linux_dsm_epyc7002/drivers/net/dsa/mv88e6xxx.c

3733 lines
88 KiB
C
Raw Normal View History

net: Distributed Switch Architecture protocol support Distributed Switch Architecture is a protocol for managing hardware switch chips. It consists of a set of MII management registers and commands to configure the switch, and an ethernet header format to signal which of the ports of the switch a packet was received from or is intended to be sent to. The switches that this driver supports are typically embedded in access points and routers, and a typical setup with a DSA switch looks something like this: +-----------+ +-----------+ | | RGMII | | | +-------+ +------ 1000baseT MDI ("WAN") | | | 6-port +------ 1000baseT MDI ("LAN1") | CPU | | ethernet +------ 1000baseT MDI ("LAN2") | |MIImgmt| switch +------ 1000baseT MDI ("LAN3") | +-------+ w/5 PHYs +------ 1000baseT MDI ("LAN4") | | | | +-----------+ +-----------+ The switch driver presents each port on the switch as a separate network interface to Linux, polls the switch to maintain software link state of those ports, forwards MII management interface accesses to those network interfaces (e.g. as done by ethtool) to the switch, and exposes the switch's hardware statistics counters via the appropriate Linux kernel interfaces. This initial patch supports the MII management interface register layout of the Marvell 88E6123, 88E6161 and 88E6165 switch chips, and supports the "Ethertype DSA" packet tagging format. (There is no officially registered ethertype for the Ethertype DSA packet format, so we just grab a random one. The ethertype to use is programmed into the switch, and the switch driver uses the value of ETH_P_EDSA for this, so this define can be changed at any time in the future if the one we chose is allocated to another protocol or if Ethertype DSA gets its own officially registered ethertype, and everything will continue to work.) Signed-off-by: Lennert Buytenhek <buytenh@marvell.com> Tested-by: Nicolas Pitre <nico@marvell.com> Tested-by: Byron Bradley <byron.bbradley@gmail.com> Tested-by: Tim Ellis <tim.ellis@mac.com> Tested-by: Peter van Valderen <linux@ddcrew.com> Tested-by: Dirk Teurlings <dirk@upexia.nl> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-10-07 20:44:02 +07:00
/*
* net/dsa/mv88e6xxx.c - Marvell 88e6xxx switch chip support
* Copyright (c) 2008 Marvell Semiconductor
*
* Copyright (c) 2015 CMC Electronics, Inc.
* Added support for VLAN Table Unit operations
*
* Copyright (c) 2016 Andrew Lunn <andrew@lunn.ch>
*
net: Distributed Switch Architecture protocol support Distributed Switch Architecture is a protocol for managing hardware switch chips. It consists of a set of MII management registers and commands to configure the switch, and an ethernet header format to signal which of the ports of the switch a packet was received from or is intended to be sent to. The switches that this driver supports are typically embedded in access points and routers, and a typical setup with a DSA switch looks something like this: +-----------+ +-----------+ | | RGMII | | | +-------+ +------ 1000baseT MDI ("WAN") | | | 6-port +------ 1000baseT MDI ("LAN1") | CPU | | ethernet +------ 1000baseT MDI ("LAN2") | |MIImgmt| switch +------ 1000baseT MDI ("LAN3") | +-------+ w/5 PHYs +------ 1000baseT MDI ("LAN4") | | | | +-----------+ +-----------+ The switch driver presents each port on the switch as a separate network interface to Linux, polls the switch to maintain software link state of those ports, forwards MII management interface accesses to those network interfaces (e.g. as done by ethtool) to the switch, and exposes the switch's hardware statistics counters via the appropriate Linux kernel interfaces. This initial patch supports the MII management interface register layout of the Marvell 88E6123, 88E6161 and 88E6165 switch chips, and supports the "Ethertype DSA" packet tagging format. (There is no officially registered ethertype for the Ethertype DSA packet format, so we just grab a random one. The ethertype to use is programmed into the switch, and the switch driver uses the value of ETH_P_EDSA for this, so this define can be changed at any time in the future if the one we chose is allocated to another protocol or if Ethertype DSA gets its own officially registered ethertype, and everything will continue to work.) Signed-off-by: Lennert Buytenhek <buytenh@marvell.com> Tested-by: Nicolas Pitre <nico@marvell.com> Tested-by: Byron Bradley <byron.bbradley@gmail.com> Tested-by: Tim Ellis <tim.ellis@mac.com> Tested-by: Peter van Valderen <linux@ddcrew.com> Tested-by: Dirk Teurlings <dirk@upexia.nl> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-10-07 20:44:02 +07:00
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*/
#include <linux/delay.h>
#include <linux/etherdevice.h>
#include <linux/ethtool.h>
#include <linux/if_bridge.h>
#include <linux/jiffies.h>
net: Distributed Switch Architecture protocol support Distributed Switch Architecture is a protocol for managing hardware switch chips. It consists of a set of MII management registers and commands to configure the switch, and an ethernet header format to signal which of the ports of the switch a packet was received from or is intended to be sent to. The switches that this driver supports are typically embedded in access points and routers, and a typical setup with a DSA switch looks something like this: +-----------+ +-----------+ | | RGMII | | | +-------+ +------ 1000baseT MDI ("WAN") | | | 6-port +------ 1000baseT MDI ("LAN1") | CPU | | ethernet +------ 1000baseT MDI ("LAN2") | |MIImgmt| switch +------ 1000baseT MDI ("LAN3") | +-------+ w/5 PHYs +------ 1000baseT MDI ("LAN4") | | | | +-----------+ +-----------+ The switch driver presents each port on the switch as a separate network interface to Linux, polls the switch to maintain software link state of those ports, forwards MII management interface accesses to those network interfaces (e.g. as done by ethtool) to the switch, and exposes the switch's hardware statistics counters via the appropriate Linux kernel interfaces. This initial patch supports the MII management interface register layout of the Marvell 88E6123, 88E6161 and 88E6165 switch chips, and supports the "Ethertype DSA" packet tagging format. (There is no officially registered ethertype for the Ethertype DSA packet format, so we just grab a random one. The ethertype to use is programmed into the switch, and the switch driver uses the value of ETH_P_EDSA for this, so this define can be changed at any time in the future if the one we chose is allocated to another protocol or if Ethertype DSA gets its own officially registered ethertype, and everything will continue to work.) Signed-off-by: Lennert Buytenhek <buytenh@marvell.com> Tested-by: Nicolas Pitre <nico@marvell.com> Tested-by: Byron Bradley <byron.bbradley@gmail.com> Tested-by: Tim Ellis <tim.ellis@mac.com> Tested-by: Peter van Valderen <linux@ddcrew.com> Tested-by: Dirk Teurlings <dirk@upexia.nl> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-10-07 20:44:02 +07:00
#include <linux/list.h>
#include <linux/mdio.h>
#include <linux/module.h>
net: Distributed Switch Architecture protocol support Distributed Switch Architecture is a protocol for managing hardware switch chips. It consists of a set of MII management registers and commands to configure the switch, and an ethernet header format to signal which of the ports of the switch a packet was received from or is intended to be sent to. The switches that this driver supports are typically embedded in access points and routers, and a typical setup with a DSA switch looks something like this: +-----------+ +-----------+ | | RGMII | | | +-------+ +------ 1000baseT MDI ("WAN") | | | 6-port +------ 1000baseT MDI ("LAN1") | CPU | | ethernet +------ 1000baseT MDI ("LAN2") | |MIImgmt| switch +------ 1000baseT MDI ("LAN3") | +-------+ w/5 PHYs +------ 1000baseT MDI ("LAN4") | | | | +-----------+ +-----------+ The switch driver presents each port on the switch as a separate network interface to Linux, polls the switch to maintain software link state of those ports, forwards MII management interface accesses to those network interfaces (e.g. as done by ethtool) to the switch, and exposes the switch's hardware statistics counters via the appropriate Linux kernel interfaces. This initial patch supports the MII management interface register layout of the Marvell 88E6123, 88E6161 and 88E6165 switch chips, and supports the "Ethertype DSA" packet tagging format. (There is no officially registered ethertype for the Ethertype DSA packet format, so we just grab a random one. The ethertype to use is programmed into the switch, and the switch driver uses the value of ETH_P_EDSA for this, so this define can be changed at any time in the future if the one we chose is allocated to another protocol or if Ethertype DSA gets its own officially registered ethertype, and everything will continue to work.) Signed-off-by: Lennert Buytenhek <buytenh@marvell.com> Tested-by: Nicolas Pitre <nico@marvell.com> Tested-by: Byron Bradley <byron.bbradley@gmail.com> Tested-by: Tim Ellis <tim.ellis@mac.com> Tested-by: Peter van Valderen <linux@ddcrew.com> Tested-by: Dirk Teurlings <dirk@upexia.nl> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-10-07 20:44:02 +07:00
#include <linux/netdevice.h>
#include <linux/gpio/consumer.h>
net: Distributed Switch Architecture protocol support Distributed Switch Architecture is a protocol for managing hardware switch chips. It consists of a set of MII management registers and commands to configure the switch, and an ethernet header format to signal which of the ports of the switch a packet was received from or is intended to be sent to. The switches that this driver supports are typically embedded in access points and routers, and a typical setup with a DSA switch looks something like this: +-----------+ +-----------+ | | RGMII | | | +-------+ +------ 1000baseT MDI ("WAN") | | | 6-port +------ 1000baseT MDI ("LAN1") | CPU | | ethernet +------ 1000baseT MDI ("LAN2") | |MIImgmt| switch +------ 1000baseT MDI ("LAN3") | +-------+ w/5 PHYs +------ 1000baseT MDI ("LAN4") | | | | +-----------+ +-----------+ The switch driver presents each port on the switch as a separate network interface to Linux, polls the switch to maintain software link state of those ports, forwards MII management interface accesses to those network interfaces (e.g. as done by ethtool) to the switch, and exposes the switch's hardware statistics counters via the appropriate Linux kernel interfaces. This initial patch supports the MII management interface register layout of the Marvell 88E6123, 88E6161 and 88E6165 switch chips, and supports the "Ethertype DSA" packet tagging format. (There is no officially registered ethertype for the Ethertype DSA packet format, so we just grab a random one. The ethertype to use is programmed into the switch, and the switch driver uses the value of ETH_P_EDSA for this, so this define can be changed at any time in the future if the one we chose is allocated to another protocol or if Ethertype DSA gets its own officially registered ethertype, and everything will continue to work.) Signed-off-by: Lennert Buytenhek <buytenh@marvell.com> Tested-by: Nicolas Pitre <nico@marvell.com> Tested-by: Byron Bradley <byron.bbradley@gmail.com> Tested-by: Tim Ellis <tim.ellis@mac.com> Tested-by: Peter van Valderen <linux@ddcrew.com> Tested-by: Dirk Teurlings <dirk@upexia.nl> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-10-07 20:44:02 +07:00
#include <linux/phy.h>
#include <net/dsa.h>
#include <net/switchdev.h>
net: Distributed Switch Architecture protocol support Distributed Switch Architecture is a protocol for managing hardware switch chips. It consists of a set of MII management registers and commands to configure the switch, and an ethernet header format to signal which of the ports of the switch a packet was received from or is intended to be sent to. The switches that this driver supports are typically embedded in access points and routers, and a typical setup with a DSA switch looks something like this: +-----------+ +-----------+ | | RGMII | | | +-------+ +------ 1000baseT MDI ("WAN") | | | 6-port +------ 1000baseT MDI ("LAN1") | CPU | | ethernet +------ 1000baseT MDI ("LAN2") | |MIImgmt| switch +------ 1000baseT MDI ("LAN3") | +-------+ w/5 PHYs +------ 1000baseT MDI ("LAN4") | | | | +-----------+ +-----------+ The switch driver presents each port on the switch as a separate network interface to Linux, polls the switch to maintain software link state of those ports, forwards MII management interface accesses to those network interfaces (e.g. as done by ethtool) to the switch, and exposes the switch's hardware statistics counters via the appropriate Linux kernel interfaces. This initial patch supports the MII management interface register layout of the Marvell 88E6123, 88E6161 and 88E6165 switch chips, and supports the "Ethertype DSA" packet tagging format. (There is no officially registered ethertype for the Ethertype DSA packet format, so we just grab a random one. The ethertype to use is programmed into the switch, and the switch driver uses the value of ETH_P_EDSA for this, so this define can be changed at any time in the future if the one we chose is allocated to another protocol or if Ethertype DSA gets its own officially registered ethertype, and everything will continue to work.) Signed-off-by: Lennert Buytenhek <buytenh@marvell.com> Tested-by: Nicolas Pitre <nico@marvell.com> Tested-by: Byron Bradley <byron.bbradley@gmail.com> Tested-by: Tim Ellis <tim.ellis@mac.com> Tested-by: Peter van Valderen <linux@ddcrew.com> Tested-by: Dirk Teurlings <dirk@upexia.nl> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-10-07 20:44:02 +07:00
#include "mv88e6xxx.h"
static void assert_smi_lock(struct mv88e6xxx_priv_state *ps)
{
if (unlikely(!mutex_is_locked(&ps->smi_mutex))) {
dev_err(ps->dev, "SMI lock not held!\n");
dump_stack();
}
}
/* If the switch's ADDR[4:0] strap pins are strapped to zero, it will
net: Distributed Switch Architecture protocol support Distributed Switch Architecture is a protocol for managing hardware switch chips. It consists of a set of MII management registers and commands to configure the switch, and an ethernet header format to signal which of the ports of the switch a packet was received from or is intended to be sent to. The switches that this driver supports are typically embedded in access points and routers, and a typical setup with a DSA switch looks something like this: +-----------+ +-----------+ | | RGMII | | | +-------+ +------ 1000baseT MDI ("WAN") | | | 6-port +------ 1000baseT MDI ("LAN1") | CPU | | ethernet +------ 1000baseT MDI ("LAN2") | |MIImgmt| switch +------ 1000baseT MDI ("LAN3") | +-------+ w/5 PHYs +------ 1000baseT MDI ("LAN4") | | | | +-----------+ +-----------+ The switch driver presents each port on the switch as a separate network interface to Linux, polls the switch to maintain software link state of those ports, forwards MII management interface accesses to those network interfaces (e.g. as done by ethtool) to the switch, and exposes the switch's hardware statistics counters via the appropriate Linux kernel interfaces. This initial patch supports the MII management interface register layout of the Marvell 88E6123, 88E6161 and 88E6165 switch chips, and supports the "Ethertype DSA" packet tagging format. (There is no officially registered ethertype for the Ethertype DSA packet format, so we just grab a random one. The ethertype to use is programmed into the switch, and the switch driver uses the value of ETH_P_EDSA for this, so this define can be changed at any time in the future if the one we chose is allocated to another protocol or if Ethertype DSA gets its own officially registered ethertype, and everything will continue to work.) Signed-off-by: Lennert Buytenhek <buytenh@marvell.com> Tested-by: Nicolas Pitre <nico@marvell.com> Tested-by: Byron Bradley <byron.bbradley@gmail.com> Tested-by: Tim Ellis <tim.ellis@mac.com> Tested-by: Peter van Valderen <linux@ddcrew.com> Tested-by: Dirk Teurlings <dirk@upexia.nl> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-10-07 20:44:02 +07:00
* use all 32 SMI bus addresses on its SMI bus, and all switch registers
* will be directly accessible on some {device address,register address}
* pair. If the ADDR[4:0] pins are not strapped to zero, the switch
* will only respond to SMI transactions to that specific address, and
* an indirect addressing mechanism needs to be used to access its
* registers.
*/
static int mv88e6xxx_reg_wait_ready(struct mii_bus *bus, int sw_addr)
{
int ret;
int i;
for (i = 0; i < 16; i++) {
ret = mdiobus_read_nested(bus, sw_addr, SMI_CMD);
net: Distributed Switch Architecture protocol support Distributed Switch Architecture is a protocol for managing hardware switch chips. It consists of a set of MII management registers and commands to configure the switch, and an ethernet header format to signal which of the ports of the switch a packet was received from or is intended to be sent to. The switches that this driver supports are typically embedded in access points and routers, and a typical setup with a DSA switch looks something like this: +-----------+ +-----------+ | | RGMII | | | +-------+ +------ 1000baseT MDI ("WAN") | | | 6-port +------ 1000baseT MDI ("LAN1") | CPU | | ethernet +------ 1000baseT MDI ("LAN2") | |MIImgmt| switch +------ 1000baseT MDI ("LAN3") | +-------+ w/5 PHYs +------ 1000baseT MDI ("LAN4") | | | | +-----------+ +-----------+ The switch driver presents each port on the switch as a separate network interface to Linux, polls the switch to maintain software link state of those ports, forwards MII management interface accesses to those network interfaces (e.g. as done by ethtool) to the switch, and exposes the switch's hardware statistics counters via the appropriate Linux kernel interfaces. This initial patch supports the MII management interface register layout of the Marvell 88E6123, 88E6161 and 88E6165 switch chips, and supports the "Ethertype DSA" packet tagging format. (There is no officially registered ethertype for the Ethertype DSA packet format, so we just grab a random one. The ethertype to use is programmed into the switch, and the switch driver uses the value of ETH_P_EDSA for this, so this define can be changed at any time in the future if the one we chose is allocated to another protocol or if Ethertype DSA gets its own officially registered ethertype, and everything will continue to work.) Signed-off-by: Lennert Buytenhek <buytenh@marvell.com> Tested-by: Nicolas Pitre <nico@marvell.com> Tested-by: Byron Bradley <byron.bbradley@gmail.com> Tested-by: Tim Ellis <tim.ellis@mac.com> Tested-by: Peter van Valderen <linux@ddcrew.com> Tested-by: Dirk Teurlings <dirk@upexia.nl> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-10-07 20:44:02 +07:00
if (ret < 0)
return ret;
if ((ret & SMI_CMD_BUSY) == 0)
net: Distributed Switch Architecture protocol support Distributed Switch Architecture is a protocol for managing hardware switch chips. It consists of a set of MII management registers and commands to configure the switch, and an ethernet header format to signal which of the ports of the switch a packet was received from or is intended to be sent to. The switches that this driver supports are typically embedded in access points and routers, and a typical setup with a DSA switch looks something like this: +-----------+ +-----------+ | | RGMII | | | +-------+ +------ 1000baseT MDI ("WAN") | | | 6-port +------ 1000baseT MDI ("LAN1") | CPU | | ethernet +------ 1000baseT MDI ("LAN2") | |MIImgmt| switch +------ 1000baseT MDI ("LAN3") | +-------+ w/5 PHYs +------ 1000baseT MDI ("LAN4") | | | | +-----------+ +-----------+ The switch driver presents each port on the switch as a separate network interface to Linux, polls the switch to maintain software link state of those ports, forwards MII management interface accesses to those network interfaces (e.g. as done by ethtool) to the switch, and exposes the switch's hardware statistics counters via the appropriate Linux kernel interfaces. This initial patch supports the MII management interface register layout of the Marvell 88E6123, 88E6161 and 88E6165 switch chips, and supports the "Ethertype DSA" packet tagging format. (There is no officially registered ethertype for the Ethertype DSA packet format, so we just grab a random one. The ethertype to use is programmed into the switch, and the switch driver uses the value of ETH_P_EDSA for this, so this define can be changed at any time in the future if the one we chose is allocated to another protocol or if Ethertype DSA gets its own officially registered ethertype, and everything will continue to work.) Signed-off-by: Lennert Buytenhek <buytenh@marvell.com> Tested-by: Nicolas Pitre <nico@marvell.com> Tested-by: Byron Bradley <byron.bbradley@gmail.com> Tested-by: Tim Ellis <tim.ellis@mac.com> Tested-by: Peter van Valderen <linux@ddcrew.com> Tested-by: Dirk Teurlings <dirk@upexia.nl> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-10-07 20:44:02 +07:00
return 0;
}
return -ETIMEDOUT;
}
static int __mv88e6xxx_reg_read(struct mii_bus *bus, int sw_addr, int addr,
int reg)
net: Distributed Switch Architecture protocol support Distributed Switch Architecture is a protocol for managing hardware switch chips. It consists of a set of MII management registers and commands to configure the switch, and an ethernet header format to signal which of the ports of the switch a packet was received from or is intended to be sent to. The switches that this driver supports are typically embedded in access points and routers, and a typical setup with a DSA switch looks something like this: +-----------+ +-----------+ | | RGMII | | | +-------+ +------ 1000baseT MDI ("WAN") | | | 6-port +------ 1000baseT MDI ("LAN1") | CPU | | ethernet +------ 1000baseT MDI ("LAN2") | |MIImgmt| switch +------ 1000baseT MDI ("LAN3") | +-------+ w/5 PHYs +------ 1000baseT MDI ("LAN4") | | | | +-----------+ +-----------+ The switch driver presents each port on the switch as a separate network interface to Linux, polls the switch to maintain software link state of those ports, forwards MII management interface accesses to those network interfaces (e.g. as done by ethtool) to the switch, and exposes the switch's hardware statistics counters via the appropriate Linux kernel interfaces. This initial patch supports the MII management interface register layout of the Marvell 88E6123, 88E6161 and 88E6165 switch chips, and supports the "Ethertype DSA" packet tagging format. (There is no officially registered ethertype for the Ethertype DSA packet format, so we just grab a random one. The ethertype to use is programmed into the switch, and the switch driver uses the value of ETH_P_EDSA for this, so this define can be changed at any time in the future if the one we chose is allocated to another protocol or if Ethertype DSA gets its own officially registered ethertype, and everything will continue to work.) Signed-off-by: Lennert Buytenhek <buytenh@marvell.com> Tested-by: Nicolas Pitre <nico@marvell.com> Tested-by: Byron Bradley <byron.bbradley@gmail.com> Tested-by: Tim Ellis <tim.ellis@mac.com> Tested-by: Peter van Valderen <linux@ddcrew.com> Tested-by: Dirk Teurlings <dirk@upexia.nl> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-10-07 20:44:02 +07:00
{
int ret;
if (sw_addr == 0)
return mdiobus_read_nested(bus, addr, reg);
net: Distributed Switch Architecture protocol support Distributed Switch Architecture is a protocol for managing hardware switch chips. It consists of a set of MII management registers and commands to configure the switch, and an ethernet header format to signal which of the ports of the switch a packet was received from or is intended to be sent to. The switches that this driver supports are typically embedded in access points and routers, and a typical setup with a DSA switch looks something like this: +-----------+ +-----------+ | | RGMII | | | +-------+ +------ 1000baseT MDI ("WAN") | | | 6-port +------ 1000baseT MDI ("LAN1") | CPU | | ethernet +------ 1000baseT MDI ("LAN2") | |MIImgmt| switch +------ 1000baseT MDI ("LAN3") | +-------+ w/5 PHYs +------ 1000baseT MDI ("LAN4") | | | | +-----------+ +-----------+ The switch driver presents each port on the switch as a separate network interface to Linux, polls the switch to maintain software link state of those ports, forwards MII management interface accesses to those network interfaces (e.g. as done by ethtool) to the switch, and exposes the switch's hardware statistics counters via the appropriate Linux kernel interfaces. This initial patch supports the MII management interface register layout of the Marvell 88E6123, 88E6161 and 88E6165 switch chips, and supports the "Ethertype DSA" packet tagging format. (There is no officially registered ethertype for the Ethertype DSA packet format, so we just grab a random one. The ethertype to use is programmed into the switch, and the switch driver uses the value of ETH_P_EDSA for this, so this define can be changed at any time in the future if the one we chose is allocated to another protocol or if Ethertype DSA gets its own officially registered ethertype, and everything will continue to work.) Signed-off-by: Lennert Buytenhek <buytenh@marvell.com> Tested-by: Nicolas Pitre <nico@marvell.com> Tested-by: Byron Bradley <byron.bbradley@gmail.com> Tested-by: Tim Ellis <tim.ellis@mac.com> Tested-by: Peter van Valderen <linux@ddcrew.com> Tested-by: Dirk Teurlings <dirk@upexia.nl> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-10-07 20:44:02 +07:00
/* Wait for the bus to become free. */
