linux_dsm_epyc7002/arch/arm64/kernel/sleep.S

147 lines
4.3 KiB
ArmAsm
Raw Normal View History

arm64: kernel: cpu_{suspend/resume} implementation Kernel subsystems like CPU idle and suspend to RAM require a generic mechanism to suspend a processor, save its context and put it into a quiescent state. The cpu_{suspend}/{resume} implementation provides such a framework through a kernel interface allowing to save/restore registers, flush the context to DRAM and suspend/resume to/from low-power states where processor context may be lost. The CPU suspend implementation relies on the suspend protocol registered in CPU operations to carry out a suspend request after context is saved and flushed to DRAM. The cpu_suspend interface: int cpu_suspend(unsigned long arg); allows to pass an opaque parameter that is handed over to the suspend CPU operations back-end so that it can take action according to the semantics attached to it. The arg parameter allows suspend to RAM and CPU idle drivers to communicate to suspend protocol back-ends; it requires standardization so that the interface can be reused seamlessly across systems, paving the way for generic drivers. Context memory is allocated on the stack, whose address is stashed in a per-cpu variable to keep track of it and passed to core functions that save/restore the registers required by the architecture. Even though, upon successful execution, the cpu_suspend function shuts down the suspending processor, the warm boot resume mechanism, based on the cpu_resume function, makes the resume path operate as a cpu_suspend function return, so that cpu_suspend can be treated as a C function by the caller, which simplifies coding the PM drivers that rely on the cpu_suspend API. Upon context save, the minimal amount of memory is flushed to DRAM so that it can be retrieved when the MMU is off and caches are not searched. The suspend CPU operation, depending on the required operations (eg CPU vs Cluster shutdown) is in charge of flushing the cache hierarchy either implicitly (by calling firmware implementations like PSCI) or explicitly by executing the required cache maintainance functions. Debug exceptions are disabled during cpu_{suspend}/{resume} operations so that debug registers can be saved and restored properly preventing preemption from debug agents enabled in the kernel. Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
2013-07-22 18:22:13 +07:00
#include <linux/errno.h>
#include <linux/linkage.h>
#include <asm/asm-offsets.h>
#include <asm/assembler.h>
.text
/*
* Implementation of MPIDR_EL1 hash algorithm through shifting
* and OR'ing.
*
* @dst: register containing hash result
* @rs0: register containing affinity level 0 bit shift
* @rs1: register containing affinity level 1 bit shift
* @rs2: register containing affinity level 2 bit shift
* @rs3: register containing affinity level 3 bit shift
* @mpidr: register containing MPIDR_EL1 value
* @mask: register containing MPIDR mask
*
* Pseudo C-code:
*
*u32 dst;
*
*compute_mpidr_hash(u32 rs0, u32 rs1, u32 rs2, u32 rs3, u64 mpidr, u64 mask) {
* u32 aff0, aff1, aff2, aff3;
* u64 mpidr_masked = mpidr & mask;
* aff0 = mpidr_masked & 0xff;
* aff1 = mpidr_masked & 0xff00;
* aff2 = mpidr_masked & 0xff0000;
* aff2 = mpidr_masked & 0xff00000000;
* dst = (aff0 >> rs0 | aff1 >> rs1 | aff2 >> rs2 | aff3 >> rs3);
*}
* Input registers: rs0, rs1, rs2, rs3, mpidr, mask
* Output register: dst
* Note: input and output registers must be disjoint register sets
(eg: a macro instance with mpidr = x1 and dst = x1 is invalid)
*/
.macro compute_mpidr_hash dst, rs0, rs1, rs2, rs3, mpidr, mask
and \mpidr, \mpidr, \mask // mask out MPIDR bits
and \dst, \mpidr, #0xff // mask=aff0
lsr \dst ,\dst, \rs0 // dst=aff0>>rs0
and \mask, \mpidr, #0xff00 // mask = aff1
lsr \mask ,\mask, \rs1
orr \dst, \dst, \mask // dst|=(aff1>>rs1)
and \mask, \mpidr, #0xff0000 // mask = aff2
lsr \mask ,\mask, \rs2
orr \dst, \dst, \mask // dst|=(aff2>>rs2)
and \mask, \mpidr, #0xff00000000 // mask = aff3
lsr \mask ,\mask, \rs3
orr \dst, \dst, \mask // dst|=(aff3>>rs3)
.endm
/*
* Save CPU state in the provided sleep_stack_data area, and publish its
* location for cpu_resume()'s use in sleep_save_stash.
