linux_dsm_epyc7002/tools/perf/util/vdso.c

360 lines
7.1 KiB
C
Raw Normal View History

perf tools: Back [vdso] DSO with real data Storing data for VDSO shared object, because we need it for the post unwind processing. The VDSO shared object is same for all process on a running system, so it makes no difference when we store it inside the tracer - perf. When [vdso] map memory is hit, we retrieve [vdso] DSO image and store it into temporary file. During the build-id processing phase, the [vdso] DSO image is stored in build-id db, and build-id reference is made inside perf.data. The build-id vdso file object is called '[vdso]'. We don't use temporary file name which gets removed when record is finished. During report phase the vdso build-id object is treated as any other build-id DSO object. Adding following API for vdso object: bool is_vdso_map(const char *filename) - returns true if the filename matches vdso map name struct dso *vdso__dso_findnew(struct list_head *head) - find/create proper vdso DSO object vdso__exit(void) - removes temporary VDSO image if there's any This change makes backtrace dwarf post unwind possible from [vdso] maps. Following output is current report of [vdso] sample dwarf backtrace: # Overhead Command Shared Object Symbol # ........ ....... ................. ............................. # 99.52% ex [vdso] [.] 0x00007fff3ace89af | --- 0x7fff3ace89af Following output is new report of [vdso] sample dwarf backtrace: # Overhead Command Shared Object Symbol # ........ ....... ................. ............................. # 99.52% ex [vdso] [.] 0x00000000000009af | --- 0x7fff3ace89af main __libc_start_main _start Signed-off-by: Jiri Olsa <jolsa@redhat.com> Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Paul Mackerras <paulus@samba.org> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/r/1347295819-23177-5-git-send-email-jolsa@redhat.com [ committer note: s/ALIGN/PERF_ALIGN/g to cope with the android build changes ] Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2012-09-10 23:50:19 +07:00
#include <unistd.h>
#include <stdio.h>
#include <string.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <stdlib.h>
#include <linux/kernel.h>
#include "vdso.h"
#include "util.h"
#include "symbol.h"
#include "machine.h"
perf tools: Add support for 32-bit compatibility VDSOs 'perf record' post-processes the event stream to create a list of build-ids for object files for which sample events have been recorded. That results in those object files being recorded in the build-id cache. In the case of VDSO, perf tools reads it from memory and copies it into a temporary file, which as decribed above, gets added to the build-id cache. Then when the perf.data file is processed by other tools, the build-id of VDSO is listed in the perf.data file and the VDSO can be read from the build-id cache. In that case the name of the map, the short name of the DSO, and the entry in the build-id cache are all "[vdso]". However, in the 64-bit case, there also can be 32-bit compatibility VDSOs. A previous patch added programs "perf-read-vdso32" and "perf read-vdsox32". This patch uses those programs to read the correct VDSO for a thread and create a temporary file just as for the 64-bit VDSO. The map name and the entry in the build-id cache are still "[vdso]" but the DSO short name becomes "[vdso32]" and "[vdsox32]" respectively. Signed-off-by: Adrian Hunter <adrian.hunter@intel.com> Cc: David Ahern <dsahern@gmail.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Namhyung Kim <namhyung@gmail.com> Cc: Paul Mackerras <paulus@samba.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Link: http://lkml.kernel.org/r/1414061124-26830-16-git-send-email-adrian.hunter@intel.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2014-10-23 17:45:23 +07:00
#include "thread.h"
perf tools: Back [vdso] DSO with real data Storing data for VDSO shared object, because we need it for the post unwind processing. The VDSO shared object is same for all process on a running system, so it makes no difference when we store it inside the tracer - perf. When [vdso] map memory is hit, we retrieve [vdso] DSO image and store it into temporary file. During the build-id processing phase, the [vdso] DSO image is stored in build-id db, and build-id reference is made inside perf.data. The build-id vdso file object is called '[vdso]'. We don't use temporary file name which gets removed when record is finished. During report phase the vdso build-id object is treated as any other build-id DSO object. Adding following API for vdso object: bool is_vdso_map(const char *filename) - returns true if the filename matches vdso map name struct dso *vdso__dso_findnew(struct list_head *head) - find/create proper vdso DSO object vdso__exit(void) - removes temporary VDSO image if there's any This change makes backtrace dwarf post unwind possible from [vdso] maps. Following output is current report of [vdso] sample dwarf backtrace: # Overhead Command Shared Object Symbol # ........ ....... ................. ............................. # 99.52% ex [vdso] [.] 0x00007fff3ace89af | --- 0x7fff3ace89af Following output is new report of [vdso] sample dwarf backtrace: # Overhead Command Shared Object Symbol # ........ ....... ................. ............................. # 99.52% ex [vdso] [.] 0x00000000000009af | --- 0x7fff3ace89af main __libc_start_main _start Signed-off-by: Jiri Olsa <jolsa@redhat.com> Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Paul Mackerras <paulus@samba.org> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/r/1347295819-23177-5-git-send-email-jolsa@redhat.com [ committer note: s/ALIGN/PERF_ALIGN/g to cope with the android build changes ] Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2012-09-10 23:50:19 +07:00
#include "linux/string.h"
#include "debug.h"
perf tools: Back [vdso] DSO with real data Storing data for VDSO shared object, because we need it for the post unwind processing. The VDSO shared object is same for all process on a running system, so it makes no difference when we store it inside the tracer - perf. When [vdso] map memory is hit, we retrieve [vdso] DSO image and store it into temporary file. During the build-id processing phase, the [vdso] DSO image is stored in build-id db, and build-id reference is made inside perf.data. The build-id vdso file object is called '[vdso]'. We don't use temporary file name which gets removed when record is finished. During report phase the vdso build-id object is treated as any other build-id DSO object. Adding following API for vdso object: bool is_vdso_map(const char *filename) - returns true if the filename matches vdso map name struct dso *vdso__dso_findnew(struct list_head *head) - find/create proper vdso DSO object vdso__exit(void) - removes temporary VDSO image if there's any This change makes backtrace dwarf post unwind possible from [vdso] maps. Following output is current report of [vdso] sample dwarf backtrace: # Overhead Command Shared Object Symbol # ........ ....... ................. ............................. # 99.52% ex [vdso] [.] 0x00007fff3ace89af | --- 0x7fff3ace89af Following output is new report of [vdso] sample dwarf backtrace: # Overhead Command Shared Object Symbol # ........ ....... ................. ............................. # 99.52% ex [vdso] [.] 0x00000000000009af | --- 0x7fff3ace89af main __libc_start_main _start Signed-off-by: Jiri Olsa <jolsa@redhat.com> Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Paul Mackerras <paulus@samba.org> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/r/1347295819-23177-5-git-send-email-jolsa@redhat.com [ committer note: s/ALIGN/PERF_ALIGN/g to cope with the android build changes ] Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2012-09-10 23:50:19 +07:00
/*
* Include definition of find_vdso_map() also used in perf-read-vdso.c for
* building perf-read-vdso32 and perf-read-vdsox32.