net: Distributed Switch Architecture protocol support Distributed Switch Architecture is a protocol for managing hardware switch chips. It consists of a set of MII management registers and commands to configure the switch, and an ethernet header format to signal which of the ports of the switch a packet was received from or is intended to be sent to. The switches that this driver supports are typically embedded in access points and routers, and a typical setup with a DSA switch looks something like this: +-----------+ +-----------+ | | RGMII | | | +-------+ +------ 1000baseT MDI ("WAN") | | | 6-port +------ 1000baseT MDI ("LAN1") | CPU | | ethernet +------ 1000baseT MDI ("LAN2") | |MIImgmt| switch +------ 1000baseT MDI ("LAN3") | +-------+ w/5 PHYs +------ 1000baseT MDI ("LAN4") | | | | +-----------+ +-----------+ The switch driver presents each port on the switch as a separate network interface to Linux, polls the switch to maintain software link state of those ports, forwards MII management interface accesses to those network interfaces (e.g. as done by ethtool) to the switch, and exposes the switch's hardware statistics counters via the appropriate Linux kernel interfaces. This initial patch supports the MII management interface register layout of the Marvell 88E6123, 88E6161 and 88E6165 switch chips, and supports the "Ethertype DSA" packet tagging format. (There is no officially registered ethertype for the Ethertype DSA packet format, so we just grab a random one. The ethertype to use is programmed into the switch, and the switch driver uses the value of ETH_P_EDSA for this, so this define can be changed at any time in the future if the one we chose is allocated to another protocol or if Ethertype DSA gets its own officially registered ethertype, and everything will continue to work.) Signed-off-by: Lennert Buytenhek <buytenh@marvell.com> Tested-by: Nicolas Pitre <nico@marvell.com> Tested-by: Byron Bradley <byron.bbradley@gmail.com> Tested-by: Tim Ellis <tim.ellis@mac.com> Tested-by: Peter van Valderen <linux@ddcrew.com> Tested-by: Dirk Teurlings <dirk@upexia.nl> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-10-07 20:44:02 +07:00
ret = mv88e6xxx_reg_wait_ready(bus, sw_addr);
if (ret < 0)
return ret;
/* Transmit the read command. */
ret = mdiobus_write_nested(bus, sw_addr, SMI_CMD,
SMI_CMD_OP_22_READ | (addr << 5) | reg);
net: Distributed Switch Architecture protocol support Distributed Switch Architecture is a protocol for managing hardware switch chips. It consists of a set of MII management registers and commands to configure the switch, and an ethernet header format to signal which of the ports of the switch a packet was received from or is intended to be sent to. The switches that this driver supports are typically embedded in access points and routers, and a typical setup with a DSA switch looks something like this: +-----------+ +-----------+ | | RGMII | | | +-------+ +------ 1000baseT MDI ("WAN") | | | 6-port +------ 1000baseT MDI ("LAN1") | CPU | | ethernet +------ 1000baseT MDI ("LAN2") | |MIImgmt| switch +------ 1000baseT MDI ("LAN3") | +-------+ w/5 PHYs +------ 1000baseT MDI ("LAN4") | | | | +-----------+ +-----------+ The switch driver presents each port on the switch as a separate network interface to Linux, polls the switch to maintain software link state of those ports, forwards MII management interface accesses to those network interfaces (e.g. as done by ethtool) to the switch, and exposes the switch's hardware statistics counters via the appropriate Linux kernel interfaces. This initial patch supports the MII management interface register layout of the Marvell 88E6123, 88E6161 and 88E6165 switch chips, and supports the "Ethertype DSA" packet tagging format. (There is no officially registered ethertype for the Ethertype DSA packet format, so we just grab a random one. The ethertype to use is programmed into the switch, and the switch driver uses the value of ETH_P_EDSA for this, so this define can be changed at any time in the future if the one we chose is allocated to another protocol or if Ethertype DSA gets its own officially registered ethertype, and everything will continue to work.) Signed-off-by: Lennert Buytenhek <buytenh@marvell.com> Tested-by: Nicolas Pitre <nico@marvell.com> Tested-by: Byron Bradley <byron.bbradley@gmail.com> Tested-by: Tim Ellis <tim.ellis@mac.com> Tested-by: Peter van Valderen <linux@ddcrew.com> Tested-by: Dirk Teurlings <dirk@upexia.nl> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-10-07 20:44:02 +07:00
if (ret < 0)
return ret;
/* Wait for the read command to complete. */
net: Distributed Switch Architecture protocol support Distributed Switch Architecture is a protocol for managing hardware switch chips. It consists of a set of MII management registers and commands to configure the switch, and an ethernet header format to signal which of the ports of the switch a packet was received from or is intended to be sent to. The switches that this driver supports are typically embedded in access points and routers, and a typical setup with a DSA switch looks something like this: +-----------+ +-----------+ | | RGMII | | | +-------+ +------ 1000baseT MDI ("WAN") | | | 6-port +------ 1000baseT MDI ("LAN1") | CPU | | ethernet +------ 1000baseT MDI ("LAN2") | |MIImgmt| switch +------ 1000baseT MDI ("LAN3") | +-------+ w/5 PHYs +------ 1000baseT MDI ("LAN4") | | | | +-----------+ +-----------+ The switch driver presents each port on the switch as a separate network interface to Linux, polls the switch to maintain software link state of those ports, forwards MII management interface accesses to those network interfaces (e.g. as done by ethtool) to the switch, and exposes the switch's hardware statistics counters via the appropriate Linux kernel interfaces. This initial patch supports the MII management interface register layout of the Marvell 88E6123, 88E6161 and 88E6165 switch chips, and supports the "Ethertype DSA" packet tagging format. (There is no officially registered ethertype for the Ethertype DSA packet format, so we just grab a random one. The ethertype to use is programmed into the switch, and the switch driver uses the value of ETH_P_EDSA for this, so this define can be changed at any time in the future if the one we chose is allocated to another protocol or if Ethertype DSA gets its own officially registered ethertype, and everything will continue to work.) Signed-off-by: Lennert Buytenhek <buytenh@marvell.com> Tested-by: Nicolas Pitre <nico@marvell.com> Tested-by: Byron Bradley <byron.bbradley@gmail.com> Tested-by: Tim Ellis <tim.ellis@mac.com> Tested-by: Peter van Valderen <linux@ddcrew.com> Tested-by: Dirk Teurlings <dirk@upexia.nl> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-10-07 20:44:02 +07:00
ret = mv88e6xxx_reg_wait_ready(bus, sw_addr);
if (ret < 0)
return ret;
/* Read the data. */
ret = mdiobus_read_nested(bus, sw_addr, SMI_DATA);
net: Distributed Switch Architecture protocol support Distributed Switch Architecture is a protocol for managing hardware switch chips. It consists of a set of MII management registers and commands to configure the switch, and an ethernet header format to signal which of the ports of the switch a packet was received from or is intended to be sent to. The switches that this driver supports are typically embedded in access points and routers, and a typical setup with a DSA switch looks something like this: +-----------+ +-----------+ | | RGMII | | | +-------+ +------ 1000baseT MDI ("WAN") | | | 6-port +------ 1000baseT MDI ("LAN1") | CPU | | ethernet +------ 1000baseT MDI ("LAN2") | |MIImgmt| switch +------ 1000baseT MDI ("LAN3") | +-------+ w/5 PHYs +------ 1000baseT MDI ("LAN4") | | | | +-----------+ +-----------+ The switch driver presents each port on the switch as a separate network interface to Linux, polls the switch to maintain software link state of those ports, forwards MII management interface accesses to those network interfaces (e.g. as done by ethtool) to the switch, and exposes the switch's hardware statistics counters via the appropriate Linux kernel interfaces. This initial patch supports the MII management interface register layout of the Marvell 88E6123, 88E6161 and 88E6165 switch chips, and supports the "Ethertype DSA" packet tagging format. (There is no officially registered ethertype for the Ethertype DSA packet format, so we just grab a random one. The ethertype to use is programmed into the switch, and the switch driver uses the value of ETH_P_EDSA for this, so this define can be changed at any time in the future if the one we chose is allocated to another protocol or if Ethertype DSA gets its own officially registered ethertype, and everything will continue to work.) Signed-off-by: Lennert Buytenhek <buytenh@marvell.com> Tested-by: Nicolas Pitre <nico@marvell.com> Tested-by: Byron Bradley <byron.bbradley@gmail.com> Tested-by: Tim Ellis <tim.ellis@mac.com> Tested-by: Peter van Valderen <linux@ddcrew.com> Tested-by: Dirk Teurlings <dirk@upexia.nl> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-10-07 20:44:02 +07:00
if (ret < 0)
return ret;
return ret & 0xffff;
}
static int _mv88e6xxx_reg_read(struct mv88e6xxx_priv_state *ps,
int addr, int reg)
net: Distributed Switch Architecture protocol support Distributed Switch Architecture is a protocol for managing hardware switch chips. It consists of a set of MII management registers and commands to configure the switch, and an ethernet header format to signal which of the ports of the switch a packet was received from or is intended to be sent to. The switches that this driver supports are typically embedded in access points and routers, and a typical setup with a DSA switch looks something like this: +-----------+ +-----------+ | | RGMII | | | +-------+ +------ 1000baseT MDI ("WAN") | | | 6-port +------ 1000baseT MDI ("LAN1") | CPU | | ethernet +------ 1000baseT MDI ("LAN2") | |MIImgmt| switch +------ 1000baseT MDI ("LAN3") | +-------+ w/5 PHYs +------ 1000baseT MDI ("LAN4") | | | | +-----------+ +-----------+ The switch driver presents each port on the switch as a separate network interface to Linux, polls the switch to maintain software link state of those ports, forwards MII management interface accesses to those network interfaces (e.g. as done by ethtool) to the switch, and exposes the switch's hardware statistics counters via the appropriate Linux kernel interfaces. This initial patch supports the MII management interface register layout of the Marvell 88E6123, 88E6161 and 88E6165 switch chips, and supports the "Ethertype DSA" packet tagging format. (There is no officially registered ethertype for the Ethertype DSA packet format, so we just grab a random one. The ethertype to use is programmed into the switch, and the switch driver uses the value of ETH_P_EDSA for this, so this define can be changed at any time in the future if the one we chose is allocated to another protocol or if Ethertype DSA gets its own officially registered ethertype, and everything will continue to work.) Signed-off-by: Lennert Buytenhek <buytenh@marvell.com> Tested-by: Nicolas Pitre <nico@marvell.com> Tested-by: Byron Bradley <byron.bbradley@gmail.com> Tested-by: Tim Ellis <tim.ellis@mac.com> Tested-by: Peter van Valderen <linux@ddcrew.com> Tested-by: Dirk Teurlings <dirk@upexia.nl> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-10-07 20:44:02 +07:00
{
int ret;
assert_smi_lock(ps);
ret = __mv88e6xxx_reg_read(ps->bus, ps->sw_addr, addr, reg);
if (ret < 0)
return ret;
dev_dbg(ps->dev, "<- addr: 0x%.2x reg: 0x%.2x val: 0x%.4x\n",
addr, reg, ret);
net: Distributed Switch Architecture protocol support Distributed Switch Architecture is a protocol for managing hardware switch chips. It consists of a set of MII management registers and commands to configure the switch, and an ethernet header format to signal which of the ports of the switch a packet was received from or is intended to be sent to. The switches that this driver supports are typically embedded in access points and routers, and a typical setup with a DSA switch looks something like this: +-----------+ +-----------+ | | RGMII | | | +-------+ +------ 1000baseT MDI ("WAN") | | | 6-port +------ 1000baseT MDI ("LAN1") | CPU | | ethernet +------ 1000baseT MDI ("LAN2") | |MIImgmt| switch +------ 1000baseT MDI ("LAN3") | +-------+ w/5 PHYs +------ 1000baseT MDI ("LAN4") | | | | +-----------+ +-----------+ The switch driver presents each port on the switch as a separate network interface to Linux, polls the switch to maintain software link state of those ports, forwards MII management interface accesses to those network interfaces (e.g. as done by ethtool) to the switch, and exposes the switch's hardware statistics counters via the appropriate Linux kernel interfaces. This initial patch supports the MII management interface register layout of the Marvell 88E6123, 88E6161 and 88E6165 switch chips, and supports the "Ethertype DSA" packet tagging format. (There is no officially registered ethertype for the Ethertype DSA packet format, so we just grab a random one. The ethertype to use is programmed into the switch, and the switch driver uses the value of ETH_P_EDSA for this, so this define can be changed at any time in the future if the one we chose is allocated to another protocol or if Ethertype DSA gets its own officially registered ethertype, and everything will continue to work.) Signed-off-by: Lennert Buytenhek <buytenh@marvell.com> Tested-by: Nicolas Pitre <nico@marvell.com> Tested-by: Byron Bradley <byron.bbradley@gmail.com> Tested-by: Tim Ellis <tim.ellis@mac.com> Tested-by: Peter van Valderen <linux@ddcrew.com> Tested-by: Dirk Teurlings <dirk@upexia.nl> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-10-07 20:44:02 +07:00
return ret;
}
int mv88e6xxx_reg_read(struct mv88e6xxx_priv_state *ps, int addr, int reg)
{
int ret;
mutex_lock(&ps->smi_mutex);
ret = _mv88e6xxx_reg_read(ps, addr, reg);
mutex_unlock(&ps->smi_mutex);
return ret;
}
static int __mv88e6xxx_reg_write(struct mii_bus *bus, int sw_addr, int addr,
int reg, u16 val)
net: Distributed Switch Architecture protocol support Distributed Switch Architecture is a protocol for managing hardware switch chips. It consists of a set of MII management registers and commands to configure the switch, and an ethernet header format to signal which of the ports of the switch a packet was received from or is intended to be sent to. The switches that this driver supports are typically embedded in access points and routers, and a typical setup with a DSA switch looks something like this: +-----------+ +-----------+ | | RGMII | | | +-------+ +------ 1000baseT MDI ("WAN") | | | 6-port +------ 1000baseT MDI ("LAN1") | CPU | | ethernet +------ 1000baseT MDI ("LAN2") | |MIImgmt| switch +------ 1000baseT MDI ("LAN3") | +-------+ w/5 PHYs +------ 1000baseT MDI ("LAN4") | | | | +-----------+ +-----------+ The switch driver presents each port on the switch as a separate network interface to Linux, polls the switch to maintain software link state of those ports, forwards MII management interface accesses to those network interfaces (e.g. as done by ethtool) to the switch, and exposes the switch's hardware statistics counters via the appropriate Linux kernel interfaces. This initial patch supports the MII management interface register layout of the Marvell 88E6123, 88E6161 and 88E6165 switch chips, and supports the "Ethertype DSA" packet tagging format. (There is no officially registered ethertype for the Ethertype DSA packet format, so we just grab a random one. The ethertype to use is programmed into the switch, and the switch driver uses the value of ETH_P_EDSA for this, so this define can be changed at any time in the future if the one we chose is allocated to another protocol or if Ethertype DSA gets its own officially registered ethertype, and everything will continue to work.) Signed-off-by: Lennert Buytenhek <buytenh@marvell.com> Tested-by: Nicolas Pitre <nico@marvell.com> Tested-by: Byron Bradley <byron.bbradley@gmail.com> Tested-by: Tim Ellis <tim.ellis@mac.com> Tested-by: Peter van Valderen <linux@ddcrew.com> Tested-by: Dirk Teurlings <dirk@upexia.nl> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-10-07 20:44:02 +07:00
{
int ret;
if (sw_addr == 0)
return mdiobus_write_nested(bus, addr, reg, val);
net: Distributed Switch Architecture protocol support Distributed Switch Architecture is a protocol for managing hardware switch chips. It consists of a set of MII management registers and commands to configure the switch, and an ethernet header format to signal which of the ports of the switch a packet was received from or is intended to be sent to. The switches that this driver supports are typically embedded in access points and routers, and a typical setup with a DSA switch looks something like this: +-----------+ +-----------+ | | RGMII | | | +-------+ +------ 1000baseT MDI ("WAN") | | | 6-port +------ 1000baseT MDI ("LAN1") | CPU | | ethernet +------ 1000baseT MDI ("LAN2") | |MIImgmt| switch +------ 1000baseT MDI ("LAN3") | +-------+ w/5 PHYs +------ 1000baseT MDI ("LAN4") | | | | +-----------+ +-----------+ The switch driver presents each port on the switch as a separate network interface to Linux, polls the switch to maintain software link state of those ports, forwards MII management interface accesses to those network interfaces (e.g. as done by ethtool) to the switch, and exposes the switch's hardware statistics counters via the appropriate Linux kernel interfaces. This initial patch supports the MII management interface register layout of the Marvell 88E6123, 88E6161 and 88E6165 switch chips, and supports the "Ethertype DSA" packet tagging format. (There is no officially registered ethertype for the Ethertype DSA packet format, so we just grab a random one. The ethertype to use is programmed into the switch, and the switch driver uses the value of ETH_P_EDSA for this, so this define can be changed at any time in the future if the one we chose is allocated to another protocol or if Ethertype DSA gets its own officially registered ethertype, and everything will continue to work.) Signed-off-by: Lennert Buytenhek <buytenh@marvell.com> Tested-by: Nicolas Pitre <nico@marvell.com> Tested-by: Byron Bradley <byron.bbradley@gmail.com> Tested-by: Tim Ellis <tim.ellis@mac.com> Tested-by: Peter van Valderen <linux@ddcrew.com> Tested-by: Dirk Teurlings <dirk@upexia.nl> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-10-07 20:44:02 +07:00
/* Wait for the bus to become free. */
net: Distributed Switch Architecture protocol support Distributed Switch Architecture is a protocol for managing hardware switch chips. It consists of a set of MII management registers and commands to configure the switch, and an ethernet header format to signal which of the ports of the switch a packet was received from or is intended to be sent to. The switches that this driver supports are typically embedded in access points and routers, and a typical setup with a DSA switch looks something like this: +-----------+ +-----------+ | | RGMII | | | +-------+ +------ 1000baseT MDI ("WAN") | | | 6-port +------ 1000baseT MDI ("LAN1") | CPU | | ethernet +------ 1000baseT MDI ("LAN2") | |MIImgmt| switch +------ 1000baseT MDI ("LAN3") | +-------+ w/5 PHYs +------ 1000baseT MDI ("LAN4") | | | | +-----------+ +-----------+ The switch driver presents each port on the switch as a separate network interface to Linux, polls the switch to maintain software link state of those ports, forwards MII management interface accesses to those network interfaces (e.g. as done by ethtool) to the switch, and exposes the switch's hardware statistics counters via the appropriate Linux kernel interfaces. This initial patch supports the MII management interface register layout of the Marvell 88E6123, 88E6161 and 88E6165 switch chips, and supports the "Ethertype DSA" packet tagging format. (There is no officially registered ethertype for the Ethertype DSA packet format, so we just grab a random one. The ethertype to use is programmed into the switch, and the switch driver uses the value of ETH_P_EDSA for this, so this define can be changed at any time in the future if the one we chose is allocated to another protocol or if Ethertype DSA gets its own officially registered ethertype, and everything will continue to work.) Signed-off-by: Lennert Buytenhek <buytenh@marvell.com> Tested-by: Nicolas Pitre <nico@marvell.com> Tested-by: Byron Bradley <byron.bbradley@gmail.com> Tested-by: Tim Ellis <tim.ellis@mac.com> Tested-by: Peter van Valderen <linux@ddcrew.com> Tested-by: Dirk Teurlings <dirk@upexia.nl> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-10-07 20:44:02 +07:00
ret = mv88e6xxx_reg_wait_ready(bus, sw_addr);
if (ret < 0)
return ret;
/* Transmit the data to write. */
ret = mdiobus_write_nested(bus, sw_addr, SMI_DATA, val);
net: Distributed Switch Architecture protocol support Distributed Switch Architecture is a protocol for managing hardware switch chips. It consists of a set of MII management registers and commands to configure the switch, and an ethernet header format to signal which of the ports of the switch a packet was received from or is intended to be sent to. The switches that this driver supports are typically embedded in access points and routers, and a typical setup with a DSA switch looks something like this: +-----------+ +-----------+ | | RGMII | | | +-------+ +------ 1000baseT MDI ("WAN") | | | 6-port +------ 1000baseT MDI ("LAN1") | CPU | | ethernet +------ 1000baseT MDI ("LAN2") | |MIImgmt| switch +------ 1000baseT MDI ("LAN3") | +-------+ w/5 PHYs +------ 1000baseT MDI ("LAN4") | | | | +-----------+ +-----------+ The switch driver presents each port on the switch as a separate network interface to Linux, polls the switch to maintain software link state of those ports, forwards MII management interface accesses to those network interfaces (e.g. as done by ethtool) to the switch, and exposes the switch's hardware statistics counters via the appropriate Linux kernel interfaces. This initial patch supports the MII management interface register layout of the Marvell 88E6123, 88E6161 and 88E6165 switch chips, and supports the "Ethertype DSA" packet tagging format. (There is no officially registered ethertype for the Ethertype DSA packet format, so we just grab a random one. The ethertype to use is programmed into the switch, and the switch driver uses the value of ETH_P_EDSA for this, so this define can be changed at any time in the future if the one we chose is allocated to another protocol or if Ethertype DSA gets its own officially registered ethertype, and everything will continue to work.) Signed-off-by: Lennert Buytenhek <buytenh@marvell.com> Tested-by: Nicolas Pitre <nico@marvell.com> Tested-by: Byron Bradley <byron.bbradley@gmail.com> Tested-by: Tim Ellis <tim.ellis@mac.com> Tested-by: Peter van Valderen <linux@ddcrew.com> Tested-by: Dirk Teurlings <dirk@upexia.nl> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-10-07 20:44:02 +07:00
if (ret < 0)
return ret;
/* Transmit the write command. */
ret = mdiobus_write_nested(bus, sw_addr, SMI_CMD,
SMI_CMD_OP_22_WRITE | (addr << 5) | reg);
net: Distributed Switch Architecture protocol support Distributed Switch Architecture is a protocol for managing hardware switch chips. It consists of a set of MII management registers and commands to configure the switch, and an ethernet header format to signal which of the ports of the switch a packet was received from or is intended to be sent to. The switches that this driver supports are typically embedded in access points and routers, and a typical setup with a DSA switch looks something like this: +-----------+ +-----------+ | | RGMII | | | +-------+ +------ 1000baseT MDI ("WAN") | | | 6-port +------ 1000baseT MDI ("LAN1") | CPU | | ethernet +------ 1000baseT MDI ("LAN2") | |MIImgmt| switch +------ 1000baseT MDI ("LAN3") | +-------+ w/5 PHYs +------ 1000baseT MDI ("LAN4") | | | | +-----------+ +-----------+ The switch driver presents each port on the switch as a separate network interface to Linux, polls the switch to maintain software link state of those ports, forwards MII management interface accesses to those network interfaces (e.g. as done by ethtool) to the switch, and exposes the switch's hardware statistics counters via the appropriate Linux kernel interfaces. This initial patch supports the MII management interface register layout of the Marvell 88E6123, 88E6161 and 88E6165 switch chips, and supports the "Ethertype DSA" packet tagging format. (There is no officially registered ethertype for the Ethertype DSA packet format, so we just grab a random one. The ethertype to use is programmed into the switch, and the switch driver uses the value of ETH_P_EDSA for this, so this define can be changed at any time in the future if the one we chose is allocated to another protocol or if Ethertype DSA gets its own officially registered ethertype, and everything will continue to work.) Signed-off-by: Lennert Buytenhek <buytenh@marvell.com> Tested-by: Nicolas Pitre <nico@marvell.com> Tested-by: Byron Bradley <byron.bbradley@gmail.com> Tested-by: Tim Ellis <tim.ellis@mac.com> Tested-by: Peter van Valderen <linux@ddcrew.com> Tested-by: Dirk Teurlings <dirk@upexia.nl> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-10-07 20:44:02 +07:00
if (ret < 0)
return ret;
/* Wait for the write command to complete. */
net: Distributed Switch Architecture protocol support Distributed Switch Architecture is a protocol for managing hardware switch chips. It consists of a set of MII management registers and commands to configure the switch, and an ethernet header format to signal which of the ports of the switch a packet was received from or is intended to be sent to. The switches that this driver supports are typically embedded in access points and routers, and a typical setup with a DSA switch looks something like this: +-----------+ +-----------+ | | RGMII | | | +-------+ +------ 1000baseT MDI ("WAN") | | | 6-port +------ 1000baseT MDI ("LAN1") | CPU | | ethernet +------ 1000baseT MDI ("LAN2") | |MIImgmt| switch +------ 1000baseT MDI ("LAN3") | +-------+ w/5 PHYs +------ 1000baseT MDI ("LAN4") | | | | +-----------+ +-----------+ The switch driver presents each port on the switch as a separate network interface to Linux, polls the switch to maintain software link state of those ports, forwards MII management interface accesses to those network interfaces (e.g. as done by ethtool) to the switch, and exposes the switch's hardware statistics counters via the appropriate Linux kernel interfaces. This initial patch supports the MII management interface register layout of the Marvell 88E6123, 88E6161 and 88E6165 switch chips, and supports the "Ethertype DSA" packet tagging format. (There is no officially registered ethertype for the Ethertype DSA packet format, so we just grab a random one. The ethertype to use is programmed into the switch, and the switch driver uses the value of ETH_P_EDSA for this, so this define can be changed at any time in the future if the one we chose is allocated to another protocol or if Ethertype DSA gets its own officially registered ethertype, and everything will continue to work.) Signed-off-by: Lennert Buytenhek <buytenh@marvell.com> Tested-by: Nicolas Pitre <nico@marvell.com> Tested-by: Byron Bradley <byron.bbradley@gmail.com> Tested-by: Tim Ellis <tim.ellis@mac.com> Tested-by: Peter van Valderen <linux@ddcrew.com> Tested-by: Dirk Teurlings <dirk@upexia.nl> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-10-07 20:44:02 +07:00