arm64: kernel: cpu_{suspend/resume} implementation Kernel subsystems like CPU idle and suspend to RAM require a generic mechanism to suspend a processor, save its context and put it into a quiescent state. The cpu_{suspend}/{resume} implementation provides such a framework through a kernel interface allowing to save/restore registers, flush the context to DRAM and suspend/resume to/from low-power states where processor context may be lost. The CPU suspend implementation relies on the suspend protocol registered in CPU operations to carry out a suspend request after context is saved and flushed to DRAM. The cpu_suspend interface: int cpu_suspend(unsigned long arg); allows to pass an opaque parameter that is handed over to the suspend CPU operations back-end so that it can take action according to the semantics attached to it. The arg parameter allows suspend to RAM and CPU idle drivers to communicate to suspend protocol back-ends; it requires standardization so that the interface can be reused seamlessly across systems, paving the way for generic drivers. Context memory is allocated on the stack, whose address is stashed in a per-cpu variable to keep track of it and passed to core functions that save/restore the registers required by the architecture. Even though, upon successful execution, the cpu_suspend function shuts down the suspending processor, the warm boot resume mechanism, based on the cpu_resume function, makes the resume path operate as a cpu_suspend function return, so that cpu_suspend can be treated as a C function by the caller, which simplifies coding the PM drivers that rely on the cpu_suspend API. Upon context save, the minimal amount of memory is flushed to DRAM so that it can be retrieved when the MMU is off and caches are not searched. The suspend CPU operation, depending on the required operations (eg CPU vs Cluster shutdown) is in charge of flushing the cache hierarchy either implicitly (by calling firmware implementations like PSCI) or explicitly by executing the required cache maintainance functions. Debug exceptions are disabled during cpu_{suspend}/{resume} operations so that debug registers can be saved and restored properly preventing preemption from debug agents enabled in the kernel. Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
2013-07-22 18:22:13 +07:00
*
* cpu_resume() will restore this saved state, and return. Because the
* link-register is saved and restored, it will appear to return from this
* function. So that the caller can tell the suspend/resume paths apart,
* __cpu_suspend_enter() will always return a non-zero value, whereas the
* path through cpu_resume() will return 0.
*
* x0 = struct sleep_stack_data area
arm64: kernel: cpu_{suspend/resume} implementation Kernel subsystems like CPU idle and suspend to RAM require a generic mechanism to suspend a processor, save its context and put it into a quiescent state. The cpu_{suspend}/{resume} implementation provides such a framework through a kernel interface allowing to save/restore registers, flush the context to DRAM and suspend/resume to/from low-power states where processor context may be lost. The CPU suspend implementation relies on the suspend protocol registered in CPU operations to carry out a suspend request after context is saved and flushed to DRAM. The cpu_suspend interface: int cpu_suspend(unsigned long arg); allows to pass an opaque parameter that is handed over to the suspend CPU operations back-end so that it can take action according to the semantics attached to it. The arg parameter allows suspend to RAM and CPU idle drivers to communicate to suspend protocol back-ends; it requires standardization so that the interface can be reused seamlessly across systems, paving the way for generic drivers. Context memory is allocated on the stack, whose address is stashed in a per-cpu variable to keep track of it and passed to core functions that save/restore the registers required by the architecture. Even though, upon successful execution, the cpu_suspend function shuts down the suspending processor, the warm boot resume mechanism, based on the cpu_resume function, makes the resume path operate as a cpu_suspend function return, so that cpu_suspend can be treated as a C function by the caller, which simplifies coding the PM drivers that rely on the cpu_suspend API. Upon context save, the minimal amount of memory is flushed to DRAM so that it can be retrieved when the MMU is off and caches are not searched. The suspend CPU operation, depending on the required operations (eg CPU vs Cluster shutdown) is in charge of flushing the cache hierarchy either implicitly (by calling firmware implementations like PSCI) or explicitly by executing the required cache maintainance functions. Debug exceptions are disabled during cpu_{suspend}/{resume} operations so that debug registers can be saved and restored properly preventing preemption from debug agents enabled in the kernel. Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
2013-07-22 18:22:13 +07:00
*/
arm64: kernel: refactor the CPU suspend API for retention states CPU suspend is the standard kernel interface to be used to enter low-power states on ARM64 systems. Current cpu_suspend implementation by default assumes that all low power states are losing the CPU context, so the CPU registers must be saved and cleaned to DRAM upon state entry. Furthermore, the current cpu_suspend() implementation assumes that if the CPU suspend back-end method returns when called, this has to be considered an error regardless of the return code (which can be successful) since the CPU was not expected to return from a code path that is different from cpu_resume code path - eg returning from the reset vector. All in all this means that the current API does not cope well with low-power states that preserve the CPU context when entered (ie retention states), since first of all the context is saved for nothing on state entry for those states and a successful state entry can return as a normal function return, which is considered an error by the current CPU suspend implementation. This patch refactors the cpu_suspend() API so that it can be split in two separate functionalities. The arm64 cpu_suspend API just provides a wrapper around CPU suspend operation hook. A new function is introduced (for architecture code use only) for states that require context saving upon entry: __cpu_suspend(unsigned long arg, int (*fn)(unsigned long)) __cpu_suspend() saves the context on function entry and calls the so called suspend finisher (ie fn) to complete the suspend operation. The finisher is not expected to return, unless it fails in which case the error is propagated back to the __cpu_suspend caller. The API refactoring results in the following pseudo code call sequence for a suspending CPU, when triggered from a kernel subsystem: /* * int cpu_suspend(unsigned long idx) * @idx: idle state index */ { -> cpu_suspend(idx) |---> CPU operations suspend hook called, if present |--> if (retention_state) |--> direct suspend back-end call (eg PSCI suspend) else |--> __cpu_suspend(idx, &back_end_finisher); } By refactoring the cpu_suspend API this way, the CPU operations back-end has a chance to detect whether idle states require state saving or not and can call the required suspend operations accordingly either through simple function call or indirectly through __cpu_suspend() which carries out state saving and suspend finisher dispatching to complete idle state entry. Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Reviewed-by: Hanjun Guo <hanjun.guo@linaro.org> Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2014-08-07 20:54:50 +07:00