*/
#include "find-vdso-map.c"
#define VDSO__TEMP_FILE_NAME "/tmp/perf-vdso.so-XXXXXX"
struct vdso_file {
bool found;
bool error;
char temp_file_name[sizeof(VDSO__TEMP_FILE_NAME)];
const char *dso_name;
perf tools: Add support for 32-bit compatibility VDSOs 'perf record' post-processes the event stream to create a list of build-ids for object files for which sample events have been recorded. That results in those object files being recorded in the build-id cache. In the case of VDSO, perf tools reads it from memory and copies it into a temporary file, which as decribed above, gets added to the build-id cache. Then when the perf.data file is processed by other tools, the build-id of VDSO is listed in the perf.data file and the VDSO can be read from the build-id cache. In that case the name of the map, the short name of the DSO, and the entry in the build-id cache are all "[vdso]". However, in the 64-bit case, there also can be 32-bit compatibility VDSOs. A previous patch added programs "perf-read-vdso32" and "perf read-vdsox32". This patch uses those programs to read the correct VDSO for a thread and create a temporary file just as for the 64-bit VDSO. The map name and the entry in the build-id cache are still "[vdso]" but the DSO short name becomes "[vdso32]" and "[vdsox32]" respectively. Signed-off-by: Adrian Hunter <adrian.hunter@intel.com> Cc: David Ahern <dsahern@gmail.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Namhyung Kim <namhyung@gmail.com> Cc: Paul Mackerras <paulus@samba.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Link: http://lkml.kernel.org/r/1414061124-26830-16-git-send-email-adrian.hunter@intel.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2014-10-23 17:45:23 +07:00
const char *read_prog;
};
struct vdso_info {
struct vdso_file vdso;
perf tools: Add support for 32-bit compatibility VDSOs 'perf record' post-processes the event stream to create a list of build-ids for object files for which sample events have been recorded. That results in those object files being recorded in the build-id cache. In the case of VDSO, perf tools reads it from memory and copies it into a temporary file, which as decribed above, gets added to the build-id cache. Then when the perf.data file is processed by other tools, the build-id of VDSO is listed in the perf.data file and the VDSO can be read from the build-id cache. In that case the name of the map, the short name of the DSO, and the entry in the build-id cache are all "[vdso]". However, in the 64-bit case, there also can be 32-bit compatibility VDSOs. A previous patch added programs "perf-read-vdso32" and "perf read-vdsox32". This patch uses those programs to read the correct VDSO for a thread and create a temporary file just as for the 64-bit VDSO. The map name and the entry in the build-id cache are still "[vdso]" but the DSO short name becomes "[vdso32]" and "[vdsox32]" respectively. Signed-off-by: Adrian Hunter <adrian.hunter@intel.com> Cc: David Ahern <dsahern@gmail.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Namhyung Kim <namhyung@gmail.com> Cc: Paul Mackerras <paulus@samba.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Link: http://lkml.kernel.org/r/1414061124-26830-16-git-send-email-adrian.hunter@intel.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2014-10-23 17:45:23 +07:00
#if BITS_PER_LONG == 64
struct vdso_file vdso32;
struct vdso_file vdsox32;
#endif
};
static struct vdso_info *vdso_info__new(void)
{
static const struct vdso_info vdso_info_init = {
.vdso = {
.temp_file_name = VDSO__TEMP_FILE_NAME,
.dso_name = DSO__NAME_VDSO,
},
perf tools: Add support for 32-bit compatibility VDSOs 'perf record' post-processes the event stream to create a list of build-ids for object files for which sample events have been recorded. That results in those object files being recorded in the build-id cache. In the case of VDSO, perf tools reads it from memory and copies it into a temporary file, which as decribed above, gets added to the build-id cache. Then when the perf.data file is processed by other tools, the build-id of VDSO is listed in the perf.data file and the VDSO can be read from the build-id cache. In that case the name of the map, the short name of the DSO, and the entry in the build-id cache are all "[vdso]". However, in the 64-bit case, there also can be 32-bit compatibility VDSOs. A previous patch added programs "perf-read-vdso32" and "perf read-vdsox32". This patch uses those programs to read the correct VDSO for a thread and create a temporary file just as for the 64-bit VDSO. The map name and the entry in the build-id cache are still "[vdso]" but the DSO short name becomes "[vdso32]" and "[vdsox32]" respectively. Signed-off-by: Adrian Hunter <adrian.hunter@intel.com> Cc: David Ahern <dsahern@gmail.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Namhyung Kim <namhyung@gmail.com> Cc: Paul Mackerras <paulus@samba.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Link: http://lkml.kernel.org/r/1414061124-26830-16-git-send-email-adrian.hunter@intel.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2014-10-23 17:45:23 +07:00
#if BITS_PER_LONG == 64
.vdso32 = {
.temp_file_name = VDSO__TEMP_FILE_NAME,
.dso_name = DSO__NAME_VDSO32,
.read_prog = "perf-read-vdso32",
},
.vdsox32 = {
.temp_file_name = VDSO__TEMP_FILE_NAME,
.dso_name = DSO__NAME_VDSOX32,
.read_prog = "perf-read-vdsox32",
},
#endif
};
return memdup(&vdso_info_init, sizeof(vdso_info_init));
}
perf tools: Back [vdso] DSO with real data Storing data for VDSO shared object, because we need it for the post unwind processing. The VDSO shared object is same for all process on a running system, so it makes no difference when we store it inside the tracer - perf. When [vdso] map memory is hit, we retrieve [vdso] DSO image and store it into temporary file. During the build-id processing phase, the [vdso] DSO image is stored in build-id db, and build-id reference is made inside perf.data. The build-id vdso file object is called '[vdso]'. We don't use temporary file name which gets removed when record is finished. During report phase the vdso build-id object is treated as any other build-id DSO object. Adding following API for vdso object: bool is_vdso_map(const char *filename) - returns true if the filename matches vdso map name struct dso *vdso__dso_findnew(struct list_head *head) - find/create proper vdso DSO object vdso__exit(void) - removes temporary VDSO image if there's any This change makes backtrace dwarf post unwind possible from [vdso] maps. Following output is current report of [vdso] sample dwarf backtrace: # Overhead Command Shared Object Symbol # ........ ....... ................. ............................. # 99.52% ex [vdso] [.] 0x00007fff3ace89af | --- 0x7fff3ace89af Following output is new report of [vdso] sample dwarf backtrace: # Overhead Command Shared Object Symbol # ........ ....... ................. ............................. # 99.52% ex [vdso] [.] 0x00000000000009af | --- 0x7fff3ace89af main __libc_start_main _start Signed-off-by: Jiri Olsa <jolsa@redhat.com> Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Paul Mackerras <paulus@samba.org> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/r/1347295819-23177-5-git-send-email-jolsa@redhat.com [ committer note: s/ALIGN/PERF_ALIGN/g to cope with the android build changes ] Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2012-09-10 23:50:19 +07:00
static char *get_file(struct vdso_file *vdso_file)
perf tools: Back [vdso] DSO with real data Storing data for VDSO shared object, because we need it for the post unwind processing. The VDSO shared object is same for all process on a running system, so it makes no difference when we store it inside the tracer - perf. When [vdso] map memory is hit, we retrieve [vdso] DSO image and store it into temporary file. During the build-id processing phase, the [vdso] DSO image is stored in build-id db, and build-id reference is made inside perf.data. The build-id vdso file object is called '[vdso]'. We don't use temporary file name which gets removed when record is finished. During report phase the vdso build-id object is treated as any other build-id DSO object. Adding following API for vdso object: bool is_vdso_map(const char *filename) - returns true if the filename matches vdso map name struct dso *vdso__dso_findnew(struct list_head *head) - find/create proper vdso DSO object vdso__exit(void) - removes temporary VDSO image if there's any This change makes backtrace dwarf post unwind possible from [vdso] maps. Following output is current report of [vdso] sample dwarf backtrace: # Overhead Command Shared Object Symbol # ........ ....... ................. ............................. # 99.52% ex [vdso] [.] 0x00007fff3ace89af | --- 0x7fff3ace89af Following output is new report of [vdso] sample dwarf backtrace: # Overhead Command Shared Object Symbol # ........ ....... ................. ............................. # 99.52% ex [vdso] [.] 0x00000000000009af | --- 0x7fff3ace89af main __libc_start_main _start Signed-off-by: Jiri Olsa <jolsa@redhat.com> Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Paul Mackerras <paulus@samba.org> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/r/1347295819-23177-5-git-send-email-jolsa@redhat.com [ committer note: s/ALIGN/PERF_ALIGN/g to cope with the android build changes ] Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2012-09-10 23:50:19 +07:00
{
char *vdso = NULL;
char *buf = NULL;
void *start, *end;
size_t size;
int fd;
if (vdso_file->found)
return vdso_file->temp_file_name;
