer to all functions being traced. The dynamic function trace allows you to pick and choose which of those functions will be traced, but all functions being traced will call all tracers that registered with the function tracer. This patch adds a new feature that allows a tracer to hook to specific functions, even when all functions are being traced. It allows for different functions to call different tracer hooks. The way this is accomplished is by a special function that will hook to the function tracer and will set up a hash table knowing which tracer hook to call with which function. This is the most general and easiest method to accomplish this. Later, an arch may choose to supply their own method in changing the mcount call of a function to call a different tracer. But that will be an exercise for the future. To register a function: struct ftrace_hook_ops { void (*func)(unsigned long ip, unsigned long parent_ip, void **data); int (*callback)(unsigned long ip, void **data); void (*free)(void **data); }; int register_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data); glob is a simple glob to search for the functions to hook. ops is a pointer to the operations (listed below) data is the default data to be passed to the hook functions when traced ops: func is the hook function to call when the functions are traced callback is a callback function that is called when setting up the hash. That is, if the tracer needs to do something special for each function, that is being traced, and wants to give each function its own data. The address of the entry data is passed to this callback, so that the callback may wish to update the entry to whatever it would like. free is a callback for when the entry is freed. In case the tracer allocated any data, it is give the chance to free it. To unregister we have three functions: void unregister_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data) This will unregister all hooks that match glob, point to ops, and have its data matching data. (note, if glob is NULL, blank or '*', all functions will be tested). void unregister_ftrace_function_hook_func(char *glob, struct ftrace_hook_ops *ops) This will unregister all functions matching glob that has an entry pointing to ops. void unregister_ftrace_function_hook_all(char *glob) This simply unregisters all funcs. Signed-off-by: Steven Rostedt <srostedt@redhat.com>
2009-02-15 03:29:06 +07:00
/* caller does not like this func */
kfree(entry);
continue;
}
}
ret = enter_record(hash, rec, 0);
if (ret < 0) {
kfree(entry);
count = ret;
goto out_unlock;
}
ftrace: trace different functions with a different tracer Impact: new feature Currently, the function tracer only gives you an ability to hook a tracer to all functions being traced. The dynamic function trace allows you to pick and choose which of those functions will be traced, but all functions being traced will call all tracers that registered with the function tracer. This patch adds a new feature that allows a tracer to hook to specific functions, even when all functions are being traced. It allows for different functions to call different tracer hooks. The way this is accomplished is by a special function that will hook to the function tracer and will set up a hash table knowing which tracer hook to call with which function. This is the most general and easiest method to accomplish this. Later, an arch may choose to supply their own method in changing the mcount call of a function to call a different tracer. But that will be an exercise for the future. To register a function: struct ftrace_hook_ops { void (*func)(unsigned long ip, unsigned long parent_ip, void **data); int (*callback)(unsigned long ip, void **data); void (*free)(void **data); }; int register_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data); glob is a simple glob to search for the functions to hook. ops is a pointer to the operations (listed below) data is the default data to be passed to the hook functions when traced ops: func is the hook function to call when the functions are traced callback is a callback function that is called when setting up the hash. That is, if the tracer needs to do something special for each function, that is being traced, and wants to give each function its own data. The address of the entry data is passed to this callback, so that the callback may wish to update the entry to whatever it would like. free is a callback for when the entry is freed. In case the tracer allocated any data, it is give the chance to free it. To unregister we have three functions: void unregister_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data) This will unregister all hooks that match glob, point to ops, and have its data matching data. (note, if glob is NULL, blank or '*', all functions will be tested). void unregister_ftrace_function_hook_func(char *glob, struct ftrace_hook_ops *ops) This will unregister all functions matching glob that has an entry pointing to ops. void unregister_ftrace_function_hook_all(char *glob) This simply unregisters all funcs. Signed-off-by: Steven Rostedt <srostedt@redhat.com>
2009-02-15 03:29:06 +07:00
entry->ops = ops;
entry->ip = rec->ip;
key = hash_long(entry->ip, FTRACE_HASH_BITS);
hlist_add_head_rcu(&entry->node, &ftrace_func_hash[key]);
} while_for_each_ftrace_rec();
ret = ftrace_hash_move(&trace_probe_ops, 1, orig_hash, hash);
if (ret < 0)
count = ret;
__enable_ftrace_function_probe();
ftrace: trace different functions with a different tracer Impact: new feature Currently, the function tracer only gives you an ability to hook a tracer to all functions being traced. The dynamic function trace allows you to pick and choose which of those functions will be traced, but all functions being traced will call all tracers that registered with the function tracer. This patch adds a new feature that allows a tracer to hook to specific functions, even when all functions are being traced. It allows for different functions to call different tracer hooks. The way this is accomplished is by a special function that will hook to the function tracer and will set up a hash table knowing which tracer hook to call with which function. This is the most general and easiest method to accomplish this. Later, an arch may choose to supply their own method in changing the mcount call of a function to call a different tracer. But that will be an exercise for the future. To register a function: struct ftrace_hook_ops { void (*func)(unsigned long ip, unsigned long parent_ip, void **data); int (*callback)(unsigned long ip, void **data); void (*free)(void **data); }; int register_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data); glob is a simple glob to search for the functions to hook. ops is a pointer to the operations (listed below) data is the default data to be passed to the hook functions when traced ops: func is the hook function to call when the functions are traced callback is a callback function that is called when setting up the hash. That is, if the tracer needs to do something special for each function, that is being traced, and wants to give each function its own data. The address of the entry data is passed to this callback, so that the callback may wish to update the entry to whatever it would like. free is a callback for when the entry is freed. In case the tracer allocated any data, it is give the chance to free it. To unregister we have three functions: void unregister_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data) This will unregister all hooks that match glob, point to ops, and have its data matching data. (note, if glob is NULL, blank or '*', all functions will be tested). void unregister_ftrace_function_hook_func(char *glob, struct ftrace_hook_ops *ops) This will unregister all functions matching glob that has an entry pointing to ops. void unregister_ftrace_function_hook_all(char *glob) This simply unregisters all funcs. Signed-off-by: Steven Rostedt <srostedt@redhat.com>
2009-02-15 03:29:06 +07:00
out_unlock:
mutex_unlock(&ftrace_lock);
out:
mutex_unlock(&trace_probe_ops.regex_lock);
free_ftrace_hash(hash);
ftrace: trace different functions with a different tracer Impact: new feature Currently, the function tracer only gives you an ability to hook a tracer to all functions being traced. The dynamic function trace allows you to pick and choose which of those functions will be traced, but all functions being traced will call all tracers that registered with the function tracer. This patch adds a new feature that allows a tracer to hook to specific functions, even when all functions are being traced. It allows for different functions to call different tracer hooks. The way this is accomplished is by a special function that will hook to the function tracer and will set up a hash table knowing which tracer hook to call with which function. This is the most general and easiest method to accomplish this. Later, an arch may choose to supply their own method in changing the mcount call of a function to call a different tracer. But that will be an exercise for the future. To register a function: struct ftrace_hook_ops { void (*func)(unsigned long ip, unsigned long parent_ip, void **data); int (*callback)(unsigned long ip, void **data); void (*free)(void **data); }; int register_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data); glob is a simple glob to search for the functions to hook. ops is a pointer to the operations (listed below) data is the default data to be passed to the hook functions when traced ops: func is the hook function to call when the functions are traced callback is a callback function that is called when setting up the hash. That is, if the tracer needs to do something special for each function, that is being traced, and wants to give each function its own data. The address of the entry data is passed to this callback, so that the callback may wish to update the entry to whatever it would like. free is a callback for when the entry is freed. In case the tracer allocated any data, it is give the chance to free it. To unregister we have three functions: void unregister_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data) This will unregister all hooks that match glob, point to ops, and have its data matching data. (note, if glob is NULL, blank or '*', all functions will be tested). void unregister_ftrace_function_hook_func(char *glob, struct ftrace_hook_ops *ops) This will unregister all functions matching glob that has an entry pointing to ops. void unregister_ftrace_function_hook_all(char *glob) This simply unregisters all funcs. Signed-off-by: Steven Rostedt <srostedt@redhat.com>
2009-02-15 03:29:06 +07:00
return count;
}
enum {
PROBE_TEST_FUNC = 1,
PROBE_TEST_DATA = 2
ftrace: trace different functions with a different tracer Impact: new feature Currently, the function tracer only gives you an ability to hook a tracer to all functions being traced. The dynamic function trace allows you to pick and choose which of those functions will be traced, but all functions being traced will call all tracers that registered with the function tracer. This patch adds a new feature that allows a tracer to hook to specific functions, even when all functions are being traced. It allows for different functions to call different tracer hooks. The way this is accomplished is by a special function that will hook to the function tracer and will set up a hash table knowing which tracer hook to call with which function. This is the most general and easiest method to accomplish this. Later, an arch may choose to supply their own method in changing the mcount call of a function to call a different tracer. But that will be an exercise for the future. To register a function: struct ftrace_hook_ops { void (*func)(unsigned long ip, unsigned long parent_ip, void **data); int (*callback)(unsigned long ip, void **data); void (*free)(void **data); }; int register_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data); glob is a simple glob to search for the functions to hook. ops is a pointer to the operations (listed below) data is the default data to be passed to the hook functions when traced ops: func is the hook function to call when the functions are traced callback is a callback function that is called when setting up the hash. That is, if the tracer needs to do something special for each function, that is being traced, and wants to give each function its own data. The address of the entry data is passed to this callback, so that the callback may wish to update the entry to whatever it would like. free is a callback for when the entry is freed. In case the tracer allocated any data, it is give the chance to free it. To unregister we have three functions: void unregister_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data) This will unregister all hooks that match glob, point to ops, and have its data matching data. (note, if glob is NULL, blank or '*', all functions will be tested). void unregister_ftrace_function_hook_func(char *glob, struct ftrace_hook_ops *ops) This will unregister all functions matching glob that has an entry pointing to ops. void unregister_ftrace_function_hook_all(char *glob) This simply unregisters all funcs. Signed-off-by: Steven Rostedt <srostedt@redhat.com>
2009-02-15 03:29:06 +07:00
};
static void
__unregister_ftrace_function_probe(char *glob, struct ftrace_probe_ops *ops,
ftrace: trace different functions with a different tracer Impact: new feature Currently, the function tracer only gives you an ability to hook a tracer to all functions being traced. The dynamic function trace allows you to pick and choose which of those functions will be traced, but all functions being traced will call all tracers that registered with the function tracer. This patch adds a new feature that allows a tracer to hook to specific functions, even when all functions are being traced. It allows for different functions to call different tracer hooks. The way this is accomplished is by a special function that will hook to the function tracer and will set up a hash table knowing which tracer hook to call with which function. This is the most general and easiest method to accomplish this. Later, an arch may choose to supply their own method in changing the mcount call of a function to call a different tracer. But that will be an exercise for the future. To register a function: struct ftrace_hook_ops { void (*func)(unsigned long ip, unsigned long parent_ip, void **data); int (*callback)(unsigned long ip, void **data); void (*free)(void **data); }; int register_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data); glob is a simple glob to search for the functions to hook. ops is a pointer to the operations (listed below) data is the default data to be passed to the hook functions when traced ops: func is the hook function to call when the functions are traced callback is a callback function that is called when setting up the hash. That is, if the tracer needs to do something special for each function, that is being traced, and wants to give each function its own data. The address of the entry data is passed to this callback, so that the callback may wish to update the entry to whatever it would like. free is a callback for when the entry is freed. In case the tracer allocated any data, it is give the chance to free it. To unregister we have three functions: void unregister_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data) This will unregister all hooks that match glob, point to ops, and have its data matching data. (note, if glob is NULL, blank or '*', all functions will be tested). void unregister_ftrace_function_hook_func(char *glob, struct ftrace_hook_ops *ops) This will unregister all functions matching glob that has an entry pointing to ops. void unregister_ftrace_function_hook_all(char *glob) This simply unregisters all funcs. Signed-off-by: Steven Rostedt <srostedt@redhat.com>
2009-02-15 03:29:06 +07:00
void *data, int flags)
{
struct ftrace_func_entry *rec_entry;
struct ftrace_func_probe *entry;
struct ftrace_func_probe *p;
struct ftrace_hash **orig_hash = &trace_probe_ops.filter_hash;
struct list_head free_list;
struct ftrace_hash *hash;
hlist: drop the node parameter from iterators I'm not sure why, but the hlist for each entry iterators were conceived list_for_each_entry(pos, head, member) The hlist ones were greedy and wanted an extra parameter: hlist_for_each_entry(tpos, pos, head, member) Why did they need an extra pos parameter? I'm not quite sure. Not only they don't really need it, it also prevents the iterator from looking exactly like the list iterator, which is unfortunate. Besides the semantic patch, there was some manual work required: - Fix up the actual hlist iterators in linux/list.h - Fix up the declaration of other iterators based on the hlist ones. - A very small amount of places were using the 'node' parameter, this was modified to use 'obj->member' instead. - Coccinelle didn't handle the hlist_for_each_entry_safe iterator properly, so those had to be fixed up manually. The semantic patch which is mostly the work of Peter Senna Tschudin is here: @@ iterator name hlist_for_each_entry, hlist_for_each_entry_continue, hlist_for_each_entry_from, hlist_for_each_entry_rcu, hlist_for_each_entry_rcu_bh, hlist_for_each_entry_continue_rcu_bh, for_each_busy_worker, ax25_uid_for_each, ax25_for_each, inet_bind_bucket_for_each, sctp_for_each_hentry, sk_for_each, sk_for_each_rcu, sk_for_each_from, sk_for_each_safe, sk_for_each_bound, hlist_for_each_entry_safe, hlist_for_each_entry_continue_rcu, nr_neigh_for_each, nr_neigh_for_each_safe, nr_node_for_each, nr_node_for_each_safe, for_each_gfn_indirect_valid_sp, for_each_gfn_sp, for_each_host; type T; expression a,c,d,e; identifier b; statement S; @@ -T b; <+... when != b ( hlist_for_each_entry(a, - b, c, d) S | hlist_for_each_entry_continue(a, - b, c) S | hlist_for_each_entry_from(a, - b, c) S | hlist_for_each_entry_rcu(a, - b, c, d) S | hlist_for_each_entry_rcu_bh(a, - b, c, d) S | hlist_for_each_entry_continue_rcu_bh(a, - b, c) S | for_each_busy_worker(a, c, - b, d) S | ax25_uid_for_each(a, - b, c) S | ax25_for_each(a, - b, c) S | inet_bind_bucket_for_each(a, - b, c) S | sctp_for_each_hentry(a, - b, c) S | sk_for_each(a, - b, c) S | sk_for_each_rcu(a, - b, c) S | sk_for_each_from -(a, b) +(a) S + sk_for_each_from(a) S | sk_for_each_safe(a, - b, c, d) S | sk_for_each_bound(a, - b, c) S | hlist_for_each_entry_safe(a, - b, c, d, e) S | hlist_for_each_entry_continue_rcu(a, - b, c) S | nr_neigh_for_each(a, - b, c) S | nr_neigh_for_each_safe(a, - b, c, d) S | nr_node_for_each(a, - b, c) S | nr_node_for_each_safe(a, - b, c, d) S | - for_each_gfn_sp(a, c, d, b) S + for_each_gfn_sp(a, c, d) S | - for_each_gfn_indirect_valid_sp(a, c, d, b) S + for_each_gfn_indirect_valid_sp(a, c, d) S | for_each_host(a, - b, c) S | for_each_host_safe(a, - b, c, d) S | for_each_mesh_entry(a, - b, c, d) S ) ...+> [akpm@linux-foundation.org: drop bogus change from net/ipv4/raw.c] [akpm@linux-foundation.org: drop bogus hunk from net/ipv6/raw.c] [akpm@linux-foundation.org: checkpatch fixes] [akpm@linux-foundation.org: fix warnings] [akpm@linux-foudnation.org: redo intrusive kvm changes] Tested-by: Peter Senna Tschudin <peter.senna@gmail.com> Acked-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Sasha Levin <sasha.levin@oracle.com> Cc: Wu Fengguang <fengguang.wu@intel.com> Cc: Marcelo Tosatti <mtosatti@redhat.com> Cc: Gleb Natapov <gleb@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-02-28 08:06:00 +07:00
struct hlist_node *tmp;
ftrace: trace different functions with a different tracer Impact: new feature Currently, the function tracer only gives you an ability to hook a tracer to all functions being traced. The dynamic function trace allows you to pick and choose which of those functions will be traced, but all functions being traced will call all tracers that registered with the function tracer. This patch adds a new feature that allows a tracer to hook to specific functions, even when all functions are being traced. It allows for different functions to call different tracer hooks. The way this is accomplished is by a special function that will hook to the function tracer and will set up a hash table knowing which tracer hook to call with which function. This is the most general and easiest method to accomplish this. Later, an arch may choose to supply their own method in changing the mcount call of a function to call a different tracer. But that will be an exercise for the future. To register a function: struct ftrace_hook_ops { void (*func)(unsigned long ip, unsigned long parent_ip, void **data); int (*callback)(unsigned long ip, void **data); void (*free)(void **data); }; int register_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data); glob is a simple glob to search for the functions to hook. ops is a pointer to the operations (listed below) data is the default data to be passed to the hook functions when traced ops: func is the hook function to call when the functions are traced callback is a callback function that is called when setting up the hash. That is, if the tracer needs to do something special for each function, that is being traced, and wants to give each function its own data. The address of the entry data is passed to this callback, so that the callback may wish to update the entry to whatever it would like. free is a callback for when the entry is freed. In case the tracer allocated any data, it is give the chance to free it. To unregister we have three functions: void unregister_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data) This will unregister all hooks that match glob, point to ops, and have its data matching data. (note, if glob is NULL, blank or '*', all functions will be tested). void unregister_ftrace_function_hook_func(char *glob, struct ftrace_hook_ops *ops) This will unregister all functions matching glob that has an entry pointing to ops. void unregister_ftrace_function_hook_all(char *glob) This simply unregisters all funcs. Signed-off-by: Steven Rostedt <srostedt@redhat.com>
2009-02-15 03:29:06 +07:00
char str[KSYM_SYMBOL_LEN];
int type = MATCH_FULL;
int i, len = 0;
char *search;
if (glob && (strcmp(glob, "*") == 0 || !strlen(glob)))
ftrace: trace different functions with a different tracer Impact: new feature Currently, the function tracer only gives you an ability to hook a tracer to all functions being traced. The dynamic function trace allows you to pick and choose which of those functions will be traced, but all functions being traced will call all tracers that registered with the function tracer. This patch adds a new feature that allows a tracer to hook to specific functions, even when all functions are being traced. It allows for different functions to call different tracer hooks. The way this is accomplished is by a special function that will hook to the function tracer and will set up a hash table knowing which tracer hook to call with which function. This is the most general and easiest method to accomplish this. Later, an arch may choose to supply their own method in changing the mcount call of a function to call a different tracer. But that will be an exercise for the future. To register a function: struct ftrace_hook_ops { void (*func)(unsigned long ip, unsigned long parent_ip, void **data); int (*callback)(unsigned long ip, void **data); void (*free)(void **data); }; int register_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data); glob is a simple glob to search for the functions to hook. ops is a pointer to the operations (listed below) data is the default data to be passed to the hook functions when traced ops: func is the hook function to call when the functions are traced callback is a callback function that is called when setting up the hash. That is, if the tracer needs to do something special for each function, that is being traced, and wants to give each function its own data. The address of the entry data is passed to this callback, so that the callback may wish to update the entry to whatever it would like. free is a callback for when the entry is freed. In case the tracer allocated any data, it is give the chance to free it. To unregister we have three functions: void unregister_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data) This will unregister all hooks that match glob, point to ops, and have its data matching data. (note, if glob is NULL, blank or '*', all functions will be tested). void unregister_ftrace_function_hook_func(char *glob, struct ftrace_hook_ops *ops) This will unregister all functions matching glob that has an entry pointing to ops. void unregister_ftrace_function_hook_all(char *glob) This simply unregisters all funcs. Signed-off-by: Steven Rostedt <srostedt@redhat.com>
2009-02-15 03:29:06 +07:00
glob = NULL;
else if (glob) {
ftrace: trace different functions with a different tracer Impact: new feature Currently, the function tracer only gives you an ability to hook a tracer to all functions being traced. The dynamic function trace allows you to pick and choose which of those functions will be traced, but all functions being traced will call all tracers that registered with the function tracer. This patch adds a new feature that allows a tracer to hook to specific functions, even when all functions are being traced. It allows for different functions to call different tracer hooks. The way this is accomplished is by a special function that will hook to the function tracer and will set up a hash table knowing which tracer hook to call with which function. This is the most general and easiest method to accomplish this. Later, an arch may choose to supply their own method in changing the mcount call of a function to call a different tracer. But that will be an exercise for the future. To register a function: struct ftrace_hook_ops { void (*func)(unsigned long ip, unsigned long parent_ip, void **data); int (*callback)(unsigned long ip, void **data); void (*free)(void **data); }; int register_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data); glob is a simple glob to search for the functions to hook. ops is a pointer to the operations (listed below) data is the default data to be passed to the hook functions when traced ops: func is the hook function to call when the functions are traced callback is a callback function that is called when setting up the hash. That is, if the tracer needs to do something special for each function, that is being traced, and wants to give each function its own data. The address of the entry data is passed to this callback, so that the callback may wish to update the entry to whatever it would like. free is a callback for when the entry is freed. In case the tracer allocated any data, it is give the chance to free it. To unregister we have three functions: void unregister_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data) This will unregister all hooks that match glob, point to ops, and have its data matching data. (note, if glob is NULL, blank or '*', all functions will be tested). void unregister_ftrace_function_hook_func(char *glob, struct ftrace_hook_ops *ops) This will unregister all functions matching glob that has an entry pointing to ops. void unregister_ftrace_function_hook_all(char *glob) This simply unregisters all funcs. Signed-off-by: Steven Rostedt <srostedt@redhat.com>
2009-02-15 03:29:06 +07:00
int not;
type = filter_parse_regex(glob, strlen(glob), &search, &not);
ftrace: trace different functions with a different tracer Impact: new feature Currently, the function tracer only gives you an ability to hook a tracer to all functions being traced. The dynamic function trace allows you to pick and choose which of those functions will be traced, but all functions being traced will call all tracers that registered with the function tracer. This patch adds a new feature that allows a tracer to hook to specific functions, even when all functions are being traced. It allows for different functions to call different tracer hooks. The way this is accomplished is by a special function that will hook to the function tracer and will set up a hash table knowing which tracer hook to call with which function. This is the most general and easiest method to accomplish this. Later, an arch may choose to supply their own method in changing the mcount call of a function to call a different tracer. But that will be an exercise for the future. To register a function: struct ftrace_hook_ops { void (*func)(unsigned long ip, unsigned long parent_ip, void **data); int (*callback)(unsigned long ip, void **data); void (*free)(void **data); }; int register_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data); glob is a simple glob to search for the functions to hook. ops is a pointer to the operations (listed below) data is the default data to be passed to the hook functions when traced ops: func is the hook function to call when the functions are traced callback is a callback function that is called when setting up the hash. That is, if the tracer needs to do something special for each function, that is being traced, and wants to give each function its own data. The address of the entry data is passed to this callback, so that the callback may wish to update the entry to whatever it would like. free is a callback for when the entry is freed. In case the tracer allocated any data, it is give the chance to free it. To unregister we have three functions: void unregister_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data) This will unregister all hooks that match glob, point to ops, and have its data matching data. (note, if glob is NULL, blank or '*', all functions will be tested). void unregister_ftrace_function_hook_func(char *glob, struct ftrace_hook_ops *ops) This will unregister all functions matching glob that has an entry pointing to ops. void unregister_ftrace_function_hook_all(char *glob) This simply unregisters all funcs. Signed-off-by: Steven Rostedt <srostedt@redhat.com>
2009-02-15 03:29:06 +07:00
len = strlen(search);
/* we do not support '!' for function probes */
ftrace: trace different functions with a different tracer Impact: new feature Currently, the function tracer only gives you an ability to hook a tracer to all functions being traced. The dynamic function trace allows you to pick and choose which of those functions will be traced, but all functions being traced will call all tracers that registered with the function tracer. This patch adds a new feature that allows a tracer to hook to specific functions, even when all functions are being traced. It allows for different functions to call different tracer hooks. The way this is accomplished is by a special function that will hook to the function tracer and will set up a hash table knowing which tracer hook to call with which function. This is the most general and easiest method to accomplish this. Later, an arch may choose to supply their own method in changing the mcount call of a function to call a different tracer. But that will be an exercise for the future. To register a function: struct ftrace_hook_ops { void (*func)(unsigned long ip, unsigned long parent_ip, void **data); int (*callback)(unsigned long ip, void **data); void (*free)(void **data); }; int register_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data); glob is a simple glob to search for the functions to hook. ops is a pointer to the operations (listed below) data is the default data to be passed to the hook functions when traced ops: func is the hook function to call when the functions are traced callback is a callback function that is called when setting up the hash. That is, if the tracer needs to do something special for each function, that is being traced, and wants to give each function its own data. The address of the entry data is passed to this callback, so that the callback may wish to update the entry to whatever it would like. free is a callback for when the entry is freed. In case the tracer allocated any data, it is give the chance to free it. To unregister we have three functions: void unregister_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data) This will unregister all hooks that match glob, point to ops, and have its data matching data. (note, if glob is NULL, blank or '*', all functions will be tested). void unregister_ftrace_function_hook_func(char *glob, struct ftrace_hook_ops *ops) This will unregister all functions matching glob that has an entry pointing to ops. void unregister_ftrace_function_hook_all(char *glob) This simply unregisters all funcs. Signed-off-by: Steven Rostedt <srostedt@redhat.com>
2009-02-15 03:29:06 +07:00
if (WARN_ON(not))
return;
}
mutex_lock(&trace_probe_ops.regex_lock);
hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, *orig_hash);
if (!hash)
/* Hmm, should report this somehow */
goto out_unlock;
INIT_LIST_HEAD(&free_list);
ftrace: trace different functions with a different tracer Impact: new feature Currently, the function tracer only gives you an ability to hook a tracer to all functions being traced. The dynamic function trace allows you to pick and choose which of those functions will be traced, but all functions being traced will call all tracers that registered with the function tracer. This patch adds a new feature that allows a tracer to hook to specific functions, even when all functions are being traced. It allows for different functions to call different tracer hooks. The way this is accomplished is by a special function that will hook to the function tracer and will set up a hash table knowing which tracer hook to call with which function. This is the most general and easiest method to accomplish this. Later, an arch may choose to supply their own method in changing the mcount call of a function to call a different tracer. But that will be an exercise for the future. To register a function: struct ftrace_hook_ops { void (*func)(unsigned long ip, unsigned long parent_ip, void **data); int (*callback)(unsigned long ip, void **data); void (*free)(void **data); }; int register_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data); glob is a simple glob to search for the functions to hook. ops is a pointer to the operations (listed below) data is the default data to be passed to the hook functions when traced ops: func is the hook function to call when the functions are traced callback is a callback function that is called when setting up the hash. That is, if the tracer needs to do something special for each function, that is being traced, and wants to give each function its own data. The address of the entry data is passed to this callback, so that the callback may wish to update the entry to whatever it would like. free is a callback for when the entry is freed. In case the tracer allocated any data, it is give the chance to free it. To unregister we have three functions: void unregister_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data) This will unregister all hooks that match glob, point to ops, and have its data matching data. (note, if glob is NULL, blank or '*', all functions will be tested). void unregister_ftrace_function_hook_func(char *glob, struct ftrace_hook_ops *ops) This will unregister all functions matching glob that has an entry pointing to ops. void unregister_ftrace_function_hook_all(char *glob) This simply unregisters all funcs. Signed-off-by: Steven Rostedt <srostedt@redhat.com>
2009-02-15 03:29:06 +07:00
for (i = 0; i < FTRACE_FUNC_HASHSIZE; i++) {
struct hlist_head *hhd = &ftrace_func_hash[i];
hlist: drop the node parameter from iterators I'm not sure why, but the hlist for each entry iterators were conceived list_for_each_entry(pos, head, member) The hlist ones were greedy and wanted an extra parameter: hlist_for_each_entry(tpos, pos, head, member) Why did they need an extra pos parameter? I'm not quite sure. Not only they don't really need it, it also prevents the iterator from looking exactly like the list iterator, which is unfortunate. Besides the semantic patch, there was some manual work required: - Fix up the actual hlist iterators in linux/list.h - Fix up the declaration of other iterators based on the hlist ones. - A very small amount of places were using the 'node' parameter, this was modified to use 'obj->member' instead. - Coccinelle didn't handle the hlist_for_each_entry_safe iterator properly, so those had to be fixed up manually. The semantic patch which is mostly the work of Peter Senna Tschudin is here: @@ iterator name hlist_for_each_entry, hlist_for_each_entry_continue, hlist_for_each_entry_from, hlist_for_each_entry_rcu, hlist_for_each_entry_rcu_bh, hlist_for_each_entry_continue_rcu_bh, for_each_busy_worker, ax25_uid_for_each, ax25_for_each, inet_bind_bucket_for_each, sctp_for_each_hentry, sk_for_each, sk_for_each_rcu, sk_for_each_from, sk_for_each_safe, sk_for_each_bound, hlist_for_each_entry_safe, hlist_for_each_entry_continue_rcu, nr_neigh_for_each, nr_neigh_for_each_safe, nr_node_for_each, nr_node_for_each_safe, for_each_gfn_indirect_valid_sp, for_each_gfn_sp, for_each_host; type T; expression a,c,d,e; identifier b; statement S; @@ -T b; <+... when != b ( hlist_for_each_entry(a, - b, c, d) S | hlist_for_each_entry_continue(a, - b, c) S | hlist_for_each_entry_from(a, - b, c) S | hlist_for_each_entry_rcu(a, - b, c, d) S | hlist_for_each_entry_rcu_bh(a, - b, c, d) S | hlist_for_each_entry_continue_rcu_bh(a, - b, c) S | for_each_busy_worker(a, c, - b, d) S | ax25_uid_for_each(a, - b, c) S | ax25_for_each(a, - b, c) S | inet_bind_bucket_for_each(a, - b, c) S | sctp_for_each_hentry(a, - b, c) S | sk_for_each(a, - b, c) S | sk_for_each_rcu(a, - b, c) S | sk_for_each_from -(a, b) +(a) S + sk_for_each_from(a) S | sk_for_each_safe(a, - b, c, d) S | sk_for_each_bound(a, - b, c) S | hlist_for_each_entry_safe(a, - b, c, d, e) S | hlist_for_each_entry_continue_rcu(a, - b, c) S | nr_neigh_for_each(a, - b, c) S | nr_neigh_for_each_safe(a, - b, c, d) S | nr_node_for_each(a, - b, c) S | nr_node_for_each_safe(a, - b, c, d) S | - for_each_gfn_sp(a, c, d, b) S + for_each_gfn_sp(a, c, d) S | - for_each_gfn_indirect_valid_sp(a, c, d, b) S + for_each_gfn_indirect_valid_sp(a, c, d) S | for_each_host(a, - b, c) S | for_each_host_safe(a, - b, c, d) S | for_each_mesh_entry(a, - b, c, d) S ) ...+> [akpm@linux-foundation.org: drop bogus change from net/ipv4/raw.c] [akpm@linux-foundation.org: drop bogus hunk from net/ipv6/raw.c] [akpm@linux-foundation.org: checkpatch fixes] [akpm@linux-foundation.org: fix warnings] [akpm@linux-foudnation.org: redo intrusive kvm changes] Tested-by: Peter Senna Tschudin <peter.senna@gmail.com> Acked-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Sasha Levin <sasha.levin@oracle.com> Cc: Wu Fengguang <fengguang.wu@intel.com> Cc: Marcelo Tosatti <mtosatti@redhat.com> Cc: Gleb Natapov <gleb@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-02-28 08:06:00 +07:00
hlist_for_each_entry_safe(entry, tmp, hhd, node) {
ftrace: trace different functions with a different tracer Impact: new feature Currently, the function tracer only gives you an ability to hook a tracer to all functions being traced. The dynamic function trace allows you to pick and choose which of those functions will be traced, but all functions being traced will call all tracers that registered with the function tracer. This patch adds a new feature that allows a tracer to hook to specific functions, even when all functions are being traced. It allows for different functions to call different tracer hooks. The way this is accomplished is by a special function that will hook to the function tracer and will set up a hash table knowing which tracer hook to call with which function. This is the most general and easiest method to accomplish this. Later, an arch may choose to supply their own method in changing the mcount call of a function to call a different tracer. But that will be an exercise for the future. To register a function: struct ftrace_hook_ops { void (*func)(unsigned long ip, unsigned long parent_ip, void **data); int (*callback)(unsigned long ip, void **data); void (*free)(void **data); }; int register_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data); glob is a simple glob to search for the functions to hook. ops is a pointer to the operations (listed below) data is the default data to be passed to the hook functions when traced ops: func is the hook function to call when the functions are traced callback is a callback function that is called when setting up the hash. That is, if the tracer needs to do something special for each function, that is being traced, and wants to give each function its own data. The address of the entry data is passed to this callback, so that the callback may wish to update the entry to whatever it would like. free is a callback for when the entry is freed. In case the tracer allocated any data, it is give the chance to free it. To unregister we have three functions: void unregister_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data) This will unregister all hooks that match glob, point to ops, and have its data matching data. (note, if glob is NULL, blank or '*', all functions will be tested). void unregister_ftrace_function_hook_func(char *glob, struct ftrace_hook_ops *ops) This will unregister all functions matching glob that has an entry pointing to ops. void unregister_ftrace_function_hook_all(char *glob) This simply unregisters all funcs. Signed-off-by: Steven Rostedt <srostedt@redhat.com>
2009-02-15 03:29:06 +07:00
/* break up if statements for readability */
if ((flags & PROBE_TEST_FUNC) && entry->ops != ops)
ftrace: trace different functions with a different tracer Impact: new feature Currently, the function tracer only gives you an ability to hook a tracer to all functions being traced. The dynamic function trace allows you to pick and choose which of those functions will be traced, but all functions being traced will call all tracers that registered with the function tracer. This patch adds a new feature that allows a tracer to hook to specific functions, even when all functions are being traced. It allows for different functions to call different tracer hooks. The way this is accomplished is by a special function that will hook to the function tracer and will set up a hash table knowing which tracer hook to call with which function. This is the most general and easiest method to accomplish this. Later, an arch may choose to supply their own method in changing the mcount call of a function to call a different tracer. But that will be an exercise for the future. To register a function: struct ftrace_hook_ops { void (*func)(unsigned long ip, unsigned long parent_ip, void **data); int (*callback)(unsigned long ip, void **data); void (*free)(void **data); }; int register_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data); glob is a simple glob to search for the functions to hook. ops is a pointer to the operations (listed below) data is the default data to be passed to the hook functions when traced ops: func is the hook function to call when the functions are traced callback is a callback function that is called when setting up the hash. That is, if the tracer needs to do something special for each function, that is being traced, and wants to give each function its own data. The address of the entry data is passed to this callback, so that the callback may wish to update the entry to whatever it would like. free is a callback for when the entry is freed. In case the tracer allocated any data, it is give the chance to free it. To unregister we have three functions: void unregister_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data) This will unregister all hooks that match glob, point to ops, and have its data matching data. (note, if glob is NULL, blank or '*', all functions will be tested). void unregister_ftrace_function_hook_func(char *glob, struct ftrace_hook_ops *ops) This will unregister all functions matching glob that has an entry pointing to ops. void unregister_ftrace_function_hook_all(char *glob) This simply unregisters all funcs. Signed-off-by: Steven Rostedt <srostedt@redhat.com>
2009-02-15 03:29:06 +07:00
continue;
if ((flags & PROBE_TEST_DATA) && entry->data != data)
ftrace: trace different functions with a different tracer Impact: new feature Currently, the function tracer only gives you an ability to hook a tracer to all functions being traced. The dynamic function trace allows you to pick and choose which of those functions will be traced, but all functions being traced will call all tracers that registered with the function tracer. This patch adds a new feature that allows a tracer to hook to specific functions, even when all functions are being traced. It allows for different functions to call different tracer hooks. The way this is accomplished is by a special function that will hook to the function tracer and will set up a hash table knowing which tracer hook to call with which function. This is the most general and easiest method to accomplish this. Later, an arch may choose to supply their own method in changing the mcount call of a function to call a different tracer. But that will be an exercise for the future. To register a function: struct ftrace_hook_ops { void (*func)(unsigned long ip, unsigned long parent_ip, void **data); int (*callback)(unsigned long ip, void **data); void (*free)(void **data); }; int register_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data); glob is a simple glob to search for the functions to hook. ops is a pointer to the operations (listed below) data is the default data to be passed to the hook functions when traced ops: func is the hook function to call when the functions are traced callback is a callback function that is called when setting up the hash. That is, if the tracer needs to do something special for each function, that is being traced, and wants to give each function its own data. The address of the entry data is passed to this callback, so that the callback may wish to update the entry to whatever it would like. free is a callback for when the entry is freed. In case the tracer allocated any data, it is give the chance to free it. To unregister we have three functions: void unregister_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data) This will unregister all hooks that match glob, point to ops, and have its data matching data. (note, if glob is NULL, blank or '*', all functions will be tested). void unregister_ftrace_function_hook_func(char *glob, struct ftrace_hook_ops *ops) This will unregister all functions matching glob that has an entry pointing to ops. void unregister_ftrace_function_hook_all(char *glob) This simply unregisters all funcs. Signed-off-by: Steven Rostedt <srostedt@redhat.com>
2009-02-15 03:29:06 +07:00
continue;
/* do this last, since it is the most expensive */
if (glob) {
kallsyms_lookup(entry->ip, NULL, NULL,
NULL, str);
if (!ftrace_match(str, glob, len, type))
continue;
}
rec_entry = ftrace_lookup_ip(hash, entry->ip);
/* It is possible more than one entry had this ip */
if (rec_entry)
free_hash_entry(hash, rec_entry);
hlist_del_rcu(&entry->node);
list_add(&entry->free_list, &free_list);
ftrace: trace different functions with a different tracer Impact: new feature Currently, the function tracer only gives you an ability to hook a tracer to all functions being traced. The dynamic function trace allows you to pick and choose which of those functions will be traced, but all functions being traced will call all tracers that registered with the function tracer. This patch adds a new feature that allows a tracer to hook to specific functions, even when all functions are being traced. It allows for different functions to call different tracer hooks. The way this is accomplished is by a special function that will hook to the function tracer and will set up a hash table knowing which tracer hook to call with which function. This is the most general and easiest method to accomplish this. Later, an arch may choose to supply their own method in changing the mcount call of a function to call a different tracer. But that will be an exercise for the future. To register a function: struct ftrace_hook_ops { void (*func)(unsigned long ip, unsigned long parent_ip, void **data); int (*callback)(unsigned long ip, void **data); void (*free)(void **data); }; int register_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data); glob is a simple glob to search for the functions to hook. ops is a pointer to the operations (listed below) data is the default data to be passed to the hook functions when traced ops: func is the hook function to call when the functions are traced callback is a callback function that is called when setting up the hash. That is, if the tracer needs to do something special for each function, that is being traced, and wants to give each function its own data. The address of the entry data is passed to this callback, so that the callback may wish to update the entry to whatever it would like. free is a callback for when the entry is freed. In case the tracer allocated any data, it is give the chance to free it. To unregister we have three functions: void unregister_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data) This will unregister all hooks that match glob, point to ops, and have its data matching data. (note, if glob is NULL, blank or '*', all functions will be tested). void unregister_ftrace_function_hook_func(char *glob, struct ftrace_hook_ops *ops) This will unregister all functions matching glob that has an entry pointing to ops. void unregister_ftrace_function_hook_all(char *glob) This simply unregisters all funcs. Signed-off-by: Steven Rostedt <srostedt@redhat.com>
2009-02-15 03:29:06 +07:00
}
}
mutex_lock(&ftrace_lock);
__disable_ftrace_function_probe();
/*
* Remove after the disable is called. Otherwise, if the last
* probe is removed, a null hash means *all enabled*.