ENTRY(__cpu_suspend_enter)
stp x29, lr, [x0, #SLEEP_STACK_DATA_CALLEE_REGS]
stp x19, x20, [x0,#SLEEP_STACK_DATA_CALLEE_REGS+16]
stp x21, x22, [x0,#SLEEP_STACK_DATA_CALLEE_REGS+32]
stp x23, x24, [x0,#SLEEP_STACK_DATA_CALLEE_REGS+48]
stp x25, x26, [x0,#SLEEP_STACK_DATA_CALLEE_REGS+64]
stp x27, x28, [x0,#SLEEP_STACK_DATA_CALLEE_REGS+80]
/* save the sp in cpu_suspend_ctx */
arm64: kernel: cpu_{suspend/resume} implementation Kernel subsystems like CPU idle and suspend to RAM require a generic mechanism to suspend a processor, save its context and put it into a quiescent state. The cpu_{suspend}/{resume} implementation provides such a framework through a kernel interface allowing to save/restore registers, flush the context to DRAM and suspend/resume to/from low-power states where processor context may be lost. The CPU suspend implementation relies on the suspend protocol registered in CPU operations to carry out a suspend request after context is saved and flushed to DRAM. The cpu_suspend interface: int cpu_suspend(unsigned long arg); allows to pass an opaque parameter that is handed over to the suspend CPU operations back-end so that it can take action according to the semantics attached to it. The arg parameter allows suspend to RAM and CPU idle drivers to communicate to suspend protocol back-ends; it requires standardization so that the interface can be reused seamlessly across systems, paving the way for generic drivers. Context memory is allocated on the stack, whose address is stashed in a per-cpu variable to keep track of it and passed to core functions that save/restore the registers required by the architecture. Even though, upon successful execution, the cpu_suspend function shuts down the suspending processor, the warm boot resume mechanism, based on the cpu_resume function, makes the resume path operate as a cpu_suspend function return, so that cpu_suspend can be treated as a C function by the caller, which simplifies coding the PM drivers that rely on the cpu_suspend API. Upon context save, the minimal amount of memory is flushed to DRAM so that it can be retrieved when the MMU is off and caches are not searched. The suspend CPU operation, depending on the required operations (eg CPU vs Cluster shutdown) is in charge of flushing the cache hierarchy either implicitly (by calling firmware implementations like PSCI) or explicitly by executing the required cache maintainance functions. Debug exceptions are disabled during cpu_{suspend}/{resume} operations so that debug registers can be saved and restored properly preventing preemption from debug agents enabled in the kernel. Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
2013-07-22 18:22:13 +07:00
mov x2, sp
str x2, [x0, #SLEEP_STACK_DATA_SYSTEM_REGS + CPU_CTX_SP]
/* find the mpidr_hash */
ldr_l x1, sleep_save_stash
arm64: kernel: cpu_{suspend/resume} implementation Kernel subsystems like CPU idle and suspend to RAM require a generic mechanism to suspend a processor, save its context and put it into a quiescent state. The cpu_{suspend}/{resume} implementation provides such a framework through a kernel interface allowing to save/restore registers, flush the context to DRAM and suspend/resume to/from low-power states where processor context may be lost. The CPU suspend implementation relies on the suspend protocol registered in CPU operations to carry out a suspend request after context is saved and flushed to DRAM. The cpu_suspend interface: int cpu_suspend(unsigned long arg); allows to pass an opaque parameter that is handed over to the suspend CPU operations back-end so that it can take action according to the semantics attached to it. The arg parameter allows suspend to RAM and CPU idle drivers to communicate to suspend protocol back-ends; it requires standardization so that the interface can be reused seamlessly across systems, paving the way for generic drivers. Context memory is allocated on the stack, whose address is stashed in a per-cpu variable to keep track of it and passed to core functions that save/restore the registers required by the architecture. Even though, upon successful execution, the cpu_suspend function shuts down the suspending processor, the warm boot resume mechanism, based on the cpu_resume function, makes the resume path operate as a cpu_suspend function return, so that cpu_suspend can be treated as a C function by the caller, which simplifies coding the PM drivers that rely on the cpu_suspend API. Upon context save, the minimal amount of memory is flushed to DRAM so that it can be retrieved when the MMU is off and caches are not searched. The suspend CPU operation, depending on the required operations (eg CPU vs Cluster shutdown) is in charge of flushing the cache hierarchy either implicitly (by calling firmware implementations like PSCI) or explicitly by executing the required cache maintainance functions. Debug exceptions are disabled during cpu_{suspend}/{resume} operations so that debug registers can be saved and restored properly preventing preemption from debug agents enabled in the kernel. Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
2013-07-22 18:22:13 +07:00
mrs x7, mpidr_el1
adr_l x9, mpidr_hash
arm64: kernel: cpu_{suspend/resume} implementation Kernel subsystems like CPU idle and suspend to RAM require a generic mechanism to suspend a processor, save its context and put it into a quiescent state. The cpu_{suspend}/{resume} implementation provides such a framework through a kernel interface allowing to save/restore registers, flush the context to DRAM and suspend/resume to/from low-power states where processor context may be lost. The CPU suspend implementation relies on the suspend protocol registered in CPU operations to carry out a suspend request after context is saved and flushed to DRAM. The cpu_suspend interface: int cpu_suspend(unsigned long arg); allows to pass an opaque parameter that is handed over to the suspend CPU operations back-end so that it can take action according to the semantics attached to it. The arg parameter allows suspend to RAM and CPU idle drivers to communicate to suspend protocol back-ends; it requires standardization so that the interface can be reused seamlessly across systems, paving the way for generic drivers. Context memory is allocated on the stack, whose address is stashed in a per-cpu variable to keep track of it and passed to core functions that save/restore the registers required by the architecture. Even though, upon successful execution, the cpu_suspend function shuts down the suspending processor, the warm boot resume mechanism, based on the cpu_resume function, makes the resume path operate as a cpu_suspend function return, so that cpu_suspend can be treated as a C function by the caller, which simplifies coding the PM drivers that rely on the cpu_suspend API. Upon context save, the minimal amount of memory is flushed to DRAM so that it can be retrieved when the MMU is off and caches are not searched. The suspend CPU operation, depending on the required operations (eg CPU vs Cluster shutdown) is in charge of flushing the cache hierarchy either implicitly (by calling firmware implementations like PSCI) or explicitly by executing the required cache maintainance functions. Debug exceptions are disabled during cpu_{suspend}/{resume} operations so that debug registers can be saved and restored properly preventing preemption from debug agents enabled in the kernel. Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
2013-07-22 18:22:13 +07:00
ldr x10, [x9, #MPIDR_HASH_MASK]
/*
* Following code relies on the struct mpidr_hash
* members size.