perf tools: Back [vdso] DSO with real data Storing data for VDSO shared object, because we need it for the post unwind processing. The VDSO shared object is same for all process on a running system, so it makes no difference when we store it inside the tracer - perf. When [vdso] map memory is hit, we retrieve [vdso] DSO image and store it into temporary file. During the build-id processing phase, the [vdso] DSO image is stored in build-id db, and build-id reference is made inside perf.data. The build-id vdso file object is called '[vdso]'. We don't use temporary file name which gets removed when record is finished. During report phase the vdso build-id object is treated as any other build-id DSO object. Adding following API for vdso object: bool is_vdso_map(const char *filename) - returns true if the filename matches vdso map name struct dso *vdso__dso_findnew(struct list_head *head) - find/create proper vdso DSO object vdso__exit(void) - removes temporary VDSO image if there's any This change makes backtrace dwarf post unwind possible from [vdso] maps. Following output is current report of [vdso] sample dwarf backtrace: # Overhead Command Shared Object Symbol # ........ ....... ................. ............................. # 99.52% ex [vdso] [.] 0x00007fff3ace89af | --- 0x7fff3ace89af Following output is new report of [vdso] sample dwarf backtrace: # Overhead Command Shared Object Symbol # ........ ....... ................. ............................. # 99.52% ex [vdso] [.] 0x00000000000009af | --- 0x7fff3ace89af main __libc_start_main _start Signed-off-by: Jiri Olsa <jolsa@redhat.com> Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Paul Mackerras <paulus@samba.org> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/r/1347295819-23177-5-git-send-email-jolsa@redhat.com [ committer note: s/ALIGN/PERF_ALIGN/g to cope with the android build changes ] Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2012-09-10 23:50:19 +07:00
if (vdso_file->error || find_vdso_map(&start, &end))
perf tools: Back [vdso] DSO with real data Storing data for VDSO shared object, because we need it for the post unwind processing. The VDSO shared object is same for all process on a running system, so it makes no difference when we store it inside the tracer - perf. When [vdso] map memory is hit, we retrieve [vdso] DSO image and store it into temporary file. During the build-id processing phase, the [vdso] DSO image is stored in build-id db, and build-id reference is made inside perf.data. The build-id vdso file object is called '[vdso]'. We don't use temporary file name which gets removed when record is finished. During report phase the vdso build-id object is treated as any other build-id DSO object. Adding following API for vdso object: bool is_vdso_map(const char *filename) - returns true if the filename matches vdso map name struct dso *vdso__dso_findnew(struct list_head *head) - find/create proper vdso DSO object vdso__exit(void) - removes temporary VDSO image if there's any This change makes backtrace dwarf post unwind possible from [vdso] maps. Following output is current report of [vdso] sample dwarf backtrace: # Overhead Command Shared Object Symbol # ........ ....... ................. ............................. # 99.52% ex [vdso] [.] 0x00007fff3ace89af | --- 0x7fff3ace89af Following output is new report of [vdso] sample dwarf backtrace: # Overhead Command Shared Object Symbol # ........ ....... ................. ............................. # 99.52% ex [vdso] [.] 0x00000000000009af | --- 0x7fff3ace89af main __libc_start_main _start Signed-off-by: Jiri Olsa <jolsa@redhat.com> Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Paul Mackerras <paulus@samba.org> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/r/1347295819-23177-5-git-send-email-jolsa@redhat.com [ committer note: s/ALIGN/PERF_ALIGN/g to cope with the android build changes ] Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2012-09-10 23:50:19 +07:00
return NULL;
size = end - start;
buf = memdup(start, size);
if (!buf)
return NULL;
fd = mkstemp(vdso_file->temp_file_name);
perf tools: Back [vdso] DSO with real data Storing data for VDSO shared object, because we need it for the post unwind processing. The VDSO shared object is same for all process on a running system, so it makes no difference when we store it inside the tracer - perf. When [vdso] map memory is hit, we retrieve [vdso] DSO image and store it into temporary file. During the build-id processing phase, the [vdso] DSO image is stored in build-id db, and build-id reference is made inside perf.data. The build-id vdso file object is called '[vdso]'. We don't use temporary file name which gets removed when record is finished. During report phase the vdso build-id object is treated as any other build-id DSO object. Adding following API for vdso object: bool is_vdso_map(const char *filename) - returns true if the filename matches vdso map name struct dso *vdso__dso_findnew(struct list_head *head) - find/create proper vdso DSO object vdso__exit(void) - removes temporary VDSO image if there's any This change makes backtrace dwarf post unwind possible from [vdso] maps. Following output is current report of [vdso] sample dwarf backtrace: # Overhead Command Shared Object Symbol # ........ ....... ................. ............................. # 99.52% ex [vdso] [.] 0x00007fff3ace89af | --- 0x7fff3ace89af Following output is new report of [vdso] sample dwarf backtrace: # Overhead Command Shared Object Symbol # ........ ....... ................. ............................. # 99.52% ex [vdso] [.] 0x00000000000009af | --- 0x7fff3ace89af main __libc_start_main _start Signed-off-by: Jiri Olsa <jolsa@redhat.com> Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Paul Mackerras <paulus@samba.org> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/r/1347295819-23177-5-git-send-email-jolsa@redhat.com [ committer note: s/ALIGN/PERF_ALIGN/g to cope with the android build changes ] Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2012-09-10 23:50:19 +07:00
if (fd < 0)
goto out;
if (size == (size_t) write(fd, buf, size))
vdso = vdso_file->temp_file_name;
perf tools: Back [vdso] DSO with real data Storing data for VDSO shared object, because we need it for the post unwind processing. The VDSO shared object is same for all process on a running system, so it makes no difference when we store it inside the tracer - perf. When [vdso] map memory is hit, we retrieve [vdso] DSO image and store it into temporary file. During the build-id processing phase, the [vdso] DSO image is stored in build-id db, and build-id reference is made inside perf.data. The build-id vdso file object is called '[vdso]'. We don't use temporary file name which gets removed when record is finished. During report phase the vdso build-id object is treated as any other build-id DSO object. Adding following API for vdso object: bool is_vdso_map(const char *filename) - returns true if the filename matches vdso map name struct dso *vdso__dso_findnew(struct list_head *head) - find/create proper vdso DSO object vdso__exit(void) - removes temporary VDSO image if there's any This change makes backtrace dwarf post unwind possible from [vdso] maps. Following output is current report of [vdso] sample dwarf backtrace: # Overhead Command Shared Object Symbol # ........ ....... ................. ............................. # 99.52% ex [vdso] [.] 0x00007fff3ace89af | --- 0x7fff3ace89af Following output is new report of [vdso] sample dwarf backtrace: # Overhead Command Shared Object Symbol # ........ ....... ................. ............................. # 99.52% ex [vdso] [.] 0x00000000000009af | --- 0x7fff3ace89af main __libc_start_main _start Signed-off-by: Jiri Olsa <jolsa@redhat.com> Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Paul Mackerras <paulus@samba.org> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/r/1347295819-23177-5-git-send-email-jolsa@redhat.com [ committer note: s/ALIGN/PERF_ALIGN/g to cope with the android build changes ] Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2012-09-10 23:50:19 +07:00
close(fd);
out:
free(buf);
vdso_file->found = (vdso != NULL);
vdso_file->error = !vdso_file->found;
perf tools: Back [vdso] DSO with real data Storing data for VDSO shared object, because we need it for the post unwind processing. The VDSO shared object is same for all process on a running system, so it makes no difference when we store it inside the tracer - perf. When [vdso] map memory is hit, we retrieve [vdso] DSO image and store it into temporary file. During the build-id processing phase, the [vdso] DSO image is stored in build-id db, and build-id reference is made inside perf.data. The build-id vdso file object is called '[vdso]'. We don't use temporary file name which gets removed when record is finished. During report phase the vdso build-id object is treated as any other build-id DSO object. Adding following API for vdso object: bool is_vdso_map(const char *filename) - returns true if the filename matches vdso map name struct dso *vdso__dso_findnew(struct list_head *head) - find/create proper vdso DSO object vdso__exit(void) - removes temporary VDSO image if there's any This change makes backtrace dwarf post unwind possible from [vdso] maps. Following output is current report of [vdso] sample dwarf backtrace: # Overhead Command Shared Object Symbol # ........ ....... ................. ............................. # 99.52% ex [vdso] [.] 0x00007fff3ace89af | --- 0x7fff3ace89af Following output is new report of [vdso] sample dwarf backtrace: # Overhead Command Shared Object Symbol # ........ ....... ................. ............................. # 99.52% ex [vdso] [.] 0x00000000000009af | --- 0x7fff3ace89af main __libc_start_main _start Signed-off-by: Jiri Olsa <jolsa@redhat.com> Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Paul Mackerras <paulus@samba.org> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/r/1347295819-23177-5-git-send-email-jolsa@redhat.com [ committer note: s/ALIGN/PERF_ALIGN/g to cope with the android build changes ] Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2012-09-10 23:50:19 +07:00
return vdso;
}
void machine__exit_vdso(struct machine *machine)