*/
ftrace_hash_move(&trace_probe_ops, 1, orig_hash, hash);
synchronize_sched();
list_for_each_entry_safe(entry, p, &free_list, free_list) {
list_del(&entry->free_list);
ftrace_free_entry(entry);
}
mutex_unlock(&ftrace_lock);
out_unlock:
mutex_unlock(&trace_probe_ops.regex_lock);
free_ftrace_hash(hash);
ftrace: trace different functions with a different tracer Impact: new feature Currently, the function tracer only gives you an ability to hook a tracer to all functions being traced. The dynamic function trace allows you to pick and choose which of those functions will be traced, but all functions being traced will call all tracers that registered with the function tracer. This patch adds a new feature that allows a tracer to hook to specific functions, even when all functions are being traced. It allows for different functions to call different tracer hooks. The way this is accomplished is by a special function that will hook to the function tracer and will set up a hash table knowing which tracer hook to call with which function. This is the most general and easiest method to accomplish this. Later, an arch may choose to supply their own method in changing the mcount call of a function to call a different tracer. But that will be an exercise for the future. To register a function: struct ftrace_hook_ops { void (*func)(unsigned long ip, unsigned long parent_ip, void **data); int (*callback)(unsigned long ip, void **data); void (*free)(void **data); }; int register_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data); glob is a simple glob to search for the functions to hook. ops is a pointer to the operations (listed below) data is the default data to be passed to the hook functions when traced ops: func is the hook function to call when the functions are traced callback is a callback function that is called when setting up the hash. That is, if the tracer needs to do something special for each function, that is being traced, and wants to give each function its own data. The address of the entry data is passed to this callback, so that the callback may wish to update the entry to whatever it would like. free is a callback for when the entry is freed. In case the tracer allocated any data, it is give the chance to free it. To unregister we have three functions: void unregister_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data) This will unregister all hooks that match glob, point to ops, and have its data matching data. (note, if glob is NULL, blank or '*', all functions will be tested). void unregister_ftrace_function_hook_func(char *glob, struct ftrace_hook_ops *ops) This will unregister all functions matching glob that has an entry pointing to ops. void unregister_ftrace_function_hook_all(char *glob) This simply unregisters all funcs. Signed-off-by: Steven Rostedt <srostedt@redhat.com>
2009-02-15 03:29:06 +07:00
}
void
unregister_ftrace_function_probe(char *glob, struct ftrace_probe_ops *ops,
ftrace: trace different functions with a different tracer Impact: new feature Currently, the function tracer only gives you an ability to hook a tracer to all functions being traced. The dynamic function trace allows you to pick and choose which of those functions will be traced, but all functions being traced will call all tracers that registered with the function tracer. This patch adds a new feature that allows a tracer to hook to specific functions, even when all functions are being traced. It allows for different functions to call different tracer hooks. The way this is accomplished is by a special function that will hook to the function tracer and will set up a hash table knowing which tracer hook to call with which function. This is the most general and easiest method to accomplish this. Later, an arch may choose to supply their own method in changing the mcount call of a function to call a different tracer. But that will be an exercise for the future. To register a function: struct ftrace_hook_ops { void (*func)(unsigned long ip, unsigned long parent_ip, void **data); int (*callback)(unsigned long ip, void **data); void (*free)(void **data); }; int register_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data); glob is a simple glob to search for the functions to hook. ops is a pointer to the operations (listed below) data is the default data to be passed to the hook functions when traced ops: func is the hook function to call when the functions are traced callback is a callback function that is called when setting up the hash. That is, if the tracer needs to do something special for each function, that is being traced, and wants to give each function its own data. The address of the entry data is passed to this callback, so that the callback may wish to update the entry to whatever it would like. free is a callback for when the entry is freed. In case the tracer allocated any data, it is give the chance to free it. To unregister we have three functions: void unregister_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data) This will unregister all hooks that match glob, point to ops, and have its data matching data. (note, if glob is NULL, blank or '*', all functions will be tested). void unregister_ftrace_function_hook_func(char *glob, struct ftrace_hook_ops *ops) This will unregister all functions matching glob that has an entry pointing to ops. void unregister_ftrace_function_hook_all(char *glob) This simply unregisters all funcs. Signed-off-by: Steven Rostedt <srostedt@redhat.com>
2009-02-15 03:29:06 +07:00
void *data)
{
__unregister_ftrace_function_probe(glob, ops, data,
PROBE_TEST_FUNC | PROBE_TEST_DATA);
ftrace: trace different functions with a different tracer Impact: new feature Currently, the function tracer only gives you an ability to hook a tracer to all functions being traced. The dynamic function trace allows you to pick and choose which of those functions will be traced, but all functions being traced will call all tracers that registered with the function tracer. This patch adds a new feature that allows a tracer to hook to specific functions, even when all functions are being traced. It allows for different functions to call different tracer hooks. The way this is accomplished is by a special function that will hook to the function tracer and will set up a hash table knowing which tracer hook to call with which function. This is the most general and easiest method to accomplish this. Later, an arch may choose to supply their own method in changing the mcount call of a function to call a different tracer. But that will be an exercise for the future. To register a function: struct ftrace_hook_ops { void (*func)(unsigned long ip, unsigned long parent_ip, void **data); int (*callback)(unsigned long ip, void **data); void (*free)(void **data); }; int register_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data); glob is a simple glob to search for the functions to hook. ops is a pointer to the operations (listed below) data is the default data to be passed to the hook functions when traced ops: func is the hook function to call when the functions are traced callback is a callback function that is called when setting up the hash. That is, if the tracer needs to do something special for each function, that is being traced, and wants to give each function its own data. The address of the entry data is passed to this callback, so that the callback may wish to update the entry to whatever it would like. free is a callback for when the entry is freed. In case the tracer allocated any data, it is give the chance to free it. To unregister we have three functions: void unregister_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data) This will unregister all hooks that match glob, point to ops, and have its data matching data. (note, if glob is NULL, blank or '*', all functions will be tested). void unregister_ftrace_function_hook_func(char *glob, struct ftrace_hook_ops *ops) This will unregister all functions matching glob that has an entry pointing to ops. void unregister_ftrace_function_hook_all(char *glob) This simply unregisters all funcs. Signed-off-by: Steven Rostedt <srostedt@redhat.com>
2009-02-15 03:29:06 +07:00
}
void
unregister_ftrace_function_probe_func(char *glob, struct ftrace_probe_ops *ops)
ftrace: trace different functions with a different tracer Impact: new feature Currently, the function tracer only gives you an ability to hook a tracer to all functions being traced. The dynamic function trace allows you to pick and choose which of those functions will be traced, but all functions being traced will call all tracers that registered with the function tracer. This patch adds a new feature that allows a tracer to hook to specific functions, even when all functions are being traced. It allows for different functions to call different tracer hooks. The way this is accomplished is by a special function that will hook to the function tracer and will set up a hash table knowing which tracer hook to call with which function. This is the most general and easiest method to accomplish this. Later, an arch may choose to supply their own method in changing the mcount call of a function to call a different tracer. But that will be an exercise for the future. To register a function: struct ftrace_hook_ops { void (*func)(unsigned long ip, unsigned long parent_ip, void **data); int (*callback)(unsigned long ip, void **data); void (*free)(void **data); }; int register_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data); glob is a simple glob to search for the functions to hook. ops is a pointer to the operations (listed below) data is the default data to be passed to the hook functions when traced ops: func is the hook function to call when the functions are traced callback is a callback function that is called when setting up the hash. That is, if the tracer needs to do something special for each function, that is being traced, and wants to give each function its own data. The address of the entry data is passed to this callback, so that the callback may wish to update the entry to whatever it would like. free is a callback for when the entry is freed. In case the tracer allocated any data, it is give the chance to free it. To unregister we have three functions: void unregister_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data) This will unregister all hooks that match glob, point to ops, and have its data matching data. (note, if glob is NULL, blank or '*', all functions will be tested). void unregister_ftrace_function_hook_func(char *glob, struct ftrace_hook_ops *ops) This will unregister all functions matching glob that has an entry pointing to ops. void unregister_ftrace_function_hook_all(char *glob) This simply unregisters all funcs. Signed-off-by: Steven Rostedt <srostedt@redhat.com>
2009-02-15 03:29:06 +07:00
{
__unregister_ftrace_function_probe(glob, ops, NULL, PROBE_TEST_FUNC);
ftrace: trace different functions with a different tracer Impact: new feature Currently, the function tracer only gives you an ability to hook a tracer to all functions being traced. The dynamic function trace allows you to pick and choose which of those functions will be traced, but all functions being traced will call all tracers that registered with the function tracer. This patch adds a new feature that allows a tracer to hook to specific functions, even when all functions are being traced. It allows for different functions to call different tracer hooks. The way this is accomplished is by a special function that will hook to the function tracer and will set up a hash table knowing which tracer hook to call with which function. This is the most general and easiest method to accomplish this. Later, an arch may choose to supply their own method in changing the mcount call of a function to call a different tracer. But that will be an exercise for the future. To register a function: struct ftrace_hook_ops { void (*func)(unsigned long ip, unsigned long parent_ip, void **data); int (*callback)(unsigned long ip, void **data); void (*free)(void **data); }; int register_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data); glob is a simple glob to search for the functions to hook. ops is a pointer to the operations (listed below) data is the default data to be passed to the hook functions when traced ops: func is the hook function to call when the functions are traced callback is a callback function that is called when setting up the hash. That is, if the tracer needs to do something special for each function, that is being traced, and wants to give each function its own data. The address of the entry data is passed to this callback, so that the callback may wish to update the entry to whatever it would like. free is a callback for when the entry is freed. In case the tracer allocated any data, it is give the chance to free it. To unregister we have three functions: void unregister_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data) This will unregister all hooks that match glob, point to ops, and have its data matching data. (note, if glob is NULL, blank or '*', all functions will be tested). void unregister_ftrace_function_hook_func(char *glob, struct ftrace_hook_ops *ops) This will unregister all functions matching glob that has an entry pointing to ops. void unregister_ftrace_function_hook_all(char *glob) This simply unregisters all funcs. Signed-off-by: Steven Rostedt <srostedt@redhat.com>
2009-02-15 03:29:06 +07:00
}
void unregister_ftrace_function_probe_all(char *glob)
ftrace: trace different functions with a different tracer Impact: new feature Currently, the function tracer only gives you an ability to hook a tracer to all functions being traced. The dynamic function trace allows you to pick and choose which of those functions will be traced, but all functions being traced will call all tracers that registered with the function tracer. This patch adds a new feature that allows a tracer to hook to specific functions, even when all functions are being traced. It allows for different functions to call different tracer hooks. The way this is accomplished is by a special function that will hook to the function tracer and will set up a hash table knowing which tracer hook to call with which function. This is the most general and easiest method to accomplish this. Later, an arch may choose to supply their own method in changing the mcount call of a function to call a different tracer. But that will be an exercise for the future. To register a function: struct ftrace_hook_ops { void (*func)(unsigned long ip, unsigned long parent_ip, void **data); int (*callback)(unsigned long ip, void **data); void (*free)(void **data); }; int register_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data); glob is a simple glob to search for the functions to hook. ops is a pointer to the operations (listed below) data is the default data to be passed to the hook functions when traced ops: func is the hook function to call when the functions are traced callback is a callback function that is called when setting up the hash. That is, if the tracer needs to do something special for each function, that is being traced, and wants to give each function its own data. The address of the entry data is passed to this callback, so that the callback may wish to update the entry to whatever it would like. free is a callback for when the entry is freed. In case the tracer allocated any data, it is give the chance to free it. To unregister we have three functions: void unregister_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data) This will unregister all hooks that match glob, point to ops, and have its data matching data. (note, if glob is NULL, blank or '*', all functions will be tested). void unregister_ftrace_function_hook_func(char *glob, struct ftrace_hook_ops *ops) This will unregister all functions matching glob that has an entry pointing to ops. void unregister_ftrace_function_hook_all(char *glob) This simply unregisters all funcs. Signed-off-by: Steven Rostedt <srostedt@redhat.com>
2009-02-15 03:29:06 +07:00
{
__unregister_ftrace_function_probe(glob, NULL, NULL, 0);
ftrace: trace different functions with a different tracer Impact: new feature Currently, the function tracer only gives you an ability to hook a tracer to all functions being traced. The dynamic function trace allows you to pick and choose which of those functions will be traced, but all functions being traced will call all tracers that registered with the function tracer. This patch adds a new feature that allows a tracer to hook to specific functions, even when all functions are being traced. It allows for different functions to call different tracer hooks. The way this is accomplished is by a special function that will hook to the function tracer and will set up a hash table knowing which tracer hook to call with which function. This is the most general and easiest method to accomplish this. Later, an arch may choose to supply their own method in changing the mcount call of a function to call a different tracer. But that will be an exercise for the future. To register a function: struct ftrace_hook_ops { void (*func)(unsigned long ip, unsigned long parent_ip, void **data); int (*callback)(unsigned long ip, void **data); void (*free)(void **data); }; int register_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data); glob is a simple glob to search for the functions to hook. ops is a pointer to the operations (listed below) data is the default data to be passed to the hook functions when traced ops: func is the hook function to call when the functions are traced callback is a callback function that is called when setting up the hash. That is, if the tracer needs to do something special for each function, that is being traced, and wants to give each function its own data. The address of the entry data is passed to this callback, so that the callback may wish to update the entry to whatever it would like. free is a callback for when the entry is freed. In case the tracer allocated any data, it is give the chance to free it. To unregister we have three functions: void unregister_ftrace_function_hook(char *glob, struct ftrace_hook_ops *ops, void *data) This will unregister all hooks that match glob, point to ops, and have its data matching data. (note, if glob is NULL, blank or '*', all functions will be tested). void unregister_ftrace_function_hook_func(char *glob, struct ftrace_hook_ops *ops) This will unregister all functions matching glob that has an entry pointing to ops. void unregister_ftrace_function_hook_all(char *glob) This simply unregisters all funcs. Signed-off-by: Steven Rostedt <srostedt@redhat.com>
2009-02-15 03:29:06 +07:00
}
static LIST_HEAD(ftrace_commands);
static DEFINE_MUTEX(ftrace_cmd_mutex);
int register_ftrace_command(struct ftrace_func_command *cmd)
{
struct ftrace_func_command *p;
int ret = 0;
mutex_lock(&ftrace_cmd_mutex);
list_for_each_entry(p, &ftrace_commands, list) {
if (strcmp(cmd->name, p->name) == 0) {
ret = -EBUSY;
goto out_unlock;
}
}
list_add(&cmd->list, &ftrace_commands);
out_unlock:
mutex_unlock(&ftrace_cmd_mutex);
return ret;
}
int unregister_ftrace_command(struct ftrace_func_command *cmd)
{
struct ftrace_func_command *p, *n;
int ret = -ENODEV;
mutex_lock(&ftrace_cmd_mutex);
list_for_each_entry_safe(p, n, &ftrace_commands, list) {
if (strcmp(cmd->name, p->name) == 0) {
ret = 0;
list_del_init(&p->list);
goto out_unlock;
}
}
out_unlock:
mutex_unlock(&ftrace_cmd_mutex);
return ret;
}
static int ftrace_process_regex(struct ftrace_hash *hash,
char *buff, int len, int enable)
{
char *func, *command, *next = buff;
struct ftrace_func_command *p;
int ret = -EINVAL;
func = strsep(&next, ":");
if (!next) {
ret = ftrace_match_records(hash, func, len);
if (!ret)
ret = -EINVAL;
if (ret < 0)
return ret;
return 0;
}
/* command found */
command = strsep(&next, ":");
mutex_lock(&ftrace_cmd_mutex);
list_for_each_entry(p, &ftrace_commands, list) {
if (strcmp(p->name, command) == 0) {
ftrace: Fix regression of :mod:module function enabling The new code that allows different utilities to pick and choose what functions they trace broke the :mod: hook that allows users to trace only functions of a particular module. The reason is that the :mod: hook bypasses the hash that is setup to allow individual users to trace their own functions and uses the global hash directly. But if the global hash has not been set up, it will cause a bug: echo '*:mod:radeon' > /sys/kernel/debug/set_ftrace_filter produces: [drm:drm_mode_getfb] *ERROR* invalid framebuffer id [drm:radeon_crtc_page_flip] *ERROR* failed to reserve new rbo buffer before flip BUG: unable to handle kernel paging request at ffffffff8160ec90 IP: [<ffffffff810d9136>] add_hash_entry+0x66/0xd0 PGD 1a05067 PUD 1a09063 PMD 80000000016001e1 Oops: 0003 [#1] SMP Jul 7 04:02:28 phyllis kernel: [55303.858604] CPU 1 Modules linked in: cryptd aes_x86_64 aes_generic binfmt_misc rfcomm bnep ip6table_filter hid radeon r8169 ahci libahci mii ttm drm_kms_helper drm video i2c_algo_bit intel_agp intel_gtt Pid: 10344, comm: bash Tainted: G WC 3.0.0-rc5 #1 Dell Inc. Inspiron N5010/0YXXJJ RIP: 0010:[<ffffffff810d9136>] [<ffffffff810d9136>] add_hash_entry+0x66/0xd0 RSP: 0018:ffff88003a96bda8 EFLAGS: 00010246 RAX: ffff8801301735c0 RBX: ffffffff8160ec80 RCX: 0000000000306ee0 RDX: 0000000000000000 RSI: 0000000000000000 RDI: ffff880137c92940 RBP: ffff88003a96bdb8 R08: ffff880137c95680 R09: 0000000000000000 R10: 0000000000000001 R11: 0000000000000000 R12: ffffffff81c9df78 R13: ffff8801153d1000 R14: 0000000000000000 R15: 0000000000000000 FS: 00007f329c18a700(0000) GS:ffff880137c80000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: ffffffff8160ec90 CR3: 000000003002b000 CR4: 00000000000006e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000ffff0ff0 DR7: 0000000000000400 Process bash (pid: 10344, threadinfo ffff88003a96a000, task ffff88012fcfc470) Stack: 0000000000000fd0 00000000000000fc ffff88003a96be38 ffffffff810d92f5 ffff88011c4c4e00 ffff880000000000 000000000b69f4d0 ffffffff8160ec80 ffff8800300e6f06 0000000081130295 0000000000000282 ffff8800300e6f00 Call Trace: [<ffffffff810d92f5>] match_records+0x155/0x1b0 [<ffffffff810d940c>] ftrace_mod_callback+0xbc/0x100 [<ffffffff810dafdf>] ftrace_regex_write+0x16f/0x210 [<ffffffff810db09f>] ftrace_filter_write+0xf/0x20 [<ffffffff81166e48>] vfs_write+0xc8/0x190 [<ffffffff81167001>] sys_write+0x51/0x90 [<ffffffff815c7e02>] system_call_fastpath+0x16/0x1b Code: 48 8b 33 31 d2 48 85 f6 75 33 49 89 d4 4c 03 63 08 49 8b 14 24 48 85 d2 48 89 10 74 04 48 89 42 08 49 89 04 24 4c 89 60 08 31 d2 RIP [<ffffffff810d9136>] add_hash_entry+0x66/0xd0 RSP <ffff88003a96bda8> CR2: ffffffff8160ec90 ---[ end trace a5d031828efdd88e ]--- Reported-by: Brian Marete <marete@toshnix.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2011-07-07 22:09:22 +07:00
ret = p->func(hash, func, command, next, enable);
goto out_unlock;
}
}
out_unlock:
mutex_unlock(&ftrace_cmd_mutex);
return ret;
}
static ssize_t
ftrace_regex_write(struct file *file, const char __user *ubuf,
size_t cnt, loff_t *ppos, int enable)
ftrace: add filter select functions to trace This patch adds two files to the debugfs system: /debugfs/tracing/available_filter_functions and /debugfs/tracing/set_ftrace_filter The available_filter_functions lists all functions that has been recorded by the ftraced that has called the ftrace_record_ip function. This is to allow users to see what functions have been converted to nops and can be enabled for tracing. To enable functions, simply echo the names (whitespace delimited) into set_ftrace_filter. Simple wildcards are also allowed. echo 'scheduler' > /debugfs/tracing/set_ftrace_filter Will have only the scheduler be activated when tracing is enabled. echo 'sched_*' > /debugfs/tracing/set_ftrace_filter Will have only the functions starting with 'sched_' be activated. echo '*lock' > /debugfs/tracing/set_ftrace_filter Will have only functions ending with 'lock' be activated. echo '*lock*' > /debugfs/tracing/set_ftrace_filter Will have only functions with 'lock' in its name be activated. Note: 'sched*lock' will not work. The only wildcards that are allowed is an asterisk and the beginning and or end of the string passed in. Multiple names can be passed in with whitespace delimited: echo 'scheduler *lock *acpi*' > /debugfs/tracing/set_ftrace_filter is also the same as: echo 'scheduler' > /debugfs/tracing/set_ftrace_filter echo '*lock' >> /debugfs/tracing/set_ftrace_filter echo '*acpi*' >> /debugfs/tracing/set_ftrace_filter Appending does just that. It appends to the list. To disable all filters simply echo an empty line in: echo > /debugfs/tracing/set_ftrace_filter Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 02:20:43 +07:00
{
struct ftrace_iterator *iter;
struct trace_parser *parser;
ssize_t ret, read;
ftrace: add filter select functions to trace This patch adds two files to the debugfs system: /debugfs/tracing/available_filter_functions and /debugfs/tracing/set_ftrace_filter The available_filter_functions lists all functions that has been recorded by the ftraced that has called the ftrace_record_ip function. This is to allow users to see what functions have been converted to nops and can be enabled for tracing. To enable functions, simply echo the names (whitespace delimited) into set_ftrace_filter. Simple wildcards are also allowed. echo 'scheduler' > /debugfs/tracing/set_ftrace_filter Will have only the scheduler be activated when tracing is enabled. echo 'sched_*' > /debugfs/tracing/set_ftrace_filter Will have only the functions starting with 'sched_' be activated. echo '*lock' > /debugfs/tracing/set_ftrace_filter Will have only functions ending with 'lock' be activated. echo '*lock*' > /debugfs/tracing/set_ftrace_filter Will have only functions with 'lock' in its name be activated. Note: 'sched*lock' will not work. The only wildcards that are allowed is an asterisk and the beginning and or end of the string passed in. Multiple names can be passed in with whitespace delimited: echo 'scheduler *lock *acpi*' > /debugfs/tracing/set_ftrace_filter is also the same as: echo 'scheduler' > /debugfs/tracing/set_ftrace_filter echo '*lock' >> /debugfs/tracing/set_ftrace_filter echo '*acpi*' >> /debugfs/tracing/set_ftrace_filter Appending does just that. It appends to the list. To disable all filters simply echo an empty line in: echo > /debugfs/tracing/set_ftrace_filter Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 02:20:43 +07:00
if (!cnt)
ftrace: add filter select functions to trace This patch adds two files to the debugfs system: /debugfs/tracing/available_filter_functions and /debugfs/tracing/set_ftrace_filter The available_filter_functions lists all functions that has been recorded by the ftraced that has called the ftrace_record_ip function. This is to allow users to see what functions have been converted to nops and can be enabled for tracing. To enable functions, simply echo the names (whitespace delimited) into set_ftrace_filter. Simple wildcards are also allowed. echo 'scheduler' > /debugfs/tracing/set_ftrace_filter Will have only the scheduler be activated when tracing is enabled. echo 'sched_*' > /debugfs/tracing/set_ftrace_filter Will have only the functions starting with 'sched_' be activated. echo '*lock' > /debugfs/tracing/set_ftrace_filter Will have only functions ending with 'lock' be activated. echo '*lock*' > /debugfs/tracing/set_ftrace_filter Will have only functions with 'lock' in its name be activated. Note: 'sched*lock' will not work. The only wildcards that are allowed is an asterisk and the beginning and or end of the string passed in. Multiple names can be passed in with whitespace delimited: echo 'scheduler *lock *acpi*' > /debugfs/tracing/set_ftrace_filter is also the same as: echo 'scheduler' > /debugfs/tracing/set_ftrace_filter echo '*lock' >> /debugfs/tracing/set_ftrace_filter echo '*acpi*' >> /debugfs/tracing/set_ftrace_filter Appending does just that. It appends to the list. To disable all filters simply echo an empty line in: echo > /debugfs/tracing/set_ftrace_filter Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 02:20:43 +07:00
return 0;
if (file->f_mode & FMODE_READ) {
struct seq_file *m = file->private_data;
iter = m->private;
} else
iter = file->private_data;
ftrace, kprobes: Fix a deadlock on ftrace_regex_lock Fix a deadlock on ftrace_regex_lock which happens when setting an enable_event trigger on dynamic kprobe event as below. ---- sh-2.05b# echo p vfs_symlink > kprobe_events sh-2.05b# echo vfs_symlink:enable_event:kprobes:p_vfs_symlink_0 > set_ftrace_filter ============================================= [ INFO: possible recursive locking detected ] 3.9.0+ #35 Not tainted --------------------------------------------- sh/72 is trying to acquire lock: (ftrace_regex_lock){+.+.+.}, at: [<ffffffff810ba6c1>] ftrace_set_hash+0x81/0x1f0 but task is already holding lock: (ftrace_regex_lock){+.+.+.}, at: [<ffffffff810b7cbd>] ftrace_regex_write.isra.29.part.30+0x3d/0x220 other info that might help us debug this: Possible unsafe locking scenario: CPU0 ---- lock(ftrace_regex_lock); lock(ftrace_regex_lock); *** DEADLOCK *** ---- To fix that, this introduces a finer regex_lock for each ftrace_ops. ftrace_regex_lock is too big of a lock which protects all filter/notrace_hash operations, but it doesn't need to be a global lock after supporting multiple ftrace_ops because each ftrace_ops has its own filter/notrace_hash. Link: http://lkml.kernel.org/r/20130509054417.30398.84254.stgit@mhiramat-M0-7522 Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Tom Zanussi <tom.zanussi@intel.com> Signed-off-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com> [ Added initialization flag and automate mutex initialization for non ftrace.c ftrace_probes. ] Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-05-09 12:44:17 +07:00
if (unlikely(ftrace_disabled))
return -ENODEV;
/* iter->hash is a local copy, so we don't need regex_lock */
ftrace, kprobes: Fix a deadlock on ftrace_regex_lock Fix a deadlock on ftrace_regex_lock which happens when setting an enable_event trigger on dynamic kprobe event as below. ---- sh-2.05b# echo p vfs_symlink > kprobe_events sh-2.05b# echo vfs_symlink:enable_event:kprobes:p_vfs_symlink_0 > set_ftrace_filter ============================================= [ INFO: possible recursive locking detected ] 3.9.0+ #35 Not tainted --------------------------------------------- sh/72 is trying to acquire lock: (ftrace_regex_lock){+.+.+.}, at: [<ffffffff810ba6c1>] ftrace_set_hash+0x81/0x1f0 but task is already holding lock: (ftrace_regex_lock){+.+.+.}, at: [<ffffffff810b7cbd>] ftrace_regex_write.isra.29.part.30+0x3d/0x220 other info that might help us debug this: Possible unsafe locking scenario: CPU0 ---- lock(ftrace_regex_lock); lock(ftrace_regex_lock); *** DEADLOCK *** ---- To fix that, this introduces a finer regex_lock for each ftrace_ops. ftrace_regex_lock is too big of a lock which protects all filter/notrace_hash operations, but it doesn't need to be a global lock after supporting multiple ftrace_ops because each ftrace_ops has its own filter/notrace_hash. Link: http://lkml.kernel.org/r/20130509054417.30398.84254.stgit@mhiramat-M0-7522 Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Tom Zanussi <tom.zanussi@intel.com> Signed-off-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com> [ Added initialization flag and automate mutex initialization for non ftrace.c ftrace_probes. ] Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-05-09 12:44:17 +07:00
parser = &iter->parser;
read = trace_get_user(parser, ubuf, cnt, ppos);
ftrace: add filter select functions to trace This patch adds two files to the debugfs system: /debugfs/tracing/available_filter_functions and /debugfs/tracing/set_ftrace_filter The available_filter_functions lists all functions that has been recorded by the ftraced that has called the ftrace_record_ip function. This is to allow users to see what functions have been converted to nops and can be enabled for tracing. To enable functions, simply echo the names (whitespace delimited) into set_ftrace_filter. Simple wildcards are also allowed. echo 'scheduler' > /debugfs/tracing/set_ftrace_filter Will have only the scheduler be activated when tracing is enabled. echo 'sched_*' > /debugfs/tracing/set_ftrace_filter Will have only the functions starting with 'sched_' be activated. echo '*lock' > /debugfs/tracing/set_ftrace_filter Will have only functions ending with 'lock' be activated. echo '*lock*' > /debugfs/tracing/set_ftrace_filter Will have only functions with 'lock' in its name be activated. Note: 'sched*lock' will not work. The only wildcards that are allowed is an asterisk and the beginning and or end of the string passed in. Multiple names can be passed in with whitespace delimited: echo 'scheduler *lock *acpi*' > /debugfs/tracing/set_ftrace_filter is also the same as: echo 'scheduler' > /debugfs/tracing/set_ftrace_filter echo '*lock' >> /debugfs/tracing/set_ftrace_filter echo '*acpi*' >> /debugfs/tracing/set_ftrace_filter Appending does just that. It appends to the list. To disable all filters simply echo an empty line in: echo > /debugfs/tracing/set_ftrace_filter Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 02:20:43 +07:00
if (read >= 0 && trace_parser_loaded(parser) &&
!trace_parser_cont(parser)) {
ret = ftrace_process_regex(iter->hash, parser->buffer,
parser->idx, enable);
trace_parser_clear(parser);
if (ret < 0)
goto out;
}
ftrace: add filter select functions to trace This patch adds two files to the debugfs system: /debugfs/tracing/available_filter_functions and /debugfs/tracing/set_ftrace_filter The available_filter_functions lists all functions that has been recorded by the ftraced that has called the ftrace_record_ip function. This is to allow users to see what functions have been converted to nops and can be enabled for tracing. To enable functions, simply echo the names (whitespace delimited) into set_ftrace_filter. Simple wildcards are also allowed. echo 'scheduler' > /debugfs/tracing/set_ftrace_filter Will have only the scheduler be activated when tracing is enabled. echo 'sched_*' > /debugfs/tracing/set_ftrace_filter Will have only the functions starting with 'sched_' be activated. echo '*lock' > /debugfs/tracing/set_ftrace_filter Will have only functions ending with 'lock' be activated. echo '*lock*' > /debugfs/tracing/set_ftrace_filter Will have only functions with 'lock' in its name be activated. Note: 'sched*lock' will not work. The only wildcards that are allowed is an asterisk and the beginning and or end of the string passed in. Multiple names can be passed in with whitespace delimited: echo 'scheduler *lock *acpi*' > /debugfs/tracing/set_ftrace_filter is also the same as: echo 'scheduler' > /debugfs/tracing/set_ftrace_filter echo '*lock' >> /debugfs/tracing/set_ftrace_filter echo '*acpi*' >> /debugfs/tracing/set_ftrace_filter Appending does just that. It appends to the list. To disable all filters simply echo an empty line in: echo > /debugfs/tracing/set_ftrace_filter Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 02:20:43 +07:00
ret = read;
out:
ftrace: add filter select functions to trace This patch adds two files to the debugfs system: /debugfs/tracing/available_filter_functions and /debugfs/tracing/set_ftrace_filter The available_filter_functions lists all functions that has been recorded by the ftraced that has called the ftrace_record_ip function. This is to allow users to see what functions have been converted to nops and can be enabled for tracing. To enable functions, simply echo the names (whitespace delimited) into set_ftrace_filter. Simple wildcards are also allowed. echo 'scheduler' > /debugfs/tracing/set_ftrace_filter Will have only the scheduler be activated when tracing is enabled. echo 'sched_*' > /debugfs/tracing/set_ftrace_filter Will have only the functions starting with 'sched_' be activated. echo '*lock' > /debugfs/tracing/set_ftrace_filter Will have only functions ending with 'lock' be activated. echo '*lock*' > /debugfs/tracing/set_ftrace_filter Will have only functions with 'lock' in its name be activated. Note: 'sched*lock' will not work. The only wildcards that are allowed is an asterisk and the beginning and or end of the string passed in. Multiple names can be passed in with whitespace delimited: echo 'scheduler *lock *acpi*' > /debugfs/tracing/set_ftrace_filter is also the same as: echo 'scheduler' > /debugfs/tracing/set_ftrace_filter echo '*lock' >> /debugfs/tracing/set_ftrace_filter echo '*acpi*' >> /debugfs/tracing/set_ftrace_filter Appending does just that. It appends to the list. To disable all filters simply echo an empty line in: echo > /debugfs/tracing/set_ftrace_filter Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 02:20:43 +07:00
return ret;
}
ssize_t
ftrace_filter_write(struct file *file, const char __user *ubuf,
size_t cnt, loff_t *ppos)
{
return ftrace_regex_write(file, ubuf, cnt, ppos, 1);
}
ssize_t
ftrace_notrace_write(struct file *file, const char __user *ubuf,
size_t cnt, loff_t *ppos)
{
return ftrace_regex_write(file, ubuf, cnt, ppos, 0);
}
static int
ftrace_match_addr(struct ftrace_hash *hash, unsigned long ip, int remove)
{
struct ftrace_func_entry *entry;
if (!ftrace_location(ip))
return -EINVAL;
if (remove) {
entry = ftrace_lookup_ip(hash, ip);
if (!entry)
return -ENOENT;
free_hash_entry(hash, entry);
return 0;
}
return add_hash_entry(hash, ip);
}
static void ftrace_ops_update_code(struct ftrace_ops *ops)
{
if (ops->flags & FTRACE_OPS_FL_ENABLED && ftrace_enabled)
ftrace_run_update_code(FTRACE_UPDATE_CALLS);
}
static int
ftrace_set_hash(struct ftrace_ops *ops, unsigned char *buf, int len,
unsigned long ip, int remove, int reset, int enable)
{
struct ftrace_hash **orig_hash;
struct ftrace_hash *hash;
int ret;
/* All global ops uses the global ops filters */
if (ops->flags & FTRACE_OPS_FL_GLOBAL)
ops = &global_ops;
if (unlikely(ftrace_disabled))
return -ENODEV;
mutex_lock(&ops->regex_lock);
if (enable)
orig_hash = &ops->filter_hash;
else
orig_hash = &ops->notrace_hash;
hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, *orig_hash);
if (!hash) {
ret = -ENOMEM;
goto out_regex_unlock;
}
if (reset)
ftrace_filter_reset(hash);
if (buf && !ftrace_match_records(hash, buf, len)) {
ret = -EINVAL;
goto out_regex_unlock;
}
if (ip) {
ret = ftrace_match_addr(hash, ip, remove);
if (ret < 0)
goto out_regex_unlock;
}
mutex_lock(&ftrace_lock);
ret = ftrace_hash_move(ops, enable, orig_hash, hash);
if (!ret)
ftrace_ops_update_code(ops);
mutex_unlock(&ftrace_lock);
out_regex_unlock:
ftrace, kprobes: Fix a deadlock on ftrace_regex_lock Fix a deadlock on ftrace_regex_lock which happens when setting an enable_event trigger on dynamic kprobe event as below. ---- sh-2.05b# echo p vfs_symlink > kprobe_events sh-2.05b# echo vfs_symlink:enable_event:kprobes:p_vfs_symlink_0 > set_ftrace_filter ============================================= [ INFO: possible recursive locking detected ] 3.9.0+ #35 Not tainted --------------------------------------------- sh/72 is trying to acquire lock: (ftrace_regex_lock){+.+.+.}, at: [<ffffffff810ba6c1>] ftrace_set_hash+0x81/0x1f0 but task is already holding lock: (ftrace_regex_lock){+.+.+.}, at: [<ffffffff810b7cbd>] ftrace_regex_write.isra.29.part.30+0x3d/0x220 other info that might help us debug this: Possible unsafe locking scenario: CPU0 ---- lock(ftrace_regex_lock); lock(ftrace_regex_lock); *** DEADLOCK *** ---- To fix that, this introduces a finer regex_lock for each ftrace_ops. ftrace_regex_lock is too big of a lock which protects all filter/notrace_hash operations, but it doesn't need to be a global lock after supporting multiple ftrace_ops because each ftrace_ops has its own filter/notrace_hash. Link: http://lkml.kernel.org/r/20130509054417.30398.84254.stgit@mhiramat-M0-7522 Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Tom Zanussi <tom.zanussi@intel.com> Signed-off-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com> [ Added initialization flag and automate mutex initialization for non ftrace.c ftrace_probes. ] Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-05-09 12:44:17 +07:00
mutex_unlock(&ops->regex_lock);
free_ftrace_hash(hash);
return ret;
}
static int
ftrace_set_addr(struct ftrace_ops *ops, unsigned long ip, int remove,
int reset, int enable)
{
return ftrace_set_hash(ops, 0, 0, ip, remove, reset, enable);
}
/**
* ftrace_set_filter_ip - set a function to filter on in ftrace by address
* @ops - the ops to set the filter with
* @ip - the address to add to or remove from the filter.