*/
ldp w3, w4, [x9, #MPIDR_HASH_SHIFTS]
ldp w5, w6, [x9, #(MPIDR_HASH_SHIFTS + 8)]
compute_mpidr_hash x8, x3, x4, x5, x6, x7, x10
arm64: kernel: refactor the CPU suspend API for retention states CPU suspend is the standard kernel interface to be used to enter low-power states on ARM64 systems. Current cpu_suspend implementation by default assumes that all low power states are losing the CPU context, so the CPU registers must be saved and cleaned to DRAM upon state entry. Furthermore, the current cpu_suspend() implementation assumes that if the CPU suspend back-end method returns when called, this has to be considered an error regardless of the return code (which can be successful) since the CPU was not expected to return from a code path that is different from cpu_resume code path - eg returning from the reset vector. All in all this means that the current API does not cope well with low-power states that preserve the CPU context when entered (ie retention states), since first of all the context is saved for nothing on state entry for those states and a successful state entry can return as a normal function return, which is considered an error by the current CPU suspend implementation. This patch refactors the cpu_suspend() API so that it can be split in two separate functionalities. The arm64 cpu_suspend API just provides a wrapper around CPU suspend operation hook. A new function is introduced (for architecture code use only) for states that require context saving upon entry: __cpu_suspend(unsigned long arg, int (*fn)(unsigned long)) __cpu_suspend() saves the context on function entry and calls the so called suspend finisher (ie fn) to complete the suspend operation. The finisher is not expected to return, unless it fails in which case the error is propagated back to the __cpu_suspend caller. The API refactoring results in the following pseudo code call sequence for a suspending CPU, when triggered from a kernel subsystem: /* * int cpu_suspend(unsigned long idx) * @idx: idle state index */ { -> cpu_suspend(idx) |---> CPU operations suspend hook called, if present |--> if (retention_state) |--> direct suspend back-end call (eg PSCI suspend) else |--> __cpu_suspend(idx, &back_end_finisher); } By refactoring the cpu_suspend API this way, the CPU operations back-end has a chance to detect whether idle states require state saving or not and can call the required suspend operations accordingly either through simple function call or indirectly through __cpu_suspend() which carries out state saving and suspend finisher dispatching to complete idle state entry. Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Reviewed-by: Hanjun Guo <hanjun.guo@linaro.org> Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2014-08-07 20:54:50 +07:00
add x1, x1, x8, lsl #3
str x0, [x1]
add x0, x0, #SLEEP_STACK_DATA_SYSTEM_REGS
stp x29, lr, [sp, #-16]!
bl cpu_do_suspend
ldp x29, lr, [sp], #16
mov x0, #1
arm64: kernel: cpu_{suspend/resume} implementation Kernel subsystems like CPU idle and suspend to RAM require a generic mechanism to suspend a processor, save its context and put it into a quiescent state. The cpu_{suspend}/{resume} implementation provides such a framework through a kernel interface allowing to save/restore registers, flush the context to DRAM and suspend/resume to/from low-power states where processor context may be lost. The CPU suspend implementation relies on the suspend protocol registered in CPU operations to carry out a suspend request after context is saved and flushed to DRAM. The cpu_suspend interface: int cpu_suspend(unsigned long arg); allows to pass an opaque parameter that is handed over to the suspend CPU operations back-end so that it can take action according to the semantics attached to it. The arg parameter allows suspend to RAM and CPU idle drivers to communicate to suspend protocol back-ends; it requires standardization so that the interface can be reused seamlessly across systems, paving the way for generic drivers. Context memory is allocated on the stack, whose address is stashed in a per-cpu variable to keep track of it and passed to core functions that save/restore the registers required by the architecture. Even though, upon successful execution, the cpu_suspend function shuts down the suspending processor, the warm boot resume mechanism, based on the cpu_resume function, makes the resume path operate as a cpu_suspend function return, so that cpu_suspend can be treated as a C function by the caller, which simplifies coding the PM drivers that rely on the cpu_suspend API. Upon context save, the minimal amount of memory is flushed to DRAM so that it can be retrieved when the MMU is off and caches are not searched. The suspend CPU operation, depending on the required operations (eg CPU vs Cluster shutdown) is in charge of flushing the cache hierarchy either implicitly (by calling firmware implementations like PSCI) or explicitly by executing the required cache maintainance functions. Debug exceptions are disabled during cpu_{suspend}/{resume} operations so that debug registers can be saved and restored properly preventing preemption from debug agents enabled in the kernel. Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
2013-07-22 18:22:13 +07:00
ret