ret = mv88e6xxx_reg_wait_ready(bus, sw_addr);
if (ret < 0)
return ret;
return 0;
}
static int _mv88e6xxx_reg_write(struct mv88e6xxx_priv_state *ps, int addr,
int reg, u16 val)
net: Distributed Switch Architecture protocol support Distributed Switch Architecture is a protocol for managing hardware switch chips. It consists of a set of MII management registers and commands to configure the switch, and an ethernet header format to signal which of the ports of the switch a packet was received from or is intended to be sent to. The switches that this driver supports are typically embedded in access points and routers, and a typical setup with a DSA switch looks something like this: +-----------+ +-----------+ | | RGMII | | | +-------+ +------ 1000baseT MDI ("WAN") | | | 6-port +------ 1000baseT MDI ("LAN1") | CPU | | ethernet +------ 1000baseT MDI ("LAN2") | |MIImgmt| switch +------ 1000baseT MDI ("LAN3") | +-------+ w/5 PHYs +------ 1000baseT MDI ("LAN4") | | | | +-----------+ +-----------+ The switch driver presents each port on the switch as a separate network interface to Linux, polls the switch to maintain software link state of those ports, forwards MII management interface accesses to those network interfaces (e.g. as done by ethtool) to the switch, and exposes the switch's hardware statistics counters via the appropriate Linux kernel interfaces. This initial patch supports the MII management interface register layout of the Marvell 88E6123, 88E6161 and 88E6165 switch chips, and supports the "Ethertype DSA" packet tagging format. (There is no officially registered ethertype for the Ethertype DSA packet format, so we just grab a random one. The ethertype to use is programmed into the switch, and the switch driver uses the value of ETH_P_EDSA for this, so this define can be changed at any time in the future if the one we chose is allocated to another protocol or if Ethertype DSA gets its own officially registered ethertype, and everything will continue to work.) Signed-off-by: Lennert Buytenhek <buytenh@marvell.com> Tested-by: Nicolas Pitre <nico@marvell.com> Tested-by: Byron Bradley <byron.bbradley@gmail.com> Tested-by: Tim Ellis <tim.ellis@mac.com> Tested-by: Peter van Valderen <linux@ddcrew.com> Tested-by: Dirk Teurlings <dirk@upexia.nl> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-10-07 20:44:02 +07:00
{
assert_smi_lock(ps);
net: Distributed Switch Architecture protocol support Distributed Switch Architecture is a protocol for managing hardware switch chips. It consists of a set of MII management registers and commands to configure the switch, and an ethernet header format to signal which of the ports of the switch a packet was received from or is intended to be sent to. The switches that this driver supports are typically embedded in access points and routers, and a typical setup with a DSA switch looks something like this: +-----------+ +-----------+ | | RGMII | | | +-------+ +------ 1000baseT MDI ("WAN") | | | 6-port +------ 1000baseT MDI ("LAN1") | CPU | | ethernet +------ 1000baseT MDI ("LAN2") | |MIImgmt| switch +------ 1000baseT MDI ("LAN3") | +-------+ w/5 PHYs +------ 1000baseT MDI ("LAN4") | | | | +-----------+ +-----------+ The switch driver presents each port on the switch as a separate network interface to Linux, polls the switch to maintain software link state of those ports, forwards MII management interface accesses to those network interfaces (e.g. as done by ethtool) to the switch, and exposes the switch's hardware statistics counters via the appropriate Linux kernel interfaces. This initial patch supports the MII management interface register layout of the Marvell 88E6123, 88E6161 and 88E6165 switch chips, and supports the "Ethertype DSA" packet tagging format. (There is no officially registered ethertype for the Ethertype DSA packet format, so we just grab a random one. The ethertype to use is programmed into the switch, and the switch driver uses the value of ETH_P_EDSA for this, so this define can be changed at any time in the future if the one we chose is allocated to another protocol or if Ethertype DSA gets its own officially registered ethertype, and everything will continue to work.) Signed-off-by: Lennert Buytenhek <buytenh@marvell.com> Tested-by: Nicolas Pitre <nico@marvell.com> Tested-by: Byron Bradley <byron.bbradley@gmail.com> Tested-by: Tim Ellis <tim.ellis@mac.com> Tested-by: Peter van Valderen <linux@ddcrew.com> Tested-by: Dirk Teurlings <dirk@upexia.nl> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-10-07 20:44:02 +07:00
dev_dbg(ps->dev, "-> addr: 0x%.2x reg: 0x%.2x val: 0x%.4x\n",
addr, reg, val);
return __mv88e6xxx_reg_write(ps->bus, ps->sw_addr, addr, reg, val);
}
int mv88e6xxx_reg_write(struct mv88e6xxx_priv_state *ps, int addr,
int reg, u16 val)
{
int ret;
net: Distributed Switch Architecture protocol support Distributed Switch Architecture is a protocol for managing hardware switch chips. It consists of a set of MII management registers and commands to configure the switch, and an ethernet header format to signal which of the ports of the switch a packet was received from or is intended to be sent to. The switches that this driver supports are typically embedded in access points and routers, and a typical setup with a DSA switch looks something like this: +-----------+ +-----------+ | | RGMII | | | +-------+ +------ 1000baseT MDI ("WAN") | | | 6-port +------ 1000baseT MDI ("LAN1") | CPU | | ethernet +------ 1000baseT MDI ("LAN2") | |MIImgmt| switch +------ 1000baseT MDI ("LAN3") | +-------+ w/5 PHYs +------ 1000baseT MDI ("LAN4") | | | | +-----------+ +-----------+ The switch driver presents each port on the switch as a separate network interface to Linux, polls the switch to maintain software link state of those ports, forwards MII management interface accesses to those network interfaces (e.g. as done by ethtool) to the switch, and exposes the switch's hardware statistics counters via the appropriate Linux kernel interfaces. This initial patch supports the MII management interface register layout of the Marvell 88E6123, 88E6161 and 88E6165 switch chips, and supports the "Ethertype DSA" packet tagging format. (There is no officially registered ethertype for the Ethertype DSA packet format, so we just grab a random one. The ethertype to use is programmed into the switch, and the switch driver uses the value of ETH_P_EDSA for this, so this define can be changed at any time in the future if the one we chose is allocated to another protocol or if Ethertype DSA gets its own officially registered ethertype, and everything will continue to work.) Signed-off-by: Lennert Buytenhek <buytenh@marvell.com> Tested-by: Nicolas Pitre <nico@marvell.com> Tested-by: Byron Bradley <byron.bbradley@gmail.com> Tested-by: Tim Ellis <tim.ellis@mac.com> Tested-by: Peter van Valderen <linux@ddcrew.com> Tested-by: Dirk Teurlings <dirk@upexia.nl> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-10-07 20:44:02 +07:00
mutex_lock(&ps->smi_mutex);
ret = _mv88e6xxx_reg_write(ps, addr, reg, val);
net: Distributed Switch Architecture protocol support Distributed Switch Architecture is a protocol for managing hardware switch chips. It consists of a set of MII management registers and commands to configure the switch, and an ethernet header format to signal which of the ports of the switch a packet was received from or is intended to be sent to. The switches that this driver supports are typically embedded in access points and routers, and a typical setup with a DSA switch looks something like this: +-----------+ +-----------+ | | RGMII | | | +-------+ +------ 1000baseT MDI ("WAN") | | | 6-port +------ 1000baseT MDI ("LAN1") | CPU | | ethernet +------ 1000baseT MDI ("LAN2") | |MIImgmt| switch +------ 1000baseT MDI ("LAN3") | +-------+ w/5 PHYs +------ 1000baseT MDI ("LAN4") | | | | +-----------+ +-----------+ The switch driver presents each port on the switch as a separate network interface to Linux, polls the switch to maintain software link state of those ports, forwards MII management interface accesses to those network interfaces (e.g. as done by ethtool) to the switch, and exposes the switch's hardware statistics counters via the appropriate Linux kernel interfaces. This initial patch supports the MII management interface register layout of the Marvell 88E6123, 88E6161 and 88E6165 switch chips, and supports the "Ethertype DSA" packet tagging format. (There is no officially registered ethertype for the Ethertype DSA packet format, so we just grab a random one. The ethertype to use is programmed into the switch, and the switch driver uses the value of ETH_P_EDSA for this, so this define can be changed at any time in the future if the one we chose is allocated to another protocol or if Ethertype DSA gets its own officially registered ethertype, and everything will continue to work.) Signed-off-by: Lennert Buytenhek <buytenh@marvell.com> Tested-by: Nicolas Pitre <nico@marvell.com> Tested-by: Byron Bradley <byron.bbradley@gmail.com> Tested-by: Tim Ellis <tim.ellis@mac.com> Tested-by: Peter van Valderen <linux@ddcrew.com> Tested-by: Dirk Teurlings <dirk@upexia.nl> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-10-07 20:44:02 +07:00
mutex_unlock(&ps->smi_mutex);
return ret;
}
static int mv88e6xxx_set_addr_direct(struct dsa_switch *ds, u8 *addr)
{
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
int err;
err = mv88e6xxx_reg_write(ps, REG_GLOBAL, GLOBAL_MAC_01,
(addr[0] << 8) | addr[1]);
if (err)
return err;
err = mv88e6xxx_reg_write(ps, REG_GLOBAL, GLOBAL_MAC_23,
(addr[2] << 8) | addr[3]);
if (err)
return err;
return mv88e6xxx_reg_write(ps, REG_GLOBAL, GLOBAL_MAC_45,
(addr[4] << 8) | addr[5]);
}
static int mv88e6xxx_set_addr_indirect(struct dsa_switch *ds, u8 *addr)
net: Distributed Switch Architecture protocol support Distributed Switch Architecture is a protocol for managing hardware switch chips. It consists of a set of MII management registers and commands to configure the switch, and an ethernet header format to signal which of the ports of the switch a packet was received from or is intended to be sent to. The switches that this driver supports are typically embedded in access points and routers, and a typical setup with a DSA switch looks something like this: +-----------+ +-----------+ | | RGMII | | | +-------+ +------ 1000baseT MDI ("WAN") | | | 6-port +------ 1000baseT MDI ("LAN1") | CPU | | ethernet +------ 1000baseT MDI ("LAN2") | |MIImgmt| switch +------ 1000baseT MDI ("LAN3") | +-------+ w/5 PHYs +------ 1000baseT MDI ("LAN4") | | | | +-----------+ +-----------+ The switch driver presents each port on the switch as a separate network interface to Linux, polls the switch to maintain software link state of those ports, forwards MII management interface accesses to those network interfaces (e.g. as done by ethtool) to the switch, and exposes the switch's hardware statistics counters via the appropriate Linux kernel interfaces. This initial patch supports the MII management interface register layout of the Marvell 88E6123, 88E6161 and 88E6165 switch chips, and supports the "Ethertype DSA" packet tagging format. (There is no officially registered ethertype for the Ethertype DSA packet format, so we just grab a random one. The ethertype to use is programmed into the switch, and the switch driver uses the value of ETH_P_EDSA for this, so this define can be changed at any time in the future if the one we chose is allocated to another protocol or if Ethertype DSA gets its own officially registered ethertype, and everything will continue to work.) Signed-off-by: Lennert Buytenhek <buytenh@marvell.com> Tested-by: Nicolas Pitre <nico@marvell.com> Tested-by: Byron Bradley <byron.bbradley@gmail.com> Tested-by: Tim Ellis <tim.ellis@mac.com> Tested-by: Peter van Valderen <linux@ddcrew.com> Tested-by: Dirk Teurlings <dirk@upexia.nl> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-10-07 20:44:02 +07:00
{
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
net: Distributed Switch Architecture protocol support Distributed Switch Architecture is a protocol for managing hardware switch chips. It consists of a set of MII management registers and commands to configure the switch, and an ethernet header format to signal which of the ports of the switch a packet was received from or is intended to be sent to. The switches that this driver supports are typically embedded in access points and routers, and a typical setup with a DSA switch looks something like this: +-----------+ +-----------+ | | RGMII | | | +-------+ +------ 1000baseT MDI ("WAN") | | | 6-port +------ 1000baseT MDI ("LAN1") | CPU | | ethernet +------ 1000baseT MDI ("LAN2") | |MIImgmt| switch +------ 1000baseT MDI ("LAN3") | +-------+ w/5 PHYs +------ 1000baseT MDI ("LAN4") | | | | +-----------+ +-----------+ The switch driver presents each port on the switch as a separate network interface to Linux, polls the switch to maintain software link state of those ports, forwards MII management interface accesses to those network interfaces (e.g. as done by ethtool) to the switch, and exposes the switch's hardware statistics counters via the appropriate Linux kernel interfaces. This initial patch supports the MII management interface register layout of the Marvell 88E6123, 88E6161 and 88E6165 switch chips, and supports the "Ethertype DSA" packet tagging format. (There is no officially registered ethertype for the Ethertype DSA packet format, so we just grab a random one. The ethertype to use is programmed into the switch, and the switch driver uses the value of ETH_P_EDSA for this, so this define can be changed at any time in the future if the one we chose is allocated to another protocol or if Ethertype DSA gets its own officially registered ethertype, and everything will continue to work.) Signed-off-by: Lennert Buytenhek <buytenh@marvell.com> Tested-by: Nicolas Pitre <nico@marvell.com> Tested-by: Byron Bradley <byron.bbradley@gmail.com> Tested-by: Tim Ellis <tim.ellis@mac.com> Tested-by: Peter van Valderen <linux@ddcrew.com> Tested-by: Dirk Teurlings <dirk@upexia.nl> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-10-07 20:44:02 +07:00
int ret;
int i;
net: Distributed Switch Architecture protocol support Distributed Switch Architecture is a protocol for managing hardware switch chips. It consists of a set of MII management registers and commands to configure the switch, and an ethernet header format to signal which of the ports of the switch a packet was received from or is intended to be sent to. The switches that this driver supports are typically embedded in access points and routers, and a typical setup with a DSA switch looks something like this: +-----------+ +-----------+ | | RGMII | | | +-------+ +------ 1000baseT MDI ("WAN") | | | 6-port +------ 1000baseT MDI ("LAN1") | CPU | | ethernet +------ 1000baseT MDI ("LAN2") | |MIImgmt| switch +------ 1000baseT MDI ("LAN3") | +-------+ w/5 PHYs +------ 1000baseT MDI ("LAN4") | | | | +-----------+ +-----------+ The switch driver presents each port on the switch as a separate network interface to Linux, polls the switch to maintain software link state of those ports, forwards MII management interface accesses to those network interfaces (e.g. as done by ethtool) to the switch, and exposes the switch's hardware statistics counters via the appropriate Linux kernel interfaces. This initial patch supports the MII management interface register layout of the Marvell 88E6123, 88E6161 and 88E6165 switch chips, and supports the "Ethertype DSA" packet tagging format. (There is no officially registered ethertype for the Ethertype DSA packet format, so we just grab a random one. The ethertype to use is programmed into the switch, and the switch driver uses the value of ETH_P_EDSA for this, so this define can be changed at any time in the future if the one we chose is allocated to another protocol or if Ethertype DSA gets its own officially registered ethertype, and everything will continue to work.) Signed-off-by: Lennert Buytenhek <buytenh@marvell.com> Tested-by: Nicolas Pitre <nico@marvell.com> Tested-by: Byron Bradley <byron.bbradley@gmail.com> Tested-by: Tim Ellis <tim.ellis@mac.com> Tested-by: Peter van Valderen <linux@ddcrew.com> Tested-by: Dirk Teurlings <dirk@upexia.nl> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-10-07 20:44:02 +07:00
for (i = 0; i < 6; i++) {
int j;
/* Write the MAC address byte. */
ret = mv88e6xxx_reg_write(ps, REG_GLOBAL2, GLOBAL2_SWITCH_MAC,
GLOBAL2_SWITCH_MAC_BUSY |
(i << 8) | addr[i]);
if (ret)
return ret;
net: Distributed Switch Architecture protocol support Distributed Switch Architecture is a protocol for managing hardware switch chips. It consists of a set of MII management registers and commands to configure the switch, and an ethernet header format to signal which of the ports of the switch a packet was received from or is intended to be sent to. The switches that this driver supports are typically embedded in access points and routers, and a typical setup with a DSA switch looks something like this: +-----------+ +-----------+ | | RGMII | | | +-------+ +------ 1000baseT MDI ("WAN") | | | 6-port +------ 1000baseT MDI ("LAN1") | CPU | | ethernet +------ 1000baseT MDI ("LAN2") | |MIImgmt| switch +------ 1000baseT MDI ("LAN3") | +-------+ w/5 PHYs +------ 1000baseT MDI ("LAN4") | | | | +-----------+ +-----------+ The switch driver presents each port on the switch as a separate network interface to Linux, polls the switch to maintain software link state of those ports, forwards MII management interface accesses to those network interfaces (e.g. as done by ethtool) to the switch, and exposes the switch's hardware statistics counters via the appropriate Linux kernel interfaces. This initial patch supports the MII management interface register layout of the Marvell 88E6123, 88E6161 and 88E6165 switch chips, and supports the "Ethertype DSA" packet tagging format. (There is no officially registered ethertype for the Ethertype DSA packet format, so we just grab a random one. The ethertype to use is programmed into the switch, and the switch driver uses the value of ETH_P_EDSA for this, so this define can be changed at any time in the future if the one we chose is allocated to another protocol or if Ethertype DSA gets its own officially registered ethertype, and everything will continue to work.) Signed-off-by: Lennert Buytenhek <buytenh@marvell.com> Tested-by: Nicolas Pitre <nico@marvell.com> Tested-by: Byron Bradley <byron.bbradley@gmail.com> Tested-by: Tim Ellis <tim.ellis@mac.com> Tested-by: Peter van Valderen <linux@ddcrew.com> Tested-by: Dirk Teurlings <dirk@upexia.nl> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-10-07 20:44:02 +07:00
/* Wait for the write to complete. */
net: Distributed Switch Architecture protocol support Distributed Switch Architecture is a protocol for managing hardware switch chips. It consists of a set of MII management registers and commands to configure the switch, and an ethernet header format to signal which of the ports of the switch a packet was received from or is intended to be sent to. The switches that this driver supports are typically embedded in access points and routers, and a typical setup with a DSA switch looks something like this: +-----------+ +-----------+ | | RGMII | | | +-------+ +------ 1000baseT MDI ("WAN") | | | 6-port +------ 1000baseT MDI ("LAN1") | CPU | | ethernet +------ 1000baseT MDI ("LAN2") | |MIImgmt| switch +------ 1000baseT MDI ("LAN3") | +-------+ w/5 PHYs +------ 1000baseT MDI ("LAN4") | | | | +-----------+ +-----------+ The switch driver presents each port on the switch as a separate network interface to Linux, polls the switch to maintain software link state of those ports, forwards MII management interface accesses to those network interfaces (e.g. as done by ethtool) to the switch, and exposes the switch's hardware statistics counters via the appropriate Linux kernel interfaces. This initial patch supports the MII management interface register layout of the Marvell 88E6123, 88E6161 and 88E6165 switch chips, and supports the "Ethertype DSA" packet tagging format. (There is no officially registered ethertype for the Ethertype DSA packet format, so we just grab a random one. The ethertype to use is programmed into the switch, and the switch driver uses the value of ETH_P_EDSA for this, so this define can be changed at any time in the future if the one we chose is allocated to another protocol or if Ethertype DSA gets its own officially registered ethertype, and everything will continue to work.) Signed-off-by: Lennert Buytenhek <buytenh@marvell.com> Tested-by: Nicolas Pitre <nico@marvell.com> Tested-by: Byron Bradley <byron.bbradley@gmail.com> Tested-by: Tim Ellis <tim.ellis@mac.com> Tested-by: Peter van Valderen <linux@ddcrew.com> Tested-by: Dirk Teurlings <dirk@upexia.nl> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-10-07 20:44:02 +07:00
for (j = 0; j < 16; j++) {
ret = mv88e6xxx_reg_read(ps, REG_GLOBAL2,
GLOBAL2_SWITCH_MAC);
if (ret < 0)
return ret;
if ((ret & GLOBAL2_SWITCH_MAC_BUSY) == 0)
net: Distributed Switch Architecture protocol support Distributed Switch Architecture is a protocol for managing hardware switch chips. It consists of a set of MII management registers and commands to configure the switch, and an ethernet header format to signal which of the ports of the switch a packet was received from or is intended to be sent to. The switches that this driver supports are typically embedded in access points and routers, and a typical setup with a DSA switch looks something like this: +-----------+ +-----------+ | | RGMII | | | +-------+ +------ 1000baseT MDI ("WAN") | | | 6-port +------ 1000baseT MDI ("LAN1") | CPU | | ethernet +------ 1000baseT MDI ("LAN2") | |MIImgmt| switch +------ 1000baseT MDI ("LAN3") | +-------+ w/5 PHYs +------ 1000baseT MDI ("LAN4") | | | | +-----------+ +-----------+ The switch driver presents each port on the switch as a separate network interface to Linux, polls the switch to maintain software link state of those ports, forwards MII management interface accesses to those network interfaces (e.g. as done by ethtool) to the switch, and exposes the switch's hardware statistics counters via the appropriate Linux kernel interfaces. This initial patch supports the MII management interface register layout of the Marvell 88E6123, 88E6161 and 88E6165 switch chips, and supports the "Ethertype DSA" packet tagging format. (There is no officially registered ethertype for the Ethertype DSA packet format, so we just grab a random one. The ethertype to use is programmed into the switch, and the switch driver uses the value of ETH_P_EDSA for this, so this define can be changed at any time in the future if the one we chose is allocated to another protocol or if Ethertype DSA gets its own officially registered ethertype, and everything will continue to work.) Signed-off-by: Lennert Buytenhek <buytenh@marvell.com> Tested-by: Nicolas Pitre <nico@marvell.com> Tested-by: Byron Bradley <byron.bbradley@gmail.com> Tested-by: Tim Ellis <tim.ellis@mac.com> Tested-by: Peter van Valderen <linux@ddcrew.com> Tested-by: Dirk Teurlings <dirk@upexia.nl> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-10-07 20:44:02 +07:00
break;
}
if (j == 16)
return -ETIMEDOUT;
}
return 0;
}
int mv88e6xxx_set_addr(struct dsa_switch *ds, u8 *addr)
{
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
if (mv88e6xxx_has(ps, MV88E6XXX_FLAG_SWITCH_MAC))
return mv88e6xxx_set_addr_indirect(ds, addr);
else
return mv88e6xxx_set_addr_direct(ds, addr);
}
static int _mv88e6xxx_phy_read(struct mv88e6xxx_priv_state *ps, int addr,
int regnum)
net: Distributed Switch Architecture protocol support Distributed Switch Architecture is a protocol for managing hardware switch chips. It consists of a set of MII management registers and commands to configure the switch, and an ethernet header format to signal which of the ports of the switch a packet was received from or is intended to be sent to. The switches that this driver supports are typically embedded in access points and routers, and a typical setup with a DSA switch looks something like this: +-----------+ +-----------+ | | RGMII | | | +-------+ +------ 1000baseT MDI ("WAN") | | | 6-port +------ 1000baseT MDI ("LAN1") | CPU | | ethernet +------ 1000baseT MDI ("LAN2") | |MIImgmt| switch +------ 1000baseT MDI ("LAN3") | +-------+ w/5 PHYs +------ 1000baseT MDI ("LAN4") | | | | +-----------+ +-----------+ The switch driver presents each port on the switch as a separate network interface to Linux, polls the switch to maintain software link state of those ports, forwards MII management interface accesses to those network interfaces (e.g. as done by ethtool) to the switch, and exposes the switch's hardware statistics counters via the appropriate Linux kernel interfaces. This initial patch supports the MII management interface register layout of the Marvell 88E6123, 88E6161 and 88E6165 switch chips, and supports the "Ethertype DSA" packet tagging format. (There is no officially registered ethertype for the Ethertype DSA packet format, so we just grab a random one. The ethertype to use is programmed into the switch, and the switch driver uses the value of ETH_P_EDSA for this, so this define can be changed at any time in the future if the one we chose is allocated to another protocol or if Ethertype DSA gets its own officially registered ethertype, and everything will continue to work.) Signed-off-by: Lennert Buytenhek <buytenh@marvell.com> Tested-by: Nicolas Pitre <nico@marvell.com> Tested-by: Byron Bradley <byron.bbradley@gmail.com> Tested-by: Tim Ellis <tim.ellis@mac.com> Tested-by: Peter van Valderen <linux@ddcrew.com> Tested-by: Dirk Teurlings <dirk@upexia.nl> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-10-07 20:44:02 +07:00