* @remove - non zero to remove the ip from the filter
* @reset - non zero to reset all filters before applying this filter.
*
* Filters denote which functions should be enabled when tracing is enabled
* If @ip is NULL, it failes to update filter.
*/
int ftrace_set_filter_ip(struct ftrace_ops *ops, unsigned long ip,
int remove, int reset)
{
ftrace, kprobes: Fix a deadlock on ftrace_regex_lock Fix a deadlock on ftrace_regex_lock which happens when setting an enable_event trigger on dynamic kprobe event as below. ---- sh-2.05b# echo p vfs_symlink > kprobe_events sh-2.05b# echo vfs_symlink:enable_event:kprobes:p_vfs_symlink_0 > set_ftrace_filter ============================================= [ INFO: possible recursive locking detected ] 3.9.0+ #35 Not tainted --------------------------------------------- sh/72 is trying to acquire lock: (ftrace_regex_lock){+.+.+.}, at: [<ffffffff810ba6c1>] ftrace_set_hash+0x81/0x1f0 but task is already holding lock: (ftrace_regex_lock){+.+.+.}, at: [<ffffffff810b7cbd>] ftrace_regex_write.isra.29.part.30+0x3d/0x220 other info that might help us debug this: Possible unsafe locking scenario: CPU0 ---- lock(ftrace_regex_lock); lock(ftrace_regex_lock); *** DEADLOCK *** ---- To fix that, this introduces a finer regex_lock for each ftrace_ops. ftrace_regex_lock is too big of a lock which protects all filter/notrace_hash operations, but it doesn't need to be a global lock after supporting multiple ftrace_ops because each ftrace_ops has its own filter/notrace_hash. Link: http://lkml.kernel.org/r/20130509054417.30398.84254.stgit@mhiramat-M0-7522 Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Tom Zanussi <tom.zanussi@intel.com> Signed-off-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com> [ Added initialization flag and automate mutex initialization for non ftrace.c ftrace_probes. ] Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-05-09 12:44:17 +07:00
ftrace_ops_init(ops);
return ftrace_set_addr(ops, ip, remove, reset, 1);
}
EXPORT_SYMBOL_GPL(ftrace_set_filter_ip);
static int
ftrace_set_regex(struct ftrace_ops *ops, unsigned char *buf, int len,
int reset, int enable)
{
return ftrace_set_hash(ops, buf, len, 0, 0, reset, enable);
}
/**
* ftrace_set_filter - set a function to filter on in ftrace
* @ops - the ops to set the filter with
* @buf - the string that holds the function filter text.
* @len - the length of the string.
* @reset - non zero to reset all filters before applying this filter.
*
* Filters denote which functions should be enabled when tracing is enabled.
* If @buf is NULL and reset is set, all functions will be enabled for tracing.
*/
int ftrace_set_filter(struct ftrace_ops *ops, unsigned char *buf,
int len, int reset)
{
ftrace, kprobes: Fix a deadlock on ftrace_regex_lock Fix a deadlock on ftrace_regex_lock which happens when setting an enable_event trigger on dynamic kprobe event as below. ---- sh-2.05b# echo p vfs_symlink > kprobe_events sh-2.05b# echo vfs_symlink:enable_event:kprobes:p_vfs_symlink_0 > set_ftrace_filter ============================================= [ INFO: possible recursive locking detected ] 3.9.0+ #35 Not tainted --------------------------------------------- sh/72 is trying to acquire lock: (ftrace_regex_lock){+.+.+.}, at: [<ffffffff810ba6c1>] ftrace_set_hash+0x81/0x1f0 but task is already holding lock: (ftrace_regex_lock){+.+.+.}, at: [<ffffffff810b7cbd>] ftrace_regex_write.isra.29.part.30+0x3d/0x220 other info that might help us debug this: Possible unsafe locking scenario: CPU0 ---- lock(ftrace_regex_lock); lock(ftrace_regex_lock); *** DEADLOCK *** ---- To fix that, this introduces a finer regex_lock for each ftrace_ops. ftrace_regex_lock is too big of a lock which protects all filter/notrace_hash operations, but it doesn't need to be a global lock after supporting multiple ftrace_ops because each ftrace_ops has its own filter/notrace_hash. Link: http://lkml.kernel.org/r/20130509054417.30398.84254.stgit@mhiramat-M0-7522 Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Tom Zanussi <tom.zanussi@intel.com> Signed-off-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com> [ Added initialization flag and automate mutex initialization for non ftrace.c ftrace_probes. ] Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-05-09 12:44:17 +07:00
ftrace_ops_init(ops);
return ftrace_set_regex(ops, buf, len, reset, 1);
}
EXPORT_SYMBOL_GPL(ftrace_set_filter);
/**
* ftrace_set_notrace - set a function to not trace in ftrace
* @ops - the ops to set the notrace filter with
* @buf - the string that holds the function notrace text.
* @len - the length of the string.
* @reset - non zero to reset all filters before applying this filter.
*
* Notrace Filters denote which functions should not be enabled when tracing
* is enabled. If @buf is NULL and reset is set, all functions will be enabled
* for tracing.
*/
int ftrace_set_notrace(struct ftrace_ops *ops, unsigned char *buf,
int len, int reset)
{
ftrace, kprobes: Fix a deadlock on ftrace_regex_lock Fix a deadlock on ftrace_regex_lock which happens when setting an enable_event trigger on dynamic kprobe event as below. ---- sh-2.05b# echo p vfs_symlink > kprobe_events sh-2.05b# echo vfs_symlink:enable_event:kprobes:p_vfs_symlink_0 > set_ftrace_filter ============================================= [ INFO: possible recursive locking detected ] 3.9.0+ #35 Not tainted --------------------------------------------- sh/72 is trying to acquire lock: (ftrace_regex_lock){+.+.+.}, at: [<ffffffff810ba6c1>] ftrace_set_hash+0x81/0x1f0 but task is already holding lock: (ftrace_regex_lock){+.+.+.}, at: [<ffffffff810b7cbd>] ftrace_regex_write.isra.29.part.30+0x3d/0x220 other info that might help us debug this: Possible unsafe locking scenario: CPU0 ---- lock(ftrace_regex_lock); lock(ftrace_regex_lock); *** DEADLOCK *** ---- To fix that, this introduces a finer regex_lock for each ftrace_ops. ftrace_regex_lock is too big of a lock which protects all filter/notrace_hash operations, but it doesn't need to be a global lock after supporting multiple ftrace_ops because each ftrace_ops has its own filter/notrace_hash. Link: http://lkml.kernel.org/r/20130509054417.30398.84254.stgit@mhiramat-M0-7522 Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Tom Zanussi <tom.zanussi@intel.com> Signed-off-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com> [ Added initialization flag and automate mutex initialization for non ftrace.c ftrace_probes. ] Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-05-09 12:44:17 +07:00
ftrace_ops_init(ops);
return ftrace_set_regex(ops, buf, len, reset, 0);
}
EXPORT_SYMBOL_GPL(ftrace_set_notrace);
/**
* ftrace_set_filter - set a function to filter on in ftrace
* @ops - the ops to set the filter with
* @buf - the string that holds the function filter text.
* @len - the length of the string.
* @reset - non zero to reset all filters before applying this filter.
*
* Filters denote which functions should be enabled when tracing is enabled.
* If @buf is NULL and reset is set, all functions will be enabled for tracing.
*/
void ftrace_set_global_filter(unsigned char *buf, int len, int reset)
{
ftrace_set_regex(&global_ops, buf, len, reset, 1);
}
EXPORT_SYMBOL_GPL(ftrace_set_global_filter);
/**
* ftrace_set_notrace - set a function to not trace in ftrace
* @ops - the ops to set the notrace filter with
* @buf - the string that holds the function notrace text.
* @len - the length of the string.
* @reset - non zero to reset all filters before applying this filter.
*
* Notrace Filters denote which functions should not be enabled when tracing
* is enabled. If @buf is NULL and reset is set, all functions will be enabled
* for tracing.
*/
void ftrace_set_global_notrace(unsigned char *buf, int len, int reset)
{
ftrace_set_regex(&global_ops, buf, len, reset, 0);
}
EXPORT_SYMBOL_GPL(ftrace_set_global_notrace);
/*
* command line interface to allow users to set filters on boot up.
*/
#define FTRACE_FILTER_SIZE COMMAND_LINE_SIZE
static char ftrace_notrace_buf[FTRACE_FILTER_SIZE] __initdata;
static char ftrace_filter_buf[FTRACE_FILTER_SIZE] __initdata;
/* Used by function selftest to not test if filter is set */
bool ftrace_filter_param __initdata;
static int __init set_ftrace_notrace(char *str)
{
ftrace_filter_param = true;
strlcpy(ftrace_notrace_buf, str, FTRACE_FILTER_SIZE);
return 1;
}
__setup("ftrace_notrace=", set_ftrace_notrace);
static int __init set_ftrace_filter(char *str)
{
ftrace_filter_param = true;
strlcpy(ftrace_filter_buf, str, FTRACE_FILTER_SIZE);
return 1;
}
__setup("ftrace_filter=", set_ftrace_filter);
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
static char ftrace_graph_buf[FTRACE_FILTER_SIZE] __initdata;
static int ftrace_set_func(unsigned long *array, int *idx, char *buffer);
static int __init set_graph_function(char *str)
{
strlcpy(ftrace_graph_buf, str, FTRACE_FILTER_SIZE);
return 1;
}
__setup("ftrace_graph_filter=", set_graph_function);
static void __init set_ftrace_early_graph(char *buf)
{
int ret;
char *func;
while (buf) {
func = strsep(&buf, ",");
/* we allow only one expression at a time */
ret = ftrace_set_func(ftrace_graph_funcs, &ftrace_graph_count,
func);
if (ret)
printk(KERN_DEBUG "ftrace: function %s not "
"traceable\n", func);
}
}
#endif /* CONFIG_FUNCTION_GRAPH_TRACER */
void __init
ftrace_set_early_filter(struct ftrace_ops *ops, char *buf, int enable)
{
char *func;
ftrace, kprobes: Fix a deadlock on ftrace_regex_lock Fix a deadlock on ftrace_regex_lock which happens when setting an enable_event trigger on dynamic kprobe event as below. ---- sh-2.05b# echo p vfs_symlink > kprobe_events sh-2.05b# echo vfs_symlink:enable_event:kprobes:p_vfs_symlink_0 > set_ftrace_filter ============================================= [ INFO: possible recursive locking detected ] 3.9.0+ #35 Not tainted --------------------------------------------- sh/72 is trying to acquire lock: (ftrace_regex_lock){+.+.+.}, at: [<ffffffff810ba6c1>] ftrace_set_hash+0x81/0x1f0 but task is already holding lock: (ftrace_regex_lock){+.+.+.}, at: [<ffffffff810b7cbd>] ftrace_regex_write.isra.29.part.30+0x3d/0x220 other info that might help us debug this: Possible unsafe locking scenario: CPU0 ---- lock(ftrace_regex_lock); lock(ftrace_regex_lock); *** DEADLOCK *** ---- To fix that, this introduces a finer regex_lock for each ftrace_ops. ftrace_regex_lock is too big of a lock which protects all filter/notrace_hash operations, but it doesn't need to be a global lock after supporting multiple ftrace_ops because each ftrace_ops has its own filter/notrace_hash. Link: http://lkml.kernel.org/r/20130509054417.30398.84254.stgit@mhiramat-M0-7522 Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Tom Zanussi <tom.zanussi@intel.com> Signed-off-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com> [ Added initialization flag and automate mutex initialization for non ftrace.c ftrace_probes. ] Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-05-09 12:44:17 +07:00
ftrace_ops_init(ops);
while (buf) {
func = strsep(&buf, ",");
ftrace_set_regex(ops, func, strlen(func), 0, enable);
}
}
static void __init set_ftrace_early_filters(void)
{
if (ftrace_filter_buf[0])
ftrace_set_early_filter(&global_ops, ftrace_filter_buf, 1);
if (ftrace_notrace_buf[0])
ftrace_set_early_filter(&global_ops, ftrace_notrace_buf, 0);
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
if (ftrace_graph_buf[0])
set_ftrace_early_graph(ftrace_graph_buf);
#endif /* CONFIG_FUNCTION_GRAPH_TRACER */
}
int ftrace_regex_release(struct inode *inode, struct file *file)
ftrace: add filter select functions to trace This patch adds two files to the debugfs system: /debugfs/tracing/available_filter_functions and /debugfs/tracing/set_ftrace_filter The available_filter_functions lists all functions that has been recorded by the ftraced that has called the ftrace_record_ip function. This is to allow users to see what functions have been converted to nops and can be enabled for tracing. To enable functions, simply echo the names (whitespace delimited) into set_ftrace_filter. Simple wildcards are also allowed. echo 'scheduler' > /debugfs/tracing/set_ftrace_filter Will have only the scheduler be activated when tracing is enabled. echo 'sched_*' > /debugfs/tracing/set_ftrace_filter Will have only the functions starting with 'sched_' be activated. echo '*lock' > /debugfs/tracing/set_ftrace_filter Will have only functions ending with 'lock' be activated. echo '*lock*' > /debugfs/tracing/set_ftrace_filter Will have only functions with 'lock' in its name be activated. Note: 'sched*lock' will not work. The only wildcards that are allowed is an asterisk and the beginning and or end of the string passed in. Multiple names can be passed in with whitespace delimited: echo 'scheduler *lock *acpi*' > /debugfs/tracing/set_ftrace_filter is also the same as: echo 'scheduler' > /debugfs/tracing/set_ftrace_filter echo '*lock' >> /debugfs/tracing/set_ftrace_filter echo '*acpi*' >> /debugfs/tracing/set_ftrace_filter Appending does just that. It appends to the list. To disable all filters simply echo an empty line in: echo > /debugfs/tracing/set_ftrace_filter Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 02:20:43 +07:00
{
struct seq_file *m = (struct seq_file *)file->private_data;
struct ftrace_iterator *iter;
struct ftrace_hash **orig_hash;
struct trace_parser *parser;
int filter_hash;
int ret;
ftrace: add filter select functions to trace This patch adds two files to the debugfs system: /debugfs/tracing/available_filter_functions and /debugfs/tracing/set_ftrace_filter The available_filter_functions lists all functions that has been recorded by the ftraced that has called the ftrace_record_ip function. This is to allow users to see what functions have been converted to nops and can be enabled for tracing. To enable functions, simply echo the names (whitespace delimited) into set_ftrace_filter. Simple wildcards are also allowed. echo 'scheduler' > /debugfs/tracing/set_ftrace_filter Will have only the scheduler be activated when tracing is enabled. echo 'sched_*' > /debugfs/tracing/set_ftrace_filter Will have only the functions starting with 'sched_' be activated. echo '*lock' > /debugfs/tracing/set_ftrace_filter Will have only functions ending with 'lock' be activated. echo '*lock*' > /debugfs/tracing/set_ftrace_filter Will have only functions with 'lock' in its name be activated. Note: 'sched*lock' will not work. The only wildcards that are allowed is an asterisk and the beginning and or end of the string passed in. Multiple names can be passed in with whitespace delimited: echo 'scheduler *lock *acpi*' > /debugfs/tracing/set_ftrace_filter is also the same as: echo 'scheduler' > /debugfs/tracing/set_ftrace_filter echo '*lock' >> /debugfs/tracing/set_ftrace_filter echo '*acpi*' >> /debugfs/tracing/set_ftrace_filter Appending does just that. It appends to the list. To disable all filters simply echo an empty line in: echo > /debugfs/tracing/set_ftrace_filter Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 02:20:43 +07:00
if (file->f_mode & FMODE_READ) {
iter = m->private;
seq_release(inode, file);
} else
iter = file->private_data;
parser = &iter->parser;
if (trace_parser_loaded(parser)) {
parser->buffer[parser->idx] = 0;
ftrace_match_records(iter->hash, parser->buffer, parser->idx);
ftrace: add filter select functions to trace This patch adds two files to the debugfs system: /debugfs/tracing/available_filter_functions and /debugfs/tracing/set_ftrace_filter The available_filter_functions lists all functions that has been recorded by the ftraced that has called the ftrace_record_ip function. This is to allow users to see what functions have been converted to nops and can be enabled for tracing. To enable functions, simply echo the names (whitespace delimited) into set_ftrace_filter. Simple wildcards are also allowed. echo 'scheduler' > /debugfs/tracing/set_ftrace_filter Will have only the scheduler be activated when tracing is enabled. echo 'sched_*' > /debugfs/tracing/set_ftrace_filter Will have only the functions starting with 'sched_' be activated. echo '*lock' > /debugfs/tracing/set_ftrace_filter Will have only functions ending with 'lock' be activated. echo '*lock*' > /debugfs/tracing/set_ftrace_filter Will have only functions with 'lock' in its name be activated. Note: 'sched*lock' will not work. The only wildcards that are allowed is an asterisk and the beginning and or end of the string passed in. Multiple names can be passed in with whitespace delimited: echo 'scheduler *lock *acpi*' > /debugfs/tracing/set_ftrace_filter is also the same as: echo 'scheduler' > /debugfs/tracing/set_ftrace_filter echo '*lock' >> /debugfs/tracing/set_ftrace_filter echo '*acpi*' >> /debugfs/tracing/set_ftrace_filter Appending does just that. It appends to the list. To disable all filters simply echo an empty line in: echo > /debugfs/tracing/set_ftrace_filter Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 02:20:43 +07:00
}
trace_parser_put(parser);
mutex_lock(&iter->ops->regex_lock);
if (file->f_mode & FMODE_WRITE) {
filter_hash = !!(iter->flags & FTRACE_ITER_FILTER);
if (filter_hash)
orig_hash = &iter->ops->filter_hash;
else
orig_hash = &iter->ops->notrace_hash;
mutex_lock(&ftrace_lock);
ret = ftrace_hash_move(iter->ops, filter_hash,
orig_hash, iter->hash);
if (!ret)
ftrace_ops_update_code(iter->ops);
mutex_unlock(&ftrace_lock);
}
mutex_unlock(&iter->ops->regex_lock);
free_ftrace_hash(iter->hash);
kfree(iter);
ftrace: add filter select functions to trace This patch adds two files to the debugfs system: /debugfs/tracing/available_filter_functions and /debugfs/tracing/set_ftrace_filter The available_filter_functions lists all functions that has been recorded by the ftraced that has called the ftrace_record_ip function. This is to allow users to see what functions have been converted to nops and can be enabled for tracing. To enable functions, simply echo the names (whitespace delimited) into set_ftrace_filter. Simple wildcards are also allowed. echo 'scheduler' > /debugfs/tracing/set_ftrace_filter Will have only the scheduler be activated when tracing is enabled. echo 'sched_*' > /debugfs/tracing/set_ftrace_filter Will have only the functions starting with 'sched_' be activated. echo '*lock' > /debugfs/tracing/set_ftrace_filter Will have only functions ending with 'lock' be activated. echo '*lock*' > /debugfs/tracing/set_ftrace_filter Will have only functions with 'lock' in its name be activated. Note: 'sched*lock' will not work. The only wildcards that are allowed is an asterisk and the beginning and or end of the string passed in. Multiple names can be passed in with whitespace delimited: echo 'scheduler *lock *acpi*' > /debugfs/tracing/set_ftrace_filter is also the same as: echo 'scheduler' > /debugfs/tracing/set_ftrace_filter echo '*lock' >> /debugfs/tracing/set_ftrace_filter echo '*acpi*' >> /debugfs/tracing/set_ftrace_filter Appending does just that. It appends to the list. To disable all filters simply echo an empty line in: echo > /debugfs/tracing/set_ftrace_filter Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 02:20:43 +07:00
return 0;
}
static const struct file_operations ftrace_avail_fops = {
ftrace: add filter select functions to trace This patch adds two files to the debugfs system: /debugfs/tracing/available_filter_functions and /debugfs/tracing/set_ftrace_filter The available_filter_functions lists all functions that has been recorded by the ftraced that has called the ftrace_record_ip function. This is to allow users to see what functions have been converted to nops and can be enabled for tracing. To enable functions, simply echo the names (whitespace delimited) into set_ftrace_filter. Simple wildcards are also allowed. echo 'scheduler' > /debugfs/tracing/set_ftrace_filter Will have only the scheduler be activated when tracing is enabled. echo 'sched_*' > /debugfs/tracing/set_ftrace_filter Will have only the functions starting with 'sched_' be activated. echo '*lock' > /debugfs/tracing/set_ftrace_filter Will have only functions ending with 'lock' be activated. echo '*lock*' > /debugfs/tracing/set_ftrace_filter Will have only functions with 'lock' in its name be activated. Note: 'sched*lock' will not work. The only wildcards that are allowed is an asterisk and the beginning and or end of the string passed in. Multiple names can be passed in with whitespace delimited: echo 'scheduler *lock *acpi*' > /debugfs/tracing/set_ftrace_filter is also the same as: echo 'scheduler' > /debugfs/tracing/set_ftrace_filter echo '*lock' >> /debugfs/tracing/set_ftrace_filter echo '*acpi*' >> /debugfs/tracing/set_ftrace_filter Appending does just that. It appends to the list. To disable all filters simply echo an empty line in: echo > /debugfs/tracing/set_ftrace_filter Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 02:20:43 +07:00
.open = ftrace_avail_open,
.read = seq_read,
.llseek = seq_lseek,
.release = seq_release_private,
ftrace: add filter select functions to trace This patch adds two files to the debugfs system: /debugfs/tracing/available_filter_functions and /debugfs/tracing/set_ftrace_filter The available_filter_functions lists all functions that has been recorded by the ftraced that has called the ftrace_record_ip function. This is to allow users to see what functions have been converted to nops and can be enabled for tracing. To enable functions, simply echo the names (whitespace delimited) into set_ftrace_filter. Simple wildcards are also allowed. echo 'scheduler' > /debugfs/tracing/set_ftrace_filter Will have only the scheduler be activated when tracing is enabled. echo 'sched_*' > /debugfs/tracing/set_ftrace_filter Will have only the functions starting with 'sched_' be activated. echo '*lock' > /debugfs/tracing/set_ftrace_filter Will have only functions ending with 'lock' be activated. echo '*lock*' > /debugfs/tracing/set_ftrace_filter Will have only functions with 'lock' in its name be activated. Note: 'sched*lock' will not work. The only wildcards that are allowed is an asterisk and the beginning and or end of the string passed in. Multiple names can be passed in with whitespace delimited: echo 'scheduler *lock *acpi*' > /debugfs/tracing/set_ftrace_filter is also the same as: echo 'scheduler' > /debugfs/tracing/set_ftrace_filter echo '*lock' >> /debugfs/tracing/set_ftrace_filter echo '*acpi*' >> /debugfs/tracing/set_ftrace_filter Appending does just that. It appends to the list. To disable all filters simply echo an empty line in: echo > /debugfs/tracing/set_ftrace_filter Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 02:20:43 +07:00
};
static const struct file_operations ftrace_enabled_fops = {
.open = ftrace_enabled_open,
.read = seq_read,
.llseek = seq_lseek,
.release = seq_release_private,
};
static const struct file_operations ftrace_filter_fops = {
ftrace: add filter select functions to trace This patch adds two files to the debugfs system: /debugfs/tracing/available_filter_functions and /debugfs/tracing/set_ftrace_filter The available_filter_functions lists all functions that has been recorded by the ftraced that has called the ftrace_record_ip function. This is to allow users to see what functions have been converted to nops and can be enabled for tracing. To enable functions, simply echo the names (whitespace delimited) into set_ftrace_filter. Simple wildcards are also allowed. echo 'scheduler' > /debugfs/tracing/set_ftrace_filter Will have only the scheduler be activated when tracing is enabled. echo 'sched_*' > /debugfs/tracing/set_ftrace_filter Will have only the functions starting with 'sched_' be activated. echo '*lock' > /debugfs/tracing/set_ftrace_filter Will have only functions ending with 'lock' be activated. echo '*lock*' > /debugfs/tracing/set_ftrace_filter Will have only functions with 'lock' in its name be activated. Note: 'sched*lock' will not work. The only wildcards that are allowed is an asterisk and the beginning and or end of the string passed in. Multiple names can be passed in with whitespace delimited: echo 'scheduler *lock *acpi*' > /debugfs/tracing/set_ftrace_filter is also the same as: echo 'scheduler' > /debugfs/tracing/set_ftrace_filter echo '*lock' >> /debugfs/tracing/set_ftrace_filter echo '*acpi*' >> /debugfs/tracing/set_ftrace_filter Appending does just that. It appends to the list. To disable all filters simply echo an empty line in: echo > /debugfs/tracing/set_ftrace_filter Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 02:20:43 +07:00
.open = ftrace_filter_open,
.read = seq_read,
ftrace: add filter select functions to trace This patch adds two files to the debugfs system: /debugfs/tracing/available_filter_functions and /debugfs/tracing/set_ftrace_filter The available_filter_functions lists all functions that has been recorded by the ftraced that has called the ftrace_record_ip function. This is to allow users to see what functions have been converted to nops and can be enabled for tracing. To enable functions, simply echo the names (whitespace delimited) into set_ftrace_filter. Simple wildcards are also allowed. echo 'scheduler' > /debugfs/tracing/set_ftrace_filter Will have only the scheduler be activated when tracing is enabled. echo 'sched_*' > /debugfs/tracing/set_ftrace_filter Will have only the functions starting with 'sched_' be activated. echo '*lock' > /debugfs/tracing/set_ftrace_filter Will have only functions ending with 'lock' be activated. echo '*lock*' > /debugfs/tracing/set_ftrace_filter Will have only functions with 'lock' in its name be activated. Note: 'sched*lock' will not work. The only wildcards that are allowed is an asterisk and the beginning and or end of the string passed in. Multiple names can be passed in with whitespace delimited: echo 'scheduler *lock *acpi*' > /debugfs/tracing/set_ftrace_filter is also the same as: echo 'scheduler' > /debugfs/tracing/set_ftrace_filter echo '*lock' >> /debugfs/tracing/set_ftrace_filter echo '*acpi*' >> /debugfs/tracing/set_ftrace_filter Appending does just that. It appends to the list. To disable all filters simply echo an empty line in: echo > /debugfs/tracing/set_ftrace_filter Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 02:20:43 +07:00
.write = ftrace_filter_write,
.llseek = ftrace_filter_lseek,
.release = ftrace_regex_release,
ftrace: add filter select functions to trace This patch adds two files to the debugfs system: /debugfs/tracing/available_filter_functions and /debugfs/tracing/set_ftrace_filter The available_filter_functions lists all functions that has been recorded by the ftraced that has called the ftrace_record_ip function. This is to allow users to see what functions have been converted to nops and can be enabled for tracing. To enable functions, simply echo the names (whitespace delimited) into set_ftrace_filter. Simple wildcards are also allowed. echo 'scheduler' > /debugfs/tracing/set_ftrace_filter Will have only the scheduler be activated when tracing is enabled. echo 'sched_*' > /debugfs/tracing/set_ftrace_filter Will have only the functions starting with 'sched_' be activated. echo '*lock' > /debugfs/tracing/set_ftrace_filter Will have only functions ending with 'lock' be activated. echo '*lock*' > /debugfs/tracing/set_ftrace_filter Will have only functions with 'lock' in its name be activated. Note: 'sched*lock' will not work. The only wildcards that are allowed is an asterisk and the beginning and or end of the string passed in. Multiple names can be passed in with whitespace delimited: echo 'scheduler *lock *acpi*' > /debugfs/tracing/set_ftrace_filter is also the same as: echo 'scheduler' > /debugfs/tracing/set_ftrace_filter echo '*lock' >> /debugfs/tracing/set_ftrace_filter echo '*acpi*' >> /debugfs/tracing/set_ftrace_filter Appending does just that. It appends to the list. To disable all filters simply echo an empty line in: echo > /debugfs/tracing/set_ftrace_filter Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 02:20:43 +07:00
};
static const struct file_operations ftrace_notrace_fops = {
.open = ftrace_notrace_open,
.read = seq_read,
.write = ftrace_notrace_write,
.llseek = ftrace_filter_lseek,
.release = ftrace_regex_release,
};
ftrace: graph of a single function This patch adds the file: /debugfs/tracing/set_graph_function which can be used along with the function graph tracer. When this file is empty, the function graph tracer will act as usual. When the file has a function in it, the function graph tracer will only trace that function. For example: # echo blk_unplug > /debugfs/tracing/set_graph_function # cat /debugfs/tracing/trace [...] ------------------------------------------ | 2) make-19003 => kjournald-2219 ------------------------------------------ 2) | blk_unplug() { 2) | dm_unplug_all() { 2) | dm_get_table() { 2) 1.381 us | _read_lock(); 2) 0.911 us | dm_table_get(); 2) 1. 76 us | _read_unlock(); 2) + 12.912 us | } 2) | dm_table_unplug_all() { 2) | blk_unplug() { 2) 0.778 us | generic_unplug_device(); 2) 2.409 us | } 2) 5.992 us | } 2) 0.813 us | dm_table_put(); 2) + 29. 90 us | } 2) + 34.532 us | } You can add up to 32 functions into this file. Currently we limit it to 32, but this may change with later improvements. To add another function, use the append '>>': # echo sys_read >> /debugfs/tracing/set_graph_function # cat /debugfs/tracing/set_graph_function blk_unplug sys_read Using the '>' will clear out the function and write anew: # echo sys_write > /debug/tracing/set_graph_function # cat /debug/tracing/set_graph_function sys_write Note, if you have function graph running while doing this, the small time between clearing it and updating it will cause the graph to record all functions. This should not be an issue because after it sets the filter, only those functions will be recorded from then on. If you need to only record a particular function then set this file first before starting the function graph tracer. In the future this side effect may be corrected. The set_graph_function file is similar to the set_ftrace_filter but it does not take wild cards nor does it allow for more than one function to be set with a single write. There is no technical reason why this is the case, I just do not have the time yet to implement that. Note, dynamic ftrace must be enabled for this to appear because it uses the dynamic ftrace records to match the name to the mcount call sites. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-04 03:36:57 +07:00
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
static DEFINE_MUTEX(graph_lock);
int ftrace_graph_count;
int ftrace_graph_filter_enabled;
ftrace: graph of a single function This patch adds the file: /debugfs/tracing/set_graph_function which can be used along with the function graph tracer. When this file is empty, the function graph tracer will act as usual. When the file has a function in it, the function graph tracer will only trace that function. For example: # echo blk_unplug > /debugfs/tracing/set_graph_function # cat /debugfs/tracing/trace [...] ------------------------------------------ | 2) make-19003 => kjournald-2219 ------------------------------------------ 2) | blk_unplug() { 2) | dm_unplug_all() { 2) | dm_get_table() { 2) 1.381 us | _read_lock(); 2) 0.911 us | dm_table_get(); 2) 1. 76 us | _read_unlock(); 2) + 12.912 us | } 2) | dm_table_unplug_all() { 2) | blk_unplug() { 2) 0.778 us | generic_unplug_device(); 2) 2.409 us | } 2) 5.992 us | } 2) 0.813 us | dm_table_put(); 2) + 29. 90 us | } 2) + 34.532 us | } You can add up to 32 functions into this file. Currently we limit it to 32, but this may change with later improvements. To add another function, use the append '>>': # echo sys_read >> /debugfs/tracing/set_graph_function # cat /debugfs/tracing/set_graph_function blk_unplug sys_read Using the '>' will clear out the function and write anew: # echo sys_write > /debug/tracing/set_graph_function # cat /debug/tracing/set_graph_function sys_write Note, if you have function graph running while doing this, the small time between clearing it and updating it will cause the graph to record all functions. This should not be an issue because after it sets the filter, only those functions will be recorded from then on. If you need to only record a particular function then set this file first before starting the function graph tracer. In the future this side effect may be corrected. The set_graph_function file is similar to the set_ftrace_filter but it does not take wild cards nor does it allow for more than one function to be set with a single write. There is no technical reason why this is the case, I just do not have the time yet to implement that. Note, dynamic ftrace must be enabled for this to appear because it uses the dynamic ftrace records to match the name to the mcount call sites. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-04 03:36:57 +07:00
unsigned long ftrace_graph_funcs[FTRACE_GRAPH_MAX_FUNCS] __read_mostly;
static void *
__g_next(struct seq_file *m, loff_t *pos)
ftrace: graph of a single function This patch adds the file: /debugfs/tracing/set_graph_function which can be used along with the function graph tracer. When this file is empty, the function graph tracer will act as usual. When the file has a function in it, the function graph tracer will only trace that function. For example: # echo blk_unplug > /debugfs/tracing/set_graph_function # cat /debugfs/tracing/trace [...] ------------------------------------------ | 2) make-19003 => kjournald-2219 ------------------------------------------ 2) | blk_unplug() { 2) | dm_unplug_all() { 2) | dm_get_table() { 2) 1.381 us | _read_lock(); 2) 0.911 us | dm_table_get(); 2) 1. 76 us | _read_unlock(); 2) + 12.912 us | } 2) | dm_table_unplug_all() { 2) | blk_unplug() { 2) 0.778 us | generic_unplug_device(); 2) 2.409 us | } 2) 5.992 us | } 2) 0.813 us | dm_table_put(); 2) + 29. 90 us | } 2) + 34.532 us | } You can add up to 32 functions into this file. Currently we limit it to 32, but this may change with later improvements. To add another function, use the append '>>': # echo sys_read >> /debugfs/tracing/set_graph_function # cat /debugfs/tracing/set_graph_function blk_unplug sys_read Using the '>' will clear out the function and write anew: # echo sys_write > /debug/tracing/set_graph_function # cat /debug/tracing/set_graph_function sys_write Note, if you have function graph running while doing this, the small time between clearing it and updating it will cause the graph to record all functions. This should not be an issue because after it sets the filter, only those functions will be recorded from then on. If you need to only record a particular function then set this file first before starting the function graph tracer. In the future this side effect may be corrected. The set_graph_function file is similar to the set_ftrace_filter but it does not take wild cards nor does it allow for more than one function to be set with a single write. There is no technical reason why this is the case, I just do not have the time yet to implement that. Note, dynamic ftrace must be enabled for this to appear because it uses the dynamic ftrace records to match the name to the mcount call sites. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-04 03:36:57 +07:00
{
if (*pos >= ftrace_graph_count)
ftrace: graph of a single function This patch adds the file: /debugfs/tracing/set_graph_function which can be used along with the function graph tracer. When this file is empty, the function graph tracer will act as usual. When the file has a function in it, the function graph tracer will only trace that function. For example: # echo blk_unplug > /debugfs/tracing/set_graph_function # cat /debugfs/tracing/trace [...] ------------------------------------------ | 2) make-19003 => kjournald-2219 ------------------------------------------ 2) | blk_unplug() { 2) | dm_unplug_all() { 2) | dm_get_table() { 2) 1.381 us | _read_lock(); 2) 0.911 us | dm_table_get(); 2) 1. 76 us | _read_unlock(); 2) + 12.912 us | } 2) | dm_table_unplug_all() { 2) | blk_unplug() { 2) 0.778 us | generic_unplug_device(); 2) 2.409 us | } 2) 5.992 us | } 2) 0.813 us | dm_table_put(); 2) + 29. 90 us | } 2) + 34.532 us | } You can add up to 32 functions into this file. Currently we limit it to 32, but this may change with later improvements. To add another function, use the append '>>': # echo sys_read >> /debugfs/tracing/set_graph_function # cat /debugfs/tracing/set_graph_function blk_unplug sys_read Using the '>' will clear out the function and write anew: # echo sys_write > /debug/tracing/set_graph_function # cat /debug/tracing/set_graph_function sys_write Note, if you have function graph running while doing this, the small time between clearing it and updating it will cause the graph to record all functions. This should not be an issue because after it sets the filter, only those functions will be recorded from then on. If you need to only record a particular function then set this file first before starting the function graph tracer. In the future this side effect may be corrected. The set_graph_function file is similar to the set_ftrace_filter but it does not take wild cards nor does it allow for more than one function to be set with a single write. There is no technical reason why this is the case, I just do not have the time yet to implement that. Note, dynamic ftrace must be enabled for this to appear because it uses the dynamic ftrace records to match the name to the mcount call sites. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-04 03:36:57 +07:00
return NULL;
return &ftrace_graph_funcs[*pos];
}