arm64: kernel: refactor the CPU suspend API for retention states CPU suspend is the standard kernel interface to be used to enter low-power states on ARM64 systems. Current cpu_suspend implementation by default assumes that all low power states are losing the CPU context, so the CPU registers must be saved and cleaned to DRAM upon state entry. Furthermore, the current cpu_suspend() implementation assumes that if the CPU suspend back-end method returns when called, this has to be considered an error regardless of the return code (which can be successful) since the CPU was not expected to return from a code path that is different from cpu_resume code path - eg returning from the reset vector. All in all this means that the current API does not cope well with low-power states that preserve the CPU context when entered (ie retention states), since first of all the context is saved for nothing on state entry for those states and a successful state entry can return as a normal function return, which is considered an error by the current CPU suspend implementation. This patch refactors the cpu_suspend() API so that it can be split in two separate functionalities. The arm64 cpu_suspend API just provides a wrapper around CPU suspend operation hook. A new function is introduced (for architecture code use only) for states that require context saving upon entry: __cpu_suspend(unsigned long arg, int (*fn)(unsigned long)) __cpu_suspend() saves the context on function entry and calls the so called suspend finisher (ie fn) to complete the suspend operation. The finisher is not expected to return, unless it fails in which case the error is propagated back to the __cpu_suspend caller. The API refactoring results in the following pseudo code call sequence for a suspending CPU, when triggered from a kernel subsystem: /* * int cpu_suspend(unsigned long idx) * @idx: idle state index */ { -> cpu_suspend(idx) |---> CPU operations suspend hook called, if present |--> if (retention_state) |--> direct suspend back-end call (eg PSCI suspend) else |--> __cpu_suspend(idx, &back_end_finisher); } By refactoring the cpu_suspend API this way, the CPU operations back-end has a chance to detect whether idle states require state saving or not and can call the required suspend operations accordingly either through simple function call or indirectly through __cpu_suspend() which carries out state saving and suspend finisher dispatching to complete idle state entry. Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Reviewed-by: Hanjun Guo <hanjun.guo@linaro.org> Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2014-08-07 20:54:50 +07:00
ENDPROC(__cpu_suspend_enter)
arm64: kernel: cpu_{suspend/resume} implementation Kernel subsystems like CPU idle and suspend to RAM require a generic mechanism to suspend a processor, save its context and put it into a quiescent state. The cpu_{suspend}/{resume} implementation provides such a framework through a kernel interface allowing to save/restore registers, flush the context to DRAM and suspend/resume to/from low-power states where processor context may be lost. The CPU suspend implementation relies on the suspend protocol registered in CPU operations to carry out a suspend request after context is saved and flushed to DRAM. The cpu_suspend interface: int cpu_suspend(unsigned long arg); allows to pass an opaque parameter that is handed over to the suspend CPU operations back-end so that it can take action according to the semantics attached to it. The arg parameter allows suspend to RAM and CPU idle drivers to communicate to suspend protocol back-ends; it requires standardization so that the interface can be reused seamlessly across systems, paving the way for generic drivers. Context memory is allocated on the stack, whose address is stashed in a per-cpu variable to keep track of it and passed to core functions that save/restore the registers required by the architecture. Even though, upon successful execution, the cpu_suspend function shuts down the suspending processor, the warm boot resume mechanism, based on the cpu_resume function, makes the resume path operate as a cpu_suspend function return, so that cpu_suspend can be treated as a C function by the caller, which simplifies coding the PM drivers that rely on the cpu_suspend API. Upon context save, the minimal amount of memory is flushed to DRAM so that it can be retrieved when the MMU is off and caches are not searched. The suspend CPU operation, depending on the required operations (eg CPU vs Cluster shutdown) is in charge of flushing the cache hierarchy either implicitly (by calling firmware implementations like PSCI) or explicitly by executing the required cache maintainance functions. Debug exceptions are disabled during cpu_{suspend}/{resume} operations so that debug registers can be saved and restored properly preventing preemption from debug agents enabled in the kernel. Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
2013-07-22 18:22:13 +07:00
.pushsection ".idmap.text", "ax"
arm64: kernel: cpu_{suspend/resume} implementation Kernel subsystems like CPU idle and suspend to RAM require a generic mechanism to suspend a processor, save its context and put it into a quiescent state. The cpu_{suspend}/{resume} implementation provides such a framework through a kernel interface allowing to save/restore registers, flush the context to DRAM and suspend/resume to/from low-power states where processor context may be lost. The CPU suspend implementation relies on the suspend protocol registered in CPU operations to carry out a suspend request after context is saved and flushed to DRAM. The cpu_suspend interface: int cpu_suspend(unsigned long arg); allows to pass an opaque parameter that is handed over to the suspend CPU operations back-end so that it can take action according to the semantics attached to it. The arg parameter allows suspend to RAM and CPU idle drivers to communicate to suspend protocol back-ends; it requires standardization so that the interface can be reused seamlessly across systems, paving the way for generic drivers. Context memory is allocated on the stack, whose address is stashed in a per-cpu variable to keep track of it and passed to core functions that save/restore the registers required by the architecture. Even