{
if (addr >= 0)
return _mv88e6xxx_reg_read(ps, addr, regnum);
net: Distributed Switch Architecture protocol support Distributed Switch Architecture is a protocol for managing hardware switch chips. It consists of a set of MII management registers and commands to configure the switch, and an ethernet header format to signal which of the ports of the switch a packet was received from or is intended to be sent to. The switches that this driver supports are typically embedded in access points and routers, and a typical setup with a DSA switch looks something like this: +-----------+ +-----------+ | | RGMII | | | +-------+ +------ 1000baseT MDI ("WAN") | | | 6-port +------ 1000baseT MDI ("LAN1") | CPU | | ethernet +------ 1000baseT MDI ("LAN2") | |MIImgmt| switch +------ 1000baseT MDI ("LAN3") | +-------+ w/5 PHYs +------ 1000baseT MDI ("LAN4") | | | | +-----------+ +-----------+ The switch driver presents each port on the switch as a separate network interface to Linux, polls the switch to maintain software link state of those ports, forwards MII management interface accesses to those network interfaces (e.g. as done by ethtool) to the switch, and exposes the switch's hardware statistics counters via the appropriate Linux kernel interfaces. This initial patch supports the MII management interface register layout of the Marvell 88E6123, 88E6161 and 88E6165 switch chips, and supports the "Ethertype DSA" packet tagging format. (There is no officially registered ethertype for the Ethertype DSA packet format, so we just grab a random one. The ethertype to use is programmed into the switch, and the switch driver uses the value of ETH_P_EDSA for this, so this define can be changed at any time in the future if the one we chose is allocated to another protocol or if Ethertype DSA gets its own officially registered ethertype, and everything will continue to work.) Signed-off-by: Lennert Buytenhek <buytenh@marvell.com> Tested-by: Nicolas Pitre <nico@marvell.com> Tested-by: Byron Bradley <byron.bbradley@gmail.com> Tested-by: Tim Ellis <tim.ellis@mac.com> Tested-by: Peter van Valderen <linux@ddcrew.com> Tested-by: Dirk Teurlings <dirk@upexia.nl> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-10-07 20:44:02 +07:00
return 0xffff;
}
static int _mv88e6xxx_phy_write(struct mv88e6xxx_priv_state *ps, int addr,
int regnum, u16 val)
net: Distributed Switch Architecture protocol support Distributed Switch Architecture is a protocol for managing hardware switch chips. It consists of a set of MII management registers and commands to configure the switch, and an ethernet header format to signal which of the ports of the switch a packet was received from or is intended to be sent to. The switches that this driver supports are typically embedded in access points and routers, and a typical setup with a DSA switch looks something like this: +-----------+ +-----------+ | | RGMII | | | +-------+ +------ 1000baseT MDI ("WAN") | | | 6-port +------ 1000baseT MDI ("LAN1") | CPU | | ethernet +------ 1000baseT MDI ("LAN2") | |MIImgmt| switch +------ 1000baseT MDI ("LAN3") | +-------+ w/5 PHYs +------ 1000baseT MDI ("LAN4") | | | | +-----------+ +-----------+ The switch driver presents each port on the switch as a separate network interface to Linux, polls the switch to maintain software link state of those ports, forwards MII management interface accesses to those network interfaces (e.g. as done by ethtool) to the switch, and exposes the switch's hardware statistics counters via the appropriate Linux kernel interfaces. This initial patch supports the MII management interface register layout of the Marvell 88E6123, 88E6161 and 88E6165 switch chips, and supports the "Ethertype DSA" packet tagging format. (There is no officially registered ethertype for the Ethertype DSA packet format, so we just grab a random one. The ethertype to use is programmed into the switch, and the switch driver uses the value of ETH_P_EDSA for this, so this define can be changed at any time in the future if the one we chose is allocated to another protocol or if Ethertype DSA gets its own officially registered ethertype, and everything will continue to work.) Signed-off-by: Lennert Buytenhek <buytenh@marvell.com> Tested-by: Nicolas Pitre <nico@marvell.com> Tested-by: Byron Bradley <byron.bbradley@gmail.com> Tested-by: Tim Ellis <tim.ellis@mac.com> Tested-by: Peter van Valderen <linux@ddcrew.com> Tested-by: Dirk Teurlings <dirk@upexia.nl> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-10-07 20:44:02 +07:00
{
if (addr >= 0)
return _mv88e6xxx_reg_write(ps, addr, regnum, val);
net: Distributed Switch Architecture protocol support Distributed Switch Architecture is a protocol for managing hardware switch chips. It consists of a set of MII management registers and commands to configure the switch, and an ethernet header format to signal which of the ports of the switch a packet was received from or is intended to be sent to. The switches that this driver supports are typically embedded in access points and routers, and a typical setup with a DSA switch looks something like this: +-----------+ +-----------+ | | RGMII | | | +-------+ +------ 1000baseT MDI ("WAN") | | | 6-port +------ 1000baseT MDI ("LAN1") | CPU | | ethernet +------ 1000baseT MDI ("LAN2") | |MIImgmt| switch +------ 1000baseT MDI ("LAN3") | +-------+ w/5 PHYs +------ 1000baseT MDI ("LAN4") | | | | +-----------+ +-----------+ The switch driver presents each port on the switch as a separate network interface to Linux, polls the switch to maintain software link state of those ports, forwards MII management interface accesses to those network interfaces (e.g. as done by ethtool) to the switch, and exposes the switch's hardware statistics counters via the appropriate Linux kernel interfaces. This initial patch supports the MII management interface register layout of the Marvell 88E6123, 88E6161 and 88E6165 switch chips, and supports the "Ethertype DSA" packet tagging format. (There is no officially registered ethertype for the Ethertype DSA packet format, so we just grab a random one. The ethertype to use is programmed into the switch, and the switch driver uses the value of ETH_P_EDSA for this, so this define can be changed at any time in the future if the one we chose is allocated to another protocol or if Ethertype DSA gets its own officially registered ethertype, and everything will continue to work.) Signed-off-by: Lennert Buytenhek <buytenh@marvell.com> Tested-by: Nicolas Pitre <nico@marvell.com> Tested-by: Byron Bradley <byron.bbradley@gmail.com> Tested-by: Tim Ellis <tim.ellis@mac.com> Tested-by: Peter van Valderen <linux@ddcrew.com> Tested-by: Dirk Teurlings <dirk@upexia.nl> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-10-07 20:44:02 +07:00
return 0;
}
static int mv88e6xxx_ppu_disable(struct mv88e6xxx_priv_state *ps)
{
int ret;
unsigned long timeout;
ret = _mv88e6xxx_reg_read(ps, REG_GLOBAL, GLOBAL_CONTROL);
if (ret < 0)
return ret;
ret = _mv88e6xxx_reg_write(ps, REG_GLOBAL, GLOBAL_CONTROL,
ret & ~GLOBAL_CONTROL_PPU_ENABLE);
if (ret)
return ret;
timeout = jiffies + 1 * HZ;
while (time_before(jiffies, timeout)) {
ret = _mv88e6xxx_reg_read(ps, REG_GLOBAL, GLOBAL_STATUS);
if (ret < 0)
return ret;
usleep_range(1000, 2000);
if ((ret & GLOBAL_STATUS_PPU_MASK) !=
GLOBAL_STATUS_PPU_POLLING)
return 0;
}
return -ETIMEDOUT;
}
static int mv88e6xxx_ppu_enable(struct mv88e6xxx_priv_state *ps)
{
int ret, err;
unsigned long timeout;
net: dsa: mv88e6xxx: fix circular lock in PPU work Lock debugging shows that there is a possible circular lock in the PPU work code. Switch the lock order of smi_mutex and ppu_mutex to fix this. Here's the full trace: [ 4.341325] ====================================================== [ 4.347519] [ INFO: possible circular locking dependency detected ] [ 4.353800] 4.6.0 #4 Not tainted [ 4.357039] ------------------------------------------------------- [ 4.363315] kworker/0:1/328 is trying to acquire lock: [ 4.368463] (&ps->smi_mutex){+.+.+.}, at: [<8049c758>] mv88e6xxx_reg_read+0x30/0x54 [ 4.376313] [ 4.376313] but task is already holding lock: [ 4.382160] (&ps->ppu_mutex){+.+...}, at: [<8049cac0>] mv88e6xxx_ppu_reenable_work+0x28/0xd4 [ 4.390772] [ 4.390772] which lock already depends on the new lock. [ 4.390772] [ 4.398963] [ 4.398963] the existing dependency chain (in reverse order) is: [ 4.406461] [ 4.406461] -> #1 (&ps->ppu_mutex){+.+...}: [ 4.410897] [<806d86bc>] mutex_lock_nested+0x54/0x360 [ 4.416606] [<8049a800>] mv88e6xxx_ppu_access_get+0x28/0x100 [ 4.422906] [<8049b778>] mv88e6xxx_phy_read+0x90/0xdc [ 4.428599] [<806a4534>] dsa_slave_phy_read+0x3c/0x40 [ 4.434300] [<804943ec>] mdiobus_read+0x68/0x80 [ 4.439481] [<804939d4>] get_phy_device+0x58/0x1d8 [ 4.444914] [<80493ed0>] mdiobus_scan+0x24/0xf4 [ 4.450078] [<8049409c>] __mdiobus_register+0xfc/0x1ac [ 4.455857] [<806a40b0>] dsa_probe+0x860/0xca8 [ 4.460934] [<8043246c>] platform_drv_probe+0x5c/0xc0 [ 4.466627] [<804305a0>] driver_probe_device+0x118/0x450 [ 4.472589] [<80430b00>] __device_attach_driver+0xac/0x128 [ 4.478724] [<8042e350>] bus_for_each_drv+0x74/0xa8 [ 4.484235] [<804302d8>] __device_attach+0xc4/0x154 [ 4.489755] [<80430cec>] device_initial_probe+0x1c/0x20 [ 4.495612] [<8042f620>] bus_probe_device+0x98/0xa0 [ 4.501123] [<8042fbd0>] deferred_probe_work_func+0x4c/0xd4 [ 4.507328] [<8013a794>] process_one_work+0x1a8/0x604 [ 4.513030] [<8013ac54>] worker_thread+0x64/0x528 [ 4.518367] [<801409e8>] kthread+0xec/0x100 [ 4.523201] [<80108f30>] ret_from_fork+0x14/0x24 [ 4.528462] [ 4.528462] -> #0 (&ps->smi_mutex){+.+.+.}: [ 4.532895] [<8015ad5c>] lock_acquire+0xb4/0x1dc [ 4.538154] [<806d86bc>] mutex_lock_nested+0x54/0x360 [ 4.543856] [<8049c758>] mv88e6xxx_reg_read+0x30/0x54 [ 4.549549] [<8049cad8>] mv88e6xxx_ppu_reenable_work+0x40/0xd4 [ 4.556022] [<8013a794>] process_one_work+0x1a8/0x604 [ 4.561707] [<8013ac54>] worker_thread+0x64/0x528 [ 4.567053] [<801409e8>] kthread+0xec/0x100 [ 4.571878] [<80108f30>] ret_from_fork+0x14/0x24 [ 4.577139] [ 4.577139] other info that might help us debug this: [ 4.577139] [ 4.585159] Possible unsafe locking scenario: [ 4.585159] [ 4.591093] CPU0 CPU1 [ 4.595631] ---- ---- [ 4.600169] lock(&ps->ppu_mutex); [ 4.603693] lock(&ps->smi_mutex); [ 4.609742] lock(&ps->ppu_mutex); [ 4.615790] lock(&ps->smi_mutex); [ 4.619314] [ 4.619314] *** DEADLOCK *** [ 4.619314] [ 4.625256] 3 locks held by kworker/0:1/328: [ 4.629537] #0: ("events"){.+.+..}, at: [<8013a704>] process_one_work+0x118/0x604 [ 4.637288] #1: ((&ps->ppu_work)){+.+...}, at: [<8013a704>] process_one_work+0x118/0x604 [ 4.645653] #2: (&ps->ppu_mutex){+.+...}, at: [<8049cac0>] mv88e6xxx_ppu_reenable_work+0x28/0xd4 [ 4.654714] [ 4.654714] stack backtrace: [ 4.659098] CPU: 0 PID: 328 Comm: kworker/0:1 Not tainted 4.6.0 #4 [ 4.665286] Hardware name: Freescale Vybrid VF5xx/VF6xx (Device Tree) [ 4.671748] Workqueue: events mv88e6xxx_ppu_reenable_work [ 4.677174] Backtrace: [ 4.679674] [<8010d354>] (dump_backtrace) from [<8010d5a0>] (show_stack+0x20/0x24) [ 4.687252] r6:80fb3c88 r5:80fb3c88 r4:80fb4728 r3:00000002 [ 4.693003] [<8010d580>] (show_stack) from [<803b45e8>] (dump_stack+0x24/0x28) [ 4.700246] [<803b45c4>] (dump_stack) from [<80157398>] (print_circular_bug+0x208/0x32c) [ 4.708361] [<80157190>] (print_circular_bug) from [<8015a630>] (__lock_acquire+0x185c/0x1b80) [ 4.716982] r10:9ec22a00 r9:00000060 r8:8164b6bc r7:00000040 r6:00000003 r5:8163a5b4 [ 4.724905] r4:00000003 r3:9ec22de8 [ 4.728537] [<80158dd4>] (__lock_acquire) from [<8015ad5c>] (lock_acquire+0xb4/0x1dc) [ 4.736378] r10:60000013 r9:00000000 r8:00000000 r7:00000000 r6:9e5e9c50 r5:80e618e0 [ 4.744301] r4:00000000 [ 4.746879] [<8015aca8>] (lock_acquire) from [<806d86bc>] (mutex_lock_nested+0x54/0x360) [ 4.754976] r10:9e5e9c1c r9:80e616c4 r8:9f685ea0 r7:0000001b r6:9ec22a00 r5:8163a5b4 [ 4.762899] r4:9e5e9c1c [ 4.765477] [<806d8668>] (mutex_lock_nested) from [<8049c758>] (mv88e6xxx_reg_read+0x30/0x54) [ 4.774008] r10:80e60c5b r9:80e616c4 r8:9f685ea0 r7:0000001b r6:00000004 r5:9e5e9c10 [ 4.781930] r4:9e5e9c1c [ 4.784507] [<8049c728>] (mv88e6xxx_reg_read) from [<8049cad8>] (mv88e6xxx_ppu_reenable_work+0x40/0xd4) [ 4.793907] r7:9ffd5400 r6:9e5e9c68 r5:9e5e9cb0 r4:9e5e9c10 [ 4.799659] [<8049ca98>] (mv88e6xxx_ppu_reenable_work) from [<8013a794>] (process_one_work+0x1a8/0x604) [ 4.809059] r9:80e616c4 r8:9f685ea0 r7:9ffd5400 r6:80e0a1c8 r5:9f5f2e80 r4:9e5e9cb0 [ 4.816910] [<8013a5ec>] (process_one_work) from [<8013ac54>] (worker_thread+0x64/0x528) [ 4.825010] r10:9f5f2e80 r9:00000008 r8:80e0dc80 r7:80e0a1fc r6:80e0a1c8 r5:9f5f2e98 [ 4.832933] r4:80e0a1c8 [ 4.835510] [<8013abf0>] (worker_thread) from [<801409e8>] (kthread+0xec/0x100) [ 4.842827] r10:00000000 r9:00000000 r8:00000000 r7:8013abf0 r6:9f5f2e80 r5:9ec15740 [ 4.850749] r4:00000000 [ 4.853327] [<801408fc>] (kthread) from [<80108f30>] (ret_from_fork+0x14/0x24) [ 4.860557] r7:00000000 r6:00000000 r5:801408fc r4:9ec15740 Signed-off-by: Vivien Didelot <vivien.didelot@savoirfairelinux.com> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Reviewed-by: Vivien Didelot <vivien.didelot@savoirfairelinux.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-06-05 02:16:54 +07:00
ret = _mv88e6xxx_reg_read(ps, REG_GLOBAL, GLOBAL_CONTROL);
if (ret < 0)
return ret;
net: dsa: mv88e6xxx: fix circular lock in PPU work Lock debugging shows that there is a possible circular lock in the PPU work code. Switch the lock order of smi_mutex and ppu_mutex to fix this. Here's the full trace: [ 4.341325] ====================================================== [ 4.347519] [ INFO: possible circular locking dependency detected ] [ 4.353800] 4.6.0 #4 Not tainted [ 4.357039] ------------------------------------------------------- [ 4.363315] kworker/0:1/328 is trying to acquire lock: [ 4.368463] (&ps->smi_mutex){+.+.+.}, at: [<8049c758>] mv88e6xxx_reg_read+0x30/0x54 [ 4.376313] [ 4.376313] but task is already holding lock: [ 4.382160] (&ps->ppu_mutex){+.+...}, at: [<8049cac0>] mv88e6xxx_ppu_reenable_work+0x28/0xd4 [ 4.390772] [ 4.390772] which lock already depends on the new lock. [ 4.390772] [ 4.398963] [ 4.398963] the existing dependency chain (in reverse order) is: [ 4.406461] [ 4.406461] -> #1 (&ps->ppu_mutex){+.+...}: [ 4.410897] [<806d86bc>] mutex_lock_nested+0x54/0x360 [ 4.416606] [<8049a800>] mv88e6xxx_ppu_access_get+0x28/0x100 [ 4.422906] [<8049b778>] mv88e6xxx_phy_read+0x90/0xdc [ 4.428599] [<806a4534>] dsa_slave_phy_read+0x3c/0x40 [ 4.434300] [<804943ec>] mdiobus_read+0x68/0x80 [ 4.439481] [<804939d4>] get_phy_device+0x58/0x1d8 [ 4.444914] [<80493ed0>] mdiobus_scan+0x24/0xf4 [ 4.450078] [<8049409c>] __mdiobus_register+0xfc/0x1ac [ 4.455857] [<806a40b0>] dsa_probe+0x860/0xca8 [ 4.460934] [<8043246c>] platform_drv_probe+0x5c/0xc0 [ 4.466627] [<804305a0>] driver_probe_device+0x118/0x450 [ 4.472589] [<80430b00>] __device_attach_driver+0xac/0x128 [ 4.478724] [<8042e350>] bus_for_each_drv+0x74/0xa8 [ 4.484235] [<804302d8>] __device_attach+0xc4/0x154 [ 4.489755] [<80430cec>] device_initial_probe+0x1c/0x20 [ 4.495612] [<8042f620>] bus_probe_device+0x98/0xa0 [ 4.501123] [<8042fbd0>] deferred_probe_work_func+0x4c/0xd4 [ 4.507328] [<8013a794>] process_one_work+0x1a8/0x604 [ 4.513030] [<8013ac54>] worker_thread+0x64/0x528 [ 4.518367] [<801409e8>] kthread+0xec/0x100 [ 4.523201] [<80108f30>] ret_from_fork+0x14/0x24 [ 4.528462] [ 4.528462] -> #0 (&ps->smi_mutex){+.+.+.}: [ 4.532895] [<8015ad5c>] lock_acquire+0xb4/0x1dc [ 4.538154] [<806d86bc>] mutex_lock_nested+0x54/0x360 [ 4.543856] [<8049c758>] mv88e6xxx_reg_read+0x30/0x54 [ 4.549549] [<8049cad8>] mv88e6xxx_ppu_reenable_work+0x40/0xd4 [ 4.556022] [<8013a794>] process_one_work+0x1a8/0x604 [ 4.561707] [<8013ac54>] worker_thread+0x64/0x528 [ 4.567053] [<801409e8>] kthread+0xec/0x100 [ 4.571878] [<80108f30>] ret_from_fork+0x14/0x24 [ 4.577139] [ 4.577139] other info that might help us debug this: [ 4.577139] [ 4.585159] Possible unsafe locking scenario: [ 4.585159] [ 4.591093] CPU0 CPU1 [ 4.595631] ---- ---- [ 4.600169] lock(&ps->ppu_mutex); [ 4.603693] lock(&ps->smi_mutex); [ 4.609742] lock(&ps->ppu_mutex); [ 4.615790] lock(&ps->smi_mutex); [ 4.619314] [ 4.619314] *** DEADLOCK *** [ 4.619314] [ 4.625256] 3 locks held by kworker/0:1/328: [ 4.629537] #0: ("events"){.+.+..}, at: [<8013a704>] process_one_work+0x118/0x604 [ 4.637288] #1: ((&ps->ppu_work)){+.+...}, at: [<8013a704>] process_one_work+0x118/0x604 [ 4.645653] #2: (&ps->ppu_mutex){+.+...}, at: [<8049cac0>] mv88e6xxx_ppu_reenable_work+0x28/0xd4 [ 4.654714] [ 4.654714] stack backtrace: [ 4.659098] CPU: 0 PID: 328 Comm: kworker/0:1 Not tainted 4.6.0 #4 [ 4.665286] Hardware name: Freescale Vybrid VF5xx/VF6xx (Device Tree) [ 4.671748] Workqueue: events mv88e6xxx_ppu_reenable_work [ 4.677174] Backtrace: [ 4.679674] [<8010d354>] (dump_backtrace) from [<8010d5a0>] (show_stack+0x20/0x24) [ 4.687252] r6:80fb3c88 r5:80fb3c88 r4:80fb4728 r3:00000002 [ 4.693003] [<8010d580>] (show_stack) from [<803b45e8>] (dump_stack+0x24/0x28) [ 4.700246] [<803b45c4>] (dump_stack) from [<80157398>] (print_circular_bug+0x208/0x32c) [ 4.708361] [<80157190>] (print_circular_bug) from [<8015a630>] (__lock_acquire+0x185c/0x1b80) [ 4.716982] r10:9ec22a00 r9:00000060 r8:8164b6bc r7:00000040 r6:00000003 r5:8163a5b4 [ 4.724905] r4:00000003 r3:9ec22de8 [ 4.728537] [<80158dd4>] (__lock_acquire) from [<8015ad5c>] (lock_acquire+0xb4/0x1dc) [ 4.736378] r10:60000013 r9:00000000 r8:00000000 r7:00000000 r6:9e5e9c50 r5:80e618e0 [ 4.744301] r4:00000000 [ 4.746879] [<8015aca8>] (lock_acquire) from [<806d86bc>] (mutex_lock_nested+0x54/0x360) [ 4.754976] r10:9e5e9c1c r9:80e616c4 r8:9f685ea0 r7:0000001b r6:9ec22a00 r5:8163a5b4 [ 4.762899] r4:9e5e9c1c [ 4.765477] [<806d8668>] (mutex_lock_nested) from [<8049c758>] (mv88e6xxx_reg_read+0x30/0x54) [ 4.774008] r10:80e60c5b r9:80e616c4 r8:9f685ea0 r7:0000001b r6:00000004 r5:9e5e9c10 [ 4.781930] r4:9e5e9c1c [ 4.784507] [<8049c728>] (mv88e6xxx_reg_read) from [<8049cad8>] (mv88e6xxx_ppu_reenable_work+0x40/0xd4) [ 4.793907] r7:9ffd5400 r6:9e5e9c68 r5:9e5e9cb0 r4:9e5e9c10 [ 4.799659] [<8049ca98>] (mv88e6xxx_ppu_reenable_work) from [<8013a794>] (process_one_work+0x1a8/0x604) [ 4.809059] r9:80e616c4 r8:9f685ea0 r7:9ffd5400 r6:80e0a1c8 r5:9f5f2e80 r4:9e5e9cb0 [ 4.816910] [<8013a5ec>] (process_one_work) from [<8013ac54>] (worker_thread+0x64/0x528) [ 4.825010] r10:9f5f2e80 r9:00000008 r8:80e0dc80 r7:80e0a1fc r6:80e0a1c8 r5:9f5f2e98 [ 4.832933] r4:80e0a1c8 [ 4.835510] [<8013abf0>] (worker_thread) from [<801409e8>] (kthread+0xec/0x100) [ 4.842827] r10:00000000 r9:00000000 r8:00000000 r7:8013abf0 r6:9f5f2e80 r5:9ec15740 [ 4.850749] r4:00000000 [ 4.853327] [<801408fc>] (kthread) from [<80108f30>] (ret_from_fork+0x14/0x24) [ 4.860557] r7:00000000 r6:00000000 r5:801408fc r4:9ec15740 Signed-off-by: Vivien Didelot <vivien.didelot@savoirfairelinux.com> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Reviewed-by: Vivien Didelot <vivien.didelot@savoirfairelinux.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-06-05 02:16:54 +07:00
err = _mv88e6xxx_reg_write(ps, REG_GLOBAL, GLOBAL_CONTROL,
ret | GLOBAL_CONTROL_PPU_ENABLE);
if (err)
return err;
timeout = jiffies + 1 * HZ;
while (time_before(jiffies, timeout)) {
net: dsa: mv88e6xxx: fix circular lock in PPU work Lock debugging shows that there is a possible circular lock in the PPU work code. Switch the lock order of smi_mutex and ppu_mutex to fix this. Here's the full trace: [ 4.341325] ====================================================== [ 4.347519] [ INFO: possible circular locking dependency detected ] [ 4.353800] 4.6.0 #4 Not tainted [ 4.357039] ------------------------------------------------------- [ 4.363315] kworker/0:1/328 is trying to acquire lock: [ 4.368463] (&ps->smi_mutex){+.+.+.}, at: [<8049c758>] mv88e6xxx_reg_read+0x30/0x54 [ 4.376313] [ 4.376313] but task is already holding lock: [ 4.382160] (&ps->ppu_mutex){+.+...}, at: [<8049cac0>] mv88e6xxx_ppu_reenable_work+0x28/0xd4 [ 4.390772] [ 4.390772] which lock already depends on the new lock. [ 4.390772] [ 4.398963] [ 4.398963] the existing dependency chain (in reverse order) is: [ 4.406461] [ 4.406461] -> #1 (&ps->ppu_mutex){+.+...}: [ 4.410897] [<806d86bc>] mutex_lock_nested+0x54/0x360 [ 4.416606] [<8049a800>] mv88e6xxx_ppu_access_get+0x28/0x100 [ 4.422906] [<8049b778>] mv88e6xxx_phy_read+0x90/0xdc [ 4.428599] [<806a4534>] dsa_slave_phy_read+0x3c/0x40 [ 4.434300] [<804943ec>] mdiobus_read+0x68/0x80 [ 4.439481] [<804939d4>] get_phy_device+0x58/0x1d8 [ 4.444914] [<80493ed0>] mdiobus_scan+0x24/0xf4 [ 4.450078] [<8049409c>] __mdiobus_register+0xfc/0x1ac [ 4.455857] [<806a40b0>] dsa_probe+0x860/0xca8 [ 4.460934] [<8043246c>] platform_drv_probe+0x5c/0xc0 [ 4.466627] [<804305a0>] driver_probe_device+0x118/0x450 [ 4.472589] [<80430b00>] __device_attach_driver+0xac/0x128 [ 4.478724] [<8042e350>] bus_for_each_drv+0x74/0xa8 [ 4.484235] [<804302d8>] __device_attach+0xc4/0x154 [ 4.489755] [<80430cec>] device_initial_probe+0x1c/0x20 [ 4.495612] [<8042f620>] bus_probe_device+0x98/0xa0 [ 4.501123] [<8042fbd0>] deferred_probe_work_func+0x4c/0xd4 [ 4.507328] [<8013a794>] process_one_work+0x1a8/0x604 [ 4.513030] [<8013ac54>] worker_thread+0x64/0x528 [ 4.518367] [<801409e8>] kthread+0xec/0x100 [ 4.523201] [<80108f30>] ret_from_fork+0x14/0x24 [ 4.528462] [ 4.528462] -> #0 (&ps->smi_mutex){+.+.+.}: [ 4.532895] [<8015ad5c>] lock_acquire+0xb4/0x1dc [ 4.538154] [<806d86bc>] mutex_lock_nested+0x54/0x360 [ 4.543856] [<8049c758>] mv88e6xxx_reg_read+0x30/0x54 [ 4.549549] [<8049cad8>] mv88e6xxx_ppu_reenable_work+0x40/0xd4 [ 4.556022] [<8013a794>] process_one_work+0x1a8/0x604 [ 4.561707] [<8013ac54>] worker_thread+0x64/0x528 [ 4.567053] [<801409e8>] kthread+0xec/0x100 [ 4.571878] [<80108f30>] ret_from_fork+0x14/0x24 [ 4.577139] [ 4.577139] other info that might help us debug this: [ 4.577139] [ 4.585159] Possible unsafe locking scenario: [ 4.585159] [ 4.591093] CPU0 CPU1 [ 4.595631] ---- ---- [ 4.600169] lock(&ps->ppu_mutex); [ 4.603693] lock(&ps->smi_mutex); [ 4.609742] lock(&ps->ppu_mutex); [ 4.615790] lock(&ps->smi_mutex); [ 4.619314] [ 4.619314] *** DEADLOCK *** [ 4.619314] [ 4.625256] 3 locks held by kworker/0:1/328: [ 4.629537] #0: ("events"){.+.+..}, at: [<8013a704>] process_one_work+0x118/0x604 [ 4.637288] #1: ((&ps->ppu_work)){+.+...}, at: [<8013a704>] process_one_work+0x118/0x604 [ 4.645653] #2: (&ps->ppu_mutex){+.+...}, at: [<8049cac0>] mv88e6xxx_ppu_reenable_work+0x28/0xd4 [ 4.654714] [ 4.654714] stack backtrace: [ 4.659098] CPU: 0 PID: 328 Comm: kworker/0:1 Not tainted 4.6.0 #4 [ 4.665286] Hardware name: Freescale Vybrid VF5xx/VF6xx (Device Tree) [ 4.671748] Workqueue: events mv88e6xxx_ppu_reenable_work [ 4.677174] Backtrace: [ 4.679674] [<8010d354>] (dump_backtrace) from [<8010d5a0>] (show_stack+0x20/0x24) [ 4.687252] r6:80fb3c88 r5:80fb3c88 r4:80fb4728 r3:00000002 [ 4.693003] [<8010d580>] (show_stack) from [<803b45e8>] (dump_stack+0x24/0x28) [ 4.700246] [<803b45c4>] (dump_stack) from [<80157398>] (print_circular_bug+0x208/0x32c) [ 4.708361] [<80157190>] (print_circular_bug) from [<8015a630>] (__lock_acquire+0x185c/0x1b80) [ 4.716982] r10:9ec22a00 r9:00000060 r8:8164b6bc r7:00000040 r6:00000003 r5:8163a5b4 [ 4.724905] r4:00000003 r3:9ec22de8 [ 4.728537] [<80158dd4>] (__lock_acquire) from [<8015ad5c>] (lock_acquire+0xb4/0x1dc) [ 4.736378] r10:60000013 r9:00000000 r8:00000000 r7:00000000 r6:9e5e9c50 r5:80e618e0 [ 4.744301] r4:00000000 [ 4.746879] [<8015aca8>] (lock_acquire) from [<806d86bc>] (mutex_lock_nested+0x54/0x360) [ 4.754976] r10:9e5e9c1c r9:80e616c4 r8:9f685ea0 r7:0000001b r6:9ec22a00 r5:8163a5b4 [ 4.762899] r4:9e5e9c1c [ 4.765477] [<806d8668>] (mutex_lock_nested) from [<8049c758>] (mv88e6xxx_reg_read+0x30/0x54) [ 4.774008] r10:80e60c5b r9:80e616c4 r8:9f685ea0 r7:0000001b r6:00000004 r5:9e5e9c10 [ 4.781930] r4:9e5e9c1c [ 4.784507] [<8049c728>] (mv88e6xxx_reg_read) from [<8049cad8>] (mv88e6xxx_ppu_reenable_work+0x40/0xd4) [ 4.793907] r7:9ffd5400 r6:9e5e9c68 r5:9e5e9cb0 r4:9e5e9c10 [ 4.799659] [<8049ca98>] (mv88e6xxx_ppu_reenable_work) from [<8013a794>] (process_one_work+0x1a8/0x604) [ 4.809059] r9:80e616c4 r8:9f685ea0 r7:9ffd5400 r6:80e0a1c8 r5:9f5f2e80 r4:9e5e9cb0 [ 4.816910] [<8013a5ec>] (process_one_work) from [<8013ac54>] (worker_thread+0x64/0x528) [ 4.825010] r10:9f5f2e80 r9:00000008 r8:80e0dc80 r7:80e0a1fc r6:80e0a1c8 r5:9f5f2e98 [ 4.832933] r4:80e0a1c8 [ 4.835510] [<8013abf0>] (worker_thread) from [<801409e8>] (kthread+0xec/0x100) [ 4.842827] r10:00000000 r9:00000000 r8:00000000 r7:8013abf0 r6:9f5f2e80 r5:9ec15740 [ 4.850749] r4:00000000 [ 4.853327] [<801408fc>] (kthread) from [<80108f30>] (ret_from_fork+0x14/0x24) [ 4.860557] r7:00000000 r6:00000000 r5:801408fc r4:9ec15740 Signed-off-by: Vivien Didelot <vivien.didelot@savoirfairelinux.com> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Reviewed-by: Vivien Didelot <vivien.didelot@savoirfairelinux.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-06-05 02:16:54 +07:00
ret = _mv88e6xxx_reg_read(ps, REG_GLOBAL, GLOBAL_STATUS);
if (ret < 0)
return ret;
usleep_range(1000, 2000);
if ((ret & GLOBAL_STATUS_PPU_MASK) ==
GLOBAL_STATUS_PPU_POLLING)
return 0;
}
return -ETIMEDOUT;
}
static void mv88e6xxx_ppu_reenable_work(struct work_struct *ugly)
{
struct mv88e6xxx_priv_state *ps;
ps = container_of(ugly, struct mv88e6xxx_priv_state, ppu_work);