ftrace: graph of a single function This patch adds the file: /debugfs/tracing/set_graph_function which can be used along with the function graph tracer. When this file is empty, the function graph tracer will act as usual. When the file has a function in it, the function graph tracer will only trace that function. For example: # echo blk_unplug > /debugfs/tracing/set_graph_function # cat /debugfs/tracing/trace [...] ------------------------------------------ | 2) make-19003 => kjournald-2219 ------------------------------------------ 2) | blk_unplug() { 2) | dm_unplug_all() { 2) | dm_get_table() { 2) 1.381 us | _read_lock(); 2) 0.911 us | dm_table_get(); 2) 1. 76 us | _read_unlock(); 2) + 12.912 us | } 2) | dm_table_unplug_all() { 2) | blk_unplug() { 2) 0.778 us | generic_unplug_device(); 2) 2.409 us | } 2) 5.992 us | } 2) 0.813 us | dm_table_put(); 2) + 29. 90 us | } 2) + 34.532 us | } You can add up to 32 functions into this file. Currently we limit it to 32, but this may change with later improvements. To add another function, use the append '>>': # echo sys_read >> /debugfs/tracing/set_graph_function # cat /debugfs/tracing/set_graph_function blk_unplug sys_read Using the '>' will clear out the function and write anew: # echo sys_write > /debug/tracing/set_graph_function # cat /debug/tracing/set_graph_function sys_write Note, if you have function graph running while doing this, the small time between clearing it and updating it will cause the graph to record all functions. This should not be an issue because after it sets the filter, only those functions will be recorded from then on. If you need to only record a particular function then set this file first before starting the function graph tracer. In the future this side effect may be corrected. The set_graph_function file is similar to the set_ftrace_filter but it does not take wild cards nor does it allow for more than one function to be set with a single write. There is no technical reason why this is the case, I just do not have the time yet to implement that. Note, dynamic ftrace must be enabled for this to appear because it uses the dynamic ftrace records to match the name to the mcount call sites. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-04 03:36:57 +07:00
static void *
g_next(struct seq_file *m, void *v, loff_t *pos)
{
(*pos)++;
return __g_next(m, pos);
ftrace: graph of a single function This patch adds the file: /debugfs/tracing/set_graph_function which can be used along with the function graph tracer. When this file is empty, the function graph tracer will act as usual. When the file has a function in it, the function graph tracer will only trace that function. For example: # echo blk_unplug > /debugfs/tracing/set_graph_function # cat /debugfs/tracing/trace [...] ------------------------------------------ | 2) make-19003 => kjournald-2219 ------------------------------------------ 2) | blk_unplug() { 2) | dm_unplug_all() { 2) | dm_get_table() { 2) 1.381 us | _read_lock(); 2) 0.911 us | dm_table_get(); 2) 1. 76 us | _read_unlock(); 2) + 12.912 us | } 2) | dm_table_unplug_all() { 2) | blk_unplug() { 2) 0.778 us | generic_unplug_device(); 2) 2.409 us | } 2) 5.992 us | } 2) 0.813 us | dm_table_put(); 2) + 29. 90 us | } 2) + 34.532 us | } You can add up to 32 functions into this file. Currently we limit it to 32, but this may change with later improvements. To add another function, use the append '>>': # echo sys_read >> /debugfs/tracing/set_graph_function # cat /debugfs/tracing/set_graph_function blk_unplug sys_read Using the '>' will clear out the function and write anew: # echo sys_write > /debug/tracing/set_graph_function # cat /debug/tracing/set_graph_function sys_write Note, if you have function graph running while doing this, the small time between clearing it and updating it will cause the graph to record all functions. This should not be an issue because after it sets the filter, only those functions will be recorded from then on. If you need to only record a particular function then set this file first before starting the function graph tracer. In the future this side effect may be corrected. The set_graph_function file is similar to the set_ftrace_filter but it does not take wild cards nor does it allow for more than one function to be set with a single write. There is no technical reason why this is the case, I just do not have the time yet to implement that. Note, dynamic ftrace must be enabled for this to appear because it uses the dynamic ftrace records to match the name to the mcount call sites. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-04 03:36:57 +07:00
}
static void *g_start(struct seq_file *m, loff_t *pos)
{
mutex_lock(&graph_lock);
/* Nothing, tell g_show to print all functions are enabled */
if (!ftrace_graph_filter_enabled && !*pos)
return (void *)1;
return __g_next(m, pos);
ftrace: graph of a single function This patch adds the file: /debugfs/tracing/set_graph_function which can be used along with the function graph tracer. When this file is empty, the function graph tracer will act as usual. When the file has a function in it, the function graph tracer will only trace that function. For example: # echo blk_unplug > /debugfs/tracing/set_graph_function # cat /debugfs/tracing/trace [...] ------------------------------------------ | 2) make-19003 => kjournald-2219 ------------------------------------------ 2) | blk_unplug() { 2) | dm_unplug_all() { 2) | dm_get_table() { 2) 1.381 us | _read_lock(); 2) 0.911 us | dm_table_get(); 2) 1. 76 us | _read_unlock(); 2) + 12.912 us | } 2) | dm_table_unplug_all() { 2) | blk_unplug() { 2) 0.778 us | generic_unplug_device(); 2) 2.409 us | } 2) 5.992 us | } 2) 0.813 us | dm_table_put(); 2) + 29. 90 us | } 2) + 34.532 us | } You can add up to 32 functions into this file. Currently we limit it to 32, but this may change with later improvements. To add another function, use the append '>>': # echo sys_read >> /debugfs/tracing/set_graph_function # cat /debugfs/tracing/set_graph_function blk_unplug sys_read Using the '>' will clear out the function and write anew: # echo sys_write > /debug/tracing/set_graph_function # cat /debug/tracing/set_graph_function sys_write Note, if you have function graph running while doing this, the small time between clearing it and updating it will cause the graph to record all functions. This should not be an issue because after it sets the filter, only those functions will be recorded from then on. If you need to only record a particular function then set this file first before starting the function graph tracer. In the future this side effect may be corrected. The set_graph_function file is similar to the set_ftrace_filter but it does not take wild cards nor does it allow for more than one function to be set with a single write. There is no technical reason why this is the case, I just do not have the time yet to implement that. Note, dynamic ftrace must be enabled for this to appear because it uses the dynamic ftrace records to match the name to the mcount call sites. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-04 03:36:57 +07:00
}
static void g_stop(struct seq_file *m, void *p)
{
mutex_unlock(&graph_lock);
}
static int g_show(struct seq_file *m, void *v)
{
unsigned long *ptr = v;
if (!ptr)
return 0;
if (ptr == (unsigned long *)1) {
seq_printf(m, "#### all functions enabled ####\n");
return 0;
}
seq_printf(m, "%ps\n", (void *)*ptr);
ftrace: graph of a single function This patch adds the file: /debugfs/tracing/set_graph_function which can be used along with the function graph tracer. When this file is empty, the function graph tracer will act as usual. When the file has a function in it, the function graph tracer will only trace that function. For example: # echo blk_unplug > /debugfs/tracing/set_graph_function # cat /debugfs/tracing/trace [...] ------------------------------------------ | 2) make-19003 => kjournald-2219 ------------------------------------------ 2) | blk_unplug() { 2) | dm_unplug_all() { 2) | dm_get_table() { 2) 1.381 us | _read_lock(); 2) 0.911 us | dm_table_get(); 2) 1. 76 us | _read_unlock(); 2) + 12.912 us | } 2) | dm_table_unplug_all() { 2) | blk_unplug() { 2) 0.778 us | generic_unplug_device(); 2) 2.409 us | } 2) 5.992 us | } 2) 0.813 us | dm_table_put(); 2) + 29. 90 us | } 2) + 34.532 us | } You can add up to 32 functions into this file. Currently we limit it to 32, but this may change with later improvements. To add another function, use the append '>>': # echo sys_read >> /debugfs/tracing/set_graph_function # cat /debugfs/tracing/set_graph_function blk_unplug sys_read Using the '>' will clear out the function and write anew: # echo sys_write > /debug/tracing/set_graph_function # cat /debug/tracing/set_graph_function sys_write Note, if you have function graph running while doing this, the small time between clearing it and updating it will cause the graph to record all functions. This should not be an issue because after it sets the filter, only those functions will be recorded from then on. If you need to only record a particular function then set this file first before starting the function graph tracer. In the future this side effect may be corrected. The set_graph_function file is similar to the set_ftrace_filter but it does not take wild cards nor does it allow for more than one function to be set with a single write. There is no technical reason why this is the case, I just do not have the time yet to implement that. Note, dynamic ftrace must be enabled for this to appear because it uses the dynamic ftrace records to match the name to the mcount call sites. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-04 03:36:57 +07:00
return 0;
}
static const struct seq_operations ftrace_graph_seq_ops = {
ftrace: graph of a single function This patch adds the file: /debugfs/tracing/set_graph_function which can be used along with the function graph tracer. When this file is empty, the function graph tracer will act as usual. When the file has a function in it, the function graph tracer will only trace that function. For example: # echo blk_unplug > /debugfs/tracing/set_graph_function # cat /debugfs/tracing/trace [...] ------------------------------------------ | 2) make-19003 => kjournald-2219 ------------------------------------------ 2) | blk_unplug() { 2) | dm_unplug_all() { 2) | dm_get_table() { 2) 1.381 us | _read_lock(); 2) 0.911 us | dm_table_get(); 2) 1. 76 us | _read_unlock(); 2) + 12.912 us | } 2) | dm_table_unplug_all() { 2) | blk_unplug() { 2) 0.778 us | generic_unplug_device(); 2) 2.409 us | } 2) 5.992 us | } 2) 0.813 us | dm_table_put(); 2) + 29. 90 us | } 2) + 34.532 us | } You can add up to 32 functions into this file. Currently we limit it to 32, but this may change with later improvements. To add another function, use the append '>>': # echo sys_read >> /debugfs/tracing/set_graph_function # cat /debugfs/tracing/set_graph_function blk_unplug sys_read Using the '>' will clear out the function and write anew: # echo sys_write > /debug/tracing/set_graph_function # cat /debug/tracing/set_graph_function sys_write Note, if you have function graph running while doing this, the small time between clearing it and updating it will cause the graph to record all functions. This should not be an issue because after it sets the filter, only those functions will be recorded from then on. If you need to only record a particular function then set this file first before starting the function graph tracer. In the future this side effect may be corrected. The set_graph_function file is similar to the set_ftrace_filter but it does not take wild cards nor does it allow for more than one function to be set with a single write. There is no technical reason why this is the case, I just do not have the time yet to implement that. Note, dynamic ftrace must be enabled for this to appear because it uses the dynamic ftrace records to match the name to the mcount call sites. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-04 03:36:57 +07:00
.start = g_start,
.next = g_next,
.stop = g_stop,
.show = g_show,
};
static int
ftrace_graph_open(struct inode *inode, struct file *file)
{
int ret = 0;
if (unlikely(ftrace_disabled))
return -ENODEV;
mutex_lock(&graph_lock);
if ((file->f_mode & FMODE_WRITE) &&
(file->f_flags & O_TRUNC)) {
ftrace_graph_filter_enabled = 0;
ftrace: graph of a single function This patch adds the file: /debugfs/tracing/set_graph_function which can be used along with the function graph tracer. When this file is empty, the function graph tracer will act as usual. When the file has a function in it, the function graph tracer will only trace that function. For example: # echo blk_unplug > /debugfs/tracing/set_graph_function # cat /debugfs/tracing/trace [...] ------------------------------------------ | 2) make-19003 => kjournald-2219 ------------------------------------------ 2) | blk_unplug() { 2) | dm_unplug_all() { 2) | dm_get_table() { 2) 1.381 us | _read_lock(); 2) 0.911 us | dm_table_get(); 2) 1. 76 us | _read_unlock(); 2) + 12.912 us | } 2) | dm_table_unplug_all() { 2) | blk_unplug() { 2) 0.778 us | generic_unplug_device(); 2) 2.409 us | } 2) 5.992 us | } 2) 0.813 us | dm_table_put(); 2) + 29. 90 us | } 2) + 34.532 us | } You can add up to 32 functions into this file. Currently we limit it to 32, but this may change with later improvements. To add another function, use the append '>>': # echo sys_read >> /debugfs/tracing/set_graph_function # cat /debugfs/tracing/set_graph_function blk_unplug sys_read Using the '>' will clear out the function and write anew: # echo sys_write > /debug/tracing/set_graph_function # cat /debug/tracing/set_graph_function sys_write Note, if you have function graph running while doing this, the small time between clearing it and updating it will cause the graph to record all functions. This should not be an issue because after it sets the filter, only those functions will be recorded from then on. If you need to only record a particular function then set this file first before starting the function graph tracer. In the future this side effect may be corrected. The set_graph_function file is similar to the set_ftrace_filter but it does not take wild cards nor does it allow for more than one function to be set with a single write. There is no technical reason why this is the case, I just do not have the time yet to implement that. Note, dynamic ftrace must be enabled for this to appear because it uses the dynamic ftrace records to match the name to the mcount call sites. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-04 03:36:57 +07:00
ftrace_graph_count = 0;
memset(ftrace_graph_funcs, 0, sizeof(ftrace_graph_funcs));
}
mutex_unlock(&graph_lock);
ftrace: graph of a single function This patch adds the file: /debugfs/tracing/set_graph_function which can be used along with the function graph tracer. When this file is empty, the function graph tracer will act as usual. When the file has a function in it, the function graph tracer will only trace that function. For example: # echo blk_unplug > /debugfs/tracing/set_graph_function # cat /debugfs/tracing/trace [...] ------------------------------------------ | 2) make-19003 => kjournald-2219 ------------------------------------------ 2) | blk_unplug() { 2) | dm_unplug_all() { 2) | dm_get_table() { 2) 1.381 us | _read_lock(); 2) 0.911 us | dm_table_get(); 2) 1. 76 us | _read_unlock(); 2) + 12.912 us | } 2) | dm_table_unplug_all() { 2) | blk_unplug() { 2) 0.778 us | generic_unplug_device(); 2) 2.409 us | } 2) 5.992 us | } 2) 0.813 us | dm_table_put(); 2) + 29. 90 us | } 2) + 34.532 us | } You can add up to 32 functions into this file. Currently we limit it to 32, but this may change with later improvements. To add another function, use the append '>>': # echo sys_read >> /debugfs/tracing/set_graph_function # cat /debugfs/tracing/set_graph_function blk_unplug sys_read Using the '>' will clear out the function and write anew: # echo sys_write > /debug/tracing/set_graph_function # cat /debug/tracing/set_graph_function sys_write Note, if you have function graph running while doing this, the small time between clearing it and updating it will cause the graph to record all functions. This should not be an issue because after it sets the filter, only those functions will be recorded from then on. If you need to only record a particular function then set this file first before starting the function graph tracer. In the future this side effect may be corrected. The set_graph_function file is similar to the set_ftrace_filter but it does not take wild cards nor does it allow for more than one function to be set with a single write. There is no technical reason why this is the case, I just do not have the time yet to implement that. Note, dynamic ftrace must be enabled for this to appear because it uses the dynamic ftrace records to match the name to the mcount call sites. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-04 03:36:57 +07:00
if (file->f_mode & FMODE_READ)
ftrace: graph of a single function This patch adds the file: /debugfs/tracing/set_graph_function which can be used along with the function graph tracer. When this file is empty, the function graph tracer will act as usual. When the file has a function in it, the function graph tracer will only trace that function. For example: # echo blk_unplug > /debugfs/tracing/set_graph_function # cat /debugfs/tracing/trace [...] ------------------------------------------ | 2) make-19003 => kjournald-2219 ------------------------------------------ 2) | blk_unplug() { 2) | dm_unplug_all() { 2) | dm_get_table() { 2) 1.381 us | _read_lock(); 2) 0.911 us | dm_table_get(); 2) 1. 76 us | _read_unlock(); 2) + 12.912 us | } 2) | dm_table_unplug_all() { 2) | blk_unplug() { 2) 0.778 us | generic_unplug_device(); 2) 2.409 us | } 2) 5.992 us | } 2) 0.813 us | dm_table_put(); 2) + 29. 90 us | } 2) + 34.532 us | } You can add up to 32 functions into this file. Currently we limit it to 32, but this may change with later improvements. To add another function, use the append '>>': # echo sys_read >> /debugfs/tracing/set_graph_function # cat /debugfs/tracing/set_graph_function blk_unplug sys_read Using the '>' will clear out the function and write anew: # echo sys_write > /debug/tracing/set_graph_function # cat /debug/tracing/set_graph_function sys_write Note, if you have function graph running while doing this, the small time between clearing it and updating it will cause the graph to record all functions. This should not be an issue because after it sets the filter, only those functions will be recorded from then on. If you need to only record a particular function then set this file first before starting the function graph tracer. In the future this side effect may be corrected. The set_graph_function file is similar to the set_ftrace_filter but it does not take wild cards nor does it allow for more than one function to be set with a single write. There is no technical reason why this is the case, I just do not have the time yet to implement that. Note, dynamic ftrace must be enabled for this to appear because it uses the dynamic ftrace records to match the name to the mcount call sites. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-04 03:36:57 +07:00
ret = seq_open(file, &ftrace_graph_seq_ops);
return ret;
}
static int
ftrace_graph_release(struct inode *inode, struct file *file)
{
if (file->f_mode & FMODE_READ)
seq_release(inode, file);
return 0;
}
ftrace: graph of a single function This patch adds the file: /debugfs/tracing/set_graph_function which can be used along with the function graph tracer. When this file is empty, the function graph tracer will act as usual. When the file has a function in it, the function graph tracer will only trace that function. For example: # echo blk_unplug > /debugfs/tracing/set_graph_function # cat /debugfs/tracing/trace [...] ------------------------------------------ | 2) make-19003 => kjournald-2219 ------------------------------------------ 2) | blk_unplug() { 2) | dm_unplug_all() { 2) | dm_get_table() { 2) 1.381 us | _read_lock(); 2) 0.911 us | dm_table_get(); 2) 1. 76 us | _read_unlock(); 2) + 12.912 us | } 2) | dm_table_unplug_all() { 2) | blk_unplug() { 2) 0.778 us | generic_unplug_device(); 2) 2.409 us | } 2) 5.992 us | } 2) 0.813 us | dm_table_put(); 2) + 29. 90 us | } 2) + 34.532 us | } You can add up to 32 functions into this file. Currently we limit it to 32, but this may change with later improvements. To add another function, use the append '>>': # echo sys_read >> /debugfs/tracing/set_graph_function # cat /debugfs/tracing/set_graph_function blk_unplug sys_read Using the '>' will clear out the function and write anew: # echo sys_write > /debug/tracing/set_graph_function # cat /debug/tracing/set_graph_function sys_write Note, if you have function graph running while doing this, the small time between clearing it and updating it will cause the graph to record all functions. This should not be an issue because after it sets the filter, only those functions will be recorded from then on. If you need to only record a particular function then set this file first before starting the function graph tracer. In the future this side effect may be corrected. The set_graph_function file is similar to the set_ftrace_filter but it does not take wild cards nor does it allow for more than one function to be set with a single write. There is no technical reason why this is the case, I just do not have the time yet to implement that. Note, dynamic ftrace must be enabled for this to appear because it uses the dynamic ftrace records to match the name to the mcount call sites. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-04 03:36:57 +07:00
static int
ftrace_set_func(unsigned long *array, int *idx, char *buffer)
ftrace: graph of a single function This patch adds the file: /debugfs/tracing/set_graph_function which can be used along with the function graph tracer. When this file is empty, the function graph tracer will act as usual. When the file has a function in it, the function graph tracer will only trace that function. For example: # echo blk_unplug > /debugfs/tracing/set_graph_function # cat /debugfs/tracing/trace [...] ------------------------------------------ | 2) make-19003 => kjournald-2219 ------------------------------------------ 2) | blk_unplug() { 2) | dm_unplug_all() { 2) | dm_get_table() { 2) 1.381 us | _read_lock(); 2) 0.911 us | dm_table_get(); 2) 1. 76 us | _read_unlock(); 2) + 12.912 us | } 2) | dm_table_unplug_all() { 2) | blk_unplug() { 2) 0.778 us | generic_unplug_device(); 2) 2.409 us | } 2) 5.992 us | } 2) 0.813 us | dm_table_put(); 2) + 29. 90 us | } 2) + 34.532 us | } You can add up to 32 functions into this file. Currently we limit it to 32, but this may change with later improvements. To add another function, use the append '>>': # echo sys_read >> /debugfs/tracing/set_graph_function # cat /debugfs/tracing/set_graph_function blk_unplug sys_read Using the '>' will clear out the function and write anew: # echo sys_write > /debug/tracing/set_graph_function # cat /debug/tracing/set_graph_function sys_write Note, if you have function graph running while doing this, the small time between clearing it and updating it will cause the graph to record all functions. This should not be an issue because after it sets the filter, only those functions will be recorded from then on. If you need to only record a particular function then set this file first before starting the function graph tracer. In the future this side effect may be corrected. The set_graph_function file is similar to the set_ftrace_filter but it does not take wild cards nor does it allow for more than one function to be set with a single write. There is no technical reason why this is the case, I just do not have the time yet to implement that. Note, dynamic ftrace must be enabled for this to appear because it uses the dynamic ftrace records to match the name to the mcount call sites. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-04 03:36:57 +07:00
{
struct dyn_ftrace *rec;
struct ftrace_page *pg;
int search_len;
int fail = 1;
int type, not;
char *search;
bool exists;
int i;
ftrace: graph of a single function This patch adds the file: /debugfs/tracing/set_graph_function which can be used along with the function graph tracer. When this file is empty, the function graph tracer will act as usual. When the file has a function in it, the function graph tracer will only trace that function. For example: # echo blk_unplug > /debugfs/tracing/set_graph_function # cat /debugfs/tracing/trace [...] ------------------------------------------ | 2) make-19003 => kjournald-2219 ------------------------------------------ 2) | blk_unplug() { 2) | dm_unplug_all() { 2) | dm_get_table() { 2) 1.381 us | _read_lock(); 2) 0.911 us | dm_table_get(); 2) 1. 76 us | _read_unlock(); 2) + 12.912 us | } 2) | dm_table_unplug_all() { 2) | blk_unplug() { 2) 0.778 us | generic_unplug_device(); 2) 2.409 us | } 2) 5.992 us | } 2) 0.813 us | dm_table_put(); 2) + 29. 90 us | } 2) + 34.532 us | } You can add up to 32 functions into this file. Currently we limit it to 32, but this may change with later improvements. To add another function, use the append '>>': # echo sys_read >> /debugfs/tracing/set_graph_function # cat /debugfs/tracing/set_graph_function blk_unplug sys_read Using the '>' will clear out the function and write anew: # echo sys_write > /debug/tracing/set_graph_function # cat /debug/tracing/set_graph_function sys_write Note, if you have function graph running while doing this, the small time between clearing it and updating it will cause the graph to record all functions. This should not be an issue because after it sets the filter, only those functions will be recorded from then on. If you need to only record a particular function then set this file first before starting the function graph tracer. In the future this side effect may be corrected. The set_graph_function file is similar to the set_ftrace_filter but it does not take wild cards nor does it allow for more than one function to be set with a single write. There is no technical reason why this is the case, I just do not have the time yet to implement that. Note, dynamic ftrace must be enabled for this to appear because it uses the dynamic ftrace records to match the name to the mcount call sites. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-04 03:36:57 +07:00
/* decode regex */
type = filter_parse_regex(buffer, strlen(buffer), &search, &not);
if (!not && *idx >= FTRACE_GRAPH_MAX_FUNCS)
return -EBUSY;
search_len = strlen(search);
mutex_lock(&ftrace_lock);
if (unlikely(ftrace_disabled)) {
mutex_unlock(&ftrace_lock);
return -ENODEV;
}
do_for_each_ftrace_rec(pg, rec) {
if (ftrace_match_record(rec, NULL, search, search_len, type)) {
/* if it is in the array */
exists = false;
for (i = 0; i < *idx; i++) {
if (array[i] == rec->ip) {
exists = true;
break;
}
}
if (!not) {
fail = 0;
if (!exists) {
array[(*idx)++] = rec->ip;
if (*idx >= FTRACE_GRAPH_MAX_FUNCS)
goto out;
}
} else {
if (exists) {
array[i] = array[--(*idx)];
array[*idx] = 0;
fail = 0;
}
}
ftrace: graph of a single function This patch adds the file: /debugfs/tracing/set_graph_function which can be used along with the function graph tracer. When this file is empty, the function graph tracer will act as usual. When the file has a function in it, the function graph tracer will only trace that function. For example: # echo blk_unplug > /debugfs/tracing/set_graph_function # cat /debugfs/tracing/trace [...] ------------------------------------------ | 2) make-19003 => kjournald-2219 ------------------------------------------ 2) | blk_unplug() { 2) | dm_unplug_all() { 2) | dm_get_table() { 2) 1.381 us | _read_lock(); 2) 0.911 us | dm_table_get(); 2) 1. 76 us | _read_unlock(); 2) + 12.912 us | } 2) | dm_table_unplug_all() { 2) | blk_unplug() { 2) 0.778 us | generic_unplug_device(); 2) 2.409 us | } 2) 5.992 us | } 2) 0.813 us | dm_table_put(); 2) + 29. 90 us | } 2) + 34.532 us | } You can add up to 32 functions into this file. Currently we limit it to 32, but this may change with later improvements. To add another function, use the append '>>': # echo sys_read >> /debugfs/tracing/set_graph_function # cat /debugfs/tracing/set_graph_function blk_unplug sys_read Using the '>' will clear out the function and write anew: # echo sys_write > /debug/tracing/set_graph_function # cat /debug/tracing/set_graph_function sys_write Note, if you have function graph running while doing this, the small time between clearing it and updating it will cause the graph to record all functions. This should not be an issue because after it sets the filter, only those functions will be recorded from then on. If you need to only record a particular function then set this file first before starting the function graph tracer. In the future this side effect may be corrected. The set_graph_function file is similar to the set_ftrace_filter but it does not take wild cards nor does it allow for more than one function to be set with a single write. There is no technical reason why this is the case, I just do not have the time yet to implement that. Note, dynamic ftrace must be enabled for this to appear because it uses the dynamic ftrace records to match the name to the mcount call sites. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-04 03:36:57 +07:00
}
} while_for_each_ftrace_rec();
out:
mutex_unlock(&ftrace_lock);
ftrace: graph of a single function This patch adds the file: /debugfs/tracing/set_graph_function which can be used along with the function graph tracer. When this file is empty, the function graph tracer will act as usual. When the file has a function in it, the function graph tracer will only trace that function. For example: # echo blk_unplug > /debugfs/tracing/set_graph_function # cat /debugfs/tracing/trace [...] ------------------------------------------ | 2) make-19003 => kjournald-2219 ------------------------------------------ 2) | blk_unplug() { 2) | dm_unplug_all() { 2) | dm_get_table() { 2) 1.381 us | _read_lock(); 2) 0.911 us | dm_table_get(); 2) 1. 76 us | _read_unlock(); 2) + 12.912 us | } 2) | dm_table_unplug_all() { 2) | blk_unplug() { 2) 0.778 us | generic_unplug_device(); 2) 2.409 us | } 2) 5.992 us | } 2) 0.813 us | dm_table_put(); 2) + 29. 90 us | } 2) + 34.532 us | } You can add up to 32 functions into this file. Currently we limit it to 32, but this may change with later improvements. To add another function, use the append '>>': # echo sys_read >> /debugfs/tracing/set_graph_function # cat /debugfs/tracing/set_graph_function blk_unplug sys_read Using the '>' will clear out the function and write anew: # echo sys_write > /debug/tracing/set_graph_function # cat /debug/tracing/set_graph_function sys_write Note, if you have function graph running while doing this, the small time between clearing it and updating it will cause the graph to record all functions. This should not be an issue because after it sets the filter, only those functions will be recorded from then on. If you need to only record a particular function then set this file first before starting the function graph tracer. In the future this side effect may be corrected. The set_graph_function file is similar to the set_ftrace_filter but it does not take wild cards nor does it allow for more than one function to be set with a single write. There is no technical reason why this is the case, I just do not have the time yet to implement that. Note, dynamic ftrace must be enabled for this to appear because it uses the dynamic ftrace records to match the name to the mcount call sites. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-04 03:36:57 +07:00
if (fail)
return -EINVAL;
ftrace_graph_filter_enabled = !!(*idx);
return 0;
ftrace: graph of a single function This patch adds the file: /debugfs/tracing/set_graph_function which can be used along with the function graph tracer. When this file is empty, the function graph tracer will act as usual. When the file has a function in it, the function graph tracer will only trace that function. For example: # echo blk_unplug > /debugfs/tracing/set_graph_function # cat /debugfs/tracing/trace [...] ------------------------------------------ | 2) make-19003 => kjournald-2219 ------------------------------------------ 2) | blk_unplug() { 2) | dm_unplug_all() { 2) | dm_get_table() { 2) 1.381 us | _read_lock(); 2) 0.911 us | dm_table_get(); 2) 1. 76 us | _read_unlock(); 2) + 12.912 us | } 2) | dm_table_unplug_all() { 2) | blk_unplug() { 2) 0.778 us | generic_unplug_device(); 2) 2.409 us | } 2) 5.992 us | } 2) 0.813 us | dm_table_put(); 2) + 29. 90 us | } 2) + 34.532 us | } You can add up to 32 functions into this file. Currently we limit it to 32, but this may change with later improvements. To add another function, use the append '>>': # echo sys_read >> /debugfs/tracing/set_graph_function # cat /debugfs/tracing/set_graph_function blk_unplug sys_read Using the '>' will clear out the function and write anew: # echo sys_write > /debug/tracing/set_graph_function # cat /debug/tracing/set_graph_function sys_write Note, if you have function graph running while doing this, the small time between clearing it and updating it will cause the graph to record all functions. This should not be an issue because after it sets the filter, only those functions will be recorded from then on. If you need to only record a particular function then set this file first before starting the function graph tracer. In the future this side effect may be corrected. The set_graph_function file is similar to the set_ftrace_filter but it does not take wild cards nor does it allow for more than one function to be set with a single write. There is no technical reason why this is the case, I just do not have the time yet to implement that. Note, dynamic ftrace must be enabled for this to appear because it uses the dynamic ftrace records to match the name to the mcount call sites. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-04 03:36:57 +07:00
}
static ssize_t
ftrace_graph_write(struct file *file, const char __user *ubuf,
size_t cnt, loff_t *ppos)
{
struct trace_parser parser;
ssize_t read, ret;
ftrace: graph of a single function This patch adds the file: /debugfs/tracing/set_graph_function which can be used along with the function graph tracer. When this file is empty, the function graph tracer will act as usual. When the file has a function in it, the function graph tracer will only trace that function. For example: # echo blk_unplug > /debugfs/tracing/set_graph_function # cat /debugfs/tracing/trace [...] ------------------------------------------ | 2) make-19003 => kjournald-2219 ------------------------------------------ 2) | blk_unplug() { 2) | dm_unplug_all() { 2) | dm_get_table() { 2) 1.381 us | _read_lock(); 2) 0.911 us | dm_table_get(); 2) 1. 76 us | _read_unlock(); 2) + 12.912 us | } 2) | dm_table_unplug_all() { 2) | blk_unplug() { 2) 0.778 us | generic_unplug_device(); 2) 2.409 us | } 2) 5.992 us | } 2) 0.813 us | dm_table_put(); 2) + 29. 90 us | } 2) + 34.532 us | } You can add up to 32 functions into this file. Currently we limit it to 32, but this may change with later improvements. To add another function, use the append '>>': # echo sys_read >> /debugfs/tracing/set_graph_function # cat /debugfs/tracing/set_graph_function blk_unplug sys_read Using the '>' will clear out the function and write anew: # echo sys_write > /debug/tracing/set_graph_function # cat /debug/tracing/set_graph_function sys_write Note, if you have function graph running while doing this, the small time between clearing it and updating it will cause the graph to record all functions. This should not be an issue because after it sets the filter, only those functions will be recorded from then on. If you need to only record a particular function then set this file first before starting the function graph tracer. In the future this side effect may be corrected. The set_graph_function file is similar to the set_ftrace_filter but it does not take wild cards nor does it allow for more than one function to be set with a single write. There is no technical reason why this is the case, I just do not have the time yet to implement that. Note, dynamic ftrace must be enabled for this to appear because it uses the dynamic ftrace records to match the name to the mcount call sites. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-04 03:36:57 +07:00
if (!cnt)
ftrace: graph of a single function This patch adds the file: /debugfs/tracing/set_graph_function which can be used along with the function graph tracer. When this file is empty, the function graph tracer will act as usual. When the file has a function in it, the function graph tracer will only trace that function. For example: # echo blk_unplug > /debugfs/tracing/set_graph_function # cat /debugfs/tracing/trace [...] ------------------------------------------ | 2) make-19003 => kjournald-2219 ------------------------------------------ 2) | blk_unplug() { 2) | dm_unplug_all() { 2) | dm_get_table() { 2) 1.381 us | _read_lock(); 2) 0.911 us | dm_table_get(); 2) 1. 76 us | _read_unlock(); 2) + 12.912 us | } 2) | dm_table_unplug_all() { 2) | blk_unplug() { 2) 0.778 us | generic_unplug_device(); 2) 2.409 us | } 2) 5.992 us | } 2) 0.813 us | dm_table_put(); 2) + 29. 90 us | } 2) + 34.532 us | } You can add up to 32 functions into this file. Currently we limit it to 32, but this may change with later improvements. To add another function, use the append '>>': # echo sys_read >> /debugfs/tracing/set_graph_function # cat /debugfs/tracing/set_graph_function blk_unplug sys_read Using the '>' will clear out the function and write anew: # echo sys_write > /debug/tracing/set_graph_function # cat /debug/tracing/set_graph_function sys_write Note, if you have function graph running while doing this, the small time between clearing it and updating it will cause the graph to record all functions. This should not be an issue because after it sets the filter, only those functions will be recorded from then on. If you need to only record a particular function then set this file first before starting the function graph tracer. In the future this side effect may be corrected. The set_graph_function file is similar to the set_ftrace_filter but it does not take wild cards nor does it allow for more than one function to be set with a single write. There is no technical reason why this is the case, I just do not have the time yet to implement that. Note, dynamic ftrace must be enabled for this to appear because it uses the dynamic ftrace records to match the name to the mcount call sites. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-04 03:36:57 +07:00
return 0;
mutex_lock(&graph_lock);
if (trace_parser_get_init(&parser, FTRACE_BUFF_MAX)) {
ret = -ENOMEM;
goto out_unlock;