perf tools: Back [vdso] DSO with real data Storing data for VDSO shared object, because we need it for the post unwind processing. The VDSO shared object is same for all process on a running system, so it makes no difference when we store it inside the tracer - perf. When [vdso] map memory is hit, we retrieve [vdso] DSO image and store it into temporary file. During the build-id processing phase, the [vdso] DSO image is stored in build-id db, and build-id reference is made inside perf.data. The build-id vdso file object is called '[vdso]'. We don't use temporary file name which gets removed when record is finished. During report phase the vdso build-id object is treated as any other build-id DSO object. Adding following API for vdso object: bool is_vdso_map(const char *filename) - returns true if the filename matches vdso map name struct dso *vdso__dso_findnew(struct list_head *head) - find/create proper vdso DSO object vdso__exit(void) - removes temporary VDSO image if there's any This change makes backtrace dwarf post unwind possible from [vdso] maps. Following output is current report of [vdso] sample dwarf backtrace: # Overhead Command Shared Object Symbol # ........ ....... ................. ............................. # 99.52% ex [vdso] [.] 0x00007fff3ace89af | --- 0x7fff3ace89af Following output is new report of [vdso] sample dwarf backtrace: # Overhead Command Shared Object Symbol # ........ ....... ................. ............................. # 99.52% ex [vdso] [.] 0x00000000000009af | --- 0x7fff3ace89af main __libc_start_main _start Signed-off-by: Jiri Olsa <jolsa@redhat.com> Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Paul Mackerras <paulus@samba.org> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/r/1347295819-23177-5-git-send-email-jolsa@redhat.com [ committer note: s/ALIGN/PERF_ALIGN/g to cope with the android build changes ] Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2012-09-10 23:50:19 +07:00
{
struct vdso_info *vdso_info = machine->vdso_info;
if (!vdso_info)
return;
if (vdso_info->vdso.found)
unlink(vdso_info->vdso.temp_file_name);
perf tools: Add support for 32-bit compatibility VDSOs 'perf record' post-processes the event stream to create a list of build-ids for object files for which sample events have been recorded. That results in those object files being recorded in the build-id cache. In the case of VDSO, perf tools reads it from memory and copies it into a temporary file, which as decribed above, gets added to the build-id cache. Then when the perf.data file is processed by other tools, the build-id of VDSO is listed in the perf.data file and the VDSO can be read from the build-id cache. In that case the name of the map, the short name of the DSO, and the entry in the build-id cache are all "[vdso]". However, in the 64-bit case, there also can be 32-bit compatibility VDSOs. A previous patch added programs "perf-read-vdso32" and "perf read-vdsox32". This patch uses those programs to read the correct VDSO for a thread and create a temporary file just as for the 64-bit VDSO. The map name and the entry in the build-id cache are still "[vdso]" but the DSO short name becomes "[vdso32]" and "[vdsox32]" respectively. Signed-off-by: Adrian Hunter <adrian.hunter@intel.com> Cc: David Ahern <dsahern@gmail.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Namhyung Kim <namhyung@gmail.com> Cc: Paul Mackerras <paulus@samba.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Link: http://lkml.kernel.org/r/1414061124-26830-16-git-send-email-adrian.hunter@intel.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2014-10-23 17:45:23 +07:00
#if BITS_PER_LONG == 64
if (vdso_info->vdso32.found)
unlink(vdso_info->vdso32.temp_file_name);
if (vdso_info->vdsox32.found)
unlink(vdso_info->vdsox32.temp_file_name);
#endif
zfree(&machine->vdso_info);
perf tools: Back [vdso] DSO with real data Storing data for VDSO shared object, because we need it for the post unwind processing. The VDSO shared object is same for all process on a running system, so it makes no difference when we store it inside the tracer - perf. When [vdso] map memory is hit, we retrieve [vdso] DSO image and store it into temporary file. During the build-id processing phase, the [vdso] DSO image is stored in build-id db, and build-id reference is made inside perf.data. The build-id vdso file object is called '[vdso]'. We don't use temporary file name which gets removed when record is finished. During report phase the vdso build-id object is treated as any other build-id DSO object. Adding following API for vdso object: bool is_vdso_map(const char *filename) - returns true if the filename matches vdso map name struct dso *vdso__dso_findnew(struct list_head *head) - find/create proper vdso DSO object vdso__exit(void) - removes temporary VDSO image if there's any This change makes backtrace dwarf post unwind possible from [vdso] maps. Following output is current report of [vdso] sample dwarf backtrace: # Overhead Command Shared Object Symbol # ........ ....... ................. ............................. # 99.52% ex [vdso] [.] 0x00007fff3ace89af | --- 0x7fff3ace89af Following output is new report of [vdso] sample dwarf backtrace: # Overhead Command Shared Object Symbol # ........ ....... ................. ............................. # 99.52% ex [vdso] [.] 0x00000000000009af | --- 0x7fff3ace89af main __libc_start_main _start Signed-off-by: Jiri Olsa <jolsa@redhat.com> Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Paul Mackerras <paulus@samba.org> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/r/1347295819-23177-5-git-send-email-jolsa@redhat.com [ committer note: s/ALIGN/PERF_ALIGN/g to cope with the android build changes ] Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2012-09-10 23:50:19 +07:00
}
static struct dso *__machine__addnew_vdso(struct machine *machine, const char *short_name,
const char *long_name)
{
struct dso *dso;
dso = dso__new(short_name);
if (dso != NULL) {
__dsos__add(&machine->dsos, dso);
dso__set_long_name(dso, long_name, false);
}
return dso;
}
perf tools: Add support for 32-bit compatibility VDSOs 'perf record' post-processes the event stream to create a list of build-ids for object files for which sample events have been recorded. That results in those object files being recorded in the build-id cache. In the case of VDSO, perf tools reads it from memory and copies it into a temporary file, which as decribed above, gets added to the build-id cache. Then when the perf.data file is processed by other tools, the build-id of VDSO is listed in the perf.data file and the VDSO can be read from the build-id cache. In that case the name of the map, the short name of the DSO, and the entry in the build-id cache are all "[vdso]". However, in the 64-bit case, there also can be 32-bit compatibility VDSOs. A previous patch added programs "perf-read-vdso32" and "perf read-vdsox32". This patch uses those programs to read the correct VDSO for a thread and create a temporary file just as for the 64-bit VDSO. The map name and the entry in the build-id cache are still "[vdso]" but the DSO short name becomes "[vdso32]" and "[vdsox32]" respectively. Signed-off-by: Adrian Hunter <adrian.hunter@intel.com> Cc: David Ahern <dsahern@gmail.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Namhyung Kim <namhyung@gmail.com> Cc: Paul Mackerras <paulus@samba.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Link: http://lkml.kernel.org/r/1414061124-26830-16-git-send-email-adrian.hunter@intel.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2014-10-23 17:45:23 +07:00
static enum dso_type machine__thread_dso_type(struct machine *machine,
struct thread *thread)
{
enum dso_type dso_type = DSO__TYPE_UNKNOWN;
struct map *map;
struct dso *dso;
map = map_groups__first(thread->mg, MAP__FUNCTION);
for (; map ; map = map_groups__next(map)) {
dso = map->dso;
if (!dso || dso->long_name[0] != '/')
continue;
dso_type = dso__type(dso, machine);
if (dso_type != DSO__TYPE_UNKNOWN)
break;
}
return dso_type;
}
perf tools: Find right DSO taking into account if binary is 32 or 64-bit There's a problem in machine__findnew_vdso(), vdso buildid generated by a 32-bit machine stores it with the name 'vdso', but when processing buildid on a 64-bit machine with the same 'perf.data', perf will search for vdso named as 'vdso32' and get failed. This patch tries to find the existing dsos in machine->dsos by thread dso_type. 64-bit thread tries to find vdso with name 'vdso', because all 64-bit vdso is named as that. 32-bit thread first tries to find vdso with name 'vdso32' if this thread was run on 64-bit machine, if failed, then it tries 'vdso' which indicates that the thread was run on 32-bit machine when recording. Committer note: Additional explanation by Adrian Hunter: We match maps to builds ids using the file name - consider machine__findnew_[v]dso() called in map__new(). So in the context of a perf data file, we consider the file name to be unique. A vdso map does not have a file name - all we know is that it is vdso. We look at the thread to tell if it is 32-bit, 64-bit or x32. Then we need to get the build id which has been recorded using short name "[vdso]" or "[vdso32]" or "[vdsox32]". The problem is that on a 32-bit machine, we use the name "[vdso]". If you take a 32-bit perf data file to a 64-bit machine, it gets hard to figure out if "[vdso]" is 32-bit or 64-bit. This patch solves that problem. ---- This also merges a followup patch fixing a problem introduced by the original submission of this patch, that would crash 'perf record' when recording samples for a 32-bit app on a 64-bit system. Signed-off-by: He Kuang <hekuang@huawei.com> Acked-by: Adrian Hunter <adrian.hunter@intel.com> Tested-by: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: David Ahern <dsahern@gmail.com> Cc: Ekaterina Tumanova <tumanova@linux.vnet.ibm.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Kan Liang <kan.liang@intel.com> Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Pekka Enberg <penberg@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Cc: Sukadev Bhattiprolu <sukadev@linux.vnet.ibm.com> Cc: Wang Nan <wangnan0@huawei.com> Link: http://lkml.kernel.org/r/1463475894-163531-1-git-send-email-hekuang@huawei.com Link: http://lkml.kernel.org/r/1466578626-92406-6-git-send-email-hekuang@huawei.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2016-05-17 16:04:54 +07:00
#if BITS_PER_LONG == 64