though, upon successful execution, the cpu_suspend function shuts down the suspending processor, the warm boot resume mechanism, based on the cpu_resume function, makes the resume path operate as a cpu_suspend function return, so that cpu_suspend can be treated as a C function by the caller, which simplifies coding the PM drivers that rely on the cpu_suspend API. Upon context save, the minimal amount of memory is flushed to DRAM so that it can be retrieved when the MMU is off and caches are not searched. The suspend CPU operation, depending on the required operations (eg CPU vs Cluster shutdown) is in charge of flushing the cache hierarchy either implicitly (by calling firmware implementations like PSCI) or explicitly by executing the required cache maintainance functions. Debug exceptions are disabled during cpu_{suspend}/{resume} operations so that debug registers can be saved and restored properly preventing preemption from debug agents enabled in the kernel. Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
2013-07-22 18:22:13 +07:00
ENTRY(cpu_resume)
bl el2_setup // if in EL2 drop to EL1 cleanly
bl __cpu_setup
/* enable the MMU early - so we can access sleep_save_stash by va */
bl __enable_mmu
ldr x8, =_cpu_resume
br x8
ENDPROC(cpu_resume)
.ltorg
.popsection
ENTRY(_cpu_resume)
arm64: kernel: cpu_{suspend/resume} implementation Kernel subsystems like CPU idle and suspend to RAM require a generic mechanism to suspend a processor, save its context and put it into a quiescent state. The cpu_{suspend}/{resume} implementation provides such a framework through a kernel interface allowing to save/restore registers, flush the context to DRAM and suspend/resume to/from low-power states where processor context may be lost. The CPU suspend implementation relies on the suspend protocol registered in CPU operations to carry out a suspend request after context is saved and flushed to DRAM. The cpu_suspend interface: int cpu_suspend(unsigned long arg); allows to pass an opaque parameter that is handed over to the suspend CPU operations back-end so that it can take action according to the semantics attached to it. The arg parameter allows suspend to RAM and CPU idle drivers to communicate to suspend protocol back-ends; it requires standardization so that the interface can be reused seamlessly across systems, paving the way for generic drivers. Context memory is allocated on the stack, whose address is stashed in a per-cpu variable to keep track of it and passed to core functions that save/restore the registers required by the architecture. Even though, upon successful execution, the cpu_suspend function shuts down the suspending processor, the warm boot resume mechanism, based on the cpu_resume function, makes the resume path operate as a cpu_suspend function return, so that cpu_suspend can be treated as a C function by the caller, which simplifies coding the PM drivers that rely on the cpu_suspend API. Upon context save, the minimal amount of memory is flushed to DRAM so that it can be retrieved when the MMU is off and caches are not searched. The suspend CPU operation, depending on the required operations (eg CPU vs Cluster shutdown) is in charge of flushing the cache hierarchy either implicitly (by calling firmware implementations like PSCI) or explicitly by executing the required cache maintainance functions. Debug exceptions are disabled during cpu_{suspend}/{resume} operations so that debug registers can be saved and restored properly preventing preemption from debug agents enabled in the kernel. Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
2013-07-22 18:22:13 +07:00
mrs x1, mpidr_el1
adr_l x8, mpidr_hash // x8 = struct mpidr_hash virt address
/* retrieve mpidr_hash members to compute the hash */
arm64: kernel: cpu_{suspend/resume} implementation Kernel subsystems like CPU idle and suspend to RAM require a generic mechanism to suspend a processor, save its context and put it into a quiescent state. The cpu_{suspend}/{resume} implementation provides such a framework through a kernel interface allowing to save/restore registers, flush the context to DRAM and suspend/resume to/from low-power states where processor context may be lost. The CPU suspend implementation relies on the suspend protocol registered in CPU operations to carry out a suspend request after context is saved and flushed to DRAM. The cpu_suspend interface: int cpu_suspend(unsigned long arg); allows to pass an opaque parameter that is handed over to the suspend CPU operations back-end so that it can take action according to the semantics attached to it. The arg parameter allows suspend to RAM and CPU idle drivers to communicate to suspend protocol back-ends; it requires standardization so that the interface can be reused seamlessly across systems, paving the way for generic drivers. Context memory is allocated on the stack, whose address is stashed in a per-cpu variable to keep track of it and passed to core functions that save/restore the registers required by the architecture. Even though, upon successful execution, the cpu_suspend function shuts down the suspending processor, the warm boot resume mechanism, based on the cpu_resume function, makes the resume path operate as a cpu_suspend function return, so that cpu_suspend can be treated as a C function by the caller, which simplifies coding the PM drivers that rely on the cpu_suspend API. Upon context save, the minimal amount of memory is flushed to DRAM so that it can be retrieved when the MMU is off and caches are not searched. The suspend CPU operation, depending on the required operations (eg CPU vs Cluster shutdown) is in charge of flushing the cache hierarchy either implicitly (by calling firmware implementations like PSCI) or explicitly by executing the required cache maintainance functions. Debug exceptions are disabled during cpu_{suspend}/{resume} operations so that debug registers can be saved and restored properly preventing preemption from debug agents enabled in the kernel. Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