ftrace: graph of a single function This patch adds the file: /debugfs/tracing/set_graph_function which can be used along with the function graph tracer. When this file is empty, the function graph tracer will act as usual. When the file has a function in it, the function graph tracer will only trace that function. For example: # echo blk_unplug > /debugfs/tracing/set_graph_function # cat /debugfs/tracing/trace [...] ------------------------------------------ | 2) make-19003 => kjournald-2219 ------------------------------------------ 2) | blk_unplug() { 2) | dm_unplug_all() { 2) | dm_get_table() { 2) 1.381 us | _read_lock(); 2) 0.911 us | dm_table_get(); 2) 1. 76 us | _read_unlock(); 2) + 12.912 us | } 2) | dm_table_unplug_all() { 2) | blk_unplug() { 2) 0.778 us | generic_unplug_device(); 2) 2.409 us | } 2) 5.992 us | } 2) 0.813 us | dm_table_put(); 2) + 29. 90 us | } 2) + 34.532 us | } You can add up to 32 functions into this file. Currently we limit it to 32, but this may change with later improvements. To add another function, use the append '>>': # echo sys_read >> /debugfs/tracing/set_graph_function # cat /debugfs/tracing/set_graph_function blk_unplug sys_read Using the '>' will clear out the function and write anew: # echo sys_write > /debug/tracing/set_graph_function # cat /debug/tracing/set_graph_function sys_write Note, if you have function graph running while doing this, the small time between clearing it and updating it will cause the graph to record all functions. This should not be an issue because after it sets the filter, only those functions will be recorded from then on. If you need to only record a particular function then set this file first before starting the function graph tracer. In the future this side effect may be corrected. The set_graph_function file is similar to the set_ftrace_filter but it does not take wild cards nor does it allow for more than one function to be set with a single write. There is no technical reason why this is the case, I just do not have the time yet to implement that. Note, dynamic ftrace must be enabled for this to appear because it uses the dynamic ftrace records to match the name to the mcount call sites. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-04 03:36:57 +07:00
}
read = trace_get_user(&parser, ubuf, cnt, ppos);
ftrace: graph of a single function This patch adds the file: /debugfs/tracing/set_graph_function which can be used along with the function graph tracer. When this file is empty, the function graph tracer will act as usual. When the file has a function in it, the function graph tracer will only trace that function. For example: # echo blk_unplug > /debugfs/tracing/set_graph_function # cat /debugfs/tracing/trace [...] ------------------------------------------ | 2) make-19003 => kjournald-2219 ------------------------------------------ 2) | blk_unplug() { 2) | dm_unplug_all() { 2) | dm_get_table() { 2) 1.381 us | _read_lock(); 2) 0.911 us | dm_table_get(); 2) 1. 76 us | _read_unlock(); 2) + 12.912 us | } 2) | dm_table_unplug_all() { 2) | blk_unplug() { 2) 0.778 us | generic_unplug_device(); 2) 2.409 us | } 2) 5.992 us | } 2) 0.813 us | dm_table_put(); 2) + 29. 90 us | } 2) + 34.532 us | } You can add up to 32 functions into this file. Currently we limit it to 32, but this may change with later improvements. To add another function, use the append '>>': # echo sys_read >> /debugfs/tracing/set_graph_function # cat /debugfs/tracing/set_graph_function blk_unplug sys_read Using the '>' will clear out the function and write anew: # echo sys_write > /debug/tracing/set_graph_function # cat /debug/tracing/set_graph_function sys_write Note, if you have function graph running while doing this, the small time between clearing it and updating it will cause the graph to record all functions. This should not be an issue because after it sets the filter, only those functions will be recorded from then on. If you need to only record a particular function then set this file first before starting the function graph tracer. In the future this side effect may be corrected. The set_graph_function file is similar to the set_ftrace_filter but it does not take wild cards nor does it allow for more than one function to be set with a single write. There is no technical reason why this is the case, I just do not have the time yet to implement that. Note, dynamic ftrace must be enabled for this to appear because it uses the dynamic ftrace records to match the name to the mcount call sites. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-04 03:36:57 +07:00
if (read >= 0 && trace_parser_loaded((&parser))) {
parser.buffer[parser.idx] = 0;
/* we allow only one expression at a time */
ret = ftrace_set_func(ftrace_graph_funcs, &ftrace_graph_count,
parser.buffer);
ftrace: graph of a single function This patch adds the file: /debugfs/tracing/set_graph_function which can be used along with the function graph tracer. When this file is empty, the function graph tracer will act as usual. When the file has a function in it, the function graph tracer will only trace that function. For example: # echo blk_unplug > /debugfs/tracing/set_graph_function # cat /debugfs/tracing/trace [...] ------------------------------------------ | 2) make-19003 => kjournald-2219 ------------------------------------------ 2) | blk_unplug() { 2) | dm_unplug_all() { 2) | dm_get_table() { 2) 1.381 us | _read_lock(); 2) 0.911 us | dm_table_get(); 2) 1. 76 us | _read_unlock(); 2) + 12.912 us | } 2) | dm_table_unplug_all() { 2) | blk_unplug() { 2) 0.778 us | generic_unplug_device(); 2) 2.409 us | } 2) 5.992 us | } 2) 0.813 us | dm_table_put(); 2) + 29. 90 us | } 2) + 34.532 us | } You can add up to 32 functions into this file. Currently we limit it to 32, but this may change with later improvements. To add another function, use the append '>>': # echo sys_read >> /debugfs/tracing/set_graph_function # cat /debugfs/tracing/set_graph_function blk_unplug sys_read Using the '>' will clear out the function and write anew: # echo sys_write > /debug/tracing/set_graph_function # cat /debug/tracing/set_graph_function sys_write Note, if you have function graph running while doing this, the small time between clearing it and updating it will cause the graph to record all functions. This should not be an issue because after it sets the filter, only those functions will be recorded from then on. If you need to only record a particular function then set this file first before starting the function graph tracer. In the future this side effect may be corrected. The set_graph_function file is similar to the set_ftrace_filter but it does not take wild cards nor does it allow for more than one function to be set with a single write. There is no technical reason why this is the case, I just do not have the time yet to implement that. Note, dynamic ftrace must be enabled for this to appear because it uses the dynamic ftrace records to match the name to the mcount call sites. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-04 03:36:57 +07:00
if (ret)
goto out_free;
ftrace: graph of a single function This patch adds the file: /debugfs/tracing/set_graph_function which can be used along with the function graph tracer. When this file is empty, the function graph tracer will act as usual. When the file has a function in it, the function graph tracer will only trace that function. For example: # echo blk_unplug > /debugfs/tracing/set_graph_function # cat /debugfs/tracing/trace [...] ------------------------------------------ | 2) make-19003 => kjournald-2219 ------------------------------------------ 2) | blk_unplug() { 2) | dm_unplug_all() { 2) | dm_get_table() { 2) 1.381 us | _read_lock(); 2) 0.911 us | dm_table_get(); 2) 1. 76 us | _read_unlock(); 2) + 12.912 us | } 2) | dm_table_unplug_all() { 2) | blk_unplug() { 2) 0.778 us | generic_unplug_device(); 2) 2.409 us | } 2) 5.992 us | } 2) 0.813 us | dm_table_put(); 2) + 29. 90 us | } 2) + 34.532 us | } You can add up to 32 functions into this file. Currently we limit it to 32, but this may change with later improvements. To add another function, use the append '>>': # echo sys_read >> /debugfs/tracing/set_graph_function # cat /debugfs/tracing/set_graph_function blk_unplug sys_read Using the '>' will clear out the function and write anew: # echo sys_write > /debug/tracing/set_graph_function # cat /debug/tracing/set_graph_function sys_write Note, if you have function graph running while doing this, the small time between clearing it and updating it will cause the graph to record all functions. This should not be an issue because after it sets the filter, only those functions will be recorded from then on. If you need to only record a particular function then set this file first before starting the function graph tracer. In the future this side effect may be corrected. The set_graph_function file is similar to the set_ftrace_filter but it does not take wild cards nor does it allow for more than one function to be set with a single write. There is no technical reason why this is the case, I just do not have the time yet to implement that. Note, dynamic ftrace must be enabled for this to appear because it uses the dynamic ftrace records to match the name to the mcount call sites. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-04 03:36:57 +07:00
}
ret = read;
out_free:
trace_parser_put(&parser);
out_unlock:
ftrace: graph of a single function This patch adds the file: /debugfs/tracing/set_graph_function which can be used along with the function graph tracer. When this file is empty, the function graph tracer will act as usual. When the file has a function in it, the function graph tracer will only trace that function. For example: # echo blk_unplug > /debugfs/tracing/set_graph_function # cat /debugfs/tracing/trace [...] ------------------------------------------ | 2) make-19003 => kjournald-2219 ------------------------------------------ 2) | blk_unplug() { 2) | dm_unplug_all() { 2) | dm_get_table() { 2) 1.381 us | _read_lock(); 2) 0.911 us | dm_table_get(); 2) 1. 76 us | _read_unlock(); 2) + 12.912 us | } 2) | dm_table_unplug_all() { 2) | blk_unplug() { 2) 0.778 us | generic_unplug_device(); 2) 2.409 us | } 2) 5.992 us | } 2) 0.813 us | dm_table_put(); 2) + 29. 90 us | } 2) + 34.532 us | } You can add up to 32 functions into this file. Currently we limit it to 32, but this may change with later improvements. To add another function, use the append '>>': # echo sys_read >> /debugfs/tracing/set_graph_function # cat /debugfs/tracing/set_graph_function blk_unplug sys_read Using the '>' will clear out the function and write anew: # echo sys_write > /debug/tracing/set_graph_function # cat /debug/tracing/set_graph_function sys_write Note, if you have function graph running while doing this, the small time between clearing it and updating it will cause the graph to record all functions. This should not be an issue because after it sets the filter, only those functions will be recorded from then on. If you need to only record a particular function then set this file first before starting the function graph tracer. In the future this side effect may be corrected. The set_graph_function file is similar to the set_ftrace_filter but it does not take wild cards nor does it allow for more than one function to be set with a single write. There is no technical reason why this is the case, I just do not have the time yet to implement that. Note, dynamic ftrace must be enabled for this to appear because it uses the dynamic ftrace records to match the name to the mcount call sites. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-04 03:36:57 +07:00
mutex_unlock(&graph_lock);
return ret;
}
static const struct file_operations ftrace_graph_fops = {
.open = ftrace_graph_open,
.read = seq_read,
.write = ftrace_graph_write,
.llseek = ftrace_filter_lseek,
.release = ftrace_graph_release,
ftrace: graph of a single function This patch adds the file: /debugfs/tracing/set_graph_function which can be used along with the function graph tracer. When this file is empty, the function graph tracer will act as usual. When the file has a function in it, the function graph tracer will only trace that function. For example: # echo blk_unplug > /debugfs/tracing/set_graph_function # cat /debugfs/tracing/trace [...] ------------------------------------------ | 2) make-19003 => kjournald-2219 ------------------------------------------ 2) | blk_unplug() { 2) | dm_unplug_all() { 2) | dm_get_table() { 2) 1.381 us | _read_lock(); 2) 0.911 us | dm_table_get(); 2) 1. 76 us | _read_unlock(); 2) + 12.912 us | } 2) | dm_table_unplug_all() { 2) | blk_unplug() { 2) 0.778 us | generic_unplug_device(); 2) 2.409 us | } 2) 5.992 us | } 2) 0.813 us | dm_table_put(); 2) + 29. 90 us | } 2) + 34.532 us | } You can add up to 32 functions into this file. Currently we limit it to 32, but this may change with later improvements. To add another function, use the append '>>': # echo sys_read >> /debugfs/tracing/set_graph_function # cat /debugfs/tracing/set_graph_function blk_unplug sys_read Using the '>' will clear out the function and write anew: # echo sys_write > /debug/tracing/set_graph_function # cat /debug/tracing/set_graph_function sys_write Note, if you have function graph running while doing this, the small time between clearing it and updating it will cause the graph to record all functions. This should not be an issue because after it sets the filter, only those functions will be recorded from then on. If you need to only record a particular function then set this file first before starting the function graph tracer. In the future this side effect may be corrected. The set_graph_function file is similar to the set_ftrace_filter but it does not take wild cards nor does it allow for more than one function to be set with a single write. There is no technical reason why this is the case, I just do not have the time yet to implement that. Note, dynamic ftrace must be enabled for this to appear because it uses the dynamic ftrace records to match the name to the mcount call sites. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-04 03:36:57 +07:00
};
#endif /* CONFIG_FUNCTION_GRAPH_TRACER */
static __init int ftrace_init_dyn_debugfs(struct dentry *d_tracer)
ftrace: add filter select functions to trace This patch adds two files to the debugfs system: /debugfs/tracing/available_filter_functions and /debugfs/tracing/set_ftrace_filter The available_filter_functions lists all functions that has been recorded by the ftraced that has called the ftrace_record_ip function. This is to allow users to see what functions have been converted to nops and can be enabled for tracing. To enable functions, simply echo the names (whitespace delimited) into set_ftrace_filter. Simple wildcards are also allowed. echo 'scheduler' > /debugfs/tracing/set_ftrace_filter Will have only the scheduler be activated when tracing is enabled. echo 'sched_*' > /debugfs/tracing/set_ftrace_filter Will have only the functions starting with 'sched_' be activated. echo '*lock' > /debugfs/tracing/set_ftrace_filter Will have only functions ending with 'lock' be activated. echo '*lock*' > /debugfs/tracing/set_ftrace_filter Will have only functions with 'lock' in its name be activated. Note: 'sched*lock' will not work. The only wildcards that are allowed is an asterisk and the beginning and or end of the string passed in. Multiple names can be passed in with whitespace delimited: echo 'scheduler *lock *acpi*' > /debugfs/tracing/set_ftrace_filter is also the same as: echo 'scheduler' > /debugfs/tracing/set_ftrace_filter echo '*lock' >> /debugfs/tracing/set_ftrace_filter echo '*acpi*' >> /debugfs/tracing/set_ftrace_filter Appending does just that. It appends to the list. To disable all filters simply echo an empty line in: echo > /debugfs/tracing/set_ftrace_filter Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 02:20:43 +07:00
{
trace_create_file("available_filter_functions", 0444,
d_tracer, NULL, &ftrace_avail_fops);
ftrace: add filter select functions to trace This patch adds two files to the debugfs system: /debugfs/tracing/available_filter_functions and /debugfs/tracing/set_ftrace_filter The available_filter_functions lists all functions that has been recorded by the ftraced that has called the ftrace_record_ip function. This is to allow users to see what functions have been converted to nops and can be enabled for tracing. To enable functions, simply echo the names (whitespace delimited) into set_ftrace_filter. Simple wildcards are also allowed. echo 'scheduler' > /debugfs/tracing/set_ftrace_filter Will have only the scheduler be activated when tracing is enabled. echo 'sched_*' > /debugfs/tracing/set_ftrace_filter Will have only the functions starting with 'sched_' be activated. echo '*lock' > /debugfs/tracing/set_ftrace_filter Will have only functions ending with 'lock' be activated. echo '*lock*' > /debugfs/tracing/set_ftrace_filter Will have only functions with 'lock' in its name be activated. Note: 'sched*lock' will not work. The only wildcards that are allowed is an asterisk and the beginning and or end of the string passed in. Multiple names can be passed in with whitespace delimited: echo 'scheduler *lock *acpi*' > /debugfs/tracing/set_ftrace_filter is also the same as: echo 'scheduler' > /debugfs/tracing/set_ftrace_filter echo '*lock' >> /debugfs/tracing/set_ftrace_filter echo '*acpi*' >> /debugfs/tracing/set_ftrace_filter Appending does just that. It appends to the list. To disable all filters simply echo an empty line in: echo > /debugfs/tracing/set_ftrace_filter Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 02:20:43 +07:00
trace_create_file("enabled_functions", 0444,
d_tracer, NULL, &ftrace_enabled_fops);
trace_create_file("set_ftrace_filter", 0644, d_tracer,
NULL, &ftrace_filter_fops);
trace_create_file("set_ftrace_notrace", 0644, d_tracer,
NULL, &ftrace_notrace_fops);
ftrace: user update and disable dynamic ftrace daemon In dynamic ftrace, the mcount function starts off pointing to a stub function that just returns. On start up, the call to the stub is modified to point to a "record_ip" function. The job of the record_ip function is to add the function to a pre-allocated hash list. If the function is already there, it simply is ignored, otherwise it is added to the list. Later, a ftraced daemon wakes up and calls kstop_machine if any functions have been recorded, and changes the calls to the recorded functions to a simple nop. If no functions were recorded, the daemon goes back to sleep. The daemon wakes up once a second to see if it needs to update any newly recorded functions into nops. Usually it does not, but if a lot of code has been executed for the first time in the kernel, the ftraced daemon will call kstop_machine to update those into nops. The problem currently is that there's no way to stop the daemon from doing this, and it can cause unneeded latencies (800us which for some is bothersome). This patch adds a new file /debugfs/tracing/ftraced_enabled. If the daemon is active, reading this will return "enabled\n" and "disabled\n" when the daemon is not running. To disable the daemon, the user can echo "0" or "disable" into this file, and "1" or "enable" to re-enable the daemon. Since the daemon is used to convert the functions into nops to increase the performance of the system, I also added that anytime something is written into the ftraced_enabled file, kstop_machine will run if there are new functions that have been detected that need to be converted. This way the user can disable the daemon but still be able to control the conversion of the mcount calls to nops by simply, "echo 0 > /debugfs/tracing/ftraced_enabled" when they need to do more conversions. To see the number of converted functions: "cat /debugfs/tracing/dyn_ftrace_total_info" Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-05-28 07:48:37 +07:00
ftrace: graph of a single function This patch adds the file: /debugfs/tracing/set_graph_function which can be used along with the function graph tracer. When this file is empty, the function graph tracer will act as usual. When the file has a function in it, the function graph tracer will only trace that function. For example: # echo blk_unplug > /debugfs/tracing/set_graph_function # cat /debugfs/tracing/trace [...] ------------------------------------------ | 2) make-19003 => kjournald-2219 ------------------------------------------ 2) | blk_unplug() { 2) | dm_unplug_all() { 2) | dm_get_table() { 2) 1.381 us | _read_lock(); 2) 0.911 us | dm_table_get(); 2) 1. 76 us | _read_unlock(); 2) + 12.912 us | } 2) | dm_table_unplug_all() { 2) | blk_unplug() { 2) 0.778 us | generic_unplug_device(); 2) 2.409 us | } 2) 5.992 us | } 2) 0.813 us | dm_table_put(); 2) + 29. 90 us | } 2) + 34.532 us | } You can add up to 32 functions into this file. Currently we limit it to 32, but this may change with later improvements. To add another function, use the append '>>': # echo sys_read >> /debugfs/tracing/set_graph_function # cat /debugfs/tracing/set_graph_function blk_unplug sys_read Using the '>' will clear out the function and write anew: # echo sys_write > /debug/tracing/set_graph_function # cat /debug/tracing/set_graph_function sys_write Note, if you have function graph running while doing this, the small time between clearing it and updating it will cause the graph to record all functions. This should not be an issue because after it sets the filter, only those functions will be recorded from then on. If you need to only record a particular function then set this file first before starting the function graph tracer. In the future this side effect may be corrected. The set_graph_function file is similar to the set_ftrace_filter but it does not take wild cards nor does it allow for more than one function to be set with a single write. There is no technical reason why this is the case, I just do not have the time yet to implement that. Note, dynamic ftrace must be enabled for this to appear because it uses the dynamic ftrace records to match the name to the mcount call sites. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-04 03:36:57 +07:00
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
trace_create_file("set_graph_function", 0444, d_tracer,
ftrace: graph of a single function This patch adds the file: /debugfs/tracing/set_graph_function which can be used along with the function graph tracer. When this file is empty, the function graph tracer will act as usual. When the file has a function in it, the function graph tracer will only trace that function. For example: # echo blk_unplug > /debugfs/tracing/set_graph_function # cat /debugfs/tracing/trace [...] ------------------------------------------ | 2) make-19003 => kjournald-2219 ------------------------------------------ 2) | blk_unplug() { 2) | dm_unplug_all() { 2) | dm_get_table() { 2) 1.381 us | _read_lock(); 2) 0.911 us | dm_table_get(); 2) 1. 76 us | _read_unlock(); 2) + 12.912 us | } 2) | dm_table_unplug_all() { 2) | blk_unplug() { 2) 0.778 us | generic_unplug_device(); 2) 2.409 us | } 2) 5.992 us | } 2) 0.813 us | dm_table_put(); 2) + 29. 90 us | } 2) + 34.532 us | } You can add up to 32 functions into this file. Currently we limit it to 32, but this may change with later improvements. To add another function, use the append '>>': # echo sys_read >> /debugfs/tracing/set_graph_function # cat /debugfs/tracing/set_graph_function blk_unplug sys_read Using the '>' will clear out the function and write anew: # echo sys_write > /debug/tracing/set_graph_function # cat /debug/tracing/set_graph_function sys_write Note, if you have function graph running while doing this, the small time between clearing it and updating it will cause the graph to record all functions. This should not be an issue because after it sets the filter, only those functions will be recorded from then on. If you need to only record a particular function then set this file first before starting the function graph tracer. In the future this side effect may be corrected. The set_graph_function file is similar to the set_ftrace_filter but it does not take wild cards nor does it allow for more than one function to be set with a single write. There is no technical reason why this is the case, I just do not have the time yet to implement that. Note, dynamic ftrace must be enabled for this to appear because it uses the dynamic ftrace records to match the name to the mcount call sites. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-04 03:36:57 +07:00
NULL,
&ftrace_graph_fops);
#endif /* CONFIG_FUNCTION_GRAPH_TRACER */
ftrace: add filter select functions to trace This patch adds two files to the debugfs system: /debugfs/tracing/available_filter_functions and /debugfs/tracing/set_ftrace_filter The available_filter_functions lists all functions that has been recorded by the ftraced that has called the ftrace_record_ip function. This is to allow users to see what functions have been converted to nops and can be enabled for tracing. To enable functions, simply echo the names (whitespace delimited) into set_ftrace_filter. Simple wildcards are also allowed. echo 'scheduler' > /debugfs/tracing/set_ftrace_filter Will have only the scheduler be activated when tracing is enabled. echo 'sched_*' > /debugfs/tracing/set_ftrace_filter Will have only the functions starting with 'sched_' be activated. echo '*lock' > /debugfs/tracing/set_ftrace_filter Will have only functions ending with 'lock' be activated. echo '*lock*' > /debugfs/tracing/set_ftrace_filter Will have only functions with 'lock' in its name be activated. Note: 'sched*lock' will not work. The only wildcards that are allowed is an asterisk and the beginning and or end of the string passed in. Multiple names can be passed in with whitespace delimited: echo 'scheduler *lock *acpi*' > /debugfs/tracing/set_ftrace_filter is also the same as: echo 'scheduler' > /debugfs/tracing/set_ftrace_filter echo '*lock' >> /debugfs/tracing/set_ftrace_filter echo '*acpi*' >> /debugfs/tracing/set_ftrace_filter Appending does just that. It appends to the list. To disable all filters simply echo an empty line in: echo > /debugfs/tracing/set_ftrace_filter Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 02:20:43 +07:00
return 0;
}
static int ftrace_cmp_ips(const void *a, const void *b)
{
const unsigned long *ipa = a;
const unsigned long *ipb = b;
if (*ipa > *ipb)
return 1;
if (*ipa < *ipb)
return -1;
return 0;
}
static void ftrace_swap_ips(void *a, void *b, int size)
{
unsigned long *ipa = a;
unsigned long *ipb = b;
unsigned long t;
t = *ipa;
*ipa = *ipb;
*ipb = t;
}
static int ftrace_process_locs(struct module *mod,
ftrace: pass module struct to arch dynamic ftrace functions Impact: allow archs more flexibility on dynamic ftrace implementations Dynamic ftrace has largly been developed on x86. Since x86 does not have the same limitations as other architectures, the ftrace interaction between the generic code and the architecture specific code was not flexible enough to handle some of the issues that other architectures have. Most notably, module trampolines. Due to the limited branch distance that archs make in calling kernel core code from modules, the module load code must create a trampoline to jump to what will make the larger jump into core kernel code. The problem arises when this happens to a call to mcount. Ftrace checks all code before modifying it and makes sure the current code is what it expects. Right now, there is not enough information to handle modifying module trampolines. This patch changes the API between generic dynamic ftrace code and the arch dependent code. There is now two functions for modifying code: ftrace_make_nop(mod, rec, addr) - convert the code at rec->ip into a nop, where the original text is calling addr. (mod is the module struct if called by module init) ftrace_make_caller(rec, addr) - convert the code rec->ip that should be a nop into a caller to addr. The record "rec" now has a new field called "arch" where the architecture can add any special attributes to each call site record. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-11-15 07:21:19 +07:00
unsigned long *start,
unsigned long *end)
{
struct ftrace_page *start_pg;
struct ftrace_page *pg;
struct dyn_ftrace *rec;
unsigned long count;
unsigned long *p;
unsigned long addr;
ftrace: Do not disable interrupts for modules in mcount update When I mounted an NFS directory, it caused several modules to be loaded. At the time I was running the preemptirqsoff tracer, and it showed the following output: # tracer: preemptirqsoff # # preemptirqsoff latency trace v1.1.5 on 2.6.33.9-rt30-mrg-test # -------------------------------------------------------------------- # latency: 1177 us, #4/4, CPU#3 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4) # ----------------- # | task: modprobe-19370 (uid:0 nice:0 policy:0 rt_prio:0) # ----------------- # => started at: ftrace_module_notify # => ended at: ftrace_module_notify # # # _------=> CPU# # / _-----=> irqs-off # | / _----=> need-resched # || / _---=> hardirq/softirq # ||| / _--=> preempt-depth # |||| /_--=> lock-depth # |||||/ delay # cmd pid |||||| time | caller # \ / |||||| \ | / modprobe-19370 3d.... 0us!: ftrace_process_locs <-ftrace_module_notify modprobe-19370 3d.... 1176us : ftrace_process_locs <-ftrace_module_notify modprobe-19370 3d.... 1178us : trace_hardirqs_on <-ftrace_module_notify modprobe-19370 3d.... 1178us : <stack trace> => ftrace_process_locs => ftrace_module_notify => notifier_call_chain => __blocking_notifier_call_chain => blocking_notifier_call_chain => sys_init_module => system_call_fastpath That's over 1ms that interrupts are disabled on a Real-Time kernel! Looking at the cause (being the ftrace author helped), I found that the interrupts are disabled before the code modification of mcounts into nops. The interrupts only need to be disabled on start up around this code, not when modules are being loaded. Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2011-06-25 10:28:13 +07:00
unsigned long flags = 0; /* Shut up gcc */
int ret = -ENOMEM;
count = end - start;
if (!count)
return 0;
sort(start, count, sizeof(*start),
ftrace_cmp_ips, ftrace_swap_ips);
start_pg = ftrace_allocate_pages(count);
if (!start_pg)
return -ENOMEM;
mutex_lock(&ftrace_lock);
/*
* Core and each module needs their own pages, as
* modules will free them when they are removed.
* Force a new page to be allocated for modules.
*/
if (!mod) {
WARN_ON(ftrace_pages || ftrace_pages_start);
/* First initialization */
ftrace_pages = ftrace_pages_start = start_pg;
} else {
if (!ftrace_pages)
goto out;
if (WARN_ON(ftrace_pages->next)) {
/* Hmm, we have free pages? */
while (ftrace_pages->next)
ftrace_pages = ftrace_pages->next;
}
ftrace_pages->next = start_pg;
}
p = start;
pg = start_pg;
while (p < end) {
addr = ftrace_call_adjust(*p++);
/*
* Some architecture linkers will pad between
* the different mcount_loc sections of different
* object files to satisfy alignments.
* Skip any NULL pointers.
*/
if (!addr)
continue;
if (pg->index == pg->size) {
/* We should have allocated enough */
if (WARN_ON(!pg->next))
break;
pg = pg->next;
}
rec = &pg->records[pg->index++];
rec->ip = addr;
}
/* We should have used all pages */
WARN_ON(pg->next);
/* Assign the last page to ftrace_pages */
ftrace_pages = pg;
/* These new locations need to be initialized */
ftrace_new_pgs = start_pg;
/*
ftrace: Do not disable interrupts for modules in mcount update When I mounted an NFS directory, it caused several modules to be loaded. At the time I was running the preemptirqsoff tracer, and it showed the following output: # tracer: preemptirqsoff # # preemptirqsoff latency trace v1.1.5 on 2.6.33.9-rt30-mrg-test # -------------------------------------------------------------------- # latency: 1177 us, #4/4, CPU#3 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4) # ----------------- # | task: modprobe-19370 (uid:0 nice:0 policy:0 rt_prio:0) # ----------------- # => started at: ftrace_module_notify # => ended at: ftrace_module_notify # # # _------=> CPU# # / _-----=> irqs-off # | / _----=> need-resched # || / _---=> hardirq/softirq # ||| / _--=> preempt-depth # |||| /_--=> lock-depth # |||||/ delay # cmd pid |||||| time | caller # \ / |||||| \ | / modprobe-19370 3d.... 0us!: ftrace_process_locs <-ftrace_module_notify modprobe-19370 3d.... 1176us : ftrace_process_locs <-ftrace_module_notify modprobe-19370 3d.... 1178us : trace_hardirqs_on <-ftrace_module_notify modprobe-19370 3d.... 1178us : <stack trace> => ftrace_process_locs => ftrace_module_notify => notifier_call_chain => __blocking_notifier_call_chain => blocking_notifier_call_chain => sys_init_module => system_call_fastpath That's over 1ms that interrupts are disabled on a Real-Time kernel! Looking at the cause (being the ftrace author helped), I found that the interrupts are disabled before the code modification of mcounts into nops. The interrupts only need to be disabled on start up around this code, not when modules are being loaded. Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2011-06-25 10:28:13 +07:00
* We only need to disable interrupts on start up
* because we are modifying code that an interrupt
* may execute, and the modification is not atomic.
* But for modules, nothing runs the code we modify
* until we are finished with it, and there's no
* reason to cause large interrupt latencies while we do it.
*/
ftrace: Do not disable interrupts for modules in mcount update When I mounted an NFS directory, it caused several modules to be loaded. At the time I was running the preemptirqsoff tracer, and it showed the following output: # tracer: preemptirqsoff # # preemptirqsoff latency trace v1.1.5 on 2.6.33.9-rt30-mrg-test # -------------------------------------------------------------------- # latency: 1177 us, #4/4, CPU#3 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4) # ----------------- # | task: modprobe-19370 (uid:0 nice:0 policy:0 rt_prio:0) # ----------------- # => started at: ftrace_module_notify # => ended at: ftrace_module_notify # # # _------=> CPU# # / _-----=> irqs-off # | / _----=> need-resched # || / _---=> hardirq/softirq # ||| / _--=> preempt-depth # |||| /_--=> lock-depth # |||||/ delay # cmd pid |||||| time | caller # \ / |||||| \ | / modprobe-19370 3d.... 0us!: ftrace_process_locs <-ftrace_module_notify modprobe-19370 3d.... 1176us : ftrace_process_locs <-ftrace_module_notify modprobe-19370 3d.... 1178us : trace_hardirqs_on <-ftrace_module_notify modprobe-19370 3d.... 1178us : <stack trace> => ftrace_process_locs => ftrace_module_notify => notifier_call_chain => __blocking_notifier_call_chain => blocking_notifier_call_chain => sys_init_module => system_call_fastpath That's over 1ms that interrupts are disabled on a Real-Time kernel! Looking at the cause (being the ftrace author helped), I found that the interrupts are disabled before the code modification of mcounts into nops. The interrupts only need to be disabled on start up around this code, not when modules are being loaded. Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2011-06-25 10:28:13 +07:00
if (!mod)
local_irq_save(flags);
ftrace: pass module struct to arch dynamic ftrace functions Impact: allow archs more flexibility on dynamic ftrace implementations Dynamic ftrace has largly been developed on x86. Since x86 does not have the same limitations as other architectures, the ftrace interaction between the generic code and the architecture specific code was not flexible enough to handle some of the issues that other architectures have. Most notably, module trampolines. Due to the limited branch distance that archs make in calling kernel core code from modules, the module load code must create a trampoline to jump to what will make the larger jump into core kernel code. The problem arises when this happens to a call to mcount. Ftrace checks all code before modifying it and makes sure the current code is what it expects. Right now, there is not enough information to handle modifying module trampolines. This patch changes the API between generic dynamic ftrace code and the arch dependent code. There is now two functions for modifying code: ftrace_make_nop(mod, rec, addr) - convert the code at rec->ip into a nop, where the original text is calling addr. (mod is the module struct if called by module init) ftrace_make_caller(rec, addr) - convert the code rec->ip that should be a nop into a caller to addr. The record "rec" now has a new field called "arch" where the architecture can add any special attributes to each call site record. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-11-15 07:21:19 +07:00
ftrace_update_code(mod);
ftrace: Do not disable interrupts for modules in mcount update When I mounted an NFS directory, it caused several modules to be loaded. At the time I was running the preemptirqsoff tracer, and it showed the following output: # tracer: preemptirqsoff # # preemptirqsoff latency trace v1.1.5 on 2.6.33.9-rt30-mrg-test # -------------------------------------------------------------------- # latency: 1177 us, #4/4, CPU#3 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4) # ----------------- # | task: modprobe-19370 (uid:0 nice:0 policy:0 rt_prio:0) # ----------------- # => started at: ftrace_module_notify # => ended at: ftrace_module_notify # # # _------=> CPU# # / _-----=> irqs-off # | / _----=> need-resched # || / _---=> hardirq/softirq # ||| / _--=> preempt-depth # |||| /_--=> lock-depth # |||||/ delay # cmd pid |||||| time | caller # \ / |||||| \ | / modprobe-19370 3d.... 0us!: ftrace_process_locs <-ftrace_module_notify modprobe-19370 3d.... 1176us : ftrace_process_locs <-ftrace_module_notify modprobe-19370 3d.... 1178us : trace_hardirqs_on <-ftrace_module_notify modprobe-19370 3d.... 1178us : <stack trace> => ftrace_process_locs => ftrace_module_notify => notifier_call_chain => __blocking_notifier_call_chain => blocking_notifier_call_chain => sys_init_module => system_call_fastpath That's over 1ms that interrupts are disabled on a Real-Time kernel! Looking at the cause (being the ftrace author helped), I found that the interrupts are disabled before the code modification of mcounts into nops. The interrupts only need to be disabled on start up around this code, not when modules are being loaded. Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2011-06-25 10:28:13 +07:00
if (!mod)
local_irq_restore(flags);
ret = 0;
out:
mutex_unlock(&ftrace_lock);
return ret;
}
#ifdef CONFIG_MODULES
#define next_to_ftrace_page(p) container_of(p, struct ftrace_page, next)
void ftrace_release_mod(struct module *mod)
{
struct dyn_ftrace *rec;
struct ftrace_page **last_pg;
struct ftrace_page *pg;
int order;
mutex_lock(&ftrace_lock);
if (ftrace_disabled)
goto out_unlock;
/*
* Each module has its own ftrace_pages, remove
* them from the list.
*/
last_pg = &ftrace_pages_start;
for (pg = ftrace_pages_start; pg; pg = *last_pg) {
rec = &pg->records[0];
if (within_module_core(rec->ip, mod)) {
/*
* As core pages are first, the first
* page should never be a module page.