perf tools: Add support for 32-bit compatibility VDSOs 'perf record' post-processes the event stream to create a list of build-ids for object files for which sample events have been recorded. That results in those object files being recorded in the build-id cache. In the case of VDSO, perf tools reads it from memory and copies it into a temporary file, which as decribed above, gets added to the build-id cache. Then when the perf.data file is processed by other tools, the build-id of VDSO is listed in the perf.data file and the VDSO can be read from the build-id cache. In that case the name of the map, the short name of the DSO, and the entry in the build-id cache are all "[vdso]". However, in the 64-bit case, there also can be 32-bit compatibility VDSOs. A previous patch added programs "perf-read-vdso32" and "perf read-vdsox32". This patch uses those programs to read the correct VDSO for a thread and create a temporary file just as for the 64-bit VDSO. The map name and the entry in the build-id cache are still "[vdso]" but the DSO short name becomes "[vdso32]" and "[vdsox32]" respectively. Signed-off-by: Adrian Hunter <adrian.hunter@intel.com> Cc: David Ahern <dsahern@gmail.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Namhyung Kim <namhyung@gmail.com> Cc: Paul Mackerras <paulus@samba.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Link: http://lkml.kernel.org/r/1414061124-26830-16-git-send-email-adrian.hunter@intel.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2014-10-23 17:45:23 +07:00
static int vdso__do_copy_compat(FILE *f, int fd)
{
char buf[4096];
size_t count;
while (1) {
count = fread(buf, 1, sizeof(buf), f);
if (ferror(f))
return -errno;
if (feof(f))
break;
if (count && writen(fd, buf, count) != (ssize_t)count)
return -errno;
}
return 0;
}
static int vdso__copy_compat(const char *prog, int fd)
{
FILE *f;
int err;
f = popen(prog, "r");
if (!f)
return -errno;
err = vdso__do_copy_compat(f, fd);
if (pclose(f) == -1)
return -errno;
return err;
}
static int vdso__create_compat_file(const char *prog, char *temp_name)
{
int fd, err;
fd = mkstemp(temp_name);
if (fd < 0)
return -errno;
err = vdso__copy_compat(prog, fd);
if (close(fd) == -1)
return -errno;
return err;
}
static const char *vdso__get_compat_file(struct vdso_file *vdso_file)
{
int err;
if (vdso_file->found)
return vdso_file->temp_file_name;
if (vdso_file->error)
return NULL;
err = vdso__create_compat_file(vdso_file->read_prog,
vdso_file->temp_file_name);
if (err) {
pr_err("%s failed, error %d\n", vdso_file->read_prog, err);
vdso_file->error = true;
return NULL;
}
vdso_file->found = true;
return vdso_file->temp_file_name;
}
static struct dso *__machine__findnew_compat(struct machine *machine,
struct vdso_file *vdso_file)
perf tools: Add support for 32-bit compatibility VDSOs 'perf record' post-processes the event stream to create a list of build-ids for object files for which sample events have been recorded. That results in those object files being recorded in the build-id cache. In the case of VDSO, perf tools reads it from memory and copies it into a temporary file, which as decribed above, gets added to the build-id cache. Then when the perf.data file is processed by other tools, the build-id of VDSO is listed in the perf.data file and the VDSO can be read from the build-id cache. In that case the name of the map, the short name of the DSO, and the entry in the build-id cache are all "[vdso]". However, in the 64-bit case, there also can be 32-bit compatibility VDSOs. A previous patch added programs "perf-read-vdso32" and "perf read-vdsox32". This patch uses those programs to read the correct VDSO for a thread and create a temporary file just as for the 64-bit VDSO. The map name and the entry in the build-id cache are still "[vdso]" but the DSO short name becomes "[vdso32]" and "[vdsox32]" respectively. Signed-off-by: Adrian Hunter <adrian.hunter@intel.com> Cc: David Ahern <dsahern@gmail.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Namhyung Kim <namhyung@gmail.com> Cc: Paul Mackerras <paulus@samba.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Link: http://lkml.kernel.org/r/1414061124-26830-16-git-send-email-adrian.hunter@intel.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2014-10-23 17:45:23 +07:00
{
const char *file_name;
struct dso *dso;
dso = __dsos__find(&machine->dsos, vdso_file->dso_name, true);
perf tools: Add support for 32-bit compatibility VDSOs 'perf record' post-processes the event stream to create a list of build-ids for object files for which sample events have been recorded. That results in those object files being recorded in the build-id cache. In the case of VDSO, perf tools reads it from memory and copies it into a temporary file, which as decribed above, gets added to the build-id cache. Then when the perf.data file is processed by other tools, the build-id of VDSO is listed in the perf.data file and the VDSO can be read from the build-id cache. In that case the name of the map, the short name of the DSO, and the entry in the build-id cache are all "[vdso]". However, in the 64-bit case, there also can be 32-bit compatibility VDSOs. A previous patch added programs "perf-read-vdso32" and "perf read-vdsox32". This patch uses those programs to read the correct VDSO for a thread and create a temporary file just as for the 64-bit VDSO. The map name and the entry in the build-id cache are still "[vdso]" but the DSO short name becomes "[vdso32]" and "[vdsox32]" respectively. Signed-off-by: Adrian Hunter <adrian.hunter@intel.com> Cc: David Ahern <dsahern@gmail.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Namhyung Kim <namhyung@gmail.com> Cc: Paul Mackerras <paulus@samba.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Link: http://lkml.kernel.org/r/1414061124-26830-16-git-send-email-adrian.hunter@intel.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2014-10-23 17:45:23 +07:00
if (dso)
goto out;
perf tools: Add support for 32-bit compatibility VDSOs 'perf record' post-processes the event stream to create a list of build-ids for object files for which sample events have been recorded. That results in those object files being recorded in the build-id cache. In the case of VDSO, perf tools reads it from memory and copies it into a temporary file, which as decribed above, gets added to the build-id cache. Then when the perf.data file is processed by other tools, the build-id of VDSO is listed in the perf.data file and the VDSO can be read from the build-id cache. In that case the name of the map, the short name of the DSO, and the entry in the build-id cache are all "[vdso]". However, in the 64-bit case, there also can be 32-bit compatibility VDSOs. A previous patch added programs "perf-read-vdso32" and "perf read-vdsox32". This patch uses those programs to read the correct VDSO for a thread and create a temporary file just as for the 64-bit VDSO. The map name and the entry in the build-id cache are still "[vdso]" but the DSO short name becomes "[vdso32]" and "[vdsox32]" respectively. Signed-off-by: Adrian Hunter <adrian.hunter@intel.com> Cc: David Ahern <dsahern@gmail.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Namhyung Kim <namhyung@gmail.com> Cc: Paul Mackerras <paulus@samba.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Link: http://lkml.kernel.org/r/1414061124-26830-16-git-send-email-adrian.hunter@intel.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2014-10-23 17:45:23 +07:00
file_name = vdso__get_compat_file(vdso_file);
if (!file_name)
goto out;
perf tools: Add support for 32-bit compatibility VDSOs 'perf record' post-processes the event stream to create a list of build-ids for object files for which sample events have been recorded. That results in those object files being recorded in the build-id cache. In the case of VDSO, perf tools reads it from memory and copies it into a temporary file, which as decribed above, gets added to the build-id cache. Then when the perf.data file is processed by other tools, the build-id of VDSO is listed in the perf.data file and the VDSO can be read from the build-id cache. In that case the name of the map, the short name of the DSO, and the entry in the build-id cache are all "[vdso]". However, in the 64-bit case, there also can be 32-bit compatibility VDSOs. A previous patch added programs "perf-read-vdso32" and "perf read-vdsox32". This patch uses those programs to read the correct VDSO for a thread and create a temporary file just as for the 64-bit VDSO. The map name and the entry in the build-id cache are still "[vdso]" but the DSO short name becomes "[vdso32]" and "[vdsox32]" respectively. Signed-off-by: Adrian Hunter <adrian.hunter@intel.com> Cc: David Ahern <dsahern@gmail.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Namhyung Kim <namhyung@gmail.com> Cc: Paul Mackerras <paulus@samba.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Link: http://lkml.kernel.org/r/1414061124-26830-16-git-send-email-adrian.hunter@intel.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2014-10-23 17:45:23 +07:00
dso = __machine__addnew_vdso(machine, vdso_file->dso_name, file_name);
out:
return dso;
perf tools: Add support for 32-bit compatibility VDSOs 'perf record' post-processes the event stream to create a list of build-ids for object files for which sample events have been recorded. That results in those object files being recorded in the build-id cache. In the case of VDSO, perf tools reads it from memory and copies it into a temporary file, which as decribed above, gets added to the build-id cache. Then when the perf.data file is processed by other tools, the build-id of VDSO is listed in the perf.data file and the VDSO can be read from the build-id cache. In that case the name of the map, the short name of the DSO, and the entry in the build-id cache are all "[vdso]". However, in the 64-bit case, there also can be 32-bit compatibility VDSOs. A previous patch added programs "perf-read-vdso32" and "perf read-vdsox32". This patch uses those programs to read the correct VDSO for a thread and create a temporary file just as for the 64-bit VDSO. The map name and the entry in the build-id cache are still "[vdso]" but the DSO short name becomes "[vdso32]" and "[vdsox32]" respectively. Signed-off-by: Adrian Hunter <adrian.hunter@intel.com> Cc: David Ahern <dsahern@gmail.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Namhyung Kim <namhyung@gmail.com> Cc: Paul Mackerras <paulus@samba.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Link: http://lkml.kernel.org/r/1414061124-26830-16-git-send-email-adrian.hunter@intel.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2014-10-23 17:45:23 +07:00