net: dsa: mv88e6xxx: fix circular lock in PPU work Lock debugging shows that there is a possible circular lock in the PPU work code. Switch the lock order of smi_mutex and ppu_mutex to fix this. Here's the full trace: [ 4.341325] ====================================================== [ 4.347519] [ INFO: possible circular locking dependency detected ] [ 4.353800] 4.6.0 #4 Not tainted [ 4.357039] ------------------------------------------------------- [ 4.363315] kworker/0:1/328 is trying to acquire lock: [ 4.368463] (&ps->smi_mutex){+.+.+.}, at: [<8049c758>] mv88e6xxx_reg_read+0x30/0x54 [ 4.376313] [ 4.376313] but task is already holding lock: [ 4.382160] (&ps->ppu_mutex){+.+...}, at: [<8049cac0>] mv88e6xxx_ppu_reenable_work+0x28/0xd4 [ 4.390772] [ 4.390772] which lock already depends on the new lock. [ 4.390772] [ 4.398963] [ 4.398963] the existing dependency chain (in reverse order) is: [ 4.406461] [ 4.406461] -> #1 (&ps->ppu_mutex){+.+...}: [ 4.410897] [<806d86bc>] mutex_lock_nested+0x54/0x360 [ 4.416606] [<8049a800>] mv88e6xxx_ppu_access_get+0x28/0x100 [ 4.422906] [<8049b778>] mv88e6xxx_phy_read+0x90/0xdc [ 4.428599] [<806a4534>] dsa_slave_phy_read+0x3c/0x40 [ 4.434300] [<804943ec>] mdiobus_read+0x68/0x80 [ 4.439481] [<804939d4>] get_phy_device+0x58/0x1d8 [ 4.444914] [<80493ed0>] mdiobus_scan+0x24/0xf4 [ 4.450078] [<8049409c>] __mdiobus_register+0xfc/0x1ac [ 4.455857] [<806a40b0>] dsa_probe+0x860/0xca8 [ 4.460934] [<8043246c>] platform_drv_probe+0x5c/0xc0 [ 4.466627] [<804305a0>] driver_probe_device+0x118/0x450 [ 4.472589] [<80430b00>] __device_attach_driver+0xac/0x128 [ 4.478724] [<8042e350>] bus_for_each_drv+0x74/0xa8 [ 4.484235] [<804302d8>] __device_attach+0xc4/0x154 [ 4.489755] [<80430cec>] device_initial_probe+0x1c/0x20 [ 4.495612] [<8042f620>] bus_probe_device+0x98/0xa0 [ 4.501123] [<8042fbd0>] deferred_probe_work_func+0x4c/0xd4 [ 4.507328] [<8013a794>] process_one_work+0x1a8/0x604 [ 4.513030] [<8013ac54>] worker_thread+0x64/0x528 [ 4.518367] [<801409e8>] kthread+0xec/0x100 [ 4.523201] [<80108f30>] ret_from_fork+0x14/0x24 [ 4.528462] [ 4.528462] -> #0 (&ps->smi_mutex){+.+.+.}: [ 4.532895] [<8015ad5c>] lock_acquire+0xb4/0x1dc [ 4.538154] [<806d86bc>] mutex_lock_nested+0x54/0x360 [ 4.543856] [<8049c758>] mv88e6xxx_reg_read+0x30/0x54 [ 4.549549] [<8049cad8>] mv88e6xxx_ppu_reenable_work+0x40/0xd4 [ 4.556022] [<8013a794>] process_one_work+0x1a8/0x604 [ 4.561707] [<8013ac54>] worker_thread+0x64/0x528 [ 4.567053] [<801409e8>] kthread+0xec/0x100 [ 4.571878] [<80108f30>] ret_from_fork+0x14/0x24 [ 4.577139] [ 4.577139] other info that might help us debug this: [ 4.577139] [ 4.585159] Possible unsafe locking scenario: [ 4.585159] [ 4.591093] CPU0 CPU1 [ 4.595631] ---- ---- [ 4.600169] lock(&ps->ppu_mutex); [ 4.603693] lock(&ps->smi_mutex); [ 4.609742] lock(&ps->ppu_mutex); [ 4.615790] lock(&ps->smi_mutex); [ 4.619314] [ 4.619314] *** DEADLOCK *** [ 4.619314] [ 4.625256] 3 locks held by kworker/0:1/328: [ 4.629537] #0: ("events"){.+.+..}, at: [<8013a704>] process_one_work+0x118/0x604 [ 4.637288] #1: ((&ps->ppu_work)){+.+...}, at: [<8013a704>] process_one_work+0x118/0x604 [ 4.645653] #2: (&ps->ppu_mutex){+.+...}, at: [<8049cac0>] mv88e6xxx_ppu_reenable_work+0x28/0xd4 [ 4.654714] [ 4.654714] stack backtrace: [ 4.659098] CPU: 0 PID: 328 Comm: kworker/0:1 Not tainted 4.6.0 #4 [ 4.665286] Hardware name: Freescale Vybrid VF5xx/VF6xx (Device Tree) [ 4.671748] Workqueue: events mv88e6xxx_ppu_reenable_work [ 4.677174] Backtrace: [ 4.679674] [<8010d354>] (dump_backtrace) from [<8010d5a0>] (show_stack+0x20/0x24) [ 4.687252] r6:80fb3c88 r5:80fb3c88 r4:80fb4728 r3:00000002 [ 4.693003] [<8010d580>] (show_stack) from [<803b45e8>] (dump_stack+0x24/0x28) [ 4.700246] [<803b45c4>] (dump_stack) from [<80157398>] (print_circular_bug+0x208/0x32c) [ 4.708361] [<80157190>] (print_circular_bug) from [<8015a630>] (__lock_acquire+0x185c/0x1b80) [ 4.716982] r10:9ec22a00 r9:00000060 r8:8164b6bc r7:00000040 r6:00000003 r5:8163a5b4 [ 4.724905] r4:00000003 r3:9ec22de8 [ 4.728537] [<80158dd4>] (__lock_acquire) from [<8015ad5c>] (lock_acquire+0xb4/0x1dc) [ 4.736378] r10:60000013 r9:00000000 r8:00000000 r7:00000000 r6:9e5e9c50 r5:80e618e0 [ 4.744301] r4:00000000 [ 4.746879] [<8015aca8>] (lock_acquire) from [<806d86bc>] (mutex_lock_nested+0x54/0x360) [ 4.754976] r10:9e5e9c1c r9:80e616c4 r8:9f685ea0 r7:0000001b r6:9ec22a00 r5:8163a5b4 [ 4.762899] r4:9e5e9c1c [ 4.765477] [<806d8668>] (mutex_lock_nested) from [<8049c758>] (mv88e6xxx_reg_read+0x30/0x54) [ 4.774008] r10:80e60c5b r9:80e616c4 r8:9f685ea0 r7:0000001b r6:00000004 r5:9e5e9c10 [ 4.781930] r4:9e5e9c1c [ 4.784507] [<8049c728>] (mv88e6xxx_reg_read) from [<8049cad8>] (mv88e6xxx_ppu_reenable_work+0x40/0xd4) [ 4.793907] r7:9ffd5400 r6:9e5e9c68 r5:9e5e9cb0 r4:9e5e9c10 [ 4.799659] [<8049ca98>] (mv88e6xxx_ppu_reenable_work) from [<8013a794>] (process_one_work+0x1a8/0x604) [ 4.809059] r9:80e616c4 r8:9f685ea0 r7:9ffd5400 r6:80e0a1c8 r5:9f5f2e80 r4:9e5e9cb0 [ 4.816910] [<8013a5ec>] (process_one_work) from [<8013ac54>] (worker_thread+0x64/0x528) [ 4.825010] r10:9f5f2e80 r9:00000008 r8:80e0dc80 r7:80e0a1fc r6:80e0a1c8 r5:9f5f2e98 [ 4.832933] r4:80e0a1c8 [ 4.835510] [<8013abf0>] (worker_thread) from [<801409e8>] (kthread+0xec/0x100) [ 4.842827] r10:00000000 r9:00000000 r8:00000000 r7:8013abf0 r6:9f5f2e80 r5:9ec15740 [ 4.850749] r4:00000000 [ 4.853327] [<801408fc>] (kthread) from [<80108f30>] (ret_from_fork+0x14/0x24) [ 4.860557] r7:00000000 r6:00000000 r5:801408fc r4:9ec15740 Signed-off-by: Vivien Didelot <vivien.didelot@savoirfairelinux.com> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Reviewed-by: Vivien Didelot <vivien.didelot@savoirfairelinux.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-06-05 02:16:54 +07:00
mutex_lock(&ps->smi_mutex);
if (mutex_trylock(&ps->ppu_mutex)) {
if (mv88e6xxx_ppu_enable(ps) == 0)
ps->ppu_disabled = 0;
mutex_unlock(&ps->ppu_mutex);
}
net: dsa: mv88e6xxx: fix circular lock in PPU work Lock debugging shows that there is a possible circular lock in the PPU work code. Switch the lock order of smi_mutex and ppu_mutex to fix this. Here's the full trace: [ 4.341325] ====================================================== [ 4.347519] [ INFO: possible circular locking dependency detected ] [ 4.353800] 4.6.0 #4 Not tainted [ 4.357039] ------------------------------------------------------- [ 4.363315] kworker/0:1/328 is trying to acquire lock: [ 4.368463] (&ps->smi_mutex){+.+.+.}, at: [<8049c758>] mv88e6xxx_reg_read+0x30/0x54 [ 4.376313] [ 4.376313] but task is already holding lock: [ 4.382160] (&ps->ppu_mutex){+.+...}, at: [<8049cac0>] mv88e6xxx_ppu_reenable_work+0x28/0xd4 [ 4.390772] [ 4.390772] which lock already depends on the new lock. [ 4.390772] [ 4.398963] [ 4.398963] the existing dependency chain (in reverse order) is: [ 4.406461] [ 4.406461] -> #1 (&ps->ppu_mutex){+.+...}: [ 4.410897] [<806d86bc>] mutex_lock_nested+0x54/0x360 [ 4.416606] [<8049a800>] mv88e6xxx_ppu_access_get+0x28/0x100 [ 4.422906] [<8049b778>] mv88e6xxx_phy_read+0x90/0xdc [ 4.428599] [<806a4534>] dsa_slave_phy_read+0x3c/0x40 [ 4.434300] [<804943ec>] mdiobus_read+0x68/0x80 [ 4.439481] [<804939d4>] get_phy_device+0x58/0x1d8 [ 4.444914] [<80493ed0>] mdiobus_scan+0x24/0xf4 [ 4.450078] [<8049409c>] __mdiobus_register+0xfc/0x1ac [ 4.455857] [<806a40b0>] dsa_probe+0x860/0xca8 [ 4.460934] [<8043246c>] platform_drv_probe+0x5c/0xc0 [ 4.466627] [<804305a0>] driver_probe_device+0x118/0x450 [ 4.472589] [<80430b00>] __device_attach_driver+0xac/0x128 [ 4.478724] [<8042e350>] bus_for_each_drv+0x74/0xa8 [ 4.484235] [<804302d8>] __device_attach+0xc4/0x154 [ 4.489755] [<80430cec>] device_initial_probe+0x1c/0x20 [ 4.495612] [<8042f620>] bus_probe_device+0x98/0xa0 [ 4.501123] [<8042fbd0>] deferred_probe_work_func+0x4c/0xd4 [ 4.507328] [<8013a794>] process_one_work+0x1a8/0x604 [ 4.513030] [<8013ac54>] worker_thread+0x64/0x528 [ 4.518367] [<801409e8>] kthread+0xec/0x100 [ 4.523201] [<80108f30>] ret_from_fork+0x14/0x24 [ 4.528462] [ 4.528462] -> #0 (&ps->smi_mutex){+.+.+.}: [ 4.532895] [<8015ad5c>] lock_acquire+0xb4/0x1dc [ 4.538154] [<806d86bc>] mutex_lock_nested+0x54/0x360 [ 4.543856] [<8049c758>] mv88e6xxx_reg_read+0x30/0x54 [ 4.549549] [<8049cad8>] mv88e6xxx_ppu_reenable_work+0x40/0xd4 [ 4.556022] [<8013a794>] process_one_work+0x1a8/0x604 [ 4.561707] [<8013ac54>] worker_thread+0x64/0x528 [ 4.567053] [<801409e8>] kthread+0xec/0x100 [ 4.571878] [<80108f30>] ret_from_fork+0x14/0x24 [ 4.577139] [ 4.577139] other info that might help us debug this: [ 4.577139] [ 4.585159] Possible unsafe locking scenario: [ 4.585159] [ 4.591093] CPU0 CPU1 [ 4.595631] ---- ---- [ 4.600169] lock(&ps->ppu_mutex); [ 4.603693] lock(&ps->smi_mutex); [ 4.609742] lock(&ps->ppu_mutex); [ 4.615790] lock(&ps->smi_mutex); [ 4.619314] [ 4.619314] *** DEADLOCK *** [ 4.619314] [ 4.625256] 3 locks held by kworker/0:1/328: [ 4.629537] #0: ("events"){.+.+..}, at: [<8013a704>] process_one_work+0x118/0x604 [ 4.637288] #1: ((&ps->ppu_work)){+.+...}, at: [<8013a704>] process_one_work+0x118/0x604 [ 4.645653] #2: (&ps->ppu_mutex){+.+...}, at: [<8049cac0>] mv88e6xxx_ppu_reenable_work+0x28/0xd4 [ 4.654714] [ 4.654714] stack backtrace: [ 4.659098] CPU: 0 PID: 328 Comm: kworker/0:1 Not tainted 4.6.0 #4 [ 4.665286] Hardware name: Freescale Vybrid VF5xx/VF6xx (Device Tree) [ 4.671748] Workqueue: events mv88e6xxx_ppu_reenable_work [ 4.677174] Backtrace: [ 4.679674] [<8010d354>] (dump_backtrace) from [<8010d5a0>] (show_stack+0x20/0x24) [ 4.687252] r6:80fb3c88 r5:80fb3c88 r4:80fb4728 r3:00000002 [ 4.693003] [<8010d580>] (show_stack) from [<803b45e8>] (dump_stack+0x24/0x28) [ 4.700246] [<803b45c4>] (dump_stack) from [<80157398>] (print_circular_bug+0x208/0x32c) [ 4.708361] [<80157190>] (print_circular_bug) from [<8015a630>] (__lock_acquire+0x185c/0x1b80) [ 4.716982] r10:9ec22a00 r9:00000060 r8:8164b6bc r7:00000040 r6:00000003 r5:8163a5b4 [ 4.724905] r4:00000003 r3:9ec22de8 [ 4.728537] [<80158dd4>] (__lock_acquire) from [<8015ad5c>] (lock_acquire+0xb4/0x1dc) [ 4.736378] r10:60000013 r9:00000000 r8:00000000 r7:00000000 r6:9e5e9c50 r5:80e618e0 [ 4.744301] r4:00000000 [ 4.746879] [<8015aca8>] (lock_acquire) from [<806d86bc>] (mutex_lock_nested+0x54/0x360) [ 4.754976] r10:9e5e9c1c r9:80e616c4 r8:9f685ea0 r7:0000001b r6:9ec22a00 r5:8163a5b4 [ 4.762899] r4:9e5e9c1c [ 4.765477] [<806d8668>] (mutex_lock_nested) from [<8049c758>] (mv88e6xxx_reg_read+0x30/0x54) [ 4.774008] r10:80e60c5b r9:80e616c4 r8:9f685ea0 r7:0000001b r6:00000004 r5:9e5e9c10 [ 4.781930] r4:9e5e9c1c [ 4.784507] [<8049c728>] (mv88e6xxx_reg_read) from [<8049cad8>] (mv88e6xxx_ppu_reenable_work+0x40/0xd4) [ 4.793907] r7:9ffd5400 r6:9e5e9c68 r5:9e5e9cb0 r4:9e5e9c10 [ 4.799659] [<8049ca98>] (mv88e6xxx_ppu_reenable_work) from [<8013a794>] (process_one_work+0x1a8/0x604) [ 4.809059] r9:80e616c4 r8:9f685ea0 r7:9ffd5400 r6:80e0a1c8 r5:9f5f2e80 r4:9e5e9cb0 [ 4.816910] [<8013a5ec>] (process_one_work) from [<8013ac54>] (worker_thread+0x64/0x528) [ 4.825010] r10:9f5f2e80 r9:00000008 r8:80e0dc80 r7:80e0a1fc r6:80e0a1c8 r5:9f5f2e98 [ 4.832933] r4:80e0a1c8 [ 4.835510] [<8013abf0>] (worker_thread) from [<801409e8>] (kthread+0xec/0x100) [ 4.842827] r10:00000000 r9:00000000 r8:00000000 r7:8013abf0 r6:9f5f2e80 r5:9ec15740 [ 4.850749] r4:00000000 [ 4.853327] [<801408fc>] (kthread) from [<80108f30>] (ret_from_fork+0x14/0x24) [ 4.860557] r7:00000000 r6:00000000 r5:801408fc r4:9ec15740 Signed-off-by: Vivien Didelot <vivien.didelot@savoirfairelinux.com> Reviewed-by: Florian Fainelli <f.fainelli@gmail.com> Reviewed-by: Vivien Didelot <vivien.didelot@savoirfairelinux.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-06-05 02:16:54 +07:00
mutex_unlock(&ps->smi_mutex);
}
static void mv88e6xxx_ppu_reenable_timer(unsigned long _ps)
{
struct mv88e6xxx_priv_state *ps = (void *)_ps;
schedule_work(&ps->ppu_work);
}
static int mv88e6xxx_ppu_access_get(struct mv88e6xxx_priv_state *ps)
{
int ret;
mutex_lock(&ps->ppu_mutex);
/* If the PHY polling unit is enabled, disable it so that
* we can access the PHY registers. If it was already
* disabled, cancel the timer that is going to re-enable
* it.
*/
if (!ps->ppu_disabled) {
ret = mv88e6xxx_ppu_disable(ps);
if (ret < 0) {
mutex_unlock(&ps->ppu_mutex);
return ret;
}
ps->ppu_disabled = 1;
} else {
del_timer(&ps->ppu_timer);
ret = 0;
}
return ret;
}
static void mv88e6xxx_ppu_access_put(struct mv88e6xxx_priv_state *ps)
{
/* Schedule a timer to re-enable the PHY polling unit. */
mod_timer(&ps->ppu_timer, jiffies + msecs_to_jiffies(10));
mutex_unlock(&ps->ppu_mutex);
}
void mv88e6xxx_ppu_state_init(struct mv88e6xxx_priv_state *ps)
{
mutex_init(&ps->ppu_mutex);
INIT_WORK(&ps->ppu_work, mv88e6xxx_ppu_reenable_work);
init_timer(&ps->ppu_timer);
ps->ppu_timer.data = (unsigned long)ps;
ps->ppu_timer.function = mv88e6xxx_ppu_reenable_timer;
}
static int mv88e6xxx_phy_read_ppu(struct mv88e6xxx_priv_state *ps, int addr,
int regnum)
{
int ret;
ret = mv88e6xxx_ppu_access_get(ps);
if (ret >= 0) {
ret = _mv88e6xxx_reg_read(ps, addr, regnum);
mv88e6xxx_ppu_access_put(ps);
}
return ret;
}
static int mv88e6xxx_phy_write_ppu(struct mv88e6xxx_priv_state *ps, int addr,
int regnum, u16 val)
{
int ret;
ret = mv88e6xxx_ppu_access_get(ps);
if (ret >= 0) {
ret = _mv88e6xxx_reg_write(ps, addr, regnum, val);
mv88e6xxx_ppu_access_put(ps);
}
return ret;
}
static bool mv88e6xxx_6065_family(struct mv88e6xxx_priv_state *ps)
{
return ps->info->family == MV88E6XXX_FAMILY_6065;
}
static bool mv88e6xxx_6095_family(struct mv88e6xxx_priv_state *ps)
{
return ps->info->family == MV88E6XXX_FAMILY_6095;
}
static bool mv88e6xxx_6097_family(struct mv88e6xxx_priv_state *ps)
{
return ps->info->family == MV88E6XXX_FAMILY_6097;
}
static bool mv88e6xxx_6165_family(struct mv88e6xxx_priv_state *ps)
{
return ps->info->family == MV88E6XXX_FAMILY_6165;
}
static bool mv88e6xxx_6185_family(struct mv88e6xxx_priv_state *ps)
{
return ps->info->family == MV88E6XXX_FAMILY_6185;
}
static bool mv88e6xxx_6320_family(struct mv88e6xxx_priv_state *ps)
{
return ps->info->family == MV88E6XXX_FAMILY_6320;
}
static bool mv88e6xxx_6351_family(struct mv88e6xxx_priv_state *ps)
{
return ps->info->family == MV88E6XXX_FAMILY_6351;
}
static bool mv88e6xxx_6352_family(struct mv88e6xxx_priv_state *ps)
{
return ps->info->family == MV88E6XXX_FAMILY_6352;
}
static unsigned int mv88e6xxx_num_databases(struct mv88e6xxx_priv_state *ps)
{
return ps->info->num_databases;
}
static bool mv88e6xxx_has_fid_reg(struct mv88e6xxx_priv_state *ps)
{
/* Does the device have dedicated FID registers for ATU and VTU ops? */
if (mv88e6xxx_6097_family(ps) || mv88e6xxx_6165_family(ps) ||
mv88e6xxx_6351_family(ps) || mv88e6xxx_6352_family(ps))
return true;
return false;
}
/* We expect the switch to perform auto negotiation if there is a real
* phy. However, in the case of a fixed link phy, we force the port
* settings from the fixed link settings.
*/
static void mv88e6xxx_adjust_link(struct dsa_switch *ds, int port,
struct phy_device *phydev)
{
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
u32 reg;
int ret;
if (!phy_is_pseudo_fixed_link(phydev))
return;
mutex_lock(&ps->smi_mutex);
ret = _mv88e6xxx_reg_read(ps, REG_PORT(port), PORT_PCS_CTRL);
if (ret < 0)
goto out;
reg = ret & ~(PORT_PCS_CTRL_LINK_UP |
PORT_PCS_CTRL_FORCE_LINK |
PORT_PCS_CTRL_DUPLEX_FULL |
PORT_PCS_CTRL_FORCE_DUPLEX |
PORT_PCS_CTRL_UNFORCED);
reg |= PORT_PCS_CTRL_FORCE_LINK;
if (phydev->link)
reg |= PORT_PCS_CTRL_LINK_UP;
if (mv88e6xxx_6065_family(ps) && phydev->speed > SPEED_100)
goto out;
switch (phydev->speed) {
case SPEED_1000:
reg |= PORT_PCS_CTRL_1000;
break;
case SPEED_100:
reg |= PORT_PCS_CTRL_100;
break;
case SPEED_10:
reg |= PORT_PCS_CTRL_10;
break;
default:
pr_info("Unknown speed");
goto out;
}
reg |= PORT_PCS_CTRL_FORCE_DUPLEX;
if (phydev->duplex == DUPLEX_FULL)
reg |= PORT_PCS_CTRL_DUPLEX_FULL;
if ((mv88e6xxx_6352_family(ps) || mv88e6xxx_6351_family(ps)) &&
(port >= ps->info->num_ports - 2)) {
if (phydev->interface == PHY_INTERFACE_MODE_RGMII_RXID)
reg |= PORT_PCS_CTRL_RGMII_DELAY_RXCLK;
if (phydev->interface == PHY_INTERFACE_MODE_RGMII_TXID)
reg |= PORT_PCS_CTRL_RGMII_DELAY_TXCLK;
if (phydev->interface == PHY_INTERFACE_MODE_RGMII_ID)
reg |= (PORT_PCS_CTRL_RGMII_DELAY_RXCLK |
PORT_PCS_CTRL_RGMII_DELAY_TXCLK);
}
_mv88e6xxx_reg_write(ps, REG_PORT(port), PORT_PCS_CTRL, reg);
out:
mutex_unlock(&ps->smi_mutex);
}
static int _mv88e6xxx_stats_wait(struct mv88e6xxx_priv_state *ps)
net: Distributed Switch Architecture protocol support Distributed Switch Architecture is a protocol for managing hardware switch chips. It consists of a set of MII management registers and commands to configure the switch, and an ethernet header format to signal which of the ports of the switch a packet was received from or is intended to be sent to. The switches that this driver supports are typically embedded in access points and routers, and a typical setup with a DSA switch looks something like this: +-----------+ +-----------+ | | RGMII | | | +-------+ +------ 1000baseT MDI ("WAN") | | | 6-port +------ 1000baseT MDI ("LAN1") | CPU | | ethernet +------ 1000baseT MDI ("LAN2") | |MIImgmt| switch +------ 1000baseT MDI ("LAN3") | +-------+ w/5 PHYs +------ 1000baseT MDI ("LAN4") | | | | +-----------+ +-----------+ The switch driver presents each port on the switch as a separate network interface to Linux, polls the switch to maintain software link state of those ports, forwards MII management interface accesses to those network interfaces (e.g. as done by ethtool) to the switch, and exposes the switch's hardware statistics counters via the appropriate Linux kernel interfaces. This initial patch supports the MII management interface register layout of the Marvell 88E6123, 88E6161 and 88E6165 switch chips, and supports the "Ethertype DSA" packet tagging format. (There is no officially registered ethertype for the Ethertype DSA packet format, so we just grab a random one. The ethertype to use is programmed into the switch, and the switch driver uses the value of ETH_P_EDSA for this, so this define can be changed at any time in the future if the one we chose is allocated to another protocol or if Ethertype DSA gets its own officially registered ethertype, and everything will continue to work.) Signed-off-by: Lennert Buytenhek <buytenh@marvell.com> Tested-by: Nicolas Pitre <nico@marvell.com> Tested-by: Byron Bradley <byron.bbradley@gmail.com> Tested-by: Tim Ellis <tim.ellis@mac.com> Tested-by: Peter van Valderen <linux@ddcrew.com> Tested-by: Dirk Teurlings <dirk@upexia.nl> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-10-07 20:44:02 +07:00
{
int ret;
int i;
for (i = 0; i < 10; i++) {
ret = _mv88e6xxx_reg_read(ps, REG_GLOBAL, GLOBAL_STATS_OP);
if ((ret & GLOBAL_STATS_OP_BUSY) == 0)
net: Distributed Switch Architecture protocol support Distributed Switch Architecture is a protocol for managing hardware switch chips. It consists of a set of MII management registers and commands to configure the switch, and an ethernet header format to signal which of the ports of the switch a packet was received from or is intended to be sent to. The switches that this driver supports are typically embedded in access points and routers, and a typical setup with a DSA switch looks something like this: +-----------+ +-----------+ | | RGMII | | | +-------+ +------ 1000baseT MDI ("WAN") | | | 6-port +------ 1000baseT MDI ("LAN1") | CPU | | ethernet +------ 1000baseT MDI ("LAN2") | |MIImgmt| switch +------ 1000baseT MDI ("LAN3") | +-------+ w/5 PHYs +------ 1000baseT MDI ("LAN4") | | | | +-----------+ +-----------+ The switch driver presents each port on the switch as a separate network interface to Linux, polls the switch to maintain software link state of those ports, forwards MII management interface accesses to those network interfaces (e.g. as done by ethtool) to the switch, and exposes the switch's hardware statistics counters via the appropriate Linux kernel interfaces. This initial patch supports the MII management interface register layout of the Marvell 88E6123, 88E6161 and 88E6165 switch chips, and supports the "Ethertype DSA" packet tagging format. (There is no officially registered ethertype for the Ethertype DSA packet format, so we just grab a random one. The ethertype to use is programmed into the switch, and the switch driver uses the value of ETH_P_EDSA for this, so this define can be changed at any time in the future if the one we chose is allocated to another protocol or if Ethertype DSA gets its own officially registered ethertype, and everything will continue to work.) Signed-off-by: Lennert Buytenhek <buytenh@marvell.com> Tested-by: Nicolas Pitre <nico@marvell.com> Tested-by: Byron Bradley <byron.bbradley@gmail.com> Tested-by: Tim Ellis <tim.ellis@mac.com> Tested-by: Peter van Valderen <linux@ddcrew.com> Tested-by: Dirk Teurlings <dirk@upexia.nl> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-10-07 20:44:02 +07:00
return 0;
}
return -ETIMEDOUT;
}
static int _mv88e6xxx_stats_snapshot(struct mv88e6xxx_priv_state *ps,
int port)
net: Distributed Switch Architecture protocol support Distributed Switch Architecture is a protocol for managing hardware switch chips. It consists of a set of MII management registers and commands to configure the switch, and an ethernet header format to signal which of the ports of the switch a packet was received from or is intended to be sent to. The switches that this driver supports are typically embedded in access points and routers, and a typical setup with a DSA switch looks something like this: +-----------+ +-----------+ | | RGMII | | | +-------+ +------ 1000baseT MDI ("WAN") | | | 6-port +------ 1000baseT MDI ("LAN1") | CPU | | ethernet +------ 1000baseT MDI ("LAN2") | |MIImgmt| switch +------ 1000baseT MDI ("LAN3") | +-------+ w/5 PHYs +------ 1000baseT MDI ("LAN4") | | | | +-----------+ +-----------+ The switch driver presents each port on the switch as a separate network interface to Linux, polls the switch to maintain software link state of those ports, forwards MII management interface accesses to those network interfaces (e.g. as done by ethtool) to the switch, and exposes the switch's hardware statistics counters via the appropriate Linux kernel interfaces. This initial patch supports the MII management interface register layout of the Marvell 88E6123, 88E6161 and 88E6165 switch chips, and supports the "Ethertype DSA" packet tagging format. (There is no officially registered ethertype for the Ethertype DSA packet format, so we just grab a random one. The ethertype to use is programmed into the switch, and the switch driver uses the value of ETH_P_EDSA for this, so this define can be changed at any time in the future if the one we chose is allocated to another protocol or if Ethertype DSA gets its own officially registered ethertype, and everything will continue to work.) Signed-off-by: Lennert Buytenhek <buytenh@marvell.com> Tested-by: Nicolas Pitre <nico@marvell.com> Tested-by: Byron Bradley <byron.bbradley@gmail.com> Tested-by: Tim Ellis <tim.ellis@mac.com> Tested-by: Peter van Valderen <linux@ddcrew.com> Tested-by: Dirk Teurlings <dirk@upexia.nl> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-10-07 20:44:02 +07:00
{
int ret;
if (mv88e6xxx_6320_family(ps) || mv88e6xxx_6352_family(ps))
port = (port + 1) << 5;
/* Snapshot the hardware statistics counters for this port. */
ret = _mv88e6xxx_reg_write(ps, REG_GLOBAL, GLOBAL_STATS_OP,
GLOBAL_STATS_OP_CAPTURE_PORT |
GLOBAL_STATS_OP_HIST_RX_TX | port);
if (ret < 0)
return ret;
net: Distributed Switch Architecture protocol support Distributed Switch Architecture is a protocol for managing hardware switch chips. It consists of a set of MII management registers and commands to configure the switch, and an ethernet header format to signal which of the ports of the switch a packet was received from or is intended to be sent to. The switches that this driver supports are typically embedded in access points and routers, and a typical setup with a DSA switch looks something like this: +-----------+ +-----------+ | | RGMII | | | +-------+ +------ 1000baseT MDI ("WAN") | | | 6-port +------ 1000baseT MDI ("LAN1") | CPU | | ethernet +------ 1000baseT MDI ("LAN2") | |MIImgmt| switch +------ 1000baseT MDI ("LAN3") | +-------+ w/5 PHYs +------ 1000baseT MDI ("LAN4") | | | | +-----------+ +-----------+ The switch driver presents each port on the switch as a separate network interface to Linux, polls the switch to maintain software link state of those ports, forwards MII management interface accesses to those network interfaces (e.g. as done by ethtool) to the switch, and exposes the switch's hardware statistics counters via the appropriate Linux kernel interfaces. This initial patch supports the MII management interface register layout of the Marvell 88E6123, 88E6161 and 88E6165 switch chips, and supports the "Ethertype DSA" packet tagging format. (There is no officially registered ethertype for the Ethertype DSA packet format, so we just grab a random one. The ethertype to use is programmed into the switch, and the switch driver uses the value of ETH_P_EDSA for this, so this define can be changed at any time in the future if the one we chose is allocated to another protocol or if Ethertype DSA gets its own officially registered ethertype, and everything will continue to work.) Signed-off-by: Lennert Buytenhek <buytenh@marvell.com> Tested-by: Nicolas Pitre <nico@marvell.com> Tested-by: Byron Bradley <byron.bbradley@gmail.com> Tested-by: Tim Ellis <tim.ellis@mac.com> Tested-by: Peter van Valderen <linux@ddcrew.com> Tested-by: Dirk Teurlings <dirk@upexia.nl> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-10-07 20:44:02 +07:00
/* Wait for the snapshotting to complete. */
ret = _mv88e6xxx_stats_wait(ps);