*/
if (WARN_ON(pg == ftrace_pages_start))
goto out_unlock;
/* Check if we are deleting the last page */
if (pg == ftrace_pages)
ftrace_pages = next_to_ftrace_page(last_pg);
*last_pg = pg->next;
order = get_count_order(pg->size / ENTRIES_PER_PAGE);
free_pages((unsigned long)pg->records, order);
kfree(pg);
} else
last_pg = &pg->next;
}
out_unlock:
mutex_unlock(&ftrace_lock);
}
static void ftrace_init_module(struct module *mod,
unsigned long *start, unsigned long *end)
{
if (ftrace_disabled || start == end)
return;
ftrace_process_locs(mod, start, end);
}
ftrace: Call ftrace cleanup module notifier after all other notifiers Commit: c1bf08ac "ftrace: Be first to run code modification on modules" changed ftrace module notifier's priority to INT_MAX in order to process the ftrace nops before anything else could touch them (namely kprobes). This was the correct thing to do. Unfortunately, the ftrace module notifier also contains the ftrace clean up code. As opposed to the set up code, this code should be run *after* all the module notifiers have run in case a module is doing correct clean-up and unregisters its ftrace hooks. Basically, ftrace needs to do clean up on module removal, as it needs to know about code being removed so that it doesn't try to modify that code. But after it removes the module from its records, if a ftrace user tries to remove a probe, that removal will fail due as the record of that code segment no longer exists. Nothing really bad happens if the probe removal is called after ftrace did the clean up, but the ftrace removal function will return an error. Correct code (such as kprobes) will produce a WARN_ON() if it fails to remove the probe. As people get annoyed by frivolous warnings, it's best to do the ftrace clean up after everything else. By splitting the ftrace_module_notifier into two notifiers, one that does the module load setup that is run at high priority, and the other that is called for module clean up that is run at low priority, the problem is solved. Cc: stable@vger.kernel.org Reported-by: Frank Ch. Eigler <fche@redhat.com> Acked-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-02-14 03:18:38 +07:00
static int ftrace_module_notify_enter(struct notifier_block *self,
unsigned long val, void *data)
{
struct module *mod = data;
ftrace: Call ftrace cleanup module notifier after all other notifiers Commit: c1bf08ac "ftrace: Be first to run code modification on modules" changed ftrace module notifier's priority to INT_MAX in order to process the ftrace nops before anything else could touch them (namely kprobes). This was the correct thing to do. Unfortunately, the ftrace module notifier also contains the ftrace clean up code. As opposed to the set up code, this code should be run *after* all the module notifiers have run in case a module is doing correct clean-up and unregisters its ftrace hooks. Basically, ftrace needs to do clean up on module removal, as it needs to know about code being removed so that it doesn't try to modify that code. But after it removes the module from its records, if a ftrace user tries to remove a probe, that removal will fail due as the record of that code segment no longer exists. Nothing really bad happens if the probe removal is called after ftrace did the clean up, but the ftrace removal function will return an error. Correct code (such as kprobes) will produce a WARN_ON() if it fails to remove the probe. As people get annoyed by frivolous warnings, it's best to do the ftrace clean up after everything else. By splitting the ftrace_module_notifier into two notifiers, one that does the module load setup that is run at high priority, and the other that is called for module clean up that is run at low priority, the problem is solved. Cc: stable@vger.kernel.org Reported-by: Frank Ch. Eigler <fche@redhat.com> Acked-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-02-14 03:18:38 +07:00
if (val == MODULE_STATE_COMING)
ftrace_init_module(mod, mod->ftrace_callsites,
mod->ftrace_callsites +
mod->num_ftrace_callsites);
ftrace: Call ftrace cleanup module notifier after all other notifiers Commit: c1bf08ac "ftrace: Be first to run code modification on modules" changed ftrace module notifier's priority to INT_MAX in order to process the ftrace nops before anything else could touch them (namely kprobes). This was the correct thing to do. Unfortunately, the ftrace module notifier also contains the ftrace clean up code. As opposed to the set up code, this code should be run *after* all the module notifiers have run in case a module is doing correct clean-up and unregisters its ftrace hooks. Basically, ftrace needs to do clean up on module removal, as it needs to know about code being removed so that it doesn't try to modify that code. But after it removes the module from its records, if a ftrace user tries to remove a probe, that removal will fail due as the record of that code segment no longer exists. Nothing really bad happens if the probe removal is called after ftrace did the clean up, but the ftrace removal function will return an error. Correct code (such as kprobes) will produce a WARN_ON() if it fails to remove the probe. As people get annoyed by frivolous warnings, it's best to do the ftrace clean up after everything else. By splitting the ftrace_module_notifier into two notifiers, one that does the module load setup that is run at high priority, and the other that is called for module clean up that is run at low priority, the problem is solved. Cc: stable@vger.kernel.org Reported-by: Frank Ch. Eigler <fche@redhat.com> Acked-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-02-14 03:18:38 +07:00
return 0;
}
static int ftrace_module_notify_exit(struct notifier_block *self,
unsigned long val, void *data)
{
struct module *mod = data;
if (val == MODULE_STATE_GOING)
ftrace_release_mod(mod);
return 0;
}
#else
ftrace: Call ftrace cleanup module notifier after all other notifiers Commit: c1bf08ac "ftrace: Be first to run code modification on modules" changed ftrace module notifier's priority to INT_MAX in order to process the ftrace nops before anything else could touch them (namely kprobes). This was the correct thing to do. Unfortunately, the ftrace module notifier also contains the ftrace clean up code. As opposed to the set up code, this code should be run *after* all the module notifiers have run in case a module is doing correct clean-up and unregisters its ftrace hooks. Basically, ftrace needs to do clean up on module removal, as it needs to know about code being removed so that it doesn't try to modify that code. But after it removes the module from its records, if a ftrace user tries to remove a probe, that removal will fail due as the record of that code segment no longer exists. Nothing really bad happens if the probe removal is called after ftrace did the clean up, but the ftrace removal function will return an error. Correct code (such as kprobes) will produce a WARN_ON() if it fails to remove the probe. As people get annoyed by frivolous warnings, it's best to do the ftrace clean up after everything else. By splitting the ftrace_module_notifier into two notifiers, one that does the module load setup that is run at high priority, and the other that is called for module clean up that is run at low priority, the problem is solved. Cc: stable@vger.kernel.org Reported-by: Frank Ch. Eigler <fche@redhat.com> Acked-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-02-14 03:18:38 +07:00
static int ftrace_module_notify_enter(struct notifier_block *self,
unsigned long val, void *data)
{
return 0;
}
static int ftrace_module_notify_exit(struct notifier_block *self,
unsigned long val, void *data)
{
return 0;
}
#endif /* CONFIG_MODULES */
ftrace: Call ftrace cleanup module notifier after all other notifiers Commit: c1bf08ac "ftrace: Be first to run code modification on modules" changed ftrace module notifier's priority to INT_MAX in order to process the ftrace nops before anything else could touch them (namely kprobes). This was the correct thing to do. Unfortunately, the ftrace module notifier also contains the ftrace clean up code. As opposed to the set up code, this code should be run *after* all the module notifiers have run in case a module is doing correct clean-up and unregisters its ftrace hooks. Basically, ftrace needs to do clean up on module removal, as it needs to know about code being removed so that it doesn't try to modify that code. But after it removes the module from its records, if a ftrace user tries to remove a probe, that removal will fail due as the record of that code segment no longer exists. Nothing really bad happens if the probe removal is called after ftrace did the clean up, but the ftrace removal function will return an error. Correct code (such as kprobes) will produce a WARN_ON() if it fails to remove the probe. As people get annoyed by frivolous warnings, it's best to do the ftrace clean up after everything else. By splitting the ftrace_module_notifier into two notifiers, one that does the module load setup that is run at high priority, and the other that is called for module clean up that is run at low priority, the problem is solved. Cc: stable@vger.kernel.org Reported-by: Frank Ch. Eigler <fche@redhat.com> Acked-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-02-14 03:18:38 +07:00
struct notifier_block ftrace_module_enter_nb = {
.notifier_call = ftrace_module_notify_enter,
ftrace: Be first to run code modification on modules If some other kernel subsystem has a module notifier, and adds a kprobe to a ftrace mcount point (now that kprobes work on ftrace points), when the ftrace notifier runs it will fail and disable ftrace, as well as kprobes that are attached to ftrace points. Here's the error: WARNING: at kernel/trace/ftrace.c:1618 ftrace_bug+0x239/0x280() Hardware name: Bochs Modules linked in: fat(+) stap_56d28a51b3fe546293ca0700b10bcb29__8059(F) nfsv4 auth_rpcgss nfs dns_resolver fscache xt_nat iptable_nat nf_conntrack_ipv4 nf_defrag_ipv4 nf_nat_ipv4 nf_nat nf_conntrack lockd sunrpc ppdev parport_pc parport microcode virtio_net i2c_piix4 drm_kms_helper ttm drm i2c_core [last unloaded: bid_shared] Pid: 8068, comm: modprobe Tainted: GF 3.7.0-0.rc8.git0.1.fc19.x86_64 #1 Call Trace: [<ffffffff8105e70f>] warn_slowpath_common+0x7f/0xc0 [<ffffffff81134106>] ? __probe_kernel_read+0x46/0x70 [<ffffffffa0180000>] ? 0xffffffffa017ffff [<ffffffffa0180000>] ? 0xffffffffa017ffff [<ffffffff8105e76a>] warn_slowpath_null+0x1a/0x20 [<ffffffff810fd189>] ftrace_bug+0x239/0x280 [<ffffffff810fd626>] ftrace_process_locs+0x376/0x520 [<ffffffff810fefb7>] ftrace_module_notify+0x47/0x50 [<ffffffff8163912d>] notifier_call_chain+0x4d/0x70 [<ffffffff810882f8>] __blocking_notifier_call_chain+0x58/0x80 [<ffffffff81088336>] blocking_notifier_call_chain+0x16/0x20 [<ffffffff810c2a23>] sys_init_module+0x73/0x220 [<ffffffff8163d719>] system_call_fastpath+0x16/0x1b ---[ end trace 9ef46351e53bbf80 ]--- ftrace failed to modify [<ffffffffa0180000>] init_once+0x0/0x20 [fat] actual: cc:bb:d2:4b:e1 A kprobe was added to the init_once() function in the fat module on load. But this happened before ftrace could have touched the code. As ftrace didn't run yet, the kprobe system had no idea it was a ftrace point and simply added a breakpoint to the code (0xcc in the cc:bb:d2:4b:e1). Then when ftrace went to modify the location from a call to mcount/fentry into a nop, it didn't see a call op, but instead it saw the breakpoint op and not knowing what to do with it, ftrace shut itself down. The solution is to simply give the ftrace module notifier the max priority. This should have been done regardless, as the core code ftrace modification also happens very early on in boot up. This makes the module modification closer to core modification. Link: http://lkml.kernel.org/r/20130107140333.593683061@goodmis.org Cc: stable@vger.kernel.org Acked-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com> Reported-by: Frank Ch. Eigler <fche@redhat.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2012-12-14 21:48:15 +07:00
.priority = INT_MAX, /* Run before anything that can use kprobes */
};
ftrace: Call ftrace cleanup module notifier after all other notifiers Commit: c1bf08ac "ftrace: Be first to run code modification on modules" changed ftrace module notifier's priority to INT_MAX in order to process the ftrace nops before anything else could touch them (namely kprobes). This was the correct thing to do. Unfortunately, the ftrace module notifier also contains the ftrace clean up code. As opposed to the set up code, this code should be run *after* all the module notifiers have run in case a module is doing correct clean-up and unregisters its ftrace hooks. Basically, ftrace needs to do clean up on module removal, as it needs to know about code being removed so that it doesn't try to modify that code. But after it removes the module from its records, if a ftrace user tries to remove a probe, that removal will fail due as the record of that code segment no longer exists. Nothing really bad happens if the probe removal is called after ftrace did the clean up, but the ftrace removal function will return an error. Correct code (such as kprobes) will produce a WARN_ON() if it fails to remove the probe. As people get annoyed by frivolous warnings, it's best to do the ftrace clean up after everything else. By splitting the ftrace_module_notifier into two notifiers, one that does the module load setup that is run at high priority, and the other that is called for module clean up that is run at low priority, the problem is solved. Cc: stable@vger.kernel.org Reported-by: Frank Ch. Eigler <fche@redhat.com> Acked-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-02-14 03:18:38 +07:00
struct notifier_block ftrace_module_exit_nb = {
.notifier_call = ftrace_module_notify_exit,
.priority = INT_MIN, /* Run after anything that can remove kprobes */
};
extern unsigned long __start_mcount_loc[];
extern unsigned long __stop_mcount_loc[];
void __init ftrace_init(void)
{
unsigned long count, addr, flags;
int ret;
/* Keep the ftrace pointer to the stub */
addr = (unsigned long)ftrace_stub;
local_irq_save(flags);
ftrace_dyn_arch_init(&addr);
local_irq_restore(flags);
/* ftrace_dyn_arch_init places the return code in addr */
if (addr)
goto failed;
count = __stop_mcount_loc - __start_mcount_loc;
ret = ftrace_dyn_table_alloc(count);
if (ret)
goto failed;
last_ftrace_enabled = ftrace_enabled = 1;
ret = ftrace_process_locs(NULL,
ftrace: pass module struct to arch dynamic ftrace functions Impact: allow archs more flexibility on dynamic ftrace implementations Dynamic ftrace has largly been developed on x86. Since x86 does not have the same limitations as other architectures, the ftrace interaction between the generic code and the architecture specific code was not flexible enough to handle some of the issues that other architectures have. Most notably, module trampolines. Due to the limited branch distance that archs make in calling kernel core code from modules, the module load code must create a trampoline to jump to what will make the larger jump into core kernel code. The problem arises when this happens to a call to mcount. Ftrace checks all code before modifying it and makes sure the current code is what it expects. Right now, there is not enough information to handle modifying module trampolines. This patch changes the API between generic dynamic ftrace code and the arch dependent code. There is now two functions for modifying code: ftrace_make_nop(mod, rec, addr) - convert the code at rec->ip into a nop, where the original text is calling addr. (mod is the module struct if called by module init) ftrace_make_caller(rec, addr) - convert the code rec->ip that should be a nop into a caller to addr. The record "rec" now has a new field called "arch" where the architecture can add any special attributes to each call site record. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-11-15 07:21:19 +07:00
__start_mcount_loc,
__stop_mcount_loc);
ftrace: Call ftrace cleanup module notifier after all other notifiers Commit: c1bf08ac "ftrace: Be first to run code modification on modules" changed ftrace module notifier's priority to INT_MAX in order to process the ftrace nops before anything else could touch them (namely kprobes). This was the correct thing to do. Unfortunately, the ftrace module notifier also contains the ftrace clean up code. As opposed to the set up code, this code should be run *after* all the module notifiers have run in case a module is doing correct clean-up and unregisters its ftrace hooks. Basically, ftrace needs to do clean up on module removal, as it needs to know about code being removed so that it doesn't try to modify that code. But after it removes the module from its records, if a ftrace user tries to remove a probe, that removal will fail due as the record of that code segment no longer exists. Nothing really bad happens if the probe removal is called after ftrace did the clean up, but the ftrace removal function will return an error. Correct code (such as kprobes) will produce a WARN_ON() if it fails to remove the probe. As people get annoyed by frivolous warnings, it's best to do the ftrace clean up after everything else. By splitting the ftrace_module_notifier into two notifiers, one that does the module load setup that is run at high priority, and the other that is called for module clean up that is run at low priority, the problem is solved. Cc: stable@vger.kernel.org Reported-by: Frank Ch. Eigler <fche@redhat.com> Acked-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-02-14 03:18:38 +07:00
ret = register_module_notifier(&ftrace_module_enter_nb);
if (ret)
pr_warning("Failed to register trace ftrace module enter notifier\n");
ret = register_module_notifier(&ftrace_module_exit_nb);
if (ret)
ftrace: Call ftrace cleanup module notifier after all other notifiers Commit: c1bf08ac "ftrace: Be first to run code modification on modules" changed ftrace module notifier's priority to INT_MAX in order to process the ftrace nops before anything else could touch them (namely kprobes). This was the correct thing to do. Unfortunately, the ftrace module notifier also contains the ftrace clean up code. As opposed to the set up code, this code should be run *after* all the module notifiers have run in case a module is doing correct clean-up and unregisters its ftrace hooks. Basically, ftrace needs to do clean up on module removal, as it needs to know about code being removed so that it doesn't try to modify that code. But after it removes the module from its records, if a ftrace user tries to remove a probe, that removal will fail due as the record of that code segment no longer exists. Nothing really bad happens if the probe removal is called after ftrace did the clean up, but the ftrace removal function will return an error. Correct code (such as kprobes) will produce a WARN_ON() if it fails to remove the probe. As people get annoyed by frivolous warnings, it's best to do the ftrace clean up after everything else. By splitting the ftrace_module_notifier into two notifiers, one that does the module load setup that is run at high priority, and the other that is called for module clean up that is run at low priority, the problem is solved. Cc: stable@vger.kernel.org Reported-by: Frank Ch. Eigler <fche@redhat.com> Acked-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-02-14 03:18:38 +07:00
pr_warning("Failed to register trace ftrace module exit notifier\n");
set_ftrace_early_filters();
return;
failed:
ftrace_disabled = 1;
}
ftrace: dynamic enabling/disabling of function calls This patch adds a feature to dynamically replace the ftrace code with the jmps to allow a kernel with ftrace configured to run as fast as it can without it configured. The way this works, is on bootup (if ftrace is enabled), a ftrace function is registered to record the instruction pointer of all places that call the function. Later, if there's still any code to patch, a kthread is awoken (rate limited to at most once a second) that performs a stop_machine, and replaces all the code that was called with a jmp over the call to ftrace. It only replaces what was found the previous time. Typically the system reaches equilibrium quickly after bootup and there's no code patching needed at all. e.g. call ftrace /* 5 bytes */ is replaced with jmp 3f /* jmp is 2 bytes and we jump 3 forward */ 3: When we want to enable ftrace for function tracing, the IP recording is removed, and stop_machine is called again to replace all the locations of that were recorded back to the call of ftrace. When it is disabled, we replace the code back to the jmp. Allocation is done by the kthread. If the ftrace recording function is called, and we don't have any record slots available, then we simply skip that call. Once a second a new page (if needed) is allocated for recording new ftrace function calls. A large batch is allocated at boot up to get most of the calls there. Because we do this via stop_machine, we don't have to worry about another CPU executing a ftrace call as we modify it. But we do need to worry about NMI's so all functions that might be called via nmi must be annotated with notrace_nmi. When this code is configured in, the NMI code will not call notrace. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 02:20:42 +07:00
#else
static struct ftrace_ops global_ops = {
.func = ftrace_stub,
ftrace, kprobes: Fix a deadlock on ftrace_regex_lock Fix a deadlock on ftrace_regex_lock which happens when setting an enable_event trigger on dynamic kprobe event as below. ---- sh-2.05b# echo p vfs_symlink > kprobe_events sh-2.05b# echo vfs_symlink:enable_event:kprobes:p_vfs_symlink_0 > set_ftrace_filter ============================================= [ INFO: possible recursive locking detected ] 3.9.0+ #35 Not tainted --------------------------------------------- sh/72 is trying to acquire lock: (ftrace_regex_lock){+.+.+.}, at: [<ffffffff810ba6c1>] ftrace_set_hash+0x81/0x1f0 but task is already holding lock: (ftrace_regex_lock){+.+.+.}, at: [<ffffffff810b7cbd>] ftrace_regex_write.isra.29.part.30+0x3d/0x220 other info that might help us debug this: Possible unsafe locking scenario: CPU0 ---- lock(ftrace_regex_lock); lock(ftrace_regex_lock); *** DEADLOCK *** ---- To fix that, this introduces a finer regex_lock for each ftrace_ops. ftrace_regex_lock is too big of a lock which protects all filter/notrace_hash operations, but it doesn't need to be a global lock after supporting multiple ftrace_ops because each ftrace_ops has its own filter/notrace_hash. Link: http://lkml.kernel.org/r/20130509054417.30398.84254.stgit@mhiramat-M0-7522 Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Tom Zanussi <tom.zanussi@intel.com> Signed-off-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com> [ Added initialization flag and automate mutex initialization for non ftrace.c ftrace_probes. ] Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-05-09 12:44:17 +07:00
.flags = FTRACE_OPS_FL_RECURSION_SAFE | FTRACE_OPS_FL_INITIALIZED,
INIT_REGEX_LOCK(global_ops)
};
static int __init ftrace_nodyn_init(void)
{
ftrace_enabled = 1;
return 0;
}
core_initcall(ftrace_nodyn_init);
static inline int ftrace_init_dyn_debugfs(struct dentry *d_tracer) { return 0; }
static inline void ftrace_startup_enable(int command) { }
/* Keep as macros so we do not need to define the commands */
# define ftrace_startup(ops, command) \
({ \
(ops)->flags |= FTRACE_OPS_FL_ENABLED; \
0; \
})
# define ftrace_shutdown(ops, command) do { } while (0)
# define ftrace_startup_sysctl() do { } while (0)
# define ftrace_shutdown_sysctl() do { } while (0)
static inline int
ftrace_ops_test(struct ftrace_ops *ops, unsigned long ip, void *regs)
{
return 1;
}
ftrace: dynamic enabling/disabling of function calls This patch adds a feature to dynamically replace the ftrace code with the jmps to allow a kernel with ftrace configured to run as fast as it can without it configured. The way this works, is on bootup (if ftrace is enabled), a ftrace function is registered to record the instruction pointer of all places that call the function. Later, if there's still any code to patch, a kthread is awoken (rate limited to at most once a second) that performs a stop_machine, and replaces all the code that was called with a jmp over the call to ftrace. It only replaces what was found the previous time. Typically the system reaches equilibrium quickly after bootup and there's no code patching needed at all. e.g. call ftrace /* 5 bytes */ is replaced with jmp 3f /* jmp is 2 bytes and we jump 3 forward */ 3: When we want to enable ftrace for function tracing, the IP recording is removed, and stop_machine is called again to replace all the locations of that were recorded back to the call of ftrace. When it is disabled, we replace the code back to the jmp. Allocation is done by the kthread. If the ftrace recording function is called, and we don't have any record slots available, then we simply skip that call. Once a second a new page (if needed) is allocated for recording new ftrace function calls. A large batch is allocated at boot up to get most of the calls there. Because we do this via stop_machine, we don't have to worry about another CPU executing a ftrace call as we modify it. But we do need to worry about NMI's so all functions that might be called via nmi must be annotated with notrace_nmi. When this code is configured in, the NMI code will not call notrace. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 02:20:42 +07:00
#endif /* CONFIG_DYNAMIC_FTRACE */
static void
ftrace_ops_control_func(unsigned long ip, unsigned long parent_ip,
struct ftrace_ops *op, struct pt_regs *regs)
{
if (unlikely(trace_recursion_test(TRACE_CONTROL_BIT)))
return;
/*
* Some of the ops may be dynamically allocated,
* they must be freed after a synchronize_sched().
*/
preempt_disable_notrace();
trace_recursion_set(TRACE_CONTROL_BIT);
do_for_each_ftrace_op(op, ftrace_control_list) {
ftrace: Do not call stub functions in control loop The function tracing control loop used by perf spits out a warning if the called function is not a control function. This is because the control function references a per cpu allocated data structure on struct ftrace_ops that is not allocated for other types of functions. commit 0a016409e42 "ftrace: Optimize the function tracer list loop" Had an optimization done to all function tracing loops to optimize for a single registered ops. Unfortunately, this allows for a slight race when tracing starts or ends, where the stub function might be called after the current registered ops is removed. In this case we get the following dump: root# perf stat -e ftrace:function sleep 1 [ 74.339105] WARNING: at include/linux/ftrace.h:209 ftrace_ops_control_func+0xde/0xf0() [ 74.349522] Hardware name: PRIMERGY RX200 S6 [ 74.357149] Modules linked in: sg igb iTCO_wdt ptp pps_core iTCO_vendor_support i7core_edac dca lpc_ich i2c_i801 coretemp edac_core crc32c_intel mfd_core ghash_clmulni_intel dm_multipath acpi_power_meter pcspk r microcode vhost_net tun macvtap macvlan nfsd kvm_intel kvm auth_rpcgss nfs_acl lockd sunrpc uinput xfs libcrc32c sd_mod crc_t10dif sr_mod cdrom mgag200 i2c_algo_bit drm_kms_helper ttm qla2xxx mptsas ahci drm li bahci scsi_transport_sas mptscsih libata scsi_transport_fc i2c_core mptbase scsi_tgt dm_mirror dm_region_hash dm_log dm_mod [ 74.446233] Pid: 1377, comm: perf Tainted: G W 3.9.0-rc1 #1 [ 74.453458] Call Trace: [ 74.456233] [<ffffffff81062e3f>] warn_slowpath_common+0x7f/0xc0 [ 74.462997] [<ffffffff810fbc60>] ? rcu_note_context_switch+0xa0/0xa0 [ 74.470272] [<ffffffff811041a2>] ? __unregister_ftrace_function+0xa2/0x1a0 [ 74.478117] [<ffffffff81062e9a>] warn_slowpath_null+0x1a/0x20 [ 74.484681] [<ffffffff81102ede>] ftrace_ops_control_func+0xde/0xf0 [ 74.491760] [<ffffffff8162f400>] ftrace_call+0x5/0x2f [ 74.497511] [<ffffffff8162f400>] ? ftrace_call+0x5/0x2f [ 74.503486] [<ffffffff8162f400>] ? ftrace_call+0x5/0x2f [ 74.509500] [<ffffffff810fbc65>] ? synchronize_sched+0x5/0x50 [ 74.516088] [<ffffffff816254d5>] ? _cond_resched+0x5/0x40 [ 74.522268] [<ffffffff810fbc65>] ? synchronize_sched+0x5/0x50 [ 74.528837] [<ffffffff811041a2>] ? __unregister_ftrace_function+0xa2/0x1a0 [ 74.536696] [<ffffffff816254d5>] ? _cond_resched+0x5/0x40 [ 74.542878] [<ffffffff8162402d>] ? mutex_lock+0x1d/0x50 [ 74.548869] [<ffffffff81105c67>] unregister_ftrace_function+0x27/0x50 [ 74.556243] [<ffffffff8111eadf>] perf_ftrace_event_register+0x9f/0x140 [ 74.563709] [<ffffffff816254d5>] ? _cond_resched+0x5/0x40 [ 74.569887] [<ffffffff8162402d>] ? mutex_lock+0x1d/0x50 [ 74.575898] [<ffffffff8111e94e>] perf_trace_destroy+0x2e/0x50 [ 74.582505] [<ffffffff81127ba9>] tp_perf_event_destroy+0x9/0x10 [ 74.589298] [<ffffffff811295d0>] free_event+0x70/0x1a0 [ 74.595208] [<ffffffff8112a579>] perf_event_release_kernel+0x69/0xa0 [ 74.602460] [<ffffffff816254d5>] ? _cond_resched+0x5/0x40 [ 74.608667] [<ffffffff8112a640>] put_event+0x90/0xc0 [ 74.614373] [<ffffffff8112a740>] perf_release+0x10/0x20 [ 74.620367] [<ffffffff811a3044>] __fput+0xf4/0x280 [ 74.625894] [<ffffffff811a31de>] ____fput+0xe/0x10 [ 74.631387] [<ffffffff81083697>] task_work_run+0xa7/0xe0 [ 74.637452] [<ffffffff81014981>] do_notify_resume+0x71/0xb0 [ 74.643843] [<ffffffff8162fa92>] int_signal+0x12/0x17 To fix this a new ftrace_ops flag is added that denotes the ftrace_list_end ftrace_ops stub as just that, a stub. This flag is now checked in the control loop and the function is not called if the flag is set. Thanks to Jovi for not just reporting the bug, but also pointing out where the bug was in the code. Link: http://lkml.kernel.org/r/514A8855.7090402@redhat.com Link: http://lkml.kernel.org/r/1364377499-1900-15-git-send-email-jovi.zhangwei@huawei.com Tested-by: WANG Chao <chaowang@redhat.com> Reported-by: WANG Chao <chaowang@redhat.com> Reported-by: zhangwei(Jovi) <jovi.zhangwei@huawei.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-03-27 20:31:28 +07:00
if (!(op->flags & FTRACE_OPS_FL_STUB) &&
!ftrace_function_local_disabled(op) &&
ftrace_ops_test(op, ip, regs))
op->func(ip, parent_ip, op, regs);
} while_for_each_ftrace_op(op);
trace_recursion_clear(TRACE_CONTROL_BIT);
preempt_enable_notrace();
}
static struct ftrace_ops control_ops = {
ftrace, kprobes: Fix a deadlock on ftrace_regex_lock Fix a deadlock on ftrace_regex_lock which happens when setting an enable_event trigger on dynamic kprobe event as below. ---- sh-2.05b# echo p vfs_symlink > kprobe_events sh-2.05b# echo vfs_symlink:enable_event:kprobes:p_vfs_symlink_0 > set_ftrace_filter ============================================= [ INFO: possible recursive locking detected ] 3.9.0+ #35 Not tainted --------------------------------------------- sh/72 is trying to acquire lock: (ftrace_regex_lock){+.+.+.}, at: [<ffffffff810ba6c1>] ftrace_set_hash+0x81/0x1f0 but task is already holding lock: (ftrace_regex_lock){+.+.+.}, at: [<ffffffff810b7cbd>] ftrace_regex_write.isra.29.part.30+0x3d/0x220 other info that might help us debug this: Possible unsafe locking scenario: CPU0 ---- lock(ftrace_regex_lock); lock(ftrace_regex_lock); *** DEADLOCK *** ---- To fix that, this introduces a finer regex_lock for each ftrace_ops. ftrace_regex_lock is too big of a lock which protects all filter/notrace_hash operations, but it doesn't need to be a global lock after supporting multiple ftrace_ops because each ftrace_ops has its own filter/notrace_hash. Link: http://lkml.kernel.org/r/20130509054417.30398.84254.stgit@mhiramat-M0-7522 Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Tom Zanussi <tom.zanussi@intel.com> Signed-off-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com> [ Added initialization flag and automate mutex initialization for non ftrace.c ftrace_probes. ] Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-05-09 12:44:17 +07:00
.func = ftrace_ops_control_func,
.flags = FTRACE_OPS_FL_RECURSION_SAFE | FTRACE_OPS_FL_INITIALIZED,
INIT_REGEX_LOCK(control_ops)
};
static inline void
__ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip,
struct ftrace_ops *ignored, struct pt_regs *regs)
{
struct ftrace_ops *op;
int bit;
if (function_trace_stop)
return;
bit = trace_test_and_set_recursion(TRACE_LIST_START, TRACE_LIST_MAX);
if (bit < 0)
return;
ftrace: Add internal recursive checks Witold reported a reboot caused by the selftests of the dynamic function tracer. He sent me a config and I used ktest to do a config_bisect on it (as my config did not cause the crash). It pointed out that the problem config was CONFIG_PROVE_RCU. What happened was that if multiple callbacks are attached to the function tracer, we iterate a list of callbacks. Because the list is managed by synchronize_sched() and preempt_disable, the access to the pointers uses rcu_dereference_raw(). When PROVE_RCU is enabled, the rcu_dereference_raw() calls some debugging functions, which happen to be traced. The tracing of the debug function would then call rcu_dereference_raw() which would then call the debug function and then... well you get the idea. I first wrote two different patches to solve this bug. 1) add a __rcu_dereference_raw() that would not do any checks. 2) add notrace to the offending debug functions. Both of these patches worked. Talking with Paul McKenney on IRC, he suggested to add recursion detection instead. This seemed to be a better solution, so I decided to implement it. As the task_struct already has a trace_recursion to detect recursion in the ring buffer, and that has a very small number it allows, I decided to use that same variable to add flags that can detect the recursion inside the infrastructure of the function tracer. I plan to change it so that the task struct bit can be checked in mcount, but as that requires changes to all archs, I will hold that off to the next merge window. Cc: Ingo Molnar <mingo@elte.hu> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Link: http://lkml.kernel.org/r/1306348063.1465.116.camel@gandalf.stny.rr.com Reported-by: Witold Baryluk <baryluk@smp.if.uj.edu.pl> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2011-05-26 01:27:43 +07:00
/*
* Some of the ops may be dynamically allocated,
* they must be freed after a synchronize_sched().
*/
preempt_disable_notrace();
do_for_each_ftrace_op(op, ftrace_ops_list) {
if (ftrace_ops_test(op, ip, regs))
op->func(ip, parent_ip, op, regs);
} while_for_each_ftrace_op(op);
preempt_enable_notrace();
trace_clear_recursion(bit);
}
/*
* Some archs only support passing ip and parent_ip. Even though
* the list function ignores the op parameter, we do not want any
* C side effects, where a function is called without the caller
* sending a third parameter.
* Archs are to support both the regs and ftrace_ops at the same time.
* If they support ftrace_ops, it is assumed they support regs.
* If call backs want to use regs, they must either check for regs
* being NULL, or CONFIG_DYNAMIC_FTRACE_WITH_REGS.
* Note, CONFIG_DYNAMIC_FTRACE_WITH_REGS expects a full regs to be saved.
* An architecture can pass partial regs with ftrace_ops and still
* set the ARCH_SUPPORT_FTARCE_OPS.
*/
#if ARCH_SUPPORTS_FTRACE_OPS
static void ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip,
struct ftrace_ops *op, struct pt_regs *regs)
{
__ftrace_ops_list_func(ip, parent_ip, NULL, regs);
}
#else
static void ftrace_ops_no_ops(unsigned long ip, unsigned long parent_ip)
{
__ftrace_ops_list_func(ip, parent_ip, NULL, NULL);
}
#endif
static void clear_ftrace_swapper(void)
{
struct task_struct *p;
int cpu;
get_online_cpus();
for_each_online_cpu(cpu) {
p = idle_task(cpu);
clear_tsk_trace_trace(p);
}
put_online_cpus();
}
static void set_ftrace_swapper(void)
{
struct task_struct *p;
int cpu;
get_online_cpus();
for_each_online_cpu(cpu) {
p = idle_task(cpu);
set_tsk_trace_trace(p);
}
put_online_cpus();
}
static void clear_ftrace_pid(struct pid *pid)
{
struct task_struct *p;
rcu_read_lock();
do_each_pid_task(pid, PIDTYPE_PID, p) {
clear_tsk_trace_trace(p);
} while_each_pid_task(pid, PIDTYPE_PID, p);
rcu_read_unlock();
put_pid(pid);
}
static void set_ftrace_pid(struct pid *pid)
{
struct task_struct *p;
rcu_read_lock();
do_each_pid_task(pid, PIDTYPE_PID, p) {
set_tsk_trace_trace(p);
} while_each_pid_task(pid, PIDTYPE_PID, p);
rcu_read_unlock();
}
static void clear_ftrace_pid_task(struct pid *pid)
{
if (pid == ftrace_swapper_pid)
clear_ftrace_swapper();
else
clear_ftrace_pid(pid);
}
static void set_ftrace_pid_task(struct pid *pid)
{
if (pid == ftrace_swapper_pid)
set_ftrace_swapper();
else
set_ftrace_pid(pid);
}
static int ftrace_pid_add(int p)
{
struct pid *pid;
struct ftrace_pid *fpid;
int ret = -EINVAL;
mutex_lock(&ftrace_lock);
if (!p)
pid = ftrace_swapper_pid;
else
pid = find_get_pid(p);
if (!pid)
goto out;
ret = 0;
list_for_each_entry(fpid, &ftrace_pids, list)
if (fpid->pid == pid)
goto out_put;
ret = -ENOMEM;
fpid = kmalloc(sizeof(*fpid), GFP_KERNEL);
if (!fpid)
goto out_put;
list_add(&fpid->list, &ftrace_pids);
fpid->pid = pid;
set_ftrace_pid_task(pid);
ftrace_update_pid_func();
ftrace_startup_enable(0);
mutex_unlock(&ftrace_lock);
return 0;
out_put:
if (pid != ftrace_swapper_pid)
put_pid(pid);
out:
mutex_unlock(&ftrace_lock);
return ret;
}
static void ftrace_pid_reset(void)
{
struct ftrace_pid *fpid, *safe;
mutex_lock(&ftrace_lock);
list_for_each_entry_safe(fpid, safe, &ftrace_pids, list) {
struct pid *pid = fpid->pid;
clear_ftrace_pid_task(pid);
list_del(&fpid->list);
kfree(fpid);
}
ftrace_update_pid_func();
ftrace_startup_enable(0);
mutex_unlock(&ftrace_lock);
}
static void *fpid_start(struct seq_file *m, loff_t *pos)
{
mutex_lock(&ftrace_lock);
if (list_empty(&ftrace_pids) && (!*pos))
return (void *) 1;
return seq_list_start(&ftrace_pids, *pos);
}
static void *fpid_next(struct seq_file *m, void *v, loff_t *pos)
{
if (v == (void *)1)
return NULL;
return seq_list_next(v, &ftrace_pids, pos);
}
static void fpid_stop(struct seq_file *m, void *p)
{
mutex_unlock(&ftrace_lock);
}
static int fpid_show(struct seq_file *m, void *v)
{
const struct ftrace_pid *fpid = list_entry(v, struct ftrace_pid, list);
if (v == (void *)1) {
seq_printf(m, "no pid\n");
return 0;
}
if (fpid->pid == ftrace_swapper_pid)
seq_printf(m, "swapper tasks\n");
else
seq_printf(m, "%u\n", pid_vnr(fpid->pid));
return 0;
}
static const struct seq_operations ftrace_pid_sops = {
.start = fpid_start,
.next = fpid_next,
.stop = fpid_stop,
.show = fpid_show,
};
static int
ftrace_pid_open(struct inode *inode, struct file *file)
{
int ret = 0;
if ((file->f_mode & FMODE_WRITE) &&
(file->f_flags & O_TRUNC))
ftrace_pid_reset();
if (file->f_mode & FMODE_READ)
ret = seq_open(file, &ftrace_pid_sops);
return ret;
}
static ssize_t
ftrace_pid_write(struct file *filp, const char __user *ubuf,
size_t cnt, loff_t *ppos)
{
char buf[64], *tmp;
long val;
int ret;
if (cnt >= sizeof(buf))
return -EINVAL;
if (copy_from_user(&buf, ubuf, cnt))
return -EFAULT;
buf[cnt] = 0;
/*
* Allow "echo > set_ftrace_pid" or "echo -n '' > set_ftrace_pid"
* to clean the filter quietly.