}
static int __machine__findnew_vdso_compat(struct machine *machine,
struct thread *thread,
struct vdso_info *vdso_info,
struct dso **dso)
perf tools: Add support for 32-bit compatibility VDSOs 'perf record' post-processes the event stream to create a list of build-ids for object files for which sample events have been recorded. That results in those object files being recorded in the build-id cache. In the case of VDSO, perf tools reads it from memory and copies it into a temporary file, which as decribed above, gets added to the build-id cache. Then when the perf.data file is processed by other tools, the build-id of VDSO is listed in the perf.data file and the VDSO can be read from the build-id cache. In that case the name of the map, the short name of the DSO, and the entry in the build-id cache are all "[vdso]". However, in the 64-bit case, there also can be 32-bit compatibility VDSOs. A previous patch added programs "perf-read-vdso32" and "perf read-vdsox32". This patch uses those programs to read the correct VDSO for a thread and create a temporary file just as for the 64-bit VDSO. The map name and the entry in the build-id cache are still "[vdso]" but the DSO short name becomes "[vdso32]" and "[vdsox32]" respectively. Signed-off-by: Adrian Hunter <adrian.hunter@intel.com> Cc: David Ahern <dsahern@gmail.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Namhyung Kim <namhyung@gmail.com> Cc: Paul Mackerras <paulus@samba.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Link: http://lkml.kernel.org/r/1414061124-26830-16-git-send-email-adrian.hunter@intel.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2014-10-23 17:45:23 +07:00
{
enum dso_type dso_type;
dso_type = machine__thread_dso_type(machine, thread);
#ifndef HAVE_PERF_READ_VDSO32
if (dso_type == DSO__TYPE_32BIT)
return 0;
#endif
#ifndef HAVE_PERF_READ_VDSOX32
if (dso_type == DSO__TYPE_X32BIT)
return 0;
#endif
perf tools: Add support for 32-bit compatibility VDSOs 'perf record' post-processes the event stream to create a list of build-ids for object files for which sample events have been recorded. That results in those object files being recorded in the build-id cache. In the case of VDSO, perf tools reads it from memory and copies it into a temporary file, which as decribed above, gets added to the build-id cache. Then when the perf.data file is processed by other tools, the build-id of VDSO is listed in the perf.data file and the VDSO can be read from the build-id cache. In that case the name of the map, the short name of the DSO, and the entry in the build-id cache are all "[vdso]". However, in the 64-bit case, there also can be 32-bit compatibility VDSOs. A previous patch added programs "perf-read-vdso32" and "perf read-vdsox32". This patch uses those programs to read the correct VDSO for a thread and create a temporary file just as for the 64-bit VDSO. The map name and the entry in the build-id cache are still "[vdso]" but the DSO short name becomes "[vdso32]" and "[vdsox32]" respectively. Signed-off-by: Adrian Hunter <adrian.hunter@intel.com> Cc: David Ahern <dsahern@gmail.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Namhyung Kim <namhyung@gmail.com> Cc: Paul Mackerras <paulus@samba.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Link: http://lkml.kernel.org/r/1414061124-26830-16-git-send-email-adrian.hunter@intel.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2014-10-23 17:45:23 +07:00
switch (dso_type) {
case DSO__TYPE_32BIT:
*dso = __machine__findnew_compat(machine, &vdso_info->vdso32);
perf tools: Add support for 32-bit compatibility VDSOs 'perf record' post-processes the event stream to create a list of build-ids for object files for which sample events have been recorded. That results in those object files being recorded in the build-id cache. In the case of VDSO, perf tools reads it from memory and copies it into a temporary file, which as decribed above, gets added to the build-id cache. Then when the perf.data file is processed by other tools, the build-id of VDSO is listed in the perf.data file and the VDSO can be read from the build-id cache. In that case the name of the map, the short name of the DSO, and the entry in the build-id cache are all "[vdso]". However, in the 64-bit case, there also can be 32-bit compatibility VDSOs. A previous patch added programs "perf-read-vdso32" and "perf read-vdsox32". This patch uses those programs to read the correct VDSO for a thread and create a temporary file just as for the 64-bit VDSO. The map name and the entry in the build-id cache are still "[vdso]" but the DSO short name becomes "[vdso32]" and "[vdsox32]" respectively. Signed-off-by: Adrian Hunter <adrian.hunter@intel.com> Cc: David Ahern <dsahern@gmail.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Namhyung Kim <namhyung@gmail.com> Cc: Paul Mackerras <paulus@samba.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Link: http://lkml.kernel.org/r/1414061124-26830-16-git-send-email-adrian.hunter@intel.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2014-10-23 17:45:23 +07:00
return 1;
case DSO__TYPE_X32BIT:
*dso = __machine__findnew_compat(machine, &vdso_info->vdsox32);
perf tools: Add support for 32-bit compatibility VDSOs 'perf record' post-processes the event stream to create a list of build-ids for object files for which sample events have been recorded. That results in those object files being recorded in the build-id cache. In the case of VDSO, perf tools reads it from memory and copies it into a temporary file, which as decribed above, gets added to the build-id cache. Then when the perf.data file is processed by other tools, the build-id of VDSO is listed in the perf.data file and the VDSO can be read from the build-id cache. In that case the name of the map, the short name of the DSO, and the entry in the build-id cache are all "[vdso]". However, in the 64-bit case, there also can be 32-bit compatibility VDSOs. A previous patch added programs "perf-read-vdso32" and "perf read-vdsox32". This patch uses those programs to read the correct VDSO for a thread and create a temporary file just as for the 64-bit VDSO. The map name and the entry in the build-id cache are still "[vdso]" but the DSO short name becomes "[vdso32]" and "[vdsox32]" respectively. Signed-off-by: Adrian Hunter <adrian.hunter@intel.com> Cc: David Ahern <dsahern@gmail.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Namhyung Kim <namhyung@gmail.com> Cc: Paul Mackerras <paulus@samba.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Link: http://lkml.kernel.org/r/1414061124-26830-16-git-send-email-adrian.hunter@intel.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2014-10-23 17:45:23 +07:00
return 1;
case DSO__TYPE_UNKNOWN:
case DSO__TYPE_64BIT:
default:
return 0;
}
}
#endif
perf tools: Find right DSO taking into account if binary is 32 or 64-bit There's a problem in machine__findnew_vdso(), vdso buildid generated by a 32-bit machine stores it with the name 'vdso', but when processing buildid on a 64-bit machine with the same 'perf.data', perf will search for vdso named as 'vdso32' and get failed. This patch tries to find the existing dsos in machine->dsos by thread dso_type. 64-bit thread tries to find vdso with name 'vdso', because all 64-bit vdso is named as that. 32-bit thread first tries to find vdso with name 'vdso32' if this thread was run on 64-bit machine, if failed, then it tries 'vdso' which indicates that the thread was run on 32-bit machine when recording. Committer note: Additional explanation by Adrian Hunter: We match maps to builds ids using the file name - consider machine__findnew_[v]dso() called in map__new(). So in the context of a perf data file, we consider the file name to be unique. A vdso map does not have a file name - all we know is that it is vdso. We look at the thread to tell if it is 32-bit, 64-bit or x32. Then we need to get the build id which has been recorded using short name "[vdso]" or "[vdso32]" or "[vdsox32]". The problem is that on a 32-bit machine, we use the name "[vdso]". If you take a 32-bit perf data file to a 64-bit machine, it gets hard to figure out if "[vdso]" is 32-bit or 64-bit. This patch solves that problem. ---- This also merges a followup patch fixing a problem introduced by the original submission of this patch, that would crash 'perf record' when recording samples for a 32-bit app on a 64-bit system. Signed-off-by: He Kuang <hekuang@huawei.com> Acked-by: Adrian Hunter <adrian.hunter@intel.com> Tested-by: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: David Ahern <dsahern@gmail.com> Cc: Ekaterina Tumanova <tumanova@linux.vnet.ibm.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Kan Liang <kan.liang@intel.com> Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Pekka Enberg <penberg@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Cc: Sukadev Bhattiprolu <sukadev@linux.vnet.ibm.com> Cc: Wang Nan <wangnan0@huawei.com> Link: http://lkml.kernel.org/r/1463475894-163531-1-git-send-email-hekuang@huawei.com Link: http://lkml.kernel.org/r/1466578626-92406-6-git-send-email-hekuang@huawei.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2016-05-17 16:04:54 +07:00
static struct dso *machine__find_vdso(struct machine *machine,
struct thread *thread)
{
struct dso *dso = NULL;
enum dso_type dso_type;
dso_type = machine__thread_dso_type(machine, thread);
switch (dso_type) {
case DSO__TYPE_32BIT:
dso = __dsos__find(&machine->dsos, DSO__NAME_VDSO32, true);
if (!dso) {
dso = __dsos__find(&machine->dsos, DSO__NAME_VDSO,
true);
if (dso && dso_type != dso__type(dso, machine))
dso = NULL;
}
break;
case DSO__TYPE_X32BIT:
dso = __dsos__find(&machine->dsos, DSO__NAME_VDSOX32, true);
break;
case DSO__TYPE_64BIT:
case DSO__TYPE_UNKNOWN:
default:
dso = __dsos__find(&machine->dsos, DSO__NAME_VDSO, true);
break;
}
return dso;
}
struct dso *machine__findnew_vdso(struct machine *machine,
perf tools: Find right DSO taking into account if binary is 32 or 64-bit There's a problem in machine__findnew_vdso(), vdso buildid generated by a 32-bit machine stores it with the name 'vdso', but when processing buildid on a 64-bit machine with the same 'perf.data', perf will search for vdso named as 'vdso32' and get failed. This patch tries to find the existing dsos in machine->dsos by thread dso_type. 64-bit thread tries to find vdso with name 'vdso', because all 64-bit vdso is named as that. 32-bit thread first tries to find vdso with name 'vdso32' if this thread was run on 64-bit machine, if failed, then it tries 'vdso' which indicates that the thread was run on 32-bit machine when recording. Committer note: Additional explanation by Adrian Hunter: We match maps to builds ids using the file name - consider machine__findnew_[v]dso() called in map__new(). So in the context of a perf data file, we consider the file name to be unique. A vdso map does not have a file name - all we know is that it is vdso. We look at the thread to tell if it is 32-bit, 64-bit or x32. Then we need to get the build id which has been recorded using short name "[vdso]" or "[vdso32]" or "[vdsox32]". The problem is that on a 32-bit machine, we use the name "[vdso]". If you take a 32-bit perf data file to a 64-bit machine, it gets hard to figure out if "[vdso]" is 32-bit or 64-bit. This patch solves that problem. ---- This also merges a followup patch fixing a problem introduced by the original submission of this patch, that would crash 'perf record' when recording samples for a 32-bit app on a 64-bit system. Signed-off-by: He Kuang <hekuang@huawei.com> Acked-by: Adrian Hunter <adrian.hunter@intel.com> Tested-by: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: David Ahern <dsahern@gmail.com> Cc: Ekaterina Tumanova <tumanova@linux.vnet.ibm.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Kan Liang <kan.liang@intel.com> Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Pekka Enberg <penberg@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Cc: Sukadev Bhattiprolu <sukadev@linux.vnet.ibm.com> Cc: Wang Nan <wangnan0@huawei.com> Link: http://lkml.kernel.org/r/1463475894-163531-1-git-send-email-hekuang@huawei.com Link: http://lkml.kernel.org/r/1466578626-92406-6-git-send-email-hekuang@huawei.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2016-05-17 16:04:54 +07:00
struct thread *thread)
perf tools: Back [vdso] DSO with real data Storing data for VDSO shared object, because we need it for the post unwind processing. The VDSO shared object is same for all process on a running system, so it makes no difference when we store it inside the tracer - perf. When [vdso] map memory is hit, we retrieve [vdso] DSO image and store it into temporary file. During the build-id processing phase, the [vdso] DSO image is stored in build-id db, and build-id reference is made inside perf.data. The build-id vdso file object is called '[vdso]'. We don't use temporary file name which gets removed when record is finished. During report phase the vdso build-id object is treated as any other build-id DSO object. Adding following API for vdso object: bool is_vdso_map(const char *filename) - returns true if the filename matches vdso map name struct dso *vdso__dso_findnew(struct list_head *head) - find/create proper vdso DSO object vdso__exit(void) - removes temporary VDSO image if there's any This change makes backtrace dwarf post unwind possible from [vdso] maps. Following output is current report of [vdso] sample dwarf backtrace: # Overhead Command Shared Object Symbol # ........ ....... ................. ............................. # 99.52% ex [vdso] [.] 0x00007fff3ace89af | --- 0x7fff3ace89af Following output is new report of [vdso] sample dwarf backtrace: # Overhead Command Shared Object Symbol # ........ ....... ................. ............................. # 99.52% ex [vdso] [.] 0x00000000000009af | --- 0x7fff3ace89af main __libc_start_main _start Signed-off-by: Jiri Olsa <jolsa@redhat.com> Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Paul Mackerras <paulus@samba.org> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/r/1347295819-23177-5-git-send-email-jolsa@redhat.com [ committer note: s/ALIGN/PERF_ALIGN/g to cope with the android build changes ] Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2012-09-10 23:50:19 +07:00
{
struct vdso_info *vdso_info;
struct dso *dso = NULL;
pthread_rwlock_wrlock(&machine->dsos.lock);
if (!machine->vdso_info)
machine->vdso_info = vdso_info__new();
vdso_info = machine->vdso_info;
if (!vdso_info)
goto out_unlock;
perf tools: Back [vdso] DSO with real data Storing data for VDSO shared object, because we need it for the post unwind processing. The VDSO shared object is same for all process on a running system, so it makes no difference when we store it inside the tracer - perf. When [vdso] map memory is hit, we retrieve [vdso] DSO image and store it into temporary file. During the build-id processing phase, the [vdso] DSO image is stored in build-id db, and build-id reference is made inside perf.data. The build-id vdso file object is called '[vdso]'. We don't use temporary file name which gets removed when record is finished. During report phase the vdso build-id object is treated as any other build-id DSO object. Adding following API for vdso object: bool is_vdso_map(const char *filename) - returns true if the filename matches vdso map name struct dso *vdso__dso_findnew(struct list_head *head) - find/create proper vdso DSO object vdso__exit(void) - removes temporary VDSO image if there's any This change makes backtrace dwarf post unwind possible from [vdso] maps. Following output is current report of [vdso] sample dwarf backtrace: # Overhead Command Shared Object Symbol # ........ ....... ................. ............................. # 99.52% ex [vdso] [.] 0x00007fff3ace89af | --- 0x7fff3ace89af Following output is new report of [vdso] sample dwarf backtrace: # Overhead Command Shared Object Symbol # ........ ....... ................. ............................. # 99.52% ex [vdso] [.] 0x00000000000009af | --- 0x7fff3ace89af main __libc_start_main _start Signed-off-by: Jiri Olsa <jolsa@redhat.com> Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Paul Mackerras <paulus@samba.org> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/r/1347295819-23177-5-git-send-email-jolsa@redhat.com [ committer note: s/ALIGN/PERF_ALIGN/g to cope with the android build changes ] Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2012-09-10 23:50:19 +07:00
perf tools: Find right DSO taking into account if binary is 32 or 64-bit There's a problem in machine__findnew_vdso(), vdso buildid generated by a 32-bit machine stores it with the name 'vdso', but when processing buildid on a 64-bit machine with the same 'perf.data', perf will search for vdso named as 'vdso32' and get failed. This patch tries to find the existing dsos in machine->dsos by thread dso_type. 64-bit thread tries to find vdso with name 'vdso', because all 64-bit vdso is named as that. 32-bit thread first tries to find vdso with name 'vdso32' if this thread was run on 64-bit machine, if failed, then it tries 'vdso' which indicates that the thread was run on 32-bit machine when recording. Committer note: Additional explanation by Adrian Hunter: We match maps to builds ids using the file name - consider machine__findnew_[v]dso() called in map__new(). So in the context of a perf data file, we consider the file name to be unique. A vdso map does not have a file name - all we know is that it is vdso. We look at the thread to tell if it is 32-bit, 64-bit or x32. Then we need to get the build id which has been recorded using short name "[vdso]" or "[vdso32]" or "[vdsox32]". The problem is that on a 32-bit machine, we use the name "[vdso]". If you take a 32-bit perf data file to a 64-bit machine, it gets hard to figure out if "[vdso]" is 32-bit or 64-bit. This patch solves that problem. ---- This also merges a followup patch fixing a problem introduced by the original submission of this patch, that would crash 'perf record' when recording samples for a 32-bit app on a 64-bit system. Signed-off-by: He Kuang <hekuang@huawei.com> Acked-by: Adrian Hunter <adrian.hunter@intel.com> Tested-by: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: David Ahern <dsahern@gmail.com> Cc: Ekaterina Tumanova <tumanova@linux.vnet.ibm.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Kan Liang <kan.liang@intel.com> Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Pekka Enberg <penberg@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Cc: Sukadev Bhattiprolu <sukadev@linux.vnet.ibm.com> Cc: Wang Nan <wangnan0@huawei.com> Link: http://lkml.kernel.org/r/1463475894-163531-1-git-send-email-hekuang@huawei.com Link: http://lkml.kernel.org/r/1466578626-92406-6-git-send-email-hekuang@huawei.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2016-05-17 16:04:54 +07:00
dso = machine__find_vdso(machine, thread);
if (dso)
goto out_unlock;
perf tools: Add support for 32-bit compatibility VDSOs 'perf record' post-processes the event stream to create a list of build-ids for object files for which sample events have been recorded. That results in those object files being recorded in the build-id cache. In the case of VDSO, perf tools reads it from memory and copies it into a temporary file, which as decribed above, gets added to the build-id cache. Then when the perf.data file is processed by other tools, the build-id of VDSO is listed in the perf.data file and the VDSO can be read from the build-id cache. In that case the name of the map, the short name of the DSO, and the entry in the build-id cache are all "[vdso]". However, in the 64-bit case, there also can be 32-bit compatibility VDSOs. A previous patch added programs "perf-read-vdso32" and "perf read-vdsox32". This patch uses those programs to read the correct VDSO for a thread and create a temporary file just as for the 64-bit VDSO. The map name and the entry in the build-id cache are still "[vdso]" but the DSO short name becomes "[vdso32]" and "[vdsox32]" respectively. Signed-off-by: Adrian Hunter <adrian.hunter@intel.com> Cc: David Ahern <dsahern@gmail.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Namhyung Kim <namhyung@gmail.com> Cc: Paul Mackerras <paulus@samba.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Link: http://lkml.kernel.org/r/1414061124-26830-16-git-send-email-adrian.hunter@intel.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2014-10-23 17:45:23 +07:00