2013-07-22 18:22:13 +07:00
ldr x2, [x8, #MPIDR_HASH_MASK]
ldp w3, w4, [x8, #MPIDR_HASH_SHIFTS]
ldp w5, w6, [x8, #(MPIDR_HASH_SHIFTS + 8)]
compute_mpidr_hash x7, x3, x4, x5, x6, x1, x2
/* x7 contains hash index, let's use it to grab context pointer */
ldr_l x0, sleep_save_stash
arm64: kernel: cpu_{suspend/resume} implementation Kernel subsystems like CPU idle and suspend to RAM require a generic mechanism to suspend a processor, save its context and put it into a quiescent state. The cpu_{suspend}/{resume} implementation provides such a framework through a kernel interface allowing to save/restore registers, flush the context to DRAM and suspend/resume to/from low-power states where processor context may be lost. The CPU suspend implementation relies on the suspend protocol registered in CPU operations to carry out a suspend request after context is saved and flushed to DRAM. The cpu_suspend interface: int cpu_suspend(unsigned long arg); allows to pass an opaque parameter that is handed over to the suspend CPU operations back-end so that it can take action according to the semantics attached to it. The arg parameter allows suspend to RAM and CPU idle drivers to communicate to suspend protocol back-ends; it requires standardization so that the interface can be reused seamlessly across systems, paving the way for generic drivers. Context memory is allocated on the stack, whose address is stashed in a per-cpu variable to keep track of it and passed to core functions that save/restore the registers required by the architecture. Even though, upon successful execution, the cpu_suspend function shuts down the suspending processor, the warm boot resume mechanism, based on the cpu_resume function, makes the resume path operate as a cpu_suspend function return, so that cpu_suspend can be treated as a C function by the caller, which simplifies coding the PM drivers that rely on the cpu_suspend API. Upon context save, the minimal amount of memory is flushed to DRAM so that it can be retrieved when the MMU is off and caches are not searched. The suspend CPU operation, depending on the required operations (eg CPU vs Cluster shutdown) is in charge of flushing the cache hierarchy either implicitly (by calling firmware implementations like PSCI) or explicitly by executing the required cache maintainance functions. Debug exceptions are disabled during cpu_{suspend}/{resume} operations so that debug registers can be saved and restored properly preventing preemption from debug agents enabled in the kernel. Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
2013-07-22 18:22:13 +07:00
ldr x0, [x0, x7, lsl #3]
add x29, x0, #SLEEP_STACK_DATA_CALLEE_REGS
add x0, x0, #SLEEP_STACK_DATA_SYSTEM_REGS
arm64: kernel: cpu_{suspend/resume} implementation Kernel subsystems like CPU idle and suspend to RAM require a generic mechanism to suspend a processor, save its context and put it into a quiescent state. The cpu_{suspend}/{resume} implementation provides such a framework through a kernel interface allowing to save/restore registers, flush the context to DRAM and suspend/resume to/from low-power states where processor context may be lost. The CPU suspend implementation relies on the suspend protocol registered in CPU operations to carry out a suspend request after context is saved and flushed to DRAM. The cpu_suspend interface: int cpu_suspend(unsigned long arg); allows to pass an opaque parameter that is handed over to the suspend CPU operations back-end so that it can take action according to the semantics attached to it. The arg parameter allows suspend to RAM and CPU idle drivers to communicate to suspend protocol back-ends; it requires standardization so that the interface can be reused seamlessly across systems, paving the way for generic drivers. Context memory is allocated on the stack, whose address is stashed in a per-cpu variable to keep track of it and passed to core functions that save/restore the registers required by the architecture. Even though, upon successful execution, the cpu_suspend function shuts down the suspending processor, the warm boot resume mechanism, based on the cpu_resume function, makes the resume path operate as a cpu_suspend function return, so that cpu_suspend can be treated as a C function by the caller, which simplifies coding the PM drivers that rely on the cpu_suspend API. Upon context save, the minimal amount of memory is flushed to DRAM so that it can be retrieved when the MMU is off and caches are not searched. The suspend CPU operation, depending on the required operations (eg CPU vs Cluster shutdown) is in charge of flushing the cache hierarchy either implicitly (by calling firmware implementations like PSCI) or explicitly by executing the required cache maintainance functions. Debug exceptions are disabled during cpu_{suspend}/{resume} operations so that debug registers can be saved and restored properly preventing preemption from debug agents enabled in the kernel. Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
2013-07-22 18:22:13 +07:00
/* load sp from context */
ldr x2, [x0, #CPU_CTX_SP]
mov sp, x2
/*
* cpu_do_resume expects x0 to contain context address pointer