*/
tmp = strstrip(buf);
if (strlen(tmp) == 0)
return 1;
ret = kstrtol(tmp, 10, &val);
if (ret < 0)
return ret;
ret = ftrace_pid_add(val);
return ret ? ret : cnt;
}
static int
ftrace_pid_release(struct inode *inode, struct file *file)
{
if (file->f_mode & FMODE_READ)
seq_release(inode, file);
return 0;
}
static const struct file_operations ftrace_pid_fops = {
.open = ftrace_pid_open,
.write = ftrace_pid_write,
.read = seq_read,
.llseek = ftrace_filter_lseek,
.release = ftrace_pid_release,
};
static __init int ftrace_init_debugfs(void)
{
struct dentry *d_tracer;
d_tracer = tracing_init_dentry();
if (!d_tracer)
return 0;
ftrace_init_dyn_debugfs(d_tracer);
trace_create_file("set_ftrace_pid", 0644, d_tracer,
NULL, &ftrace_pid_fops);
ftrace_profile_debugfs(d_tracer);
return 0;
}
fs_initcall(ftrace_init_debugfs);
/**
* ftrace_kill - kill ftrace
*
* This function should be used by panic code. It stops ftrace
* but in a not so nice way. If you need to simply kill ftrace
* from a non-atomic section, use ftrace_kill.
*/
void ftrace_kill(void)
{
ftrace_disabled = 1;
ftrace_enabled = 0;
clear_ftrace_function();
}
/**
* Test if ftrace is dead or not.
*/
int ftrace_is_dead(void)
{
return ftrace_disabled;
}
/**
ftrace: dynamic enabling/disabling of function calls This patch adds a feature to dynamically replace the ftrace code with the jmps to allow a kernel with ftrace configured to run as fast as it can without it configured. The way this works, is on bootup (if ftrace is enabled), a ftrace function is registered to record the instruction pointer of all places that call the function. Later, if there's still any code to patch, a kthread is awoken (rate limited to at most once a second) that performs a stop_machine, and replaces all the code that was called with a jmp over the call to ftrace. It only replaces what was found the previous time. Typically the system reaches equilibrium quickly after bootup and there's no code patching needed at all. e.g. call ftrace /* 5 bytes */ is replaced with jmp 3f /* jmp is 2 bytes and we jump 3 forward */ 3: When we want to enable ftrace for function tracing, the IP recording is removed, and stop_machine is called again to replace all the locations of that were recorded back to the call of ftrace. When it is disabled, we replace the code back to the jmp. Allocation is done by the kthread. If the ftrace recording function is called, and we don't have any record slots available, then we simply skip that call. Once a second a new page (if needed) is allocated for recording new ftrace function calls. A large batch is allocated at boot up to get most of the calls there. Because we do this via stop_machine, we don't have to worry about another CPU executing a ftrace call as we modify it. But we do need to worry about NMI's so all functions that might be called via nmi must be annotated with notrace_nmi. When this code is configured in, the NMI code will not call notrace. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 02:20:42 +07:00
* register_ftrace_function - register a function for profiling
* @ops - ops structure that holds the function for profiling.
*
ftrace: dynamic enabling/disabling of function calls This patch adds a feature to dynamically replace the ftrace code with the jmps to allow a kernel with ftrace configured to run as fast as it can without it configured. The way this works, is on bootup (if ftrace is enabled), a ftrace function is registered to record the instruction pointer of all places that call the function. Later, if there's still any code to patch, a kthread is awoken (rate limited to at most once a second) that performs a stop_machine, and replaces all the code that was called with a jmp over the call to ftrace. It only replaces what was found the previous time. Typically the system reaches equilibrium quickly after bootup and there's no code patching needed at all. e.g. call ftrace /* 5 bytes */ is replaced with jmp 3f /* jmp is 2 bytes and we jump 3 forward */ 3: When we want to enable ftrace for function tracing, the IP recording is removed, and stop_machine is called again to replace all the locations of that were recorded back to the call of ftrace. When it is disabled, we replace the code back to the jmp. Allocation is done by the kthread. If the ftrace recording function is called, and we don't have any record slots available, then we simply skip that call. Once a second a new page (if needed) is allocated for recording new ftrace function calls. A large batch is allocated at boot up to get most of the calls there. Because we do this via stop_machine, we don't have to worry about another CPU executing a ftrace call as we modify it. But we do need to worry about NMI's so all functions that might be called via nmi must be annotated with notrace_nmi. When this code is configured in, the NMI code will not call notrace. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 02:20:42 +07:00
* Register a function to be called by all functions in the
* kernel.
*
* Note: @ops->func and all the functions it calls must be labeled
* with "notrace", otherwise it will go into a
* recursive loop.
*/
ftrace: dynamic enabling/disabling of function calls This patch adds a feature to dynamically replace the ftrace code with the jmps to allow a kernel with ftrace configured to run as fast as it can without it configured. The way this works, is on bootup (if ftrace is enabled), a ftrace function is registered to record the instruction pointer of all places that call the function. Later, if there's still any code to patch, a kthread is awoken (rate limited to at most once a second) that performs a stop_machine, and replaces all the code that was called with a jmp over the call to ftrace. It only replaces what was found the previous time. Typically the system reaches equilibrium quickly after bootup and there's no code patching needed at all. e.g. call ftrace /* 5 bytes */ is replaced with jmp 3f /* jmp is 2 bytes and we jump 3 forward */ 3: When we want to enable ftrace for function tracing, the IP recording is removed, and stop_machine is called again to replace all the locations of that were recorded back to the call of ftrace. When it is disabled, we replace the code back to the jmp. Allocation is done by the kthread. If the ftrace recording function is called, and we don't have any record slots available, then we simply skip that call. Once a second a new page (if needed) is allocated for recording new ftrace function calls. A large batch is allocated at boot up to get most of the calls there. Because we do this via stop_machine, we don't have to worry about another CPU executing a ftrace call as we modify it. But we do need to worry about NMI's so all functions that might be called via nmi must be annotated with notrace_nmi. When this code is configured in, the NMI code will not call notrace. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 02:20:42 +07:00
int register_ftrace_function(struct ftrace_ops *ops)
{
int ret = -1;
ftrace, kprobes: Fix a deadlock on ftrace_regex_lock Fix a deadlock on ftrace_regex_lock which happens when setting an enable_event trigger on dynamic kprobe event as below. ---- sh-2.05b# echo p vfs_symlink > kprobe_events sh-2.05b# echo vfs_symlink:enable_event:kprobes:p_vfs_symlink_0 > set_ftrace_filter ============================================= [ INFO: possible recursive locking detected ] 3.9.0+ #35 Not tainted --------------------------------------------- sh/72 is trying to acquire lock: (ftrace_regex_lock){+.+.+.}, at: [<ffffffff810ba6c1>] ftrace_set_hash+0x81/0x1f0 but task is already holding lock: (ftrace_regex_lock){+.+.+.}, at: [<ffffffff810b7cbd>] ftrace_regex_write.isra.29.part.30+0x3d/0x220 other info that might help us debug this: Possible unsafe locking scenario: CPU0 ---- lock(ftrace_regex_lock); lock(ftrace_regex_lock); *** DEADLOCK *** ---- To fix that, this introduces a finer regex_lock for each ftrace_ops. ftrace_regex_lock is too big of a lock which protects all filter/notrace_hash operations, but it doesn't need to be a global lock after supporting multiple ftrace_ops because each ftrace_ops has its own filter/notrace_hash. Link: http://lkml.kernel.org/r/20130509054417.30398.84254.stgit@mhiramat-M0-7522 Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Tom Zanussi <tom.zanussi@intel.com> Signed-off-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com> [ Added initialization flag and automate mutex initialization for non ftrace.c ftrace_probes. ] Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2013-05-09 12:44:17 +07:00
ftrace_ops_init(ops);
mutex_lock(&ftrace_lock);
tracing/function-return-tracer: support for dynamic ftrace on function return tracer This patch adds the support for dynamic tracing on the function return tracer. The whole difference with normal dynamic function tracing is that we don't need to hook on a particular callback. The only pro that we want is to nop or set dynamically the calls to ftrace_caller (which is ftrace_return_caller here). Some security checks ensure that we are not trying to launch dynamic tracing for return tracing while normal function tracing is already running. An example of trace with getnstimeofday set as a filter: ktime_get_ts+0x22/0x50 -> getnstimeofday (2283 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1396 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1382 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1825 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1426 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1464 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1524 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1382 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1382 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1434 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1464 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1502 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1404 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1397 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1051 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1314 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1344 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1163 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1390 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1374 ns) Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-11-16 12:02:06 +07:00
ret = __register_ftrace_function(ops);
if (!ret)
ret = ftrace_startup(ops, 0);
mutex_unlock(&ftrace_lock);
return ret;
ftrace: dynamic enabling/disabling of function calls This patch adds a feature to dynamically replace the ftrace code with the jmps to allow a kernel with ftrace configured to run as fast as it can without it configured. The way this works, is on bootup (if ftrace is enabled), a ftrace function is registered to record the instruction pointer of all places that call the function. Later, if there's still any code to patch, a kthread is awoken (rate limited to at most once a second) that performs a stop_machine, and replaces all the code that was called with a jmp over the call to ftrace. It only replaces what was found the previous time. Typically the system reaches equilibrium quickly after bootup and there's no code patching needed at all. e.g. call ftrace /* 5 bytes */ is replaced with jmp 3f /* jmp is 2 bytes and we jump 3 forward */ 3: When we want to enable ftrace for function tracing, the IP recording is removed, and stop_machine is called again to replace all the locations of that were recorded back to the call of ftrace. When it is disabled, we replace the code back to the jmp. Allocation is done by the kthread. If the ftrace recording function is called, and we don't have any record slots available, then we simply skip that call. Once a second a new page (if needed) is allocated for recording new ftrace function calls. A large batch is allocated at boot up to get most of the calls there. Because we do this via stop_machine, we don't have to worry about another CPU executing a ftrace call as we modify it. But we do need to worry about NMI's so all functions that might be called via nmi must be annotated with notrace_nmi. When this code is configured in, the NMI code will not call notrace. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 02:20:42 +07:00
}
EXPORT_SYMBOL_GPL(register_ftrace_function);
ftrace: dynamic enabling/disabling of function calls This patch adds a feature to dynamically replace the ftrace code with the jmps to allow a kernel with ftrace configured to run as fast as it can without it configured. The way this works, is on bootup (if ftrace is enabled), a ftrace function is registered to record the instruction pointer of all places that call the function. Later, if there's still any code to patch, a kthread is awoken (rate limited to at most once a second) that performs a stop_machine, and replaces all the code that was called with a jmp over the call to ftrace. It only replaces what was found the previous time. Typically the system reaches equilibrium quickly after bootup and there's no code patching needed at all. e.g. call ftrace /* 5 bytes */ is replaced with jmp 3f /* jmp is 2 bytes and we jump 3 forward */ 3: When we want to enable ftrace for function tracing, the IP recording is removed, and stop_machine is called again to replace all the locations of that were recorded back to the call of ftrace. When it is disabled, we replace the code back to the jmp. Allocation is done by the kthread. If the ftrace recording function is called, and we don't have any record slots available, then we simply skip that call. Once a second a new page (if needed) is allocated for recording new ftrace function calls. A large batch is allocated at boot up to get most of the calls there. Because we do this via stop_machine, we don't have to worry about another CPU executing a ftrace call as we modify it. But we do need to worry about NMI's so all functions that might be called via nmi must be annotated with notrace_nmi. When this code is configured in, the NMI code will not call notrace. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 02:20:42 +07:00
/**
* unregister_ftrace_function - unregister a function for profiling.
ftrace: dynamic enabling/disabling of function calls This patch adds a feature to dynamically replace the ftrace code with the jmps to allow a kernel with ftrace configured to run as fast as it can without it configured. The way this works, is on bootup (if ftrace is enabled), a ftrace function is registered to record the instruction pointer of all places that call the function. Later, if there's still any code to patch, a kthread is awoken (rate limited to at most once a second) that performs a stop_machine, and replaces all the code that was called with a jmp over the call to ftrace. It only replaces what was found the previous time. Typically the system reaches equilibrium quickly after bootup and there's no code patching needed at all. e.g. call ftrace /* 5 bytes */ is replaced with jmp 3f /* jmp is 2 bytes and we jump 3 forward */ 3: When we want to enable ftrace for function tracing, the IP recording is removed, and stop_machine is called again to replace all the locations of that were recorded back to the call of ftrace. When it is disabled, we replace the code back to the jmp. Allocation is done by the kthread. If the ftrace recording function is called, and we don't have any record slots available, then we simply skip that call. Once a second a new page (if needed) is allocated for recording new ftrace function calls. A large batch is allocated at boot up to get most of the calls there. Because we do this via stop_machine, we don't have to worry about another CPU executing a ftrace call as we modify it. But we do need to worry about NMI's so all functions that might be called via nmi must be annotated with notrace_nmi. When this code is configured in, the NMI code will not call notrace. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 02:20:42 +07:00
* @ops - ops structure that holds the function to unregister
*
* Unregister a function that was added to be called by ftrace profiling.
*/
int unregister_ftrace_function(struct ftrace_ops *ops)
{
int ret;
mutex_lock(&ftrace_lock);
ftrace: dynamic enabling/disabling of function calls This patch adds a feature to dynamically replace the ftrace code with the jmps to allow a kernel with ftrace configured to run as fast as it can without it configured. The way this works, is on bootup (if ftrace is enabled), a ftrace function is registered to record the instruction pointer of all places that call the function. Later, if there's still any code to patch, a kthread is awoken (rate limited to at most once a second) that performs a stop_machine, and replaces all the code that was called with a jmp over the call to ftrace. It only replaces what was found the previous time. Typically the system reaches equilibrium quickly after bootup and there's no code patching needed at all. e.g. call ftrace /* 5 bytes */ is replaced with jmp 3f /* jmp is 2 bytes and we jump 3 forward */ 3: When we want to enable ftrace for function tracing, the IP recording is removed, and stop_machine is called again to replace all the locations of that were recorded back to the call of ftrace. When it is disabled, we replace the code back to the jmp. Allocation is done by the kthread. If the ftrace recording function is called, and we don't have any record slots available, then we simply skip that call. Once a second a new page (if needed) is allocated for recording new ftrace function calls. A large batch is allocated at boot up to get most of the calls there. Because we do this via stop_machine, we don't have to worry about another CPU executing a ftrace call as we modify it. But we do need to worry about NMI's so all functions that might be called via nmi must be annotated with notrace_nmi. When this code is configured in, the NMI code will not call notrace. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 02:20:42 +07:00
ret = __unregister_ftrace_function(ops);
if (!ret)
ftrace_shutdown(ops, 0);
mutex_unlock(&ftrace_lock);
return ret;
}
EXPORT_SYMBOL_GPL(unregister_ftrace_function);
int
ftrace_enable_sysctl(struct ctl_table *table, int write,
void __user *buffer, size_t *lenp,
loff_t *ppos)
{
int ret = -ENODEV;
mutex_lock(&ftrace_lock);
if (unlikely(ftrace_disabled))
goto out;
ret = proc_dointvec(table, write, buffer, lenp, ppos);
if (ret || !write || (last_ftrace_enabled == !!ftrace_enabled))
goto out;
last_ftrace_enabled = !!ftrace_enabled;
if (ftrace_enabled) {
ftrace_startup_sysctl();
/* we are starting ftrace again */
if (ftrace_ops_list != &ftrace_list_end)
update_ftrace_function();
} else {
/* stopping ftrace calls (just send to ftrace_stub) */
ftrace_trace_function = ftrace_stub;
ftrace_shutdown_sysctl();
}
out:
mutex_unlock(&ftrace_lock);
ftrace: dynamic enabling/disabling of function calls This patch adds a feature to dynamically replace the ftrace code with the jmps to allow a kernel with ftrace configured to run as fast as it can without it configured. The way this works, is on bootup (if ftrace is enabled), a ftrace function is registered to record the instruction pointer of all places that call the function. Later, if there's still any code to patch, a kthread is awoken (rate limited to at most once a second) that performs a stop_machine, and replaces all the code that was called with a jmp over the call to ftrace. It only replaces what was found the previous time. Typically the system reaches equilibrium quickly after bootup and there's no code patching needed at all. e.g. call ftrace /* 5 bytes */ is replaced with jmp 3f /* jmp is 2 bytes and we jump 3 forward */ 3: When we want to enable ftrace for function tracing, the IP recording is removed, and stop_machine is called again to replace all the locations of that were recorded back to the call of ftrace. When it is disabled, we replace the code back to the jmp. Allocation is done by the kthread. If the ftrace recording function is called, and we don't have any record slots available, then we simply skip that call. Once a second a new page (if needed) is allocated for recording new ftrace function calls. A large batch is allocated at boot up to get most of the calls there. Because we do this via stop_machine, we don't have to worry about another CPU executing a ftrace call as we modify it. But we do need to worry about NMI's so all functions that might be called via nmi must be annotated with notrace_nmi. When this code is configured in, the NMI code will not call notrace. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-13 02:20:42 +07:00
return ret;
}
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
tracing/function-return-tracer: support for dynamic ftrace on function return tracer This patch adds the support for dynamic tracing on the function return tracer. The whole difference with normal dynamic function tracing is that we don't need to hook on a particular callback. The only pro that we want is to nop or set dynamically the calls to ftrace_caller (which is ftrace_return_caller here). Some security checks ensure that we are not trying to launch dynamic tracing for return tracing while normal function tracing is already running. An example of trace with getnstimeofday set as a filter: ktime_get_ts+0x22/0x50 -> getnstimeofday (2283 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1396 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1382 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1825 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1426 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1464 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1524 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1382 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1382 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1434 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1464 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1502 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1404 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1397 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1051 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1314 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1344 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1163 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1390 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1374 ns) Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-11-16 12:02:06 +07:00
static int ftrace_graph_active;
static struct notifier_block ftrace_suspend_notifier;
tracing/function-return-tracer: support for dynamic ftrace on function return tracer This patch adds the support for dynamic tracing on the function return tracer. The whole difference with normal dynamic function tracing is that we don't need to hook on a particular callback. The only pro that we want is to nop or set dynamically the calls to ftrace_caller (which is ftrace_return_caller here). Some security checks ensure that we are not trying to launch dynamic tracing for return tracing while normal function tracing is already running. An example of trace with getnstimeofday set as a filter: ktime_get_ts+0x22/0x50 -> getnstimeofday (2283 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1396 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1382 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1825 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1426 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1464 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1524 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1382 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1382 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1434 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1464 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1502 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1404 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1397 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1051 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1314 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1344 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1163 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1390 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1374 ns) Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-11-16 12:02:06 +07:00
int ftrace_graph_entry_stub(struct ftrace_graph_ent *trace)
{
return 0;
}
tracing/function-return-tracer: set a more human readable output Impact: feature This patch sets a C-like output for the function graph tracing. For this aim, we now call two handler for each function: one on the entry and one other on return. This way we can draw a well-ordered call stack. The pid of the previous trace is loosely stored to be compared against the one of the current trace to see if there were a context switch. Without this little feature, the call tree would seem broken at some locations. We could use the sched_tracer to capture these sched_events but this way of processing is much more simpler. 2 spaces have been chosen for indentation to fit the screen while deep calls. The time of execution in nanosecs is printed just after closed braces, it seems more easy this way to find the corresponding function. If the time was printed as a first column, it would be not so easy to find the corresponding function if it is called on a deep depth. I plan to output the return value but on 32 bits CPU, the return value can be 32 or 64, and its difficult to guess on which case we are. I don't know what would be the better solution on X86-32: only print eax (low-part) or even edx (high-part). Actually it's thee same problem when a function return a 8 bits value, the high part of eax could contain junk values... Here is an example of trace: sys_read() { fget_light() { } 526 vfs_read() { rw_verify_area() { security_file_permission() { cap_file_permission() { } 519 } 1564 } 2640 do_sync_read() { pipe_read() { __might_sleep() { } 511 pipe_wait() { prepare_to_wait() { } 760 deactivate_task() { dequeue_task() { dequeue_task_fair() { dequeue_entity() { update_curr() { update_min_vruntime() { } 504 } 1587 clear_buddies() { } 512 add_cfs_task_weight() { } 519 update_min_vruntime() { } 511 } 5602 dequeue_entity() { update_curr() { update_min_vruntime() { } 496 } 1631 clear_buddies() { } 496 update_min_vruntime() { } 527 } 4580 hrtick_update() { hrtick_start_fair() { } 488 } 1489 } 13700 } 14949 } 16016 msecs_to_jiffies() { } 496 put_prev_task_fair() { } 504 pick_next_task_fair() { } 489 pick_next_task_rt() { } 496 pick_next_task_fair() { } 489 pick_next_task_idle() { } 489 ------------8<---------- thread 4 ------------8<---------- finish_task_switch() { } 1203 do_softirq() { __do_softirq() { __local_bh_disable() { } 669 rcu_process_callbacks() { __rcu_process_callbacks() { cpu_quiet() { rcu_start_batch() { } 503 } 1647 } 3128 __rcu_process_callbacks() { } 542 } 5362 _local_bh_enable() { } 587 } 8880 } 9986 kthread_should_stop() { } 669 deactivate_task() { dequeue_task() { dequeue_task_fair() { dequeue_entity() { update_curr() { calc_delta_mine() { } 511 update_min_vruntime() { } 511 } 2813 Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com> Acked-by: Steven Rostedt <rostedt@goodmis.org> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-11-26 06:57:25 +07:00
/* The callbacks that hook a function */
trace_func_graph_ret_t ftrace_graph_return =
(trace_func_graph_ret_t)ftrace_stub;
trace_func_graph_ent_t ftrace_graph_entry = ftrace_graph_entry_stub;
/* Try to assign a return stack array on FTRACE_RETSTACK_ALLOC_SIZE tasks. */
static int alloc_retstack_tasklist(struct ftrace_ret_stack **ret_stack_list)
{
int i;
int ret = 0;
unsigned long flags;
int start = 0, end = FTRACE_RETSTACK_ALLOC_SIZE;
struct task_struct *g, *t;
for (i = 0; i < FTRACE_RETSTACK_ALLOC_SIZE; i++) {
ret_stack_list[i] = kmalloc(FTRACE_RETFUNC_DEPTH
* sizeof(struct ftrace_ret_stack),
GFP_KERNEL);
if (!ret_stack_list[i]) {
start = 0;
end = i;
ret = -ENOMEM;
goto free;
}
}
read_lock_irqsave(&tasklist_lock, flags);
do_each_thread(g, t) {
if (start == end) {
ret = -EAGAIN;
goto unlock;
}
if (t->ret_stack == NULL) {
atomic_set(&t->tracing_graph_pause, 0);
atomic_set(&t->trace_overrun, 0);
t->curr_ret_stack = -1;
/* Make sure the tasks see the -1 first: */
smp_wmb();
t->ret_stack = ret_stack_list[start++];
}
} while_each_thread(g, t);
unlock:
read_unlock_irqrestore(&tasklist_lock, flags);
free:
for (i = start; i < end; i++)
kfree(ret_stack_list[i]);
return ret;
}
static void
tracing: Let tracepoints have data passed to tracepoint callbacks This patch adds data to be passed to tracepoint callbacks. The created functions from DECLARE_TRACE() now need a mandatory data parameter. For example: DECLARE_TRACE(mytracepoint, int value, value) Will create the register function: int register_trace_mytracepoint((void(*)(void *data, int value))probe, void *data); As the first argument, all callbacks (probes) must take a (void *data) parameter. So a callback for the above tracepoint will look like: void myprobe(void *data, int value) { } The callback may choose to ignore the data parameter. This change allows callbacks to register a private data pointer along with the function probe. void mycallback(void *data, int value); register_trace_mytracepoint(mycallback, mydata); Then the mycallback() will receive the "mydata" as the first parameter before the args. A more detailed example: DECLARE_TRACE(mytracepoint, TP_PROTO(int status), TP_ARGS(status)); /* In the C file */ DEFINE_TRACE(mytracepoint, TP_PROTO(int status), TP_ARGS(status)); [...] trace_mytracepoint(status); /* In a file registering this tracepoint */ int my_callback(void *data, int status) { struct my_struct my_data = data; [...] } [...] my_data = kmalloc(sizeof(*my_data), GFP_KERNEL); init_my_data(my_data); register_trace_mytracepoint(my_callback, my_data); The same callback can also be registered to the same tracepoint as long as the data registered is different. Note, the data must also be used to unregister the callback: unregister_trace_mytracepoint(my_callback, my_data); Because of the data parameter, tracepoints declared this way can not have no args. That is: DECLARE_TRACE(mytracepoint, TP_PROTO(void), TP_ARGS()); will cause an error. If no arguments are needed, a new macro can be used instead: DECLARE_TRACE_NOARGS(mytracepoint); Since there are no arguments, the proto and args fields are left out. This is part of a series to make the tracepoint footprint smaller: text data bss dec hex filename 4913961 1088356 861512 6863829 68bbd5 vmlinux.orig 4914025 1088868 861512 6864405 68be15 vmlinux.class 4918492 1084612 861512 6864616 68bee8 vmlinux.tracepoint Again, this patch also increases the size of the kernel, but lays the ground work for decreasing it. v5: Fixed net/core/drop_monitor.c to handle these updates. v4: Moved the DECLARE_TRACE() DECLARE_TRACE_NOARGS out of the #ifdef CONFIG_TRACE_POINTS, since the two are the same in both cases. The __DECLARE_TRACE() is what changes. Thanks to Frederic Weisbecker for pointing this out. v3: Made all register_* functions require data to be passed and all callbacks to take a void * parameter as its first argument. This makes the calling functions comply with C standards. Also added more comments to the modifications of DECLARE_TRACE(). v2: Made the DECLARE_TRACE() have the ability to pass arguments and added a new DECLARE_TRACE_NOARGS() for tracepoints that do not need any arguments. Acked-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Acked-by: Masami Hiramatsu <mhiramat@redhat.com> Acked-by: Frederic Weisbecker <fweisbec@gmail.com> Cc: Neil Horman <nhorman@tuxdriver.com> Cc: David S. Miller <davem@davemloft.net> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2010-04-21 04:04:50 +07:00
ftrace_graph_probe_sched_switch(void *ignore,
struct task_struct *prev, struct task_struct *next)
{
unsigned long long timestamp;
int index;
/*
* Does the user want to count the time a function was asleep.
* If so, do not update the time stamps.
*/
if (trace_flags & TRACE_ITER_SLEEP_TIME)
return;
timestamp = trace_clock_local();
prev->ftrace_timestamp = timestamp;
/* only process tasks that we timestamped */
if (!next->ftrace_timestamp)
return;
/*
* Update all the counters in next to make up for the
* time next was sleeping.
*/
timestamp -= next->ftrace_timestamp;
for (index = next->curr_ret_stack; index >= 0; index--)
next->ret_stack[index].calltime += timestamp;
}
/* Allocate a return stack for each task */
static int start_graph_tracing(void)
{
struct ftrace_ret_stack **ret_stack_list;
tracing/function-graph-tracer: trace the idle tasks When the function graph tracer is activated, it iterates over the task_list to allocate a stack to store the return addresses. But the per cpu idle tasks are not iterated by using do_each_thread / while_each_thread. So we have to iterate on them manually. This fixes somes weirdness in the traces and many losses of traces. Examples on two cpus: 0) Xorg-4287 | 2.906 us | } 0) Xorg-4287 | 3.965 us | } 0) Xorg-4287 | 5.302 us | } ------------------------------------------ 0) Xorg-4287 => <idle>-0 ------------------------------------------ 0) <idle>-0 | 2.861 us | } 0) <idle>-0 | 0.526 us | set_normalized_timespec(); 0) <idle>-0 | 7.201 us | } 0) <idle>-0 | 8.214 us | } 0) <idle>-0 | | clockevents_program_event() { 0) <idle>-0 | | lapic_next_event() { 0) <idle>-0 | 0.510 us | native_apic_mem_write(); 0) <idle>-0 | 1.546 us | } 0) <idle>-0 | 2.583 us | } 0) <idle>-0 | + 12.435 us | } 0) <idle>-0 | + 13.470 us | } 0) <idle>-0 | 0.608 us | _spin_unlock_irqrestore(); 0) <idle>-0 | + 23.270 us | } 0) <idle>-0 | + 24.336 us | } 0) <idle>-0 | + 25.417 us | } 0) <idle>-0 | 0.593 us | _spin_unlock(); 0) <idle>-0 | + 41.869 us | } 0) <idle>-0 | + 42.906 us | } 0) <idle>-0 | + 95.035 us | } 0) <idle>-0 | 0.540 us | menu_reflect(); 0) <idle>-0 | ! 100.404 us | } 0) <idle>-0 | 0.564 us | mce_idle_callback(); 0) <idle>-0 | | enter_idle() { 0) <idle>-0 | 0.526 us | mce_idle_callback(); 0) <idle>-0 | 1.757 us | } 0) <idle>-0 | | cpuidle_idle_call() { 0) <idle>-0 | | menu_select() { 0) <idle>-0 | 0.525 us | pm_qos_requirement(); 0) <idle>-0 | 0.518 us | tick_nohz_get_sleep_length(); 0) <idle>-0 | 2.621 us | } [...] 1) <idle>-0 | 0.518 us | touch_softlockup_watchdog(); 1) <idle>-0 | + 14.355 us | } 1) <idle>-0 | + 22.840 us | } 1) <idle>-0 | + 25.949 us | } 1) <idle>-0 | | handle_irq() { 1) <idle>-0 | 0.511 us | irq_to_desc(); 1) <idle>-0 | | handle_edge_irq() { 1) <idle>-0 | 0.638 us | _spin_lock(); 1) <idle>-0 | | ack_apic_edge() { 1) <idle>-0 | 0.510 us | irq_to_desc(); 1) <idle>-0 | | move_native_irq() { 1) <idle>-0 | 0.510 us | irq_to_desc(); 1) <idle>-0 | 1.532 us | } 1) <idle>-0 | 0.511 us | native_apic_mem_write(); ------------------------------------------ 1) <idle>-0 => cat-5073 ------------------------------------------ 1) cat-5073 | 3.731 us | } 1) cat-5073 | | run_local_timers() { 1) cat-5073 | 0.533 us | hrtimer_run_queues(); 1) cat-5073 | | raise_softirq() { 1) cat-5073 | | __raise_softirq_irqoff() { 1) cat-5073 | | /* nr: 1 */ 1) cat-5073 | 2.718 us | } 1) cat-5073 | 3.814 us | } Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-02-18 00:35:34 +07:00
int ret, cpu;
ret_stack_list = kmalloc(FTRACE_RETSTACK_ALLOC_SIZE *
sizeof(struct ftrace_ret_stack *),
GFP_KERNEL);
if (!ret_stack_list)
return -ENOMEM;
tracing/function-graph-tracer: trace the idle tasks When the function graph tracer is activated, it iterates over the task_list to allocate a stack to store the return addresses. But the per cpu idle tasks are not iterated by using do_each_thread / while_each_thread. So we have to iterate on them manually. This fixes somes weirdness in the traces and many losses of traces. Examples on two cpus: 0) Xorg-4287 | 2.906 us | } 0) Xorg-4287 | 3.965 us | } 0) Xorg-4287 | 5.302 us | } ------------------------------------------ 0) Xorg-4287 => <idle>-0 ------------------------------------------ 0) <idle>-0 | 2.861 us | } 0) <idle>-0 | 0.526 us | set_normalized_timespec(); 0) <idle>-0 | 7.201 us | } 0) <idle>-0 | 8.214 us | } 0) <idle>-0 | | clockevents_program_event() { 0) <idle>-0 | | lapic_next_event() { 0) <idle>-0 | 0.510 us | native_apic_mem_write(); 0) <idle>-0 | 1.546 us | } 0) <idle>-0 | 2.583 us | } 0) <idle>-0 | + 12.435 us | } 0) <idle>-0 | + 13.470 us | } 0) <idle>-0 | 0.608 us | _spin_unlock_irqrestore(); 0) <idle>-0 | + 23.270 us | } 0) <idle>-0 | + 24.336 us | } 0) <idle>-0 | + 25.417 us | } 0) <idle>-0 | 0.593 us | _spin_unlock(); 0) <idle>-0 | + 41.869 us | } 0) <idle>-0 | + 42.906 us | } 0) <idle>-0 | + 95.035 us | } 0) <idle>-0 | 0.540 us | menu_reflect(); 0) <idle>-0 | ! 100.404 us | } 0) <idle>-0 | 0.564 us | mce_idle_callback(); 0) <idle>-0 | | enter_idle() { 0) <idle>-0 | 0.526 us | mce_idle_callback(); 0) <idle>-0 | 1.757 us | } 0) <idle>-0 | | cpuidle_idle_call() { 0) <idle>-0 | | menu_select() { 0) <idle>-0 | 0.525 us | pm_qos_requirement(); 0) <idle>-0 | 0.518 us | tick_nohz_get_sleep_length(); 0) <idle>-0 | 2.621 us | } [...] 1) <idle>-0 | 0.518 us | touch_softlockup_watchdog(); 1) <idle>-0 | + 14.355 us | } 1) <idle>-0 | + 22.840 us | } 1) <idle>-0 | + 25.949 us | } 1) <idle>-0 | | handle_irq() { 1) <idle>-0 | 0.511 us | irq_to_desc(); 1) <idle>-0 | | handle_edge_irq() { 1) <idle>-0 | 0.638 us | _spin_lock(); 1) <idle>-0 | | ack_apic_edge() { 1) <idle>-0 | 0.510 us | irq_to_desc(); 1) <idle>-0 | | move_native_irq() { 1) <idle>-0 | 0.510 us | irq_to_desc(); 1) <idle>-0 | 1.532 us | } 1) <idle>-0 | 0.511 us | native_apic_mem_write(); ------------------------------------------ 1) <idle>-0 => cat-5073 ------------------------------------------ 1) cat-5073 | 3.731 us | } 1) cat-5073 | | run_local_timers() { 1) cat-5073 | 0.533 us | hrtimer_run_queues(); 1) cat-5073 | | raise_softirq() { 1) cat-5073 | | __raise_softirq_irqoff() { 1) cat-5073 | | /* nr: 1 */ 1) cat-5073 | 2.718 us | } 1) cat-5073 | 3.814 us | } Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-02-18 00:35:34 +07:00
/* The cpu_boot init_task->ret_stack will never be freed */
for_each_online_cpu(cpu) {
if (!idle_task(cpu)->ret_stack)
ftrace: Fix memory leak with function graph and cpu hotplug When the fuction graph tracer starts, it needs to make a special stack for each task to save the real return values of the tasks. All running tasks have this stack created, as well as any new tasks. On CPU hot plug, the new idle task will allocate a stack as well when init_idle() is called. The problem is that cpu hotplug does not create a new idle_task. Instead it uses the idle task that existed when the cpu went down. ftrace_graph_init_task() will add a new ret_stack to the task that is given to it. Because a clone will make the task have a stack of its parent it does not check if the task's ret_stack is already NULL or not. When the CPU hotplug code starts a CPU up again, it will allocate a new stack even though one already existed for it. The solution is to treat the idle_task specially. In fact, the function_graph code already does, just not at init_idle(). Instead of using the ftrace_graph_init_task() for the idle task, which that function expects the task to be a clone, have a separate ftrace_graph_init_idle_task(). Also, we will create a per_cpu ret_stack that is used by the idle task. When we call ftrace_graph_init_idle_task() it will check if the idle task's ret_stack is NULL, if it is, then it will assign it the per_cpu ret_stack. Reported-by: Benjamin Herrenschmidt <benh@kernel.crashing.org> Suggested-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Stable Tree <stable@kernel.org> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2011-02-11 09:26:13 +07:00
ftrace_graph_init_idle_task(idle_task(cpu), cpu);
}
tracing/function-graph-tracer: trace the idle tasks When the function graph tracer is activated, it iterates over the task_list to allocate a stack to store the return addresses. But the per cpu idle tasks are not iterated by using do_each_thread / while_each_thread. So we have to iterate on them manually. This fixes somes weirdness in the traces and many losses of traces. Examples on two cpus: 0) Xorg-4287 | 2.906 us | } 0) Xorg-4287 | 3.965 us | } 0) Xorg-4287 | 5.302 us | } ------------------------------------------ 0) Xorg-4287 => <idle>-0 ------------------------------------------ 0) <idle>-0 | 2.861 us | } 0) <idle>-0 | 0.526 us | set_normalized_timespec(); 0) <idle>-0 | 7.201 us | } 0) <idle>-0 | 8.214 us | } 0) <idle>-0 | | clockevents_program_event() { 0) <idle>-0 | | lapic_next_event() { 0) <idle>-0 | 0.510 us | native_apic_mem_write(); 0) <idle>-0 | 1.546 us | } 0) <idle>-0 | 2.583 us | } 0) <idle>-0 | + 12.435 us | } 0) <idle>-0 | + 13.470 us | } 0) <idle>-0 | 0.608 us | _spin_unlock_irqrestore(); 0) <idle>-0 | + 23.270 us | } 0) <idle>-0 | + 24.336 us | } 0) <idle>-0 | + 25.417 us | } 0) <idle>-0 | 0.593 us | _spin_unlock(); 0) <idle>-0 | + 41.869 us | } 0) <idle>-0 | + 42.906 us | } 0) <idle>-0 | + 95.035 us | } 0) <idle>-0 | 0.540 us | menu_reflect(); 0) <idle>-0 | ! 100.404 us | } 0) <idle>-0 | 0.564 us | mce_idle_callback(); 0) <idle>-0 | | enter_idle() { 0) <idle>-0 | 0.526 us | mce_idle_callback(); 0) <idle>-0 | 1.757 us | } 0) <idle>-0 | | cpuidle_idle_call() { 0) <idle>-0 | | menu_select() { 0) <idle>-0 | 0.525 us | pm_qos_requirement(); 0) <idle>-0 | 0.518 us | tick_nohz_get_sleep_length(); 0) <idle>-0 | 2.621 us | } [...] 1) <idle>-0 | 0.518 us | touch_softlockup_watchdog(); 1) <idle>-0 | + 14.355 us | } 1) <idle>-0 | + 22.840 us | } 1) <idle>-0 | + 25.949 us | } 1) <idle>-0 | | handle_irq() { 1) <idle>-0 | 0.511 us | irq_to_desc(); 1) <idle>-0 | | handle_edge_irq() { 1) <idle>-0 | 0.638 us | _spin_lock(); 1) <idle>-0 | | ack_apic_edge() { 1) <idle>-0 | 0.510 us | irq_to_desc(); 1) <idle>-0 | | move_native_irq() { 1) <idle>-0 | 0.510 us | irq_to_desc(); 1) <idle>-0 | 1.532 us | } 1) <idle>-0 | 0.511 us | native_apic_mem_write(); ------------------------------------------ 1) <idle>-0 => cat-5073 ------------------------------------------ 1) cat-5073 | 3.731 us | } 1) cat-5073 | | run_local_timers() { 1) cat-5073 | 0.533 us | hrtimer_run_queues(); 1) cat-5073 | | raise_softirq() { 1) cat-5073 | | __raise_softirq_irqoff() { 1) cat-5073 | | /* nr: 1 */ 1) cat-5073 | 2.718 us | } 1) cat-5073 | 3.814 us | } Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-02-18 00:35:34 +07:00
do {
ret = alloc_retstack_tasklist(ret_stack_list);
} while (ret == -EAGAIN);
if (!ret) {
tracing: Let tracepoints have data passed to tracepoint callbacks This patch adds data to be passed to tracepoint callbacks. The created functions from DECLARE_TRACE() now need a mandatory data parameter. For example: DECLARE_TRACE(mytracepoint, int value, value) Will create the register function: int register_trace_mytracepoint((void(*)(void *data, int value))probe, void *data); As the first argument, all callbacks (probes) must take a (void *data) parameter. So a callback for the above tracepoint will look like: void myprobe(void *data, int value) { } The callback may choose to ignore the data parameter. This change allows callbacks to register a private data pointer along with the function probe. void mycallback(void *data, int value); register_trace_mytracepoint(mycallback, mydata); Then the mycallback() will receive the "mydata" as the first parameter before the args. A more detailed example: DECLARE_TRACE(mytracepoint, TP_PROTO(int status), TP_ARGS(status)); /* In the C file */ DEFINE_TRACE(mytracepoint, TP_PROTO(int status), TP_ARGS(status)); [...] trace_mytracepoint(status); /* In a file registering this tracepoint */ int my_callback(void *data, int status) { struct my_struct my_data = data; [...] } [...] my_data = kmalloc(sizeof(*my_data), GFP_KERNEL); init_my_data(my_data); register_trace_mytracepoint(my_callback, my_data); The same callback can also be registered to the same tracepoint as long as the data registered is different. Note, the data must also be used to unregister the callback: unregister_trace_mytracepoint(my_callback, my_data); Because of the data parameter, tracepoints declared this way can not have no args. That is: DECLARE_TRACE(mytracepoint, TP_PROTO(void), TP_ARGS()); will cause an error. If no arguments are needed, a new macro can be used instead: DECLARE_TRACE_NOARGS(mytracepoint); Since there are no arguments, the proto and args fields are left out. This is part of a series to make the tracepoint footprint smaller: text data bss dec hex filename 4913961 1088356 861512 6863829 68bbd5 vmlinux.orig 4914025 1088868 861512 6864405 68be15 vmlinux.class 4918492 1084612 861512 6864616 68bee8 vmlinux.tracepoint Again, this patch also increases the size of the kernel, but lays the ground work for decreasing it. v5: Fixed net/core/drop_monitor.c to handle these updates. v4: Moved the DECLARE_TRACE() DECLARE_TRACE_NOARGS out of the #ifdef CONFIG_TRACE_POINTS, since the two are the same in both cases. The __DECLARE_TRACE() is what changes. Thanks to Frederic Weisbecker for pointing this out. v3: Made all register_* functions require data to be passed and all callbacks to take a void * parameter as its first argument. This makes the calling functions comply with C standards. Also added more comments to the modifications of DECLARE_TRACE(). v2: Made the DECLARE_TRACE() have the ability to pass arguments and added a new DECLARE_TRACE_NOARGS() for tracepoints that do not need any arguments. Acked-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Acked-by: Masami Hiramatsu <mhiramat@redhat.com> Acked-by: Frederic Weisbecker <fweisbec@gmail.com> Cc: Neil Horman <nhorman@tuxdriver.com> Cc: David S. Miller <davem@davemloft.net> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2010-04-21 04:04:50 +07:00
ret = register_trace_sched_switch(ftrace_graph_probe_sched_switch, NULL);
if (ret)
pr_info("ftrace_graph: Couldn't activate tracepoint"
" probe to kernel_sched_switch\n");
}
kfree(ret_stack_list);
return ret;
}
/*
* Hibernation protection.