net: Distributed Switch Architecture protocol support Distributed Switch Architecture is a protocol for managing hardware switch chips. It consists of a set of MII management registers and commands to configure the switch, and an ethernet header format to signal which of the ports of the switch a packet was received from or is intended to be sent to. The switches that this driver supports are typically embedded in access points and routers, and a typical setup with a DSA switch looks something like this: +-----------+ +-----------+ | | RGMII | | | +-------+ +------ 1000baseT MDI ("WAN") | | | 6-port +------ 1000baseT MDI ("LAN1") | CPU | | ethernet +------ 1000baseT MDI ("LAN2") | |MIImgmt| switch +------ 1000baseT MDI ("LAN3") | +-------+ w/5 PHYs +------ 1000baseT MDI ("LAN4") | | | | +-----------+ +-----------+ The switch driver presents each port on the switch as a separate network interface to Linux, polls the switch to maintain software link state of those ports, forwards MII management interface accesses to those network interfaces (e.g. as done by ethtool) to the switch, and exposes the switch's hardware statistics counters via the appropriate Linux kernel interfaces. This initial patch supports the MII management interface register layout of the Marvell 88E6123, 88E6161 and 88E6165 switch chips, and supports the "Ethertype DSA" packet tagging format. (There is no officially registered ethertype for the Ethertype DSA packet format, so we just grab a random one. The ethertype to use is programmed into the switch, and the switch driver uses the value of ETH_P_EDSA for this, so this define can be changed at any time in the future if the one we chose is allocated to another protocol or if Ethertype DSA gets its own officially registered ethertype, and everything will continue to work.) Signed-off-by: Lennert Buytenhek <buytenh@marvell.com> Tested-by: Nicolas Pitre <nico@marvell.com> Tested-by: Byron Bradley <byron.bbradley@gmail.com> Tested-by: Tim Ellis <tim.ellis@mac.com> Tested-by: Peter van Valderen <linux@ddcrew.com> Tested-by: Dirk Teurlings <dirk@upexia.nl> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-10-07 20:44:02 +07:00
if (ret < 0)
return ret;
return 0;
}
static void _mv88e6xxx_stats_read(struct mv88e6xxx_priv_state *ps,
int stat, u32 *val)
net: Distributed Switch Architecture protocol support Distributed Switch Architecture is a protocol for managing hardware switch chips. It consists of a set of MII management registers and commands to configure the switch, and an ethernet header format to signal which of the ports of the switch a packet was received from or is intended to be sent to. The switches that this driver supports are typically embedded in access points and routers, and a typical setup with a DSA switch looks something like this: +-----------+ +-----------+ | | RGMII | | | +-------+ +------ 1000baseT MDI ("WAN") | | | 6-port +------ 1000baseT MDI ("LAN1") | CPU | | ethernet +------ 1000baseT MDI ("LAN2") | |MIImgmt| switch +------ 1000baseT MDI ("LAN3") | +-------+ w/5 PHYs +------ 1000baseT MDI ("LAN4") | | | | +-----------+ +-----------+ The switch driver presents each port on the switch as a separate network interface to Linux, polls the switch to maintain software link state of those ports, forwards MII management interface accesses to those network interfaces (e.g. as done by ethtool) to the switch, and exposes the switch's hardware statistics counters via the appropriate Linux kernel interfaces. This initial patch supports the MII management interface register layout of the Marvell 88E6123, 88E6161 and 88E6165 switch chips, and supports the "Ethertype DSA" packet tagging format. (There is no officially registered ethertype for the Ethertype DSA packet format, so we just grab a random one. The ethertype to use is programmed into the switch, and the switch driver uses the value of ETH_P_EDSA for this, so this define can be changed at any time in the future if the one we chose is allocated to another protocol or if Ethertype DSA gets its own officially registered ethertype, and everything will continue to work.) Signed-off-by: Lennert Buytenhek <buytenh@marvell.com> Tested-by: Nicolas Pitre <nico@marvell.com> Tested-by: Byron Bradley <byron.bbradley@gmail.com> Tested-by: Tim Ellis <tim.ellis@mac.com> Tested-by: Peter van Valderen <linux@ddcrew.com> Tested-by: Dirk Teurlings <dirk@upexia.nl> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-10-07 20:44:02 +07:00
{
u32 _val;
int ret;
*val = 0;
ret = _mv88e6xxx_reg_write(ps, REG_GLOBAL, GLOBAL_STATS_OP,
GLOBAL_STATS_OP_READ_CAPTURED |
GLOBAL_STATS_OP_HIST_RX_TX | stat);
net: Distributed Switch Architecture protocol support Distributed Switch Architecture is a protocol for managing hardware switch chips. It consists of a set of MII management registers and commands to configure the switch, and an ethernet header format to signal which of the ports of the switch a packet was received from or is intended to be sent to. The switches that this driver supports are typically embedded in access points and routers, and a typical setup with a DSA switch looks something like this: +-----------+ +-----------+ | | RGMII | | | +-------+ +------ 1000baseT MDI ("WAN") | | | 6-port +------ 1000baseT MDI ("LAN1") | CPU | | ethernet +------ 1000baseT MDI ("LAN2") | |MIImgmt| switch +------ 1000baseT MDI ("LAN3") | +-------+ w/5 PHYs +------ 1000baseT MDI ("LAN4") | | | | +-----------+ +-----------+ The switch driver presents each port on the switch as a separate network interface to Linux, polls the switch to maintain software link state of those ports, forwards MII management interface accesses to those network interfaces (e.g. as done by ethtool) to the switch, and exposes the switch's hardware statistics counters via the appropriate Linux kernel interfaces. This initial patch supports the MII management interface register layout of the Marvell 88E6123, 88E6161 and 88E6165 switch chips, and supports the "Ethertype DSA" packet tagging format. (There is no officially registered ethertype for the Ethertype DSA packet format, so we just grab a random one. The ethertype to use is programmed into the switch, and the switch driver uses the value of ETH_P_EDSA for this, so this define can be changed at any time in the future if the one we chose is allocated to another protocol or if Ethertype DSA gets its own officially registered ethertype, and everything will continue to work.) Signed-off-by: Lennert Buytenhek <buytenh@marvell.com> Tested-by: Nicolas Pitre <nico@marvell.com> Tested-by: Byron Bradley <byron.bbradley@gmail.com> Tested-by: Tim Ellis <tim.ellis@mac.com> Tested-by: Peter van Valderen <linux@ddcrew.com> Tested-by: Dirk Teurlings <dirk@upexia.nl> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-10-07 20:44:02 +07:00
if (ret < 0)
return;
ret = _mv88e6xxx_stats_wait(ps);
net: Distributed Switch Architecture protocol support Distributed Switch Architecture is a protocol for managing hardware switch chips. It consists of a set of MII management registers and commands to configure the switch, and an ethernet header format to signal which of the ports of the switch a packet was received from or is intended to be sent to. The switches that this driver supports are typically embedded in access points and routers, and a typical setup with a DSA switch looks something like this: +-----------+ +-----------+ | | RGMII | | | +-------+ +------ 1000baseT MDI ("WAN") | | | 6-port +------ 1000baseT MDI ("LAN1") | CPU | | ethernet +------ 1000baseT MDI ("LAN2") | |MIImgmt| switch +------ 1000baseT MDI ("LAN3") | +-------+ w/5 PHYs +------ 1000baseT MDI ("LAN4") | | | | +-----------+ +-----------+ The switch driver presents each port on the switch as a separate network interface to Linux, polls the switch to maintain software link state of those ports, forwards MII management interface accesses to those network interfaces (e.g. as done by ethtool) to the switch, and exposes the switch's hardware statistics counters via the appropriate Linux kernel interfaces. This initial patch supports the MII management interface register layout of the Marvell 88E6123, 88E6161 and 88E6165 switch chips, and supports the "Ethertype DSA" packet tagging format. (There is no officially registered ethertype for the Ethertype DSA packet format, so we just grab a random one. The ethertype to use is programmed into the switch, and the switch driver uses the value of ETH_P_EDSA for this, so this define can be changed at any time in the future if the one we chose is allocated to another protocol or if Ethertype DSA gets its own officially registered ethertype, and everything will continue to work.) Signed-off-by: Lennert Buytenhek <buytenh@marvell.com> Tested-by: Nicolas Pitre <nico@marvell.com> Tested-by: Byron Bradley <byron.bbradley@gmail.com> Tested-by: Tim Ellis <tim.ellis@mac.com> Tested-by: Peter van Valderen <linux@ddcrew.com> Tested-by: Dirk Teurlings <dirk@upexia.nl> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-10-07 20:44:02 +07:00
if (ret < 0)
return;
ret = _mv88e6xxx_reg_read(ps, REG_GLOBAL, GLOBAL_STATS_COUNTER_32);
net: Distributed Switch Architecture protocol support Distributed Switch Architecture is a protocol for managing hardware switch chips. It consists of a set of MII management registers and commands to configure the switch, and an ethernet header format to signal which of the ports of the switch a packet was received from or is intended to be sent to. The switches that this driver supports are typically embedded in access points and routers, and a typical setup with a DSA switch looks something like this: +-----------+ +-----------+ | | RGMII | | | +-------+ +------ 1000baseT MDI ("WAN") | | | 6-port +------ 1000baseT MDI ("LAN1") | CPU | | ethernet +------ 1000baseT MDI ("LAN2") | |MIImgmt| switch +------ 1000baseT MDI ("LAN3") | +-------+ w/5 PHYs +------ 1000baseT MDI ("LAN4") | | | | +-----------+ +-----------+ The switch driver presents each port on the switch as a separate network interface to Linux, polls the switch to maintain software link state of those ports, forwards MII management interface accesses to those network interfaces (e.g. as done by ethtool) to the switch, and exposes the switch's hardware statistics counters via the appropriate Linux kernel interfaces. This initial patch supports the MII management interface register layout of the Marvell 88E6123, 88E6161 and 88E6165 switch chips, and supports the "Ethertype DSA" packet tagging format. (There is no officially registered ethertype for the Ethertype DSA packet format, so we just grab a random one. The ethertype to use is programmed into the switch, and the switch driver uses the value of ETH_P_EDSA for this, so this define can be changed at any time in the future if the one we chose is allocated to another protocol or if Ethertype DSA gets its own officially registered ethertype, and everything will continue to work.) Signed-off-by: Lennert Buytenhek <buytenh@marvell.com> Tested-by: Nicolas Pitre <nico@marvell.com> Tested-by: Byron Bradley <byron.bbradley@gmail.com> Tested-by: Tim Ellis <tim.ellis@mac.com> Tested-by: Peter van Valderen <linux@ddcrew.com> Tested-by: Dirk Teurlings <dirk@upexia.nl> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-10-07 20:44:02 +07:00
if (ret < 0)
return;
_val = ret << 16;
ret = _mv88e6xxx_reg_read(ps, REG_GLOBAL, GLOBAL_STATS_COUNTER_01);
net: Distributed Switch Architecture protocol support Distributed Switch Architecture is a protocol for managing hardware switch chips. It consists of a set of MII management registers and commands to configure the switch, and an ethernet header format to signal which of the ports of the switch a packet was received from or is intended to be sent to. The switches that this driver supports are typically embedded in access points and routers, and a typical setup with a DSA switch looks something like this: +-----------+ +-----------+ | | RGMII | | | +-------+ +------ 1000baseT MDI ("WAN") | | | 6-port +------ 1000baseT MDI ("LAN1") | CPU | | ethernet +------ 1000baseT MDI ("LAN2") | |MIImgmt| switch +------ 1000baseT MDI ("LAN3") | +-------+ w/5 PHYs +------ 1000baseT MDI ("LAN4") | | | | +-----------+ +-----------+ The switch driver presents each port on the switch as a separate network interface to Linux, polls the switch to maintain software link state of those ports, forwards MII management interface accesses to those network interfaces (e.g. as done by ethtool) to the switch, and exposes the switch's hardware statistics counters via the appropriate Linux kernel interfaces. This initial patch supports the MII management interface register layout of the Marvell 88E6123, 88E6161 and 88E6165 switch chips, and supports the "Ethertype DSA" packet tagging format. (There is no officially registered ethertype for the Ethertype DSA packet format, so we just grab a random one. The ethertype to use is programmed into the switch, and the switch driver uses the value of ETH_P_EDSA for this, so this define can be changed at any time in the future if the one we chose is allocated to another protocol or if Ethertype DSA gets its own officially registered ethertype, and everything will continue to work.) Signed-off-by: Lennert Buytenhek <buytenh@marvell.com> Tested-by: Nicolas Pitre <nico@marvell.com> Tested-by: Byron Bradley <byron.bbradley@gmail.com> Tested-by: Tim Ellis <tim.ellis@mac.com> Tested-by: Peter van Valderen <linux@ddcrew.com> Tested-by: Dirk Teurlings <dirk@upexia.nl> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-10-07 20:44:02 +07:00
if (ret < 0)
return;
*val = _val | ret;
}
static struct mv88e6xxx_hw_stat mv88e6xxx_hw_stats[] = {
{ "in_good_octets", 8, 0x00, BANK0, },
{ "in_bad_octets", 4, 0x02, BANK0, },
{ "in_unicast", 4, 0x04, BANK0, },
{ "in_broadcasts", 4, 0x06, BANK0, },
{ "in_multicasts", 4, 0x07, BANK0, },
{ "in_pause", 4, 0x16, BANK0, },
{ "in_undersize", 4, 0x18, BANK0, },
{ "in_fragments", 4, 0x19, BANK0, },
{ "in_oversize", 4, 0x1a, BANK0, },
{ "in_jabber", 4, 0x1b, BANK0, },
{ "in_rx_error", 4, 0x1c, BANK0, },
{ "in_fcs_error", 4, 0x1d, BANK0, },
{ "out_octets", 8, 0x0e, BANK0, },
{ "out_unicast", 4, 0x10, BANK0, },
{ "out_broadcasts", 4, 0x13, BANK0, },
{ "out_multicasts", 4, 0x12, BANK0, },
{ "out_pause", 4, 0x15, BANK0, },
{ "excessive", 4, 0x11, BANK0, },
{ "collisions", 4, 0x1e, BANK0, },
{ "deferred", 4, 0x05, BANK0, },
{ "single", 4, 0x14, BANK0, },
{ "multiple", 4, 0x17, BANK0, },
{ "out_fcs_error", 4, 0x03, BANK0, },
{ "late", 4, 0x1f, BANK0, },
{ "hist_64bytes", 4, 0x08, BANK0, },
{ "hist_65_127bytes", 4, 0x09, BANK0, },
{ "hist_128_255bytes", 4, 0x0a, BANK0, },
{ "hist_256_511bytes", 4, 0x0b, BANK0, },
{ "hist_512_1023bytes", 4, 0x0c, BANK0, },
{ "hist_1024_max_bytes", 4, 0x0d, BANK0, },
{ "sw_in_discards", 4, 0x10, PORT, },
{ "sw_in_filtered", 2, 0x12, PORT, },
{ "sw_out_filtered", 2, 0x13, PORT, },
{ "in_discards", 4, 0x00 | GLOBAL_STATS_OP_BANK_1, BANK1, },
{ "in_filtered", 4, 0x01 | GLOBAL_STATS_OP_BANK_1, BANK1, },
{ "in_accepted", 4, 0x02 | GLOBAL_STATS_OP_BANK_1, BANK1, },
{ "in_bad_accepted", 4, 0x03 | GLOBAL_STATS_OP_BANK_1, BANK1, },
{ "in_good_avb_class_a", 4, 0x04 | GLOBAL_STATS_OP_BANK_1, BANK1, },
{ "in_good_avb_class_b", 4, 0x05 | GLOBAL_STATS_OP_BANK_1, BANK1, },
{ "in_bad_avb_class_a", 4, 0x06 | GLOBAL_STATS_OP_BANK_1, BANK1, },
{ "in_bad_avb_class_b", 4, 0x07 | GLOBAL_STATS_OP_BANK_1, BANK1, },
{ "tcam_counter_0", 4, 0x08 | GLOBAL_STATS_OP_BANK_1, BANK1, },
{ "tcam_counter_1", 4, 0x09 | GLOBAL_STATS_OP_BANK_1, BANK1, },
{ "tcam_counter_2", 4, 0x0a | GLOBAL_STATS_OP_BANK_1, BANK1, },
{ "tcam_counter_3", 4, 0x0b | GLOBAL_STATS_OP_BANK_1, BANK1, },
{ "in_da_unknown", 4, 0x0e | GLOBAL_STATS_OP_BANK_1, BANK1, },
{ "in_management", 4, 0x0f | GLOBAL_STATS_OP_BANK_1, BANK1, },
{ "out_queue_0", 4, 0x10 | GLOBAL_STATS_OP_BANK_1, BANK1, },
{ "out_queue_1", 4, 0x11 | GLOBAL_STATS_OP_BANK_1, BANK1, },
{ "out_queue_2", 4, 0x12 | GLOBAL_STATS_OP_BANK_1, BANK1, },
{ "out_queue_3", 4, 0x13 | GLOBAL_STATS_OP_BANK_1, BANK1, },
{ "out_queue_4", 4, 0x14 | GLOBAL_STATS_OP_BANK_1, BANK1, },
{ "out_queue_5", 4, 0x15 | GLOBAL_STATS_OP_BANK_1, BANK1, },
{ "out_queue_6", 4, 0x16 | GLOBAL_STATS_OP_BANK_1, BANK1, },
{ "out_queue_7", 4, 0x17 | GLOBAL_STATS_OP_BANK_1, BANK1, },
{ "out_cut_through", 4, 0x18 | GLOBAL_STATS_OP_BANK_1, BANK1, },
{ "out_octets_a", 4, 0x1a | GLOBAL_STATS_OP_BANK_1, BANK1, },
{ "out_octets_b", 4, 0x1b | GLOBAL_STATS_OP_BANK_1, BANK1, },
{ "out_management", 4, 0x1f | GLOBAL_STATS_OP_BANK_1, BANK1, },
};
static bool mv88e6xxx_has_stat(struct mv88e6xxx_priv_state *ps,
struct mv88e6xxx_hw_stat *stat)
{
switch (stat->type) {
case BANK0:
return true;
case BANK1:
return mv88e6xxx_6320_family(ps);
case PORT:
return mv88e6xxx_6095_family(ps) ||
mv88e6xxx_6185_family(ps) ||
mv88e6xxx_6097_family(ps) ||
mv88e6xxx_6165_family(ps) ||
mv88e6xxx_6351_family(ps) ||
mv88e6xxx_6352_family(ps);
net: Distributed Switch Architecture protocol support Distributed Switch Architecture is a protocol for managing hardware switch chips. It consists of a set of MII management registers and commands to configure the switch, and an ethernet header format to signal which of the ports of the switch a packet was received from or is intended to be sent to. The switches that this driver supports are typically embedded in access points and routers, and a typical setup with a DSA switch looks something like this: +-----------+ +-----------+ | | RGMII | | | +-------+ +------ 1000baseT MDI ("WAN") | | | 6-port +------ 1000baseT MDI ("LAN1") | CPU | | ethernet +------ 1000baseT MDI ("LAN2") | |MIImgmt| switch +------ 1000baseT MDI ("LAN3") | +-------+ w/5 PHYs +------ 1000baseT MDI ("LAN4") | | | | +-----------+ +-----------+ The switch driver presents each port on the switch as a separate network interface to Linux, polls the switch to maintain software link state of those ports, forwards MII management interface accesses to those network interfaces (e.g. as done by ethtool) to the switch, and exposes the switch's hardware statistics counters via the appropriate Linux kernel interfaces. This initial patch supports the MII management interface register layout of the Marvell 88E6123, 88E6161 and 88E6165 switch chips, and supports the "Ethertype DSA" packet tagging format. (There is no officially registered ethertype for the Ethertype DSA packet format, so we just grab a random one. The ethertype to use is programmed into the switch, and the switch driver uses the value of ETH_P_EDSA for this, so this define can be changed at any time in the future if the one we chose is allocated to another protocol or if Ethertype DSA gets its own officially registered ethertype, and everything will continue to work.) Signed-off-by: Lennert Buytenhek <buytenh@marvell.com> Tested-by: Nicolas Pitre <nico@marvell.com> Tested-by: Byron Bradley <byron.bbradley@gmail.com> Tested-by: Tim Ellis <tim.ellis@mac.com> Tested-by: Peter van Valderen <linux@ddcrew.com> Tested-by: Dirk Teurlings <dirk@upexia.nl> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-10-07 20:44:02 +07:00
}
return false;
net: Distributed Switch Architecture protocol support Distributed Switch Architecture is a protocol for managing hardware switch chips. It consists of a set of MII management registers and commands to configure the switch, and an ethernet header format to signal which of the ports of the switch a packet was received from or is intended to be sent to. The switches that this driver supports are typically embedded in access points and routers, and a typical setup with a DSA switch looks something like this: +-----------+ +-----------+ | | RGMII | | | +-------+ +------ 1000baseT MDI ("WAN") | | | 6-port +------ 1000baseT MDI ("LAN1") | CPU | | ethernet +------ 1000baseT MDI ("LAN2") | |MIImgmt| switch +------ 1000baseT MDI ("LAN3") | +-------+ w/5 PHYs +------ 1000baseT MDI ("LAN4") | | | | +-----------+ +-----------+ The switch driver presents each port on the switch as a separate network interface to Linux, polls the switch to maintain software link state of those ports, forwards MII management interface accesses to those network interfaces (e.g. as done by ethtool) to the switch, and exposes the switch's hardware statistics counters via the appropriate Linux kernel interfaces. This initial patch supports the MII management interface register layout of the Marvell 88E6123, 88E6161 and 88E6165 switch chips, and supports the "Ethertype DSA" packet tagging format. (There is no officially registered ethertype for the Ethertype DSA packet format, so we just grab a random one. The ethertype to use is programmed into the switch, and the switch driver uses the value of ETH_P_EDSA for this, so this define can be changed at any time in the future if the one we chose is allocated to another protocol or if Ethertype DSA gets its own officially registered ethertype, and everything will continue to work.) Signed-off-by: Lennert Buytenhek <buytenh@marvell.com> Tested-by: Nicolas Pitre <nico@marvell.com> Tested-by: Byron Bradley <byron.bbradley@gmail.com> Tested-by: Tim Ellis <tim.ellis@mac.com> Tested-by: Peter van Valderen <linux@ddcrew.com> Tested-by: Dirk Teurlings <dirk@upexia.nl> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-10-07 20:44:02 +07:00
}
static uint64_t _mv88e6xxx_get_ethtool_stat(struct mv88e6xxx_priv_state *ps,
struct mv88e6xxx_hw_stat *s,
int port)
{
u32 low;
u32 high = 0;
int ret;
u64 value;
switch (s->type) {
case PORT:
ret = _mv88e6xxx_reg_read(ps, REG_PORT(port), s->reg);
if (ret < 0)
return UINT64_MAX;
low = ret;
if (s->sizeof_stat == 4) {
ret = _mv88e6xxx_reg_read(ps, REG_PORT(port),
s->reg + 1);
if (ret < 0)
return UINT64_MAX;
high = ret;
}
break;
case BANK0:
case BANK1:
_mv88e6xxx_stats_read(ps, s->reg, &low);
if (s->sizeof_stat == 8)
_mv88e6xxx_stats_read(ps, s->reg + 1, &high);
}
value = (((u64)high) << 16) | low;
return value;
}
static void mv88e6xxx_get_strings(struct dsa_switch *ds, int port,
uint8_t *data)
net: Distributed Switch Architecture protocol support Distributed Switch Architecture is a protocol for managing hardware switch chips. It consists of a set of MII management registers and commands to configure the switch, and an ethernet header format to signal which of the ports of the switch a packet was received from or is intended to be sent to. The switches that this driver supports are typically embedded in access points and routers, and a typical setup with a DSA switch looks something like this: +-----------+ +-----------+ | | RGMII | | | +-------+ +------ 1000baseT MDI ("WAN") | | | 6-port +------ 1000baseT MDI ("LAN1") | CPU | | ethernet +------ 1000baseT MDI ("LAN2") | |MIImgmt| switch +------ 1000baseT MDI ("LAN3") | +-------+ w/5 PHYs +------ 1000baseT MDI ("LAN4") | | | | +-----------+ +-----------+ The switch driver presents each port on the switch as a separate network interface to Linux, polls the switch to maintain software link state of those ports, forwards MII management interface accesses to those network interfaces (e.g. as done by ethtool) to the switch, and exposes the switch's hardware statistics counters via the appropriate Linux kernel interfaces. This initial patch supports the MII management interface register layout of the Marvell 88E6123, 88E6161 and 88E6165 switch chips, and supports the "Ethertype DSA" packet tagging format. (There is no officially registered ethertype for the Ethertype DSA packet format, so we just grab a random one. The ethertype to use is programmed into the switch, and the switch driver uses the value of ETH_P_EDSA for this, so this define can be changed at any time in the future if the one we chose is allocated to another protocol or if Ethertype DSA gets its own officially registered ethertype, and everything will continue to work.) Signed-off-by: Lennert Buytenhek <buytenh@marvell.com> Tested-by: Nicolas Pitre <nico@marvell.com> Tested-by: Byron Bradley <byron.bbradley@gmail.com> Tested-by: Tim Ellis <tim.ellis@mac.com> Tested-by: Peter van Valderen <linux@ddcrew.com> Tested-by: Dirk Teurlings <dirk@upexia.nl> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-10-07 20:44:02 +07:00
{
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
struct mv88e6xxx_hw_stat *stat;
int i, j;
net: Distributed Switch Architecture protocol support Distributed Switch Architecture is a protocol for managing hardware switch chips. It consists of a set of MII management registers and commands to configure the switch, and an ethernet header format to signal which of the ports of the switch a packet was received from or is intended to be sent to. The switches that this driver supports are typically embedded in access points and routers, and a typical setup with a DSA switch looks something like this: +-----------+ +-----------+ | | RGMII | | | +-------+ +------ 1000baseT MDI ("WAN") | | | 6-port +------ 1000baseT MDI ("LAN1") | CPU | | ethernet +------ 1000baseT MDI ("LAN2") | |MIImgmt| switch +------ 1000baseT MDI ("LAN3") | +-------+ w/5 PHYs +------ 1000baseT MDI ("LAN4") | | | | +-----------+ +-----------+ The switch driver presents each port on the switch as a separate network interface to Linux, polls the switch to maintain software link state of those ports, forwards MII management interface accesses to those network interfaces (e.g. as done by ethtool) to the switch, and exposes the switch's hardware statistics counters via the appropriate Linux kernel interfaces. This initial patch supports the MII management interface register layout of the Marvell 88E6123, 88E6161 and 88E6165 switch chips, and supports the "Ethertype DSA" packet tagging format. (There is no officially registered ethertype for the Ethertype DSA packet format, so we just grab a random one. The ethertype to use is programmed into the switch, and the switch driver uses the value of ETH_P_EDSA for this, so this define can be changed at any time in the future if the one we chose is allocated to another protocol or if Ethertype DSA gets its own officially registered ethertype, and everything will continue to work.) Signed-off-by: Lennert Buytenhek <buytenh@marvell.com> Tested-by: Nicolas Pitre <nico@marvell.com> Tested-by: Byron Bradley <byron.bbradley@gmail.com> Tested-by: Tim Ellis <tim.ellis@mac.com> Tested-by: Peter van Valderen <linux@ddcrew.com> Tested-by: Dirk Teurlings <dirk@upexia.nl> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-10-07 20:44:02 +07:00
for (i = 0, j = 0; i < ARRAY_SIZE(mv88e6xxx_hw_stats); i++) {
stat = &mv88e6xxx_hw_stats[i];
if (mv88e6xxx_has_stat(ps, stat)) {
memcpy(data + j * ETH_GSTRING_LEN, stat->string,
ETH_GSTRING_LEN);
j++;
}