arm64: kernel: cpu_{suspend/resume} implementation Kernel subsystems like CPU idle and suspend to RAM require a generic mechanism to suspend a processor, save its context and put it into a quiescent state. The cpu_{suspend}/{resume} implementation provides such a framework through a kernel interface allowing to save/restore registers, flush the context to DRAM and suspend/resume to/from low-power states where processor context may be lost. The CPU suspend implementation relies on the suspend protocol registered in CPU operations to carry out a suspend request after context is saved and flushed to DRAM. The cpu_suspend interface: int cpu_suspend(unsigned long arg); allows to pass an opaque parameter that is handed over to the suspend CPU operations back-end so that it can take action according to the semantics attached to it. The arg parameter allows suspend to RAM and CPU idle drivers to communicate to suspend protocol back-ends; it requires standardization so that the interface can be reused seamlessly across systems, paving the way for generic drivers. Context memory is allocated on the stack, whose address is stashed in a per-cpu variable to keep track of it and passed to core functions that save/restore the registers required by the architecture. Even though, upon successful execution, the cpu_suspend function shuts down the suspending processor, the warm boot resume mechanism, based on the cpu_resume function, makes the resume path operate as a cpu_suspend function return, so that cpu_suspend can be treated as a C function by the caller, which simplifies coding the PM drivers that rely on the cpu_suspend API. Upon context save, the minimal amount of memory is flushed to DRAM so that it can be retrieved when the MMU is off and caches are not searched. The suspend CPU operation, depending on the required operations (eg CPU vs Cluster shutdown) is in charge of flushing the cache hierarchy either implicitly (by calling firmware implementations like PSCI) or explicitly by executing the required cache maintainance functions. Debug exceptions are disabled during cpu_{suspend}/{resume} operations so that debug registers can be saved and restored properly preventing preemption from debug agents enabled in the kernel. Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
2013-07-22 18:22:13 +07:00
*/
bl cpu_do_resume
#ifdef CONFIG_KASAN
mov x0, sp
kprobes: Unpoison stack in jprobe_return() for KASAN I observed false KSAN positives in the sctp code, when sctp uses jprobe_return() in jsctp_sf_eat_sack(). The stray 0xf4 in shadow memory are stack redzones: [ ] ================================================================== [ ] BUG: KASAN: stack-out-of-bounds in memcmp+0xe9/0x150 at addr ffff88005e48f480 [ ] Read of size 1 by task syz-executor/18535 [ ] page:ffffea00017923c0 count:0 mapcount:0 mapping: (null) index:0x0 [ ] flags: 0x1fffc0000000000() [ ] page dumped because: kasan: bad access detected [ ] CPU: 1 PID: 18535 Comm: syz-executor Not tainted 4.8.0+ #28 [ ] Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 [ ] ffff88005e48f2d0 ffffffff82d2b849 ffffffff0bc91e90 fffffbfff10971e8 [ ] ffffed000bc91e90 ffffed000bc91e90 0000000000000001 0000000000000000 [ ] ffff88005e48f480 ffff88005e48f350 ffffffff817d3169 ffff88005e48f370 [ ] Call Trace: [ ] [<ffffffff82d2b849>] dump_stack+0x12e/0x185 [ ] [<ffffffff817d3169>] kasan_report+0x489/0x4b0 [ ] [<ffffffff817d31a9>] __asan_report_load1_noabort+0x19/0x20 [ ] [<ffffffff82d49529>] memcmp+0xe9/0x150 [ ] [<ffffffff82df7486>] depot_save_stack+0x176/0x5c0 [ ] [<ffffffff817d2031>] save_stack+0xb1/0xd0 [ ] [<ffffffff817d27f2>] kasan_slab_free+0x72/0xc0 [ ] [<ffffffff817d05b8>] kfree+0xc8/0x2a0 [ ] [<ffffffff85b03f19>] skb_free_head+0x79/0xb0 [ ] [<ffffffff85b0900a>] skb_release_data+0x37a/0x420 [ ] [<ffffffff85b090ff>] skb_release_all+0x4f/0x60 [ ] [<ffffffff85b11348>] consume_skb+0x138/0x370 [ ] [<ffffffff8676ad7b>] sctp_chunk_put+0xcb/0x180 [ ] [<ffffffff8676ae88>] sctp_chunk_free+0x58/0x70 [ ] [<ffffffff8677fa5f>] sctp_inq_pop+0x68f/0xef0 [ ] [<ffffffff8675ee36>] sctp_assoc_bh_rcv+0xd6/0x4b0 [ ] [<ffffffff8677f2c1>] sctp_inq_push+0x131/0x190 [ ] [<ffffffff867bad69>] sctp_backlog_rcv+0xe9/0xa20 [ ... ] [ ] Memory state around the buggy address: [ ] ffff88005e48f380: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 [ ] ffff88005e48f400: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 [ ] >ffff88005e48f480: f4 f4 00 00 00 00 00 00 00 00 00 00 00 00 00 00 [ ] ^ [ ] ffff88005e48f500: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 [ ] ffff88005e48f580: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 [ ] ================================================================== KASAN stack instrumentation poisons stack redzones on function entry and unpoisons them on function exit. If a function exits abnormally (e.g. with a longjmp like jprobe_return()), stack redzones are left poisoned. Later this leads to random KASAN false reports. Unpoison stack redzones in the frames we are going to jump over before doing actual longjmp in jprobe_return(). Signed-off-by: Dmitry Vyukov <dvyukov@google.com> Acked-by: Masami Hiramatsu <mhiramat@kernel.org> Reviewed-by: Mark Rutland <mark.rutland@arm.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com> Cc: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com> Cc: Alexander Potapenko <glider@google.com> Cc: Will Deacon <will.deacon@arm.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Ananth N Mavinakayanahalli <ananth@linux.vnet.ibm.com> Cc: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com> Cc: "David S. Miller" <davem@davemloft.net> Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: kasan-dev@googlegroups.com Cc: surovegin@google.com Cc: rostedt@goodmis.org Link: http://lkml.kernel.org/r/1476454043-101898-1-git-send-email-dvyukov@google.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-10-14 21:07:23 +07:00
bl kasan_unpoison_task_stack_below
#endif
ldp x19, x20, [x29, #16]
ldp x21, x22, [x29, #32]
ldp x23, x24, [x29, #48]
ldp x25, x26, [x29, #64]
ldp x27, x28, [x29, #80]
ldp x29, lr, [x29]
mov x0, #0
ret
ENDPROC(_cpu_resume)