* The state of the current task is too much unstable during
* suspend/restore to disk. We want to protect against that.
*/
static int
ftrace_suspend_notifier_call(struct notifier_block *bl, unsigned long state,
void *unused)
{
switch (state) {
case PM_HIBERNATION_PREPARE:
pause_graph_tracing();
break;
case PM_POST_HIBERNATION:
unpause_graph_tracing();
break;
}
return NOTIFY_DONE;
}
tracing/function-return-tracer: set a more human readable output Impact: feature This patch sets a C-like output for the function graph tracing. For this aim, we now call two handler for each function: one on the entry and one other on return. This way we can draw a well-ordered call stack. The pid of the previous trace is loosely stored to be compared against the one of the current trace to see if there were a context switch. Without this little feature, the call tree would seem broken at some locations. We could use the sched_tracer to capture these sched_events but this way of processing is much more simpler. 2 spaces have been chosen for indentation to fit the screen while deep calls. The time of execution in nanosecs is printed just after closed braces, it seems more easy this way to find the corresponding function. If the time was printed as a first column, it would be not so easy to find the corresponding function if it is called on a deep depth. I plan to output the return value but on 32 bits CPU, the return value can be 32 or 64, and its difficult to guess on which case we are. I don't know what would be the better solution on X86-32: only print eax (low-part) or even edx (high-part). Actually it's thee same problem when a function return a 8 bits value, the high part of eax could contain junk values... Here is an example of trace: sys_read() { fget_light() { } 526 vfs_read() { rw_verify_area() { security_file_permission() { cap_file_permission() { } 519 } 1564 } 2640 do_sync_read() { pipe_read() { __might_sleep() { } 511 pipe_wait() { prepare_to_wait() { } 760 deactivate_task() { dequeue_task() { dequeue_task_fair() { dequeue_entity() { update_curr() { update_min_vruntime() { } 504 } 1587 clear_buddies() { } 512 add_cfs_task_weight() { } 519 update_min_vruntime() { } 511 } 5602 dequeue_entity() { update_curr() { update_min_vruntime() { } 496 } 1631 clear_buddies() { } 496 update_min_vruntime() { } 527 } 4580 hrtick_update() { hrtick_start_fair() { } 488 } 1489 } 13700 } 14949 } 16016 msecs_to_jiffies() { } 496 put_prev_task_fair() { } 504 pick_next_task_fair() { } 489 pick_next_task_rt() { } 496 pick_next_task_fair() { } 489 pick_next_task_idle() { } 489 ------------8<---------- thread 4 ------------8<---------- finish_task_switch() { } 1203 do_softirq() { __do_softirq() { __local_bh_disable() { } 669 rcu_process_callbacks() { __rcu_process_callbacks() { cpu_quiet() { rcu_start_batch() { } 503 } 1647 } 3128 __rcu_process_callbacks() { } 542 } 5362 _local_bh_enable() { } 587 } 8880 } 9986 kthread_should_stop() { } 669 deactivate_task() { dequeue_task() { dequeue_task_fair() { dequeue_entity() { update_curr() { calc_delta_mine() { } 511 update_min_vruntime() { } 511 } 2813 Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com> Acked-by: Steven Rostedt <rostedt@goodmis.org> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-11-26 06:57:25 +07:00
int register_ftrace_graph(trace_func_graph_ret_t retfunc,
trace_func_graph_ent_t entryfunc)
{
tracing/function-return-tracer: support for dynamic ftrace on function return tracer This patch adds the support for dynamic tracing on the function return tracer. The whole difference with normal dynamic function tracing is that we don't need to hook on a particular callback. The only pro that we want is to nop or set dynamically the calls to ftrace_caller (which is ftrace_return_caller here). Some security checks ensure that we are not trying to launch dynamic tracing for return tracing while normal function tracing is already running. An example of trace with getnstimeofday set as a filter: ktime_get_ts+0x22/0x50 -> getnstimeofday (2283 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1396 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1382 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1825 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1426 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1464 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1524 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1382 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1382 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1434 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1464 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1502 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1404 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1397 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1051 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1314 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1344 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1163 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1390 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1374 ns) Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-11-16 12:02:06 +07:00
int ret = 0;
mutex_lock(&ftrace_lock);
tracing/function-return-tracer: support for dynamic ftrace on function return tracer This patch adds the support for dynamic tracing on the function return tracer. The whole difference with normal dynamic function tracing is that we don't need to hook on a particular callback. The only pro that we want is to nop or set dynamically the calls to ftrace_caller (which is ftrace_return_caller here). Some security checks ensure that we are not trying to launch dynamic tracing for return tracing while normal function tracing is already running. An example of trace with getnstimeofday set as a filter: ktime_get_ts+0x22/0x50 -> getnstimeofday (2283 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1396 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1382 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1825 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1426 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1464 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1524 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1382 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1382 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1434 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1464 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1502 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1404 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1397 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1051 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1314 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1344 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1163 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1390 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1374 ns) Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-11-16 12:02:06 +07:00
/* we currently allow only one tracer registered at a time */
if (ftrace_graph_active) {
ret = -EBUSY;
goto out;
}
ftrace_suspend_notifier.notifier_call = ftrace_suspend_notifier_call;
register_pm_notifier(&ftrace_suspend_notifier);
ftrace_graph_active++;
ret = start_graph_tracing();
if (ret) {
ftrace_graph_active--;
goto out;
}
tracing/function-return-tracer: set a more human readable output Impact: feature This patch sets a C-like output for the function graph tracing. For this aim, we now call two handler for each function: one on the entry and one other on return. This way we can draw a well-ordered call stack. The pid of the previous trace is loosely stored to be compared against the one of the current trace to see if there were a context switch. Without this little feature, the call tree would seem broken at some locations. We could use the sched_tracer to capture these sched_events but this way of processing is much more simpler. 2 spaces have been chosen for indentation to fit the screen while deep calls. The time of execution in nanosecs is printed just after closed braces, it seems more easy this way to find the corresponding function. If the time was printed as a first column, it would be not so easy to find the corresponding function if it is called on a deep depth. I plan to output the return value but on 32 bits CPU, the return value can be 32 or 64, and its difficult to guess on which case we are. I don't know what would be the better solution on X86-32: only print eax (low-part) or even edx (high-part). Actually it's thee same problem when a function return a 8 bits value, the high part of eax could contain junk values... Here is an example of trace: sys_read() { fget_light() { } 526 vfs_read() { rw_verify_area() { security_file_permission() { cap_file_permission() { } 519 } 1564 } 2640 do_sync_read() { pipe_read() { __might_sleep() { } 511 pipe_wait() { prepare_to_wait() { } 760 deactivate_task() { dequeue_task() { dequeue_task_fair() { dequeue_entity() { update_curr() { update_min_vruntime() { } 504 } 1587 clear_buddies() { } 512 add_cfs_task_weight() { } 519 update_min_vruntime() { } 511 } 5602 dequeue_entity() { update_curr() { update_min_vruntime() { } 496 } 1631 clear_buddies() { } 496 update_min_vruntime() { } 527 } 4580 hrtick_update() { hrtick_start_fair() { } 488 } 1489 } 13700 } 14949 } 16016 msecs_to_jiffies() { } 496 put_prev_task_fair() { } 504 pick_next_task_fair() { } 489 pick_next_task_rt() { } 496 pick_next_task_fair() { } 489 pick_next_task_idle() { } 489 ------------8<---------- thread 4 ------------8<---------- finish_task_switch() { } 1203 do_softirq() { __do_softirq() { __local_bh_disable() { } 669 rcu_process_callbacks() { __rcu_process_callbacks() { cpu_quiet() { rcu_start_batch() { } 503 } 1647 } 3128 __rcu_process_callbacks() { } 542 } 5362 _local_bh_enable() { } 587 } 8880 } 9986 kthread_should_stop() { } 669 deactivate_task() { dequeue_task() { dequeue_task_fair() { dequeue_entity() { update_curr() { calc_delta_mine() { } 511 update_min_vruntime() { } 511 } 2813 Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com> Acked-by: Steven Rostedt <rostedt@goodmis.org> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-11-26 06:57:25 +07:00
ftrace_graph_return = retfunc;
ftrace_graph_entry = entryfunc;
ret = ftrace_startup(&global_ops, FTRACE_START_FUNC_RET);
tracing/function-return-tracer: support for dynamic ftrace on function return tracer This patch adds the support for dynamic tracing on the function return tracer. The whole difference with normal dynamic function tracing is that we don't need to hook on a particular callback. The only pro that we want is to nop or set dynamically the calls to ftrace_caller (which is ftrace_return_caller here). Some security checks ensure that we are not trying to launch dynamic tracing for return tracing while normal function tracing is already running. An example of trace with getnstimeofday set as a filter: ktime_get_ts+0x22/0x50 -> getnstimeofday (2283 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1396 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1382 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1825 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1426 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1464 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1524 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1382 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1382 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1434 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1464 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1502 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1404 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1397 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1051 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1314 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1344 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1163 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1390 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1374 ns) Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-11-16 12:02:06 +07:00
out:
mutex_unlock(&ftrace_lock);
tracing/function-return-tracer: support for dynamic ftrace on function return tracer This patch adds the support for dynamic tracing on the function return tracer. The whole difference with normal dynamic function tracing is that we don't need to hook on a particular callback. The only pro that we want is to nop or set dynamically the calls to ftrace_caller (which is ftrace_return_caller here). Some security checks ensure that we are not trying to launch dynamic tracing for return tracing while normal function tracing is already running. An example of trace with getnstimeofday set as a filter: ktime_get_ts+0x22/0x50 -> getnstimeofday (2283 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1396 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1382 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1825 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1426 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1464 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1524 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1382 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1382 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1434 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1464 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1502 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1404 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1397 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1051 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1314 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1344 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1163 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1390 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1374 ns) Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-11-16 12:02:06 +07:00
return ret;
}
void unregister_ftrace_graph(void)
{
mutex_lock(&ftrace_lock);
tracing/function-return-tracer: support for dynamic ftrace on function return tracer This patch adds the support for dynamic tracing on the function return tracer. The whole difference with normal dynamic function tracing is that we don't need to hook on a particular callback. The only pro that we want is to nop or set dynamically the calls to ftrace_caller (which is ftrace_return_caller here). Some security checks ensure that we are not trying to launch dynamic tracing for return tracing while normal function tracing is already running. An example of trace with getnstimeofday set as a filter: ktime_get_ts+0x22/0x50 -> getnstimeofday (2283 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1396 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1382 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1825 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1426 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1464 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1524 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1382 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1382 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1434 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1464 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1502 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1404 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1397 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1051 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1314 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1344 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1163 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1390 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1374 ns) Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-11-16 12:02:06 +07:00
if (unlikely(!ftrace_graph_active))
goto out;
ftrace_graph_active--;
tracing/function-return-tracer: set a more human readable output Impact: feature This patch sets a C-like output for the function graph tracing. For this aim, we now call two handler for each function: one on the entry and one other on return. This way we can draw a well-ordered call stack. The pid of the previous trace is loosely stored to be compared against the one of the current trace to see if there were a context switch. Without this little feature, the call tree would seem broken at some locations. We could use the sched_tracer to capture these sched_events but this way of processing is much more simpler. 2 spaces have been chosen for indentation to fit the screen while deep calls. The time of execution in nanosecs is printed just after closed braces, it seems more easy this way to find the corresponding function. If the time was printed as a first column, it would be not so easy to find the corresponding function if it is called on a deep depth. I plan to output the return value but on 32 bits CPU, the return value can be 32 or 64, and its difficult to guess on which case we are. I don't know what would be the better solution on X86-32: only print eax (low-part) or even edx (high-part). Actually it's thee same problem when a function return a 8 bits value, the high part of eax could contain junk values... Here is an example of trace: sys_read() { fget_light() { } 526 vfs_read() { rw_verify_area() { security_file_permission() { cap_file_permission() { } 519 } 1564 } 2640 do_sync_read() { pipe_read() { __might_sleep() { } 511 pipe_wait() { prepare_to_wait() { } 760 deactivate_task() { dequeue_task() { dequeue_task_fair() { dequeue_entity() { update_curr() { update_min_vruntime() { } 504 } 1587 clear_buddies() { } 512 add_cfs_task_weight() { } 519 update_min_vruntime() { } 511 } 5602 dequeue_entity() { update_curr() { update_min_vruntime() { } 496 } 1631 clear_buddies() { } 496 update_min_vruntime() { } 527 } 4580 hrtick_update() { hrtick_start_fair() { } 488 } 1489 } 13700 } 14949 } 16016 msecs_to_jiffies() { } 496 put_prev_task_fair() { } 504 pick_next_task_fair() { } 489 pick_next_task_rt() { } 496 pick_next_task_fair() { } 489 pick_next_task_idle() { } 489 ------------8<---------- thread 4 ------------8<---------- finish_task_switch() { } 1203 do_softirq() { __do_softirq() { __local_bh_disable() { } 669 rcu_process_callbacks() { __rcu_process_callbacks() { cpu_quiet() { rcu_start_batch() { } 503 } 1647 } 3128 __rcu_process_callbacks() { } 542 } 5362 _local_bh_enable() { } 587 } 8880 } 9986 kthread_should_stop() { } 669 deactivate_task() { dequeue_task() { dequeue_task_fair() { dequeue_entity() { update_curr() { calc_delta_mine() { } 511 update_min_vruntime() { } 511 } 2813 Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com> Acked-by: Steven Rostedt <rostedt@goodmis.org> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-11-26 06:57:25 +07:00
ftrace_graph_return = (trace_func_graph_ret_t)ftrace_stub;
ftrace_graph_entry = ftrace_graph_entry_stub;
ftrace_shutdown(&global_ops, FTRACE_STOP_FUNC_RET);
unregister_pm_notifier(&ftrace_suspend_notifier);
tracing: Let tracepoints have data passed to tracepoint callbacks This patch adds data to be passed to tracepoint callbacks. The created functions from DECLARE_TRACE() now need a mandatory data parameter. For example: DECLARE_TRACE(mytracepoint, int value, value) Will create the register function: int register_trace_mytracepoint((void(*)(void *data, int value))probe, void *data); As the first argument, all callbacks (probes) must take a (void *data) parameter. So a callback for the above tracepoint will look like: void myprobe(void *data, int value) { } The callback may choose to ignore the data parameter. This change allows callbacks to register a private data pointer along with the function probe. void mycallback(void *data, int value); register_trace_mytracepoint(mycallback, mydata); Then the mycallback() will receive the "mydata" as the first parameter before the args. A more detailed example: DECLARE_TRACE(mytracepoint, TP_PROTO(int status), TP_ARGS(status)); /* In the C file */ DEFINE_TRACE(mytracepoint, TP_PROTO(int status), TP_ARGS(status)); [...] trace_mytracepoint(status); /* In a file registering this tracepoint */ int my_callback(void *data, int status) { struct my_struct my_data = data; [...] } [...] my_data = kmalloc(sizeof(*my_data), GFP_KERNEL); init_my_data(my_data); register_trace_mytracepoint(my_callback, my_data); The same callback can also be registered to the same tracepoint as long as the data registered is different. Note, the data must also be used to unregister the callback: unregister_trace_mytracepoint(my_callback, my_data); Because of the data parameter, tracepoints declared this way can not have no args. That is: DECLARE_TRACE(mytracepoint, TP_PROTO(void), TP_ARGS()); will cause an error. If no arguments are needed, a new macro can be used instead: DECLARE_TRACE_NOARGS(mytracepoint); Since there are no arguments, the proto and args fields are left out. This is part of a series to make the tracepoint footprint smaller: text data bss dec hex filename 4913961 1088356 861512 6863829 68bbd5 vmlinux.orig 4914025 1088868 861512 6864405 68be15 vmlinux.class 4918492 1084612 861512 6864616 68bee8 vmlinux.tracepoint Again, this patch also increases the size of the kernel, but lays the ground work for decreasing it. v5: Fixed net/core/drop_monitor.c to handle these updates. v4: Moved the DECLARE_TRACE() DECLARE_TRACE_NOARGS out of the #ifdef CONFIG_TRACE_POINTS, since the two are the same in both cases. The __DECLARE_TRACE() is what changes. Thanks to Frederic Weisbecker for pointing this out. v3: Made all register_* functions require data to be passed and all callbacks to take a void * parameter as its first argument. This makes the calling functions comply with C standards. Also added more comments to the modifications of DECLARE_TRACE(). v2: Made the DECLARE_TRACE() have the ability to pass arguments and added a new DECLARE_TRACE_NOARGS() for tracepoints that do not need any arguments. Acked-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Acked-by: Masami Hiramatsu <mhiramat@redhat.com> Acked-by: Frederic Weisbecker <fweisbec@gmail.com> Cc: Neil Horman <nhorman@tuxdriver.com> Cc: David S. Miller <davem@davemloft.net> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2010-04-21 04:04:50 +07:00
unregister_trace_sched_switch(ftrace_graph_probe_sched_switch, NULL);
tracing/function-return-tracer: support for dynamic ftrace on function return tracer This patch adds the support for dynamic tracing on the function return tracer. The whole difference with normal dynamic function tracing is that we don't need to hook on a particular callback. The only pro that we want is to nop or set dynamically the calls to ftrace_caller (which is ftrace_return_caller here). Some security checks ensure that we are not trying to launch dynamic tracing for return tracing while normal function tracing is already running. An example of trace with getnstimeofday set as a filter: ktime_get_ts+0x22/0x50 -> getnstimeofday (2283 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1396 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1382 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1825 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1426 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1464 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1524 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1382 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1382 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1434 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1464 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1502 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1404 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1397 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1051 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1314 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1344 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1163 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1390 ns) ktime_get_ts+0x22/0x50 -> getnstimeofday (1374 ns) Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-11-16 12:02:06 +07:00
out:
mutex_unlock(&ftrace_lock);
}
ftrace: Fix memory leak with function graph and cpu hotplug When the fuction graph tracer starts, it needs to make a special stack for each task to save the real return values of the tasks. All running tasks have this stack created, as well as any new tasks. On CPU hot plug, the new idle task will allocate a stack as well when init_idle() is called. The problem is that cpu hotplug does not create a new idle_task. Instead it uses the idle task that existed when the cpu went down. ftrace_graph_init_task() will add a new ret_stack to the task that is given to it. Because a clone will make the task have a stack of its parent it does not check if the task's ret_stack is already NULL or not. When the CPU hotplug code starts a CPU up again, it will allocate a new stack even though one already existed for it. The solution is to treat the idle_task specially. In fact, the function_graph code already does, just not at init_idle(). Instead of using the ftrace_graph_init_task() for the idle task, which that function expects the task to be a clone, have a separate ftrace_graph_init_idle_task(). Also, we will create a per_cpu ret_stack that is used by the idle task. When we call ftrace_graph_init_idle_task() it will check if the idle task's ret_stack is NULL, if it is, then it will assign it the per_cpu ret_stack. Reported-by: Benjamin Herrenschmidt <benh@kernel.crashing.org> Suggested-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Stable Tree <stable@kernel.org> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2011-02-11 09:26:13 +07:00
static DEFINE_PER_CPU(struct ftrace_ret_stack *, idle_ret_stack);
static void
graph_init_task(struct task_struct *t, struct ftrace_ret_stack *ret_stack)
{
atomic_set(&t->tracing_graph_pause, 0);
atomic_set(&t->trace_overrun, 0);
t->ftrace_timestamp = 0;
/* make curr_ret_stack visible before we add the ret_stack */
ftrace: Fix memory leak with function graph and cpu hotplug When the fuction graph tracer starts, it needs to make a special stack for each task to save the real return values of the tasks. All running tasks have this stack created, as well as any new tasks. On CPU hot plug, the new idle task will allocate a stack as well when init_idle() is called. The problem is that cpu hotplug does not create a new idle_task. Instead it uses the idle task that existed when the cpu went down. ftrace_graph_init_task() will add a new ret_stack to the task that is given to it. Because a clone will make the task have a stack of its parent it does not check if the task's ret_stack is already NULL or not. When the CPU hotplug code starts a CPU up again, it will allocate a new stack even though one already existed for it. The solution is to treat the idle_task specially. In fact, the function_graph code already does, just not at init_idle(). Instead of using the ftrace_graph_init_task() for the idle task, which that function expects the task to be a clone, have a separate ftrace_graph_init_idle_task(). Also, we will create a per_cpu ret_stack that is used by the idle task. When we call ftrace_graph_init_idle_task() it will check if the idle task's ret_stack is NULL, if it is, then it will assign it the per_cpu ret_stack. Reported-by: Benjamin Herrenschmidt <benh@kernel.crashing.org> Suggested-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Stable Tree <stable@kernel.org> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2011-02-11 09:26:13 +07:00
smp_wmb();
t->ret_stack = ret_stack;
}
/*
* Allocate a return stack for the idle task. May be the first
* time through, or it may be done by CPU hotplug online.
*/
void ftrace_graph_init_idle_task(struct task_struct *t, int cpu)
{
t->curr_ret_stack = -1;
/*
* The idle task has no parent, it either has its own
* stack or no stack at all.
*/
if (t->ret_stack)
WARN_ON(t->ret_stack != per_cpu(idle_ret_stack, cpu));
if (ftrace_graph_active) {
struct ftrace_ret_stack *ret_stack;
ret_stack = per_cpu(idle_ret_stack, cpu);
if (!ret_stack) {
ret_stack = kmalloc(FTRACE_RETFUNC_DEPTH
* sizeof(struct ftrace_ret_stack),
GFP_KERNEL);
if (!ret_stack)
return;
per_cpu(idle_ret_stack, cpu) = ret_stack;
}
graph_init_task(t, ret_stack);
}
}
/* Allocate a return stack for newly created task */
void ftrace_graph_init_task(struct task_struct *t)
{
/* Make sure we do not use the parent ret_stack */
t->ret_stack = NULL;
t->curr_ret_stack = -1;
if (ftrace_graph_active) {
struct ftrace_ret_stack *ret_stack;
ret_stack = kmalloc(FTRACE_RETFUNC_DEPTH
* sizeof(struct ftrace_ret_stack),
GFP_KERNEL);
if (!ret_stack)
return;
ftrace: Fix memory leak with function graph and cpu hotplug When the fuction graph tracer starts, it needs to make a special stack for each task to save the real return values of the tasks. All running tasks have this stack created, as well as any new tasks. On CPU hot plug, the new idle task will allocate a stack as well when init_idle() is called. The problem is that cpu hotplug does not create a new idle_task. Instead it uses the idle task that existed when the cpu went down. ftrace_graph_init_task() will add a new ret_stack to the task that is given to it. Because a clone will make the task have a stack of its parent it does not check if the task's ret_stack is already NULL or not. When the CPU hotplug code starts a CPU up again, it will allocate a new stack even though one already existed for it. The solution is to treat the idle_task specially. In fact, the function_graph code already does, just not at init_idle(). Instead of using the ftrace_graph_init_task() for the idle task, which that function expects the task to be a clone, have a separate ftrace_graph_init_idle_task(). Also, we will create a per_cpu ret_stack that is used by the idle task. When we call ftrace_graph_init_idle_task() it will check if the idle task's ret_stack is NULL, if it is, then it will assign it the per_cpu ret_stack. Reported-by: Benjamin Herrenschmidt <benh@kernel.crashing.org> Suggested-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Stable Tree <stable@kernel.org> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2011-02-11 09:26:13 +07:00
graph_init_task(t, ret_stack);
}
}
void ftrace_graph_exit_task(struct task_struct *t)
{
tracing/function-return-tracer: don't trace kfree while it frees the return stack Impact: fix a crash While I killed the cat process, I got sometimes the following (but rare) crash: [ 65.689027] Pid: 2969, comm: cat Not tainted (2.6.28-rc6-tip #83) AMILO Li 2727 [ 65.689027] EIP: 0060:[<00000000>] EFLAGS: 00010082 CPU: 1 [ 65.689027] EIP is at 0x0 [ 65.689027] EAX: 00000000 EBX: f66cd780 ECX: c019a64a EDX: f66cd780 [ 65.689027] ESI: 00000286 EDI: f66cd780 EBP: f630be2c ESP: f630be24 [ 65.689027] DS: 007b ES: 007b FS: 00d8 GS: 0000 SS: 0068 [ 65.689027] Process cat (pid: 2969, ti=f630a000 task=f66cd780 task.ti=f630a000) [ 65.689027] Stack: [ 65.689027] 00000012 f630bd54 f630be7c c012c853 00000000 c0133cc9 f66cda54 f630be5c [ 65.689027] f630be68 f66cda54 f66cd88c f66cd878 f7070000 00000001 f630be90 c0135dbc [ 65.689027] f614a614 f630be68 f630be68 f65ba200 00000002 f630bf10 f630be90 c012cad6 [ 65.689027] Call Trace: [ 65.689027] [<c012c853>] ? do_exit+0x603/0x850 [ 65.689027] [<c0133cc9>] ? next_signal+0x9/0x40 [ 65.689027] [<c0135dbc>] ? dequeue_signal+0x8c/0x180 [ 65.689027] [<c012cad6>] ? do_group_exit+0x36/0x90 [ 65.689027] [<c013709c>] ? get_signal_to_deliver+0x20c/0x390 [ 65.689027] [<c0102b69>] ? do_notify_resume+0x99/0x8b0 [ 65.689027] [<c02e6d1a>] ? tty_ldisc_deref+0x5a/0x80 [ 65.689027] [<c014db9b>] ? trace_hardirqs_on+0xb/0x10 [ 65.689027] [<c02e6d1a>] ? tty_ldisc_deref+0x5a/0x80 [ 65.689027] [<c02e39b0>] ? n_tty_write+0x0/0x340 [ 65.689027] [<c02e1812>] ? redirected_tty_write+0x82/0x90 [ 65.689027] [<c019ee99>] ? vfs_write+0x99/0xd0 [ 65.689027] [<c02e1790>] ? redirected_tty_write+0x0/0x90 [ 65.689027] [<c019f342>] ? sys_write+0x42/0x70 [ 65.689027] [<c01035ca>] ? work_notifysig+0x13/0x19 [ 65.689027] Code: Bad EIP value. [ 65.689027] EIP: [<00000000>] 0x0 SS:ESP 0068:f630be24 This is because on do_exit(), kfree is called to free the return addresses stack but kfree is traced and stored its return address in this stack. This patch fixes it. Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-11-23 23:33:12 +07:00
struct ftrace_ret_stack *ret_stack = t->ret_stack;
t->ret_stack = NULL;
tracing/function-return-tracer: don't trace kfree while it frees the return stack Impact: fix a crash While I killed the cat process, I got sometimes the following (but rare) crash: [ 65.689027] Pid: 2969, comm: cat Not tainted (2.6.28-rc6-tip #83) AMILO Li 2727 [ 65.689027] EIP: 0060:[<00000000>] EFLAGS: 00010082 CPU: 1 [ 65.689027] EIP is at 0x0 [ 65.689027] EAX: 00000000 EBX: f66cd780 ECX: c019a64a EDX: f66cd780 [ 65.689027] ESI: 00000286 EDI: f66cd780 EBP: f630be2c ESP: f630be24 [ 65.689027] DS: 007b ES: 007b FS: 00d8 GS: 0000 SS: 0068 [ 65.689027] Process cat (pid: 2969, ti=f630a000 task=f66cd780 task.ti=f630a000) [ 65.689027] Stack: [ 65.689027] 00000012 f630bd54 f630be7c c012c853 00000000 c0133cc9 f66cda54 f630be5c [ 65.689027] f630be68 f66cda54 f66cd88c f66cd878 f7070000 00000001 f630be90 c0135dbc [ 65.689027] f614a614 f630be68 f630be68 f65ba200 00000002 f630bf10 f630be90 c012cad6 [ 65.689027] Call Trace: [ 65.689027] [<c012c853>] ? do_exit+0x603/0x850 [ 65.689027] [<c0133cc9>] ? next_signal+0x9/0x40 [ 65.689027] [<c0135dbc>] ? dequeue_signal+0x8c/0x180 [ 65.689027] [<c012cad6>] ? do_group_exit+0x36/0x90 [ 65.689027] [<c013709c>] ? get_signal_to_deliver+0x20c/0x390 [ 65.689027] [<c0102b69>] ? do_notify_resume+0x99/0x8b0 [ 65.689027] [<c02e6d1a>] ? tty_ldisc_deref+0x5a/0x80 [ 65.689027] [<c014db9b>] ? trace_hardirqs_on+0xb/0x10 [ 65.689027] [<c02e6d1a>] ? tty_ldisc_deref+0x5a/0x80 [ 65.689027] [<c02e39b0>] ? n_tty_write+0x0/0x340 [ 65.689027] [<c02e1812>] ? redirected_tty_write+0x82/0x90 [ 65.689027] [<c019ee99>] ? vfs_write+0x99/0xd0 [ 65.689027] [<c02e1790>] ? redirected_tty_write+0x0/0x90 [ 65.689027] [<c019f342>] ? sys_write+0x42/0x70 [ 65.689027] [<c01035ca>] ? work_notifysig+0x13/0x19 [ 65.689027] Code: Bad EIP value. [ 65.689027] EIP: [<00000000>] 0x0 SS:ESP 0068:f630be24 This is because on do_exit(), kfree is called to free the return addresses stack but kfree is traced and stored its return address in this stack. This patch fixes it. Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-11-23 23:33:12 +07:00
/* NULL must become visible to IRQs before we free it: */
barrier();
kfree(ret_stack);
}
void ftrace_graph_stop(void)
{
ftrace_stop();
}
#endif