net: Distributed Switch Architecture protocol support Distributed Switch Architecture is a protocol for managing hardware switch chips. It consists of a set of MII management registers and commands to configure the switch, and an ethernet header format to signal which of the ports of the switch a packet was received from or is intended to be sent to. The switches that this driver supports are typically embedded in access points and routers, and a typical setup with a DSA switch looks something like this: +-----------+ +-----------+ | | RGMII | | | +-------+ +------ 1000baseT MDI ("WAN") | | | 6-port +------ 1000baseT MDI ("LAN1") | CPU | | ethernet +------ 1000baseT MDI ("LAN2") | |MIImgmt| switch +------ 1000baseT MDI ("LAN3") | +-------+ w/5 PHYs +------ 1000baseT MDI ("LAN4") | | | | +-----------+ +-----------+ The switch driver presents each port on the switch as a separate network interface to Linux, polls the switch to maintain software link state of those ports, forwards MII management interface accesses to those network interfaces (e.g. as done by ethtool) to the switch, and exposes the switch's hardware statistics counters via the appropriate Linux kernel interfaces. This initial patch supports the MII management interface register layout of the Marvell 88E6123, 88E6161 and 88E6165 switch chips, and supports the "Ethertype DSA" packet tagging format. (There is no officially registered ethertype for the Ethertype DSA packet format, so we just grab a random one. The ethertype to use is programmed into the switch, and the switch driver uses the value of ETH_P_EDSA for this, so this define can be changed at any time in the future if the one we chose is allocated to another protocol or if Ethertype DSA gets its own officially registered ethertype, and everything will continue to work.) Signed-off-by: Lennert Buytenhek <buytenh@marvell.com> Tested-by: Nicolas Pitre <nico@marvell.com> Tested-by: Byron Bradley <byron.bbradley@gmail.com> Tested-by: Tim Ellis <tim.ellis@mac.com> Tested-by: Peter van Valderen <linux@ddcrew.com> Tested-by: Dirk Teurlings <dirk@upexia.nl> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-10-07 20:44:02 +07:00
}
}
static int mv88e6xxx_get_sset_count(struct dsa_switch *ds)
{
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
struct mv88e6xxx_hw_stat *stat;
int i, j;
for (i = 0, j = 0; i < ARRAY_SIZE(mv88e6xxx_hw_stats); i++) {
stat = &mv88e6xxx_hw_stats[i];
if (mv88e6xxx_has_stat(ps, stat))
j++;
}
return j;
}
static void mv88e6xxx_get_ethtool_stats(struct dsa_switch *ds, int port,
uint64_t *data)
{
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
struct mv88e6xxx_hw_stat *stat;
int ret;
int i, j;
mutex_lock(&ps->smi_mutex);
ret = _mv88e6xxx_stats_snapshot(ps, port);
if (ret < 0) {
mutex_unlock(&ps->smi_mutex);
return;
}
for (i = 0, j = 0; i < ARRAY_SIZE(mv88e6xxx_hw_stats); i++) {
stat = &mv88e6xxx_hw_stats[i];
if (mv88e6xxx_has_stat(ps, stat)) {
data[j] = _mv88e6xxx_get_ethtool_stat(ps, stat, port);
j++;
}
}
mutex_unlock(&ps->smi_mutex);
}
static int mv88e6xxx_get_regs_len(struct dsa_switch *ds, int port)
{
return 32 * sizeof(u16);
}
static void mv88e6xxx_get_regs(struct dsa_switch *ds, int port,
struct ethtool_regs *regs, void *_p)
{
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
u16 *p = _p;
int i;
regs->version = 0;
memset(p, 0xff, 32 * sizeof(u16));
mutex_lock(&ps->smi_mutex);
for (i = 0; i < 32; i++) {
int ret;
ret = _mv88e6xxx_reg_read(ps, REG_PORT(port), i);
if (ret >= 0)
p[i] = ret;
}
mutex_unlock(&ps->smi_mutex);
}
static int _mv88e6xxx_wait(struct mv88e6xxx_priv_state *ps, int reg, int offset,
u16 mask)
{
unsigned long timeout = jiffies + HZ / 10;
while (time_before(jiffies, timeout)) {
int ret;
ret = _mv88e6xxx_reg_read(ps, reg, offset);
if (ret < 0)
return ret;
if (!(ret & mask))
return 0;
usleep_range(1000, 2000);
}
return -ETIMEDOUT;
}
static int mv88e6xxx_wait(struct mv88e6xxx_priv_state *ps, int reg,
int offset, u16 mask)
{
int ret;
mutex_lock(&ps->smi_mutex);
ret = _mv88e6xxx_wait(ps, reg, offset, mask);
mutex_unlock(&ps->smi_mutex);
return ret;
}
static int _mv88e6xxx_phy_wait(struct mv88e6xxx_priv_state *ps)
{
return _mv88e6xxx_wait(ps, REG_GLOBAL2, GLOBAL2_SMI_OP,
GLOBAL2_SMI_OP_BUSY);
}
static int mv88e6xxx_eeprom_load_wait(struct dsa_switch *ds)
{
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
return mv88e6xxx_wait(ps, REG_GLOBAL2, GLOBAL2_EEPROM_OP,
GLOBAL2_EEPROM_OP_LOAD);
}
static int mv88e6xxx_eeprom_busy_wait(struct dsa_switch *ds)
{
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
return mv88e6xxx_wait(ps, REG_GLOBAL2, GLOBAL2_EEPROM_OP,
GLOBAL2_EEPROM_OP_BUSY);
}
static int mv88e6xxx_read_eeprom_word(struct dsa_switch *ds, int addr)
{
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
int ret;
mutex_lock(&ps->eeprom_mutex);
ret = mv88e6xxx_reg_write(ps, REG_GLOBAL2, GLOBAL2_EEPROM_OP,
GLOBAL2_EEPROM_OP_READ |
(addr & GLOBAL2_EEPROM_OP_ADDR_MASK));
if (ret < 0)
goto error;
ret = mv88e6xxx_eeprom_busy_wait(ds);
if (ret < 0)
goto error;
ret = mv88e6xxx_reg_read(ps, REG_GLOBAL2, GLOBAL2_EEPROM_DATA);
error:
mutex_unlock(&ps->eeprom_mutex);
return ret;
}
static int mv88e6xxx_get_eeprom_len(struct dsa_switch *ds)
{
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
if (mv88e6xxx_has(ps, MV88E6XXX_FLAG_EEPROM))
return ps->eeprom_len;
return 0;
}
static int mv88e6xxx_get_eeprom(struct dsa_switch *ds,
struct ethtool_eeprom *eeprom, u8 *data)
{
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
int offset;
int len;
int ret;
if (!mv88e6xxx_has(ps, MV88E6XXX_FLAG_EEPROM))
return -EOPNOTSUPP;
offset = eeprom->offset;
len = eeprom->len;
eeprom->len = 0;
eeprom->magic = 0xc3ec4951;
ret = mv88e6xxx_eeprom_load_wait(ds);
if (ret < 0)
return ret;
if (offset & 1) {
int word;
word = mv88e6xxx_read_eeprom_word(ds, offset >> 1);
if (word < 0)
return word;
*data++ = (word >> 8) & 0xff;
offset++;
len--;
eeprom->len++;
}
while (len >= 2) {
int word;
word = mv88e6xxx_read_eeprom_word(ds, offset >> 1);
if (word < 0)
return word;
*data++ = word & 0xff;
*data++ = (word >> 8) & 0xff;
offset += 2;
len -= 2;
eeprom->len += 2;
}
if (len) {
int word;
word = mv88e6xxx_read_eeprom_word(ds, offset >> 1);
if (word < 0)
return word;
*data++ = word & 0xff;
offset++;
len--;
eeprom->len++;
}
return 0;
}
static int mv88e6xxx_eeprom_is_readonly(struct dsa_switch *ds)
{
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
int ret;
ret = mv88e6xxx_reg_read(ps, REG_GLOBAL2, GLOBAL2_EEPROM_OP);
if (ret < 0)
return ret;
if (!(ret & GLOBAL2_EEPROM_OP_WRITE_EN))
return -EROFS;
return 0;
}
static int mv88e6xxx_write_eeprom_word(struct dsa_switch *ds, int addr,
u16 data)
{
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
int ret;
mutex_lock(&ps->eeprom_mutex);
ret = mv88e6xxx_reg_write(ps, REG_GLOBAL2, GLOBAL2_EEPROM_DATA, data);
if (ret < 0)
goto error;
ret = mv88e6xxx_reg_write(ps, REG_GLOBAL2, GLOBAL2_EEPROM_OP,
GLOBAL2_EEPROM_OP_WRITE |
(addr & GLOBAL2_EEPROM_OP_ADDR_MASK));
if (ret < 0)
goto error;
ret = mv88e6xxx_eeprom_busy_wait(ds);
error:
mutex_unlock(&ps->eeprom_mutex);
return ret;
}
static int mv88e6xxx_set_eeprom(struct dsa_switch *ds,
struct ethtool_eeprom *eeprom, u8 *data)
{
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
int offset;
int ret;
int len;
if (!mv88e6xxx_has(ps, MV88E6XXX_FLAG_EEPROM))
return -EOPNOTSUPP;
if (eeprom->magic != 0xc3ec4951)
return -EINVAL;
ret = mv88e6xxx_eeprom_is_readonly(ds);
if (ret)
return ret;
offset = eeprom->offset;
len = eeprom->len;
eeprom->len = 0;
ret = mv88e6xxx_eeprom_load_wait(ds);
if (ret < 0)
return ret;
if (offset & 1) {
int word;
word = mv88e6xxx_read_eeprom_word(ds, offset >> 1);
if (word < 0)
return word;
word = (*data++ << 8) | (word & 0xff);
ret = mv88e6xxx_write_eeprom_word(ds, offset >> 1, word);
if (ret < 0)
return ret;
offset++;
len--;
eeprom->len++;
}
while (len >= 2) {
int word;
word = *data++;
word |= *data++ << 8;
ret = mv88e6xxx_write_eeprom_word(ds, offset >> 1, word);
if (ret < 0)
return ret;
offset += 2;
len -= 2;
eeprom->len += 2;
}
if (len) {
int word;
word = mv88e6xxx_read_eeprom_word(ds, offset >> 1);
if (word < 0)
return word;
word = (word & 0xff00) | *data++;
ret = mv88e6xxx_write_eeprom_word(ds, offset >> 1, word);
if (ret < 0)
return ret;
offset++;
len--;
eeprom->len++;
}
return 0;
}
static int _mv88e6xxx_atu_wait(struct mv88e6xxx_priv_state *ps)
{
return _mv88e6xxx_wait(ps, REG_GLOBAL, GLOBAL_ATU_OP,
GLOBAL_ATU_OP_BUSY);
}
static int _mv88e6xxx_phy_read_indirect(struct mv88e6xxx_priv_state *ps,
int addr, int regnum)
{
int ret;
ret = _mv88e6xxx_reg_write(ps, REG_GLOBAL2, GLOBAL2_SMI_OP,
GLOBAL2_SMI_OP_22_READ | (addr << 5) |
regnum);
if (ret < 0)
return ret;
ret = _mv88e6xxx_phy_wait(ps);
if (ret < 0)
return ret;
ret = _mv88e6xxx_reg_read(ps, REG_GLOBAL2, GLOBAL2_SMI_DATA);
return ret;
}
static int _mv88e6xxx_phy_write_indirect(struct mv88e6xxx_priv_state *ps,
int addr, int regnum, u16 val)
{
int ret;
ret = _mv88e6xxx_reg_write(ps, REG_GLOBAL2, GLOBAL2_SMI_DATA, val);
if (ret < 0)
return ret;
ret = _mv88e6xxx_reg_write(ps, REG_GLOBAL2, GLOBAL2_SMI_OP,
GLOBAL2_SMI_OP_22_WRITE | (addr << 5) |
regnum);
return _mv88e6xxx_phy_wait(ps);
}
static int mv88e6xxx_get_eee(struct dsa_switch *ds, int port,
struct ethtool_eee *e)
{
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
int reg;
if (!mv88e6xxx_has(ps, MV88E6XXX_FLAG_EEE))
return -EOPNOTSUPP;
mutex_lock(&ps->smi_mutex);
reg = _mv88e6xxx_phy_read_indirect(ps, port, 16);
if (reg < 0)
goto out;
e->eee_enabled = !!(reg & 0x0200);
e->tx_lpi_enabled = !!(reg & 0x0100);
reg = _mv88e6xxx_reg_read(ps, REG_PORT(port), PORT_STATUS);
if (reg < 0)
goto out;
e->eee_active = !!(reg & PORT_STATUS_EEE);
reg = 0;
out:
mutex_unlock(&ps->smi_mutex);
return reg;
}
static int mv88e6xxx_set_eee(struct dsa_switch *ds, int port,
struct phy_device *phydev, struct ethtool_eee *e)
{
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
int reg;
int ret;
if (!mv88e6xxx_has(ps, MV88E6XXX_FLAG_EEE))
return -EOPNOTSUPP;
mutex_lock(&ps->smi_mutex);
ret = _mv88e6xxx_phy_read_indirect(ps, port, 16);
if (ret < 0)
goto out;
reg = ret & ~0x0300;
if (e->eee_enabled)
reg |= 0x0200;
if (e->tx_lpi_enabled)
reg |= 0x0100;
ret = _mv88e6xxx_phy_write_indirect(ps, port, 16, reg);
out:
mutex_unlock(&ps->smi_mutex);
return ret;
}
static int _mv88e6xxx_atu_cmd(struct mv88e6xxx_priv_state *ps, u16 fid, u16 cmd)
{
int ret;
if (mv88e6xxx_has_fid_reg(ps)) {
ret = _mv88e6xxx_reg_write(ps, REG_GLOBAL, GLOBAL_ATU_FID, fid);
if (ret < 0)
return ret;
} else if (mv88e6xxx_num_databases(ps) == 256) {
/* ATU DBNum[7:4] are located in ATU Control 15:12 */
ret = _mv88e6xxx_reg_read(ps, REG_GLOBAL, GLOBAL_ATU_CONTROL);
if (ret < 0)
return ret;
ret = _mv88e6xxx_reg_write(ps, REG_GLOBAL, GLOBAL_ATU_CONTROL,
(ret & 0xfff) |
((fid << 8) & 0xf000));
if (ret < 0)
return ret;
/* ATU DBNum[3:0] are located in ATU Operation 3:0 */
cmd |= fid & 0xf;
}
ret = _mv88e6xxx_reg_write(ps, REG_GLOBAL, GLOBAL_ATU_OP, cmd);
if (ret < 0)
return ret;
return _mv88e6xxx_atu_wait(ps);
}
static int _mv88e6xxx_atu_data_write(struct mv88e6xxx_priv_state *ps,
struct mv88e6xxx_atu_entry *entry)
{
u16 data = entry->state & GLOBAL_ATU_DATA_STATE_MASK;
if (entry->state != GLOBAL_ATU_DATA_STATE_UNUSED) {
unsigned int mask, shift;
if (entry->trunk) {
data |= GLOBAL_ATU_DATA_TRUNK;
mask = GLOBAL_ATU_DATA_TRUNK_ID_MASK;
shift = GLOBAL_ATU_DATA_TRUNK_ID_SHIFT;
} else {
mask = GLOBAL_ATU_DATA_PORT_VECTOR_MASK;
shift = GLOBAL_ATU_DATA_PORT_VECTOR_SHIFT;
}
data |= (entry->portv_trunkid << shift) & mask;
}
return _mv88e6xxx_reg_write(ps, REG_GLOBAL, GLOBAL_ATU_DATA, data);
}
static int _mv88e6xxx_atu_flush_move(struct mv88e6xxx_priv_state *ps,
struct mv88e6xxx_atu_entry *entry,
bool static_too)
{
int op;
int err;
err = _mv88e6xxx_atu_wait(ps);
if (err)
return err;
err = _mv88e6xxx_atu_data_write(ps, entry);
if (err)
return err;
if (entry->fid) {
op = static_too ? GLOBAL_ATU_OP_FLUSH_MOVE_ALL_DB :
GLOBAL_ATU_OP_FLUSH_MOVE_NON_STATIC_DB;
} else {
op = static_too ? GLOBAL_ATU_OP_FLUSH_MOVE_ALL :
GLOBAL_ATU_OP_FLUSH_MOVE_NON_STATIC;
}
return _mv88e6xxx_atu_cmd(ps, entry->fid, op);
}
static int _mv88e6xxx_atu_flush(struct mv88e6xxx_priv_state *ps,
u16 fid, bool static_too)
{
struct mv88e6xxx_atu_entry entry = {
.fid = fid,
.state = 0, /* EntryState bits must be 0 */
};
return _mv88e6xxx_atu_flush_move(ps, &entry, static_too);
}
static int _mv88e6xxx_atu_move(struct mv88e6xxx_priv_state *ps, u16 fid,
int from_port, int to_port, bool static_too)
{
struct mv88e6xxx_atu_entry entry = {
.trunk = false,
.fid = fid,
};
/* EntryState bits must be 0xF */
entry.state = GLOBAL_ATU_DATA_STATE_MASK;
/* ToPort and FromPort are respectively in PortVec bits 7:4 and 3:0 */
entry.portv_trunkid = (to_port & 0x0f) << 4;
entry.portv_trunkid |= from_port & 0x0f;
return _mv88e6xxx_atu_flush_move(ps, &entry, static_too);
}
static int _mv88e6xxx_atu_remove(struct mv88e6xxx_priv_state *ps, u16 fid,
int port, bool static_too)
{
/* Destination port 0xF means remove the entries */
return _mv88e6xxx_atu_move(ps, fid, port, 0x0f, static_too);
}
static const char * const mv88e6xxx_port_state_names[] = {
[PORT_CONTROL_STATE_DISABLED] = "Disabled",
[PORT_CONTROL_STATE_BLOCKING] = "Blocking/Listening",
[PORT_CONTROL_STATE_LEARNING] = "Learning",
[PORT_CONTROL_STATE_FORWARDING] = "Forwarding",
};
static int _mv88e6xxx_port_state(struct mv88e6xxx_priv_state *ps, int port,
u8 state)
{
struct dsa_switch *ds = ps->ds;
int reg, ret = 0;
u8 oldstate;
reg = _mv88e6xxx_reg_read(ps, REG_PORT(port), PORT_CONTROL);
if (reg < 0)
return reg;
oldstate = reg & PORT_CONTROL_STATE_MASK;
if (oldstate != state) {
/* Flush forwarding database if we're moving a port
* from Learning or Forwarding state to Disabled or
* Blocking or Listening state.
*/
if ((oldstate == PORT_CONTROL_STATE_LEARNING ||
oldstate == PORT_CONTROL_STATE_FORWARDING)
&& (state == PORT_CONTROL_STATE_DISABLED ||
state == PORT_CONTROL_STATE_BLOCKING)) {
ret = _mv88e6xxx_atu_remove(ps, 0, port, false);
if (ret)
return ret;
}
reg = (reg & ~PORT_CONTROL_STATE_MASK) | state;
ret = _mv88e6xxx_reg_write(ps, REG_PORT(port), PORT_CONTROL,
reg);
if (ret)
return ret;
netdev_dbg(ds->ports[port].netdev, "PortState %s (was %s)\n",
mv88e6xxx_port_state_names[state],
mv88e6xxx_port_state_names[oldstate]);
}
return ret;
}
static int _mv88e6xxx_port_based_vlan_map(struct mv88e6xxx_priv_state *ps,
int port)
{
struct net_device *bridge = ps->ports[port].bridge_dev;
const u16 mask = (1 << ps->info->num_ports) - 1;
struct dsa_switch *ds = ps->ds;
u16 output_ports = 0;
int reg;
int i;
/* allow CPU port or DSA link(s) to send frames to every port */
if (dsa_is_cpu_port(ds, port) || dsa_is_dsa_port(ds, port)) {
output_ports = mask;
} else {
for (i = 0; i < ps->info->num_ports; ++i) {
/* allow sending frames to every group member */
if (bridge && ps->ports[i].bridge_dev == bridge)
output_ports |= BIT(i);
/* allow sending frames to CPU port and DSA link(s) */
if (dsa_is_cpu_port(ds, i) || dsa_is_dsa_port(ds, i))
output_ports |= BIT(i);
}
}
/* prevent frames from going back out of the port they came in on */
output_ports &= ~BIT(port);
reg = _mv88e6xxx_reg_read(ps, REG_PORT(port), PORT_BASE_VLAN);
if (reg < 0)
return reg;
reg &= ~mask;
reg |= output_ports & mask;
return _mv88e6xxx_reg_write(ps, REG_PORT(port), PORT_BASE_VLAN, reg);
}
static void mv88e6xxx_port_stp_state_set(struct dsa_switch *ds, int port,
u8 state)
{
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
int stp_state;
int err;
if (!mv88e6xxx_has(ps, MV88E6XXX_FLAG_PORTSTATE))
return;
switch (state) {
case BR_STATE_DISABLED:
stp_state = PORT_CONTROL_STATE_DISABLED;
break;
case BR_STATE_BLOCKING:
case BR_STATE_LISTENING:
stp_state = PORT_CONTROL_STATE_BLOCKING;
break;
case BR_STATE_LEARNING:
stp_state = PORT_CONTROL_STATE_LEARNING;
break;
case BR_STATE_FORWARDING:
default:
stp_state = PORT_CONTROL_STATE_FORWARDING;
break;
}
mutex_lock(&ps->smi_mutex);
err = _mv88e6xxx_port_state(ps, port, stp_state);
mutex_unlock(&ps->smi_mutex);
if (err)
netdev_err(ds->ports[port].netdev,
"failed to update state to %s\n",
mv88e6xxx_port_state_names[stp_state]);
}
static int _mv88e6xxx_port_pvid(struct mv88e6xxx_priv_state *ps, int port,
u16 *new, u16 *old)
{
struct dsa_switch *ds = ps->ds;
u16 pvid;
int ret;
ret = _mv88e6xxx_reg_read(ps, REG_PORT(port), PORT_DEFAULT_VLAN);
if (ret < 0)
return ret;
pvid = ret & PORT_DEFAULT_VLAN_MASK;
if (new) {
ret &= ~PORT_DEFAULT_VLAN_MASK;
ret |= *new & PORT_DEFAULT_VLAN_MASK;
ret = _mv88e6xxx_reg_write(ps, REG_PORT(port),
PORT_DEFAULT_VLAN, ret);
if (ret < 0)
return ret;
netdev_dbg(ds->ports[port].netdev,
"DefaultVID %d (was %d)\n", *new, pvid);
}
if (old)
*old = pvid;
return 0;
}
static int _mv88e6xxx_port_pvid_get(struct mv88e6xxx_priv_state *ps,
int port, u16 *pvid)
{
return _mv88e6xxx_port_pvid(ps, port, NULL, pvid);
}
static int _mv88e6xxx_port_pvid_set(struct mv88e6xxx_priv_state *ps,
int port, u16 pvid)
{
return _mv88e6xxx_port_pvid(ps, port, &pvid, NULL);
}
static int _mv88e6xxx_vtu_wait(struct mv88e6xxx_priv_state *ps)
{
return _mv88e6xxx_wait(ps, REG_GLOBAL, GLOBAL_VTU_OP,
GLOBAL_VTU_OP_BUSY);
}
static int _mv88e6xxx_vtu_cmd(struct mv88e6xxx_priv_state *ps, u16 op)
{
int ret;
ret = _mv88e6xxx_reg_write(ps, REG_GLOBAL, GLOBAL_VTU_OP, op);
if (ret < 0)
return ret;
return _mv88e6xxx_vtu_wait(ps);
}
static int _mv88e6xxx_vtu_stu_flush(struct mv88e6xxx_priv_state *ps)
{
int ret;
ret = _mv88e6xxx_vtu_wait(ps);
if (ret < 0)
return ret;
return _mv88e6xxx_vtu_cmd(ps, GLOBAL_VTU_OP_FLUSH_ALL);
}
static int _mv88e6xxx_vtu_stu_data_read(struct mv88e6xxx_priv_state *ps,
struct mv88e6xxx_vtu_stu_entry *entry,
unsigned int nibble_offset)
{
u16 regs[3];
int i;
int ret;
for (i = 0; i < 3; ++i) {
ret = _mv88e6xxx_reg_read(ps, REG_GLOBAL,
GLOBAL_VTU_DATA_0_3 + i);
if (ret < 0)
return ret;
regs[i] = ret;
}
for (i = 0; i < ps->info->num_ports; ++i) {
unsigned int shift = (i % 4) * 4 + nibble_offset;
u16 reg = regs[i / 4];
entry->data[i] = (reg >> shift) & GLOBAL_VTU_STU_DATA_MASK;
}
return 0;
}
static int mv88e6xxx_vtu_data_read(struct mv88e6xxx_priv_state *ps,
struct mv88e6xxx_vtu_stu_entry *entry)
{
return _mv88e6xxx_vtu_stu_data_read(ps, entry, 0);
}
static int mv88e6xxx_stu_data_read(struct mv88e6xxx_priv_state *ps,
struct mv88e6xxx_vtu_stu_entry *entry)
{
return _mv88e6xxx_vtu_stu_data_read(ps, entry, 2);
}
static int _mv88e6xxx_vtu_stu_data_write(struct mv88e6xxx_priv_state *ps,
struct mv88e6xxx_vtu_stu_entry *entry,
unsigned int nibble_offset)
{
u16 regs[3] = { 0 };
int i;
int ret;
for (i = 0; i < ps->info->num_ports; ++i) {
unsigned int shift = (i % 4) * 4 + nibble_offset;
u8 data = entry->data[i];
regs[i / 4] |= (data & GLOBAL_VTU_STU_DATA_MASK) << shift;
}
for (i = 0; i < 3; ++i) {
ret = _mv88e6xxx_reg_write(ps, REG_GLOBAL,
GLOBAL_VTU_DATA_0_3 + i, regs[i]);
if (ret < 0)
return ret;
}
return 0;
}
static int mv88e6xxx_vtu_data_write(struct mv88e6xxx_priv_state *ps,
struct mv88e6xxx_vtu_stu_entry *entry)
{
return _mv88e6xxx_vtu_stu_data_write(ps, entry, 0);
}
static int mv88e6xxx_stu_data_write(struct mv88e6xxx_priv_state *ps,
struct mv88e6xxx_vtu_stu_entry *entry)
{
return _mv88e6xxx_vtu_stu_data_write(ps, entry, 2);
}
static int _mv88e6xxx_vtu_vid_write(struct mv88e6xxx_priv_state *ps, u16 vid)
{
return _mv88e6xxx_reg_write(ps, REG_GLOBAL, GLOBAL_VTU_VID,
vid & GLOBAL_VTU_VID_MASK);
}
static int _mv88e6xxx_vtu_getnext(struct mv88e6xxx_priv_state *ps,
struct mv88e6xxx_vtu_stu_entry *entry)
{
struct mv88e6xxx_vtu_stu_entry next = { 0 };
int ret;
ret = _mv88e6xxx_vtu_wait(ps);
if (ret < 0)
return ret;
ret = _mv88e6xxx_vtu_cmd(ps, GLOBAL_VTU_OP_VTU_GET_NEXT);
if (ret < 0)
return ret;
ret = _mv88e6xxx_reg_read(ps, REG_GLOBAL, GLOBAL_VTU_VID);
if (ret < 0)
return ret;
next.vid = ret & GLOBAL_VTU_VID_MASK;
next.valid = !!(ret & GLOBAL_VTU_VID_VALID);
if (next.valid) {
ret = mv88e6xxx_vtu_data_read(ps, &next);
if (ret < 0)
return ret;
if (mv88e6xxx_has_fid_reg(ps)) {
ret = _mv88e6xxx_reg_read(ps, REG_GLOBAL,
GLOBAL_VTU_FID);
if (ret < 0)
return ret;
next.fid = ret & GLOBAL_VTU_FID_MASK;
} else if (mv88e6xxx_num_databases(ps) == 256) {
/* VTU DBNum[7:4] are located in VTU Operation 11:8, and
* VTU DBNum[3:0] are located in VTU Operation 3:0
*/
ret = _mv88e6xxx_reg_read(ps, REG_GLOBAL,
GLOBAL_VTU_OP);
if (ret < 0)
return ret;
next.fid = (ret & 0xf00) >> 4;
next.fid |= ret & 0xf;
}
if (mv88e6xxx_has(ps, MV88E6XXX_FLAG_STU)) {
ret = _mv88e6xxx_reg_read(ps, REG_GLOBAL,
GLOBAL_VTU_SID);
if (ret < 0)
return ret;
next.sid = ret & GLOBAL_VTU_SID_MASK;
}
}
*entry = next;
return 0;
}
static int mv88e6xxx_port_vlan_dump(struct dsa_switch *ds, int port,
struct switchdev_obj_port_vlan *vlan,
int (*cb)(struct switchdev_obj *obj))
{
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
struct mv88e6xxx_vtu_stu_entry next;
u16 pvid;
int err;
if (!mv88e6xxx_has(ps, MV88E6XXX_FLAG_VTU))
return -EOPNOTSUPP;
mutex_lock(&ps->smi_mutex);
err = _mv88e6xxx_port_pvid_get(ps, port, &pvid);
if (err)
goto unlock;
err = _mv88e6xxx_vtu_vid_write(ps, GLOBAL_VTU_VID_MASK);
if (err)
goto unlock;
do {
err = _mv88e6xxx_vtu_getnext(ps, &next);
if (err)
break;
if (!next.valid)
break;
if (next.data[port] == GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER)
continue;
/* reinit and dump this VLAN obj */
vlan->vid_begin = vlan->vid_end = next.vid;
vlan->flags = 0;
if (next.data[port] == GLOBAL_VTU_DATA_MEMBER_TAG_UNTAGGED)
vlan->flags |= BRIDGE_VLAN_INFO_UNTAGGED;
if (next.vid == pvid)
vlan->flags |= BRIDGE_VLAN_INFO_PVID;
err = cb(&vlan->obj);
if (err)
break;
} while (next.vid < GLOBAL_VTU_VID_MASK);
unlock:
mutex_unlock(&ps->smi_mutex);
return err;
}
static int _mv88e6xxx_vtu_loadpurge(struct mv88e6xxx_priv_state *ps,
struct mv88e6xxx_vtu_stu_entry *entry)
{
u16 op = GLOBAL_VTU_OP_VTU_LOAD_PURGE;
u16 reg = 0;
int ret;
ret = _mv88e6xxx_vtu_wait(ps);
if (ret < 0)
return ret;
if (!entry->valid)
goto loadpurge;
/* Write port member tags */
ret = mv88e6xxx_vtu_data_write(ps, entry);
if (ret < 0)
return ret;
if (mv88e6xxx_has(ps, MV88E6XXX_FLAG_STU)) {
reg = entry->sid & GLOBAL_VTU_SID_MASK;
ret = _mv88e6xxx_reg_write(ps, REG_GLOBAL, GLOBAL_VTU_SID, reg);
if (ret < 0)
return ret;
}
if (mv88e6xxx_has_fid_reg(ps)) {
reg = entry->fid & GLOBAL_VTU_FID_MASK;
ret = _mv88e6xxx_reg_write(ps, REG_GLOBAL, GLOBAL_VTU_FID, reg);
if (ret < 0)
return ret;
} else if (mv88e6xxx_num_databases(ps) == 256) {
/* VTU DBNum[7:4] are located in VTU Operation 11:8, and
* VTU DBNum[3:0] are located in VTU Operation 3:0
*/
op |= (entry->fid & 0xf0) << 8;
op |= entry->fid & 0xf;
}
reg = GLOBAL_VTU_VID_VALID;
loadpurge:
reg |= entry->vid & GLOBAL_VTU_VID_MASK;
ret = _mv88e6xxx_reg_write(ps, REG_GLOBAL, GLOBAL_VTU_VID, reg);
if (ret < 0)
return ret;
return _mv88e6xxx_vtu_cmd(ps, op);
}
static int _mv88e6xxx_stu_getnext(struct mv88e6xxx_priv_state *ps, u8 sid,
struct mv88e6xxx_vtu_stu_entry *entry)
{
struct mv88e6xxx_vtu_stu_entry next = { 0 };
int ret;
ret = _mv88e6xxx_vtu_wait(ps);
if (ret < 0)
return ret;
ret = _mv88e6xxx_reg_write(ps, REG_GLOBAL, GLOBAL_VTU_SID,
sid & GLOBAL_VTU_SID_MASK);
if (ret < 0)
return ret;
ret = _mv88e6xxx_vtu_cmd(ps, GLOBAL_VTU_OP_STU_GET_NEXT);
if (ret < 0)
return ret;
ret = _mv88e6xxx_reg_read(ps, REG_GLOBAL, GLOBAL_VTU_SID);
if (ret < 0)
return ret;
next.sid = ret & GLOBAL_VTU_SID_MASK;
ret = _mv88e6xxx_reg_read(ps, REG_GLOBAL, GLOBAL_VTU_VID);
if (ret < 0)
return ret;
next.valid = !!(ret & GLOBAL_VTU_VID_VALID);
if (next.valid) {
ret = mv88e6xxx_stu_data_read(ps, &next);
if (ret < 0)
return ret;
}
*entry = next;
return 0;
}
static int _mv88e6xxx_stu_loadpurge(struct mv88e6xxx_priv_state *ps,
struct mv88e6xxx_vtu_stu_entry *entry)
{
u16 reg = 0;
int ret;
ret = _mv88e6xxx_vtu_wait(ps);
if (ret < 0)
return ret;
if (!entry->valid)
goto loadpurge;
/* Write port states */
ret = mv88e6xxx_stu_data_write(ps, entry);
if (ret < 0)
return ret;
reg = GLOBAL_VTU_VID_VALID;
loadpurge:
ret = _mv88e6xxx_reg_write(ps, REG_GLOBAL, GLOBAL_VTU_VID, reg);
if (ret < 0)
return ret;
reg = entry->sid & GLOBAL_VTU_SID_MASK;
ret = _mv88e6xxx_reg_write(ps, REG_GLOBAL, GLOBAL_VTU_SID, reg);
if (ret < 0)
return ret;
return _mv88e6xxx_vtu_cmd(ps, GLOBAL_VTU_OP_STU_LOAD_PURGE);
}
static int _mv88e6xxx_port_fid(struct mv88e6xxx_priv_state *ps, int port,
u16 *new, u16 *old)
{
struct dsa_switch *ds = ps->ds;
u16 upper_mask;
u16 fid;
int ret;
if (mv88e6xxx_num_databases(ps) == 4096)
upper_mask = 0xff;
else if (mv88e6xxx_num_databases(ps) == 256)
upper_mask = 0xf;
else
return -EOPNOTSUPP;
/* Port's default FID bits 3:0 are located in reg 0x06, offset 12 */
ret = _mv88e6xxx_reg_read(ps, REG_PORT(port), PORT_BASE_VLAN);
if (ret < 0)
return ret;
fid = (ret & PORT_BASE_VLAN_FID_3_0_MASK) >> 12;
if (new) {
ret &= ~PORT_BASE_VLAN_FID_3_0_MASK;
ret |= (*new << 12) & PORT_BASE_VLAN_FID_3_0_MASK;
ret = _mv88e6xxx_reg_write(ps, REG_PORT(port), PORT_BASE_VLAN,
ret);
if (ret < 0)
return ret;
}
/* Port's default FID bits 11:4 are located in reg 0x05, offset 0 */
ret = _mv88e6xxx_reg_read(ps, REG_PORT(port), PORT_CONTROL_1);
if (ret < 0)
return ret;
fid |= (ret & upper_mask) << 4;
if (new) {
ret &= ~upper_mask;
ret |= (*new >> 4) & upper_mask;
ret = _mv88e6xxx_reg_write(ps, REG_PORT(port), PORT_CONTROL_1,
ret);
if (ret < 0)
return ret;
netdev_dbg(ds->ports[port].netdev,
"FID %d (was %d)\n", *new, fid);
}
if (old)
*old = fid;
return 0;
}
static int _mv88e6xxx_port_fid_get(struct mv88e6xxx_priv_state *ps,
int port, u16 *fid)
{
return _mv88e6xxx_port_fid(ps, port, NULL, fid);
}
static int _mv88e6xxx_port_fid_set(struct mv88e6xxx_priv_state *ps,
int port, u16 fid)
{
return _mv88e6xxx_port_fid(ps, port, &fid, NULL);
}
static int _mv88e6xxx_fid_new(struct mv88e6xxx_priv_state *ps, u16 *fid)
{
DECLARE_BITMAP(fid_bitmap, MV88E6XXX_N_FID);
struct mv88e6xxx_vtu_stu_entry vlan;
int i, err;
bitmap_zero(fid_bitmap, MV88E6XXX_N_FID);
/* Set every FID bit used by the (un)bridged ports */
for (i = 0; i < ps->info->num_ports; ++i) {
err = _mv88e6xxx_port_fid_get(ps, i, fid);
if (err)
return err;
set_bit(*fid, fid_bitmap);
}
/* Set every FID bit used by the VLAN entries */
err = _mv88e6xxx_vtu_vid_write(ps, GLOBAL_VTU_VID_MASK);
if (err)
return err;
do {
err = _mv88e6xxx_vtu_getnext(ps, &vlan);
if (err)
return err;
if (!vlan.valid)
break;
set_bit(vlan.fid, fid_bitmap);
} while (vlan.vid < GLOBAL_VTU_VID_MASK);
/* The reset value 0x000 is used to indicate that multiple address
* databases are not needed. Return the next positive available.