#if BITS_PER_LONG == 64
if (__machine__findnew_vdso_compat(machine, thread, vdso_info, &dso))
goto out_unlock;
perf tools: Add support for 32-bit compatibility VDSOs 'perf record' post-processes the event stream to create a list of build-ids for object files for which sample events have been recorded. That results in those object files being recorded in the build-id cache. In the case of VDSO, perf tools reads it from memory and copies it into a temporary file, which as decribed above, gets added to the build-id cache. Then when the perf.data file is processed by other tools, the build-id of VDSO is listed in the perf.data file and the VDSO can be read from the build-id cache. In that case the name of the map, the short name of the DSO, and the entry in the build-id cache are all "[vdso]". However, in the 64-bit case, there also can be 32-bit compatibility VDSOs. A previous patch added programs "perf-read-vdso32" and "perf read-vdsox32". This patch uses those programs to read the correct VDSO for a thread and create a temporary file just as for the 64-bit VDSO. The map name and the entry in the build-id cache are still "[vdso]" but the DSO short name becomes "[vdso32]" and "[vdsox32]" respectively. Signed-off-by: Adrian Hunter <adrian.hunter@intel.com> Cc: David Ahern <dsahern@gmail.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Namhyung Kim <namhyung@gmail.com> Cc: Paul Mackerras <paulus@samba.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Link: http://lkml.kernel.org/r/1414061124-26830-16-git-send-email-adrian.hunter@intel.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2014-10-23 17:45:23 +07:00
#endif
dso = __dsos__find(&machine->dsos, DSO__NAME_VDSO, true);
perf tools: Back [vdso] DSO with real data Storing data for VDSO shared object, because we need it for the post unwind processing. The VDSO shared object is same for all process on a running system, so it makes no difference when we store it inside the tracer - perf. When [vdso] map memory is hit, we retrieve [vdso] DSO image and store it into temporary file. During the build-id processing phase, the [vdso] DSO image is stored in build-id db, and build-id reference is made inside perf.data. The build-id vdso file object is called '[vdso]'. We don't use temporary file name which gets removed when record is finished. During report phase the vdso build-id object is treated as any other build-id DSO object. Adding following API for vdso object: bool is_vdso_map(const char *filename) - returns true if the filename matches vdso map name struct dso *vdso__dso_findnew(struct list_head *head) - find/create proper vdso DSO object vdso__exit(void) - removes temporary VDSO image if there's any This change makes backtrace dwarf post unwind possible from [vdso] maps. Following output is current report of [vdso] sample dwarf backtrace: # Overhead Command Shared Object Symbol # ........ ....... ................. ............................. # 99.52% ex [vdso] [.] 0x00007fff3ace89af | --- 0x7fff3ace89af Following output is new report of [vdso] sample dwarf backtrace: # Overhead Command Shared Object Symbol # ........ ....... ................. ............................. # 99.52% ex [vdso] [.] 0x00000000000009af | --- 0x7fff3ace89af main __libc_start_main _start Signed-off-by: Jiri Olsa <jolsa@redhat.com> Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Paul Mackerras <paulus@samba.org> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/r/1347295819-23177-5-git-send-email-jolsa@redhat.com [ committer note: s/ALIGN/PERF_ALIGN/g to cope with the android build changes ] Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2012-09-10 23:50:19 +07:00
if (!dso) {
char *file;
file = get_file(&vdso_info->vdso);
if (file)
dso = __machine__addnew_vdso(machine, DSO__NAME_VDSO, file);
perf tools: Back [vdso] DSO with real data Storing data for VDSO shared object, because we need it for the post unwind processing. The VDSO shared object is same for all process on a running system, so it makes no difference when we store it inside the tracer - perf. When [vdso] map memory is hit, we retrieve [vdso] DSO image and store it into temporary file. During the build-id processing phase, the [vdso] DSO image is stored in build-id db, and build-id reference is made inside perf.data. The build-id vdso file object is called '[vdso]'. We don't use temporary file name which gets removed when record is finished. During report phase the vdso build-id object is treated as any other build-id DSO object. Adding following API for vdso object: bool is_vdso_map(const char *filename) - returns true if the filename matches vdso map name struct dso *vdso__dso_findnew(struct list_head *head) - find/create proper vdso DSO object vdso__exit(void) - removes temporary VDSO image if there's any This change makes backtrace dwarf post unwind possible from [vdso] maps. Following output is current report of [vdso] sample dwarf backtrace: # Overhead Command Shared Object Symbol # ........ ....... ................. ............................. # 99.52% ex [vdso] [.] 0x00007fff3ace89af | --- 0x7fff3ace89af Following output is new report of [vdso] sample dwarf backtrace: # Overhead Command Shared Object Symbol # ........ ....... ................. ............................. # 99.52% ex [vdso] [.] 0x00000000000009af | --- 0x7fff3ace89af main __libc_start_main _start Signed-off-by: Jiri Olsa <jolsa@redhat.com> Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Paul Mackerras <paulus@samba.org> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/r/1347295819-23177-5-git-send-email-jolsa@redhat.com [ committer note: s/ALIGN/PERF_ALIGN/g to cope with the android build changes ] Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2012-09-10 23:50:19 +07:00
}
out_unlock:
dso__get(dso);
pthread_rwlock_unlock(&machine->dsos.lock);
perf tools: Back [vdso] DSO with real data Storing data for VDSO shared object, because we need it for the post unwind processing. The VDSO shared object is same for all process on a running system, so it makes no difference when we store it inside the tracer - perf. When [vdso] map memory is hit, we retrieve [vdso] DSO image and store it into temporary file. During the build-id processing phase, the [vdso] DSO image is stored in build-id db, and build-id reference is made inside perf.data. The build-id vdso file object is called '[vdso]'. We don't use temporary file name which gets removed when record is finished. During report phase the vdso build-id object is treated as any other build-id DSO object. Adding following API for vdso object: bool is_vdso_map(const char *filename) - returns true if the filename matches vdso map name struct dso *vdso__dso_findnew(struct list_head *head) - find/create proper vdso DSO object vdso__exit(void) - removes temporary VDSO image if there's any This change makes backtrace dwarf post unwind possible from [vdso] maps. Following output is current report of [vdso] sample dwarf backtrace: # Overhead Command Shared Object Symbol # ........ ....... ................. ............................. # 99.52% ex [vdso] [.] 0x00007fff3ace89af | --- 0x7fff3ace89af Following output is new report of [vdso] sample dwarf backtrace: # Overhead Command Shared Object Symbol # ........ ....... ................. ............................. # 99.52% ex [vdso] [.] 0x00000000000009af | --- 0x7fff3ace89af main __libc_start_main _start Signed-off-by: Jiri Olsa <jolsa@redhat.com> Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Paul Mackerras <paulus@samba.org> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/r/1347295819-23177-5-git-send-email-jolsa@redhat.com [ committer note: s/ALIGN/PERF_ALIGN/g to cope with the android build changes ] Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2012-09-10 23:50:19 +07:00
return dso;
}
bool dso__is_vdso(struct dso *dso)
{
perf tools: Add support for 32-bit compatibility VDSOs 'perf record' post-processes the event stream to create a list of build-ids for object files for which sample events have been recorded. That results in those object files being recorded in the build-id cache. In the case of VDSO, perf tools reads it from memory and copies it into a temporary file, which as decribed above, gets added to the build-id cache. Then when the perf.data file is processed by other tools, the build-id of VDSO is listed in the perf.data file and the VDSO can be read from the build-id cache. In that case the name of the map, the short name of the DSO, and the entry in the build-id cache are all "[vdso]". However, in the 64-bit case, there also can be 32-bit compatibility VDSOs. A previous patch added programs "perf-read-vdso32" and "perf read-vdsox32". This patch uses those programs to read the correct VDSO for a thread and create a temporary file just as for the 64-bit VDSO. The map name and the entry in the build-id cache are still "[vdso]" but the DSO short name becomes "[vdso32]" and "[vdsox32]" respectively. Signed-off-by: Adrian Hunter <adrian.hunter@intel.com> Cc: David Ahern <dsahern@gmail.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Namhyung Kim <namhyung@gmail.com> Cc: Paul Mackerras <paulus@samba.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Link: http://lkml.kernel.org/r/1414061124-26830-16-git-send-email-adrian.hunter@intel.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2014-10-23 17:45:23 +07:00
return !strcmp(dso->short_name, DSO__NAME_VDSO) ||
!strcmp(dso->short_name, DSO__NAME_VDSO32) ||
!strcmp(dso->short_name, DSO__NAME_VDSOX32);
}