*/
*fid = find_next_zero_bit(fid_bitmap, MV88E6XXX_N_FID, 1);
if (unlikely(*fid >= mv88e6xxx_num_databases(ps)))
return -ENOSPC;
/* Clear the database */
return _mv88e6xxx_atu_flush(ps, *fid, true);
}
static int _mv88e6xxx_vtu_new(struct mv88e6xxx_priv_state *ps, u16 vid,
struct mv88e6xxx_vtu_stu_entry *entry)
{
struct dsa_switch *ds = ps->ds;
struct mv88e6xxx_vtu_stu_entry vlan = {
.valid = true,
.vid = vid,
};
int i, err;
err = _mv88e6xxx_fid_new(ps, &vlan.fid);
if (err)
return err;
/* exclude all ports except the CPU and DSA ports */
for (i = 0; i < ps->info->num_ports; ++i)
vlan.data[i] = dsa_is_cpu_port(ds, i) || dsa_is_dsa_port(ds, i)
? GLOBAL_VTU_DATA_MEMBER_TAG_UNMODIFIED
: GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER;
if (mv88e6xxx_6097_family(ps) || mv88e6xxx_6165_family(ps) ||
mv88e6xxx_6351_family(ps) || mv88e6xxx_6352_family(ps)) {
struct mv88e6xxx_vtu_stu_entry vstp;
/* Adding a VTU entry requires a valid STU entry. As VSTP is not
* implemented, only one STU entry is needed to cover all VTU
* entries. Thus, validate the SID 0.
*/
vlan.sid = 0;
err = _mv88e6xxx_stu_getnext(ps, GLOBAL_VTU_SID_MASK, &vstp);
if (err)
return err;
if (vstp.sid != vlan.sid || !vstp.valid) {
memset(&vstp, 0, sizeof(vstp));
vstp.valid = true;
vstp.sid = vlan.sid;
err = _mv88e6xxx_stu_loadpurge(ps, &vstp);
if (err)
return err;
}
}
*entry = vlan;
return 0;
}
static int _mv88e6xxx_vtu_get(struct mv88e6xxx_priv_state *ps, u16 vid,
struct mv88e6xxx_vtu_stu_entry *entry, bool creat)
{
int err;
if (!vid)
return -EINVAL;
err = _mv88e6xxx_vtu_vid_write(ps, vid - 1);
if (err)
return err;
err = _mv88e6xxx_vtu_getnext(ps, entry);
if (err)
return err;
if (entry->vid != vid || !entry->valid) {
if (!creat)
return -EOPNOTSUPP;
/* -ENOENT would've been more appropriate, but switchdev expects
* -EOPNOTSUPP to inform bridge about an eventual software VLAN.
*/
err = _mv88e6xxx_vtu_new(ps, vid, entry);
}
return err;
}
static int mv88e6xxx_port_check_hw_vlan(struct dsa_switch *ds, int port,
u16 vid_begin, u16 vid_end)
{
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
struct mv88e6xxx_vtu_stu_entry vlan;
int i, err;
if (!vid_begin)
return -EOPNOTSUPP;
mutex_lock(&ps->smi_mutex);
err = _mv88e6xxx_vtu_vid_write(ps, vid_begin - 1);
if (err)
goto unlock;
do {
err = _mv88e6xxx_vtu_getnext(ps, &vlan);
if (err)
goto unlock;
if (!vlan.valid)
break;
if (vlan.vid > vid_end)
break;
for (i = 0; i < ps->info->num_ports; ++i) {
if (dsa_is_dsa_port(ds, i) || dsa_is_cpu_port(ds, i))
continue;
if (vlan.data[i] ==
GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER)
continue;
if (ps->ports[i].bridge_dev ==
ps->ports[port].bridge_dev)
break; /* same bridge, check next VLAN */
netdev_warn(ds->ports[port].netdev,
"hardware VLAN %d already used by %s\n",
vlan.vid,
netdev_name(ps->ports[i].bridge_dev));
err = -EOPNOTSUPP;
goto unlock;
}
} while (vlan.vid < vid_end);
unlock:
mutex_unlock(&ps->smi_mutex);
return err;
}
static const char * const mv88e6xxx_port_8021q_mode_names[] = {
[PORT_CONTROL_2_8021Q_DISABLED] = "Disabled",
[PORT_CONTROL_2_8021Q_FALLBACK] = "Fallback",
[PORT_CONTROL_2_8021Q_CHECK] = "Check",
[PORT_CONTROL_2_8021Q_SECURE] = "Secure",
};
static int mv88e6xxx_port_vlan_filtering(struct dsa_switch *ds, int port,
bool vlan_filtering)
{
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
u16 old, new = vlan_filtering ? PORT_CONTROL_2_8021Q_SECURE :
PORT_CONTROL_2_8021Q_DISABLED;
int ret;
if (!mv88e6xxx_has(ps, MV88E6XXX_FLAG_VTU))
return -EOPNOTSUPP;
mutex_lock(&ps->smi_mutex);
ret = _mv88e6xxx_reg_read(ps, REG_PORT(port), PORT_CONTROL_2);
if (ret < 0)
goto unlock;
old = ret & PORT_CONTROL_2_8021Q_MASK;
if (new != old) {
ret &= ~PORT_CONTROL_2_8021Q_MASK;
ret |= new & PORT_CONTROL_2_8021Q_MASK;
ret = _mv88e6xxx_reg_write(ps, REG_PORT(port), PORT_CONTROL_2,
ret);
if (ret < 0)
goto unlock;
netdev_dbg(ds->ports[port].netdev, "802.1Q Mode %s (was %s)\n",
mv88e6xxx_port_8021q_mode_names[new],
mv88e6xxx_port_8021q_mode_names[old]);
}
ret = 0;
unlock:
mutex_unlock(&ps->smi_mutex);
return ret;
}
static int mv88e6xxx_port_vlan_prepare(struct dsa_switch *ds, int port,
const struct switchdev_obj_port_vlan *vlan,
struct switchdev_trans *trans)
{
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
int err;
if (!mv88e6xxx_has(ps, MV88E6XXX_FLAG_VTU))
return -EOPNOTSUPP;
/* If the requested port doesn't belong to the same bridge as the VLAN
* members, do not support it (yet) and fallback to software VLAN.
*/
err = mv88e6xxx_port_check_hw_vlan(ds, port, vlan->vid_begin,
vlan->vid_end);
if (err)
return err;
/* We don't need any dynamic resource from the kernel (yet),
* so skip the prepare phase.
*/
return 0;
}
static int _mv88e6xxx_port_vlan_add(struct mv88e6xxx_priv_state *ps, int port,
u16 vid, bool untagged)
{
struct mv88e6xxx_vtu_stu_entry vlan;
int err;
err = _mv88e6xxx_vtu_get(ps, vid, &vlan, true);
if (err)
return err;
vlan.data[port] = untagged ?
GLOBAL_VTU_DATA_MEMBER_TAG_UNTAGGED :
GLOBAL_VTU_DATA_MEMBER_TAG_TAGGED;
return _mv88e6xxx_vtu_loadpurge(ps, &vlan);
}
static void mv88e6xxx_port_vlan_add(struct dsa_switch *ds, int port,
const struct switchdev_obj_port_vlan *vlan,
struct switchdev_trans *trans)
{
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID;
u16 vid;
if (!mv88e6xxx_has(ps, MV88E6XXX_FLAG_VTU))
return;
mutex_lock(&ps->smi_mutex);
for (vid = vlan->vid_begin; vid <= vlan->vid_end; ++vid)
if (_mv88e6xxx_port_vlan_add(ps, port, vid, untagged))
netdev_err(ds->ports[port].netdev,
"failed to add VLAN %d%c\n",
vid, untagged ? 'u' : 't');
if (pvid && _mv88e6xxx_port_pvid_set(ps, port, vlan->vid_end))
netdev_err(ds->ports[port].netdev, "failed to set PVID %d\n",
vlan->vid_end);
mutex_unlock(&ps->smi_mutex);
}
static int _mv88e6xxx_port_vlan_del(struct mv88e6xxx_priv_state *ps,
int port, u16 vid)
{
struct dsa_switch *ds = ps->ds;
struct mv88e6xxx_vtu_stu_entry vlan;
int i, err;
err = _mv88e6xxx_vtu_get(ps, vid, &vlan, false);
if (err)
return err;
/* Tell switchdev if this VLAN is handled in software */
if (vlan.data[port] == GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER)
net: dsa: mv88e6xxx: fix software VLAN deletion The current bridge code calls switchdev_port_obj_del on a VLAN port even if the corresponding switchdev_port_obj_add call returned -EOPNOTSUPP. If the DSA driver doesn't return -EOPNOTSUPP for a software port VLAN in its port_vlan_del function, the VLAN is not deleted. Unbridging the port also generates a stack trace for the same reason. This can be quickly tested on a VLAN filtering enabled system with: # brctl addbr br0 # brctl addif br0 lan0 # brctl addbr br1 # brctl addif br1 lan1 # brctl delif br1 lan1 Both bridges have a default default_pvid set to 1. lan0 uses the hardware VLAN 1 while lan1 falls back to the software VLAN 1. Unbridging lan1 does not delete its software VLAN, and thus generates the following stack trace: [ 2991.681705] device lan1 left promiscuous mode [ 2991.686237] br1: port 1(lan1) entered disabled state [ 2991.725094] ------------[ cut here ]------------ [ 2991.729761] WARNING: CPU: 0 PID: 869 at net/bridge/br_vlan.c:314 __vlan_group_free+0x4c/0x50() [ 2991.738437] Modules linked in: [ 2991.741546] CPU: 0 PID: 869 Comm: ip Not tainted 4.4.0 #16 [ 2991.747039] Hardware name: Freescale Vybrid VF5xx/VF6xx (Device Tree) [ 2991.753511] Backtrace: [ 2991.756008] [<80014450>] (dump_backtrace) from [<8001469c>] (show_stack+0x20/0x24) [ 2991.763604] r6:80512644 r5:00000009 r4:00000000 r3:00000000 [ 2991.769343] [<8001467c>] (show_stack) from [<80268e44>] (dump_stack+0x24/0x28) [ 2991.776618] [<80268e20>] (dump_stack) from [<80025568>] (warn_slowpath_common+0x98/0xc4) [ 2991.784750] [<800254d0>] (warn_slowpath_common) from [<80025650>] (warn_slowpath_null+0x2c/0x34) [ 2991.793557] r8:00000000 r7:9f786a8c r6:9f76c440 r5:9f786a00 r4:9f68ac00 [ 2991.800366] [<80025624>] (warn_slowpath_null) from [<80512644>] (__vlan_group_free+0x4c/0x50) [ 2991.808946] [<805125f8>] (__vlan_group_free) from [<80514488>] (nbp_vlan_flush+0x44/0x68) [ 2991.817147] r4:9f68ac00 r3:9ec70000 [ 2991.820772] [<80514444>] (nbp_vlan_flush) from [<80506f08>] (del_nbp+0xac/0x130) [ 2991.828201] r5:9f56f800 r4:9f786a00 [ 2991.831841] [<80506e5c>] (del_nbp) from [<8050774c>] (br_del_if+0x40/0xbc) [ 2991.838724] r7:80590f68 r6:00000000 r5:9ec71c38 r4:9f76c440 [ 2991.844475] [<8050770c>] (br_del_if) from [<80503dc0>] (br_del_slave+0x1c/0x20) [ 2991.851802] r5:9ec71c38 r4:9f56f800 [ 2991.855428] [<80503da4>] (br_del_slave) from [<80484a34>] (do_setlink+0x324/0x7b8) [ 2991.863043] [<80484710>] (do_setlink) from [<80485e90>] (rtnl_newlink+0x508/0x6f4) [ 2991.870616] r10:00000000 r9:9ec71ba8 r8:00000000 r7:00000000 r6:9f6b0400 r5:9f56f800 [ 2991.878548] r4:8076278c [ 2991.881110] [<80485988>] (rtnl_newlink) from [<80484048>] (rtnetlink_rcv_msg+0x18c/0x22c) [ 2991.889315] r10:9f7d4e40 r9:00000000 r8:00000000 r7:00000000 r6:9f7d4e40 r5:9f6b0400 [ 2991.897250] r4:00000000 [ 2991.899814] [<80483ebc>] (rtnetlink_rcv_msg) from [<80497c74>] (netlink_rcv_skb+0xb0/0xcc) [ 2991.908104] r8:00000000 r7:9f7d4e40 r6:9f7d4e40 r5:80483ebc r4:9f6b0400 [ 2991.914928] [<80497bc4>] (netlink_rcv_skb) from [<80483eb4>] (rtnetlink_rcv+0x34/0x3c) [ 2991.922874] r6:9f5ea000 r5:00000028 r4:9f7d4e40 r3:80483e80 [ 2991.928622] [<80483e80>] (rtnetlink_rcv) from [<80497604>] (netlink_unicast+0x180/0x200) [ 2991.936742] r4:9f4edc00 r3:80483e80 [ 2991.940362] [<80497484>] (netlink_unicast) from [<80497a88>] (netlink_sendmsg+0x33c/0x350) [ 2991.948648] r8:00000000 r7:00000028 r6:00000000 r5:9f5ea000 r4:9ec71f4c [ 2991.955481] [<8049774c>] (netlink_sendmsg) from [<80457ff0>] (sock_sendmsg+0x24/0x34) [ 2991.963342] r10:00000000 r9:9ec71e28 r8:00000000 r7:9f1e2140 r6:00000000 r5:00000000 [ 2991.971276] r4:9ec71f4c [ 2991.973849] [<80457fcc>] (sock_sendmsg) from [<80458af0>] (___sys_sendmsg+0x1fc/0x204) [ 2991.981809] [<804588f4>] (___sys_sendmsg) from [<804598d0>] (__sys_sendmsg+0x4c/0x7c) [ 2991.989640] r10:00000000 r9:9ec70000 r8:80010824 r7:00000128 r6:7ee946c4 r5:00000000 [ 2991.997572] r4:9f1e2140 [ 2992.000128] [<80459884>] (__sys_sendmsg) from [<80459918>] (SyS_sendmsg+0x18/0x1c) [ 2992.007725] r6:00000000 r5:7ee9c7b8 r4:7ee946e0 [ 2992.012430] [<80459900>] (SyS_sendmsg) from [<80010660>] (ret_fast_syscall+0x0/0x3c) [ 2992.020182] ---[ end trace 5d4bc29f4da04280 ]--- To fix this, return -EOPNOTSUPP in _mv88e6xxx_port_vlan_del instead of -ENOENT if the hardware VLAN doesn't exist or the port is not a member. Signed-off-by: Vivien Didelot <vivien.didelot@savoirfairelinux.com> Tested-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-02-06 02:04:39 +07:00
return -EOPNOTSUPP;
vlan.data[port] = GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER;
/* keep the VLAN unless all ports are excluded */
vlan.valid = false;
for (i = 0; i < ps->info->num_ports; ++i) {
if (dsa_is_cpu_port(ds, i) || dsa_is_dsa_port(ds, i))
continue;
if (vlan.data[i] != GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER) {
vlan.valid = true;
break;
}
}
err = _mv88e6xxx_vtu_loadpurge(ps, &vlan);
if (err)
return err;
return _mv88e6xxx_atu_remove(ps, vlan.fid, port, false);
}
static int mv88e6xxx_port_vlan_del(struct dsa_switch *ds, int port,
const struct switchdev_obj_port_vlan *vlan)
{
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
u16 pvid, vid;
int err = 0;
if (!mv88e6xxx_has(ps, MV88E6XXX_FLAG_VTU))
return -EOPNOTSUPP;
mutex_lock(&ps->smi_mutex);
err = _mv88e6xxx_port_pvid_get(ps, port, &pvid);
if (err)
goto unlock;
for (vid = vlan->vid_begin; vid <= vlan->vid_end; ++vid) {
err = _mv88e6xxx_port_vlan_del(ps, port, vid);
if (err)
goto unlock;
if (vid == pvid) {
err = _mv88e6xxx_port_pvid_set(ps, port, 0);
if (err)
goto unlock;
}
}
unlock:
mutex_unlock(&ps->smi_mutex);
return err;
}
static int _mv88e6xxx_atu_mac_write(struct mv88e6xxx_priv_state *ps,
const unsigned char *addr)
{
int i, ret;
for (i = 0; i < 3; i++) {
ret = _mv88e6xxx_reg_write(
ps, REG_GLOBAL, GLOBAL_ATU_MAC_01 + i,
(addr[i * 2] << 8) | addr[i * 2 + 1]);
if (ret < 0)
return ret;
}
return 0;
}
static int _mv88e6xxx_atu_mac_read(struct mv88e6xxx_priv_state *ps,
unsigned char *addr)
{
int i, ret;
for (i = 0; i < 3; i++) {
ret = _mv88e6xxx_reg_read(ps, REG_GLOBAL,
GLOBAL_ATU_MAC_01 + i);
if (ret < 0)
return ret;
addr[i * 2] = ret >> 8;
addr[i * 2 + 1] = ret & 0xff;
}
return 0;
}
static int _mv88e6xxx_atu_load(struct mv88e6xxx_priv_state *ps,
struct mv88e6xxx_atu_entry *entry)
{
int ret;
ret = _mv88e6xxx_atu_wait(ps);
if (ret < 0)
return ret;
ret = _mv88e6xxx_atu_mac_write(ps, entry->mac);
if (ret < 0)
return ret;
ret = _mv88e6xxx_atu_data_write(ps, entry);
if (ret < 0)
return ret;
return _mv88e6xxx_atu_cmd(ps, entry->fid, GLOBAL_ATU_OP_LOAD_DB);
}
static int _mv88e6xxx_port_fdb_load(struct mv88e6xxx_priv_state *ps, int port,
const unsigned char *addr, u16 vid,
u8 state)
{
struct mv88e6xxx_atu_entry entry = { 0 };
struct mv88e6xxx_vtu_stu_entry vlan;
int err;
/* Null VLAN ID corresponds to the port private database */
if (vid == 0)
err = _mv88e6xxx_port_fid_get(ps, port, &vlan.fid);
else
err = _mv88e6xxx_vtu_get(ps, vid, &vlan, false);
if (err)
return err;
entry.fid = vlan.fid;
entry.state = state;
ether_addr_copy(entry.mac, addr);
if (state != GLOBAL_ATU_DATA_STATE_UNUSED) {
entry.trunk = false;
entry.portv_trunkid = BIT(port);
}
return _mv88e6xxx_atu_load(ps, &entry);
}
static int mv88e6xxx_port_fdb_prepare(struct dsa_switch *ds, int port,
const struct switchdev_obj_port_fdb *fdb,
struct switchdev_trans *trans)
{
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
if (!mv88e6xxx_has(ps, MV88E6XXX_FLAG_ATU))
return -EOPNOTSUPP;
/* We don't need any dynamic resource from the kernel (yet),
* so skip the prepare phase.
*/
return 0;
}
static void mv88e6xxx_port_fdb_add(struct dsa_switch *ds, int port,
const struct switchdev_obj_port_fdb *fdb,
struct switchdev_trans *trans)
{
int state = is_multicast_ether_addr(fdb->addr) ?
GLOBAL_ATU_DATA_STATE_MC_STATIC :
GLOBAL_ATU_DATA_STATE_UC_STATIC;
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
if (!mv88e6xxx_has(ps, MV88E6XXX_FLAG_ATU))
return;
mutex_lock(&ps->smi_mutex);
if (_mv88e6xxx_port_fdb_load(ps, port, fdb->addr, fdb->vid, state))
netdev_err(ds->ports[port].netdev,
"failed to load MAC address\n");
mutex_unlock(&ps->smi_mutex);
}
static int mv88e6xxx_port_fdb_del(struct dsa_switch *ds, int port,
const struct switchdev_obj_port_fdb *fdb)
{
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
int ret;
if (!mv88e6xxx_has(ps, MV88E6XXX_FLAG_ATU))
return -EOPNOTSUPP;
mutex_lock(&ps->smi_mutex);
ret = _mv88e6xxx_port_fdb_load(ps, port, fdb->addr, fdb->vid,
GLOBAL_ATU_DATA_STATE_UNUSED);
mutex_unlock(&ps->smi_mutex);
return ret;
}
static int _mv88e6xxx_atu_getnext(struct mv88e6xxx_priv_state *ps, u16 fid,
struct mv88e6xxx_atu_entry *entry)
{
struct mv88e6xxx_atu_entry next = { 0 };
int ret;
next.fid = fid;
ret = _mv88e6xxx_atu_wait(ps);
if (ret < 0)
return ret;
ret = _mv88e6xxx_atu_cmd(ps, fid, GLOBAL_ATU_OP_GET_NEXT_DB);
if (ret < 0)
return ret;
ret = _mv88e6xxx_atu_mac_read(ps, next.mac);
if (ret < 0)
return ret;
ret = _mv88e6xxx_reg_read(ps, REG_GLOBAL, GLOBAL_ATU_DATA);
if (ret < 0)
return ret;
next.state = ret & GLOBAL_ATU_DATA_STATE_MASK;
if (next.state != GLOBAL_ATU_DATA_STATE_UNUSED) {
unsigned int mask, shift;
if (ret & GLOBAL_ATU_DATA_TRUNK) {
next.trunk = true;
mask = GLOBAL_ATU_DATA_TRUNK_ID_MASK;
shift = GLOBAL_ATU_DATA_TRUNK_ID_SHIFT;
} else {
next.trunk = false;
mask = GLOBAL_ATU_DATA_PORT_VECTOR_MASK;
shift = GLOBAL_ATU_DATA_PORT_VECTOR_SHIFT;
}
next.portv_trunkid = (ret & mask) >> shift;
}
*entry = next;
return 0;
}
static int _mv88e6xxx_port_fdb_dump_one(struct mv88e6xxx_priv_state *ps,
u16 fid, u16 vid, int port,
struct switchdev_obj_port_fdb *fdb,
int (*cb)(struct switchdev_obj *obj))
{
struct mv88e6xxx_atu_entry addr = {
.mac = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff },
};
int err;
err = _mv88e6xxx_atu_mac_write(ps, addr.mac);
if (err)
return err;
do {
err = _mv88e6xxx_atu_getnext(ps, fid, &addr);
if (err)
break;
if (addr.state == GLOBAL_ATU_DATA_STATE_UNUSED)
break;
if (!addr.trunk && addr.portv_trunkid & BIT(port)) {
bool is_static = addr.state ==
(is_multicast_ether_addr(addr.mac) ?
GLOBAL_ATU_DATA_STATE_MC_STATIC :
GLOBAL_ATU_DATA_STATE_UC_STATIC);
fdb->vid = vid;
ether_addr_copy(fdb->addr, addr.mac);
fdb->ndm_state = is_static ? NUD_NOARP : NUD_REACHABLE;
err = cb(&fdb->obj);
if (err)
break;
}
} while (!is_broadcast_ether_addr(addr.mac));
return err;
}
static int mv88e6xxx_port_fdb_dump(struct dsa_switch *ds, int port,
struct switchdev_obj_port_fdb *fdb,
int (*cb)(struct switchdev_obj *obj))
{
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
struct mv88e6xxx_vtu_stu_entry vlan = {
.vid = GLOBAL_VTU_VID_MASK, /* all ones */
};
u16 fid;
int err;
if (!mv88e6xxx_has(ps, MV88E6XXX_FLAG_ATU))
return -EOPNOTSUPP;
mutex_lock(&ps->smi_mutex);
/* Dump port's default Filtering Information Database (VLAN ID 0) */
err = _mv88e6xxx_port_fid_get(ps, port, &fid);
if (err)
goto unlock;
err = _mv88e6xxx_port_fdb_dump_one(ps, fid, 0, port, fdb, cb);
if (err)
goto unlock;
/* Dump VLANs' Filtering Information Databases */
err = _mv88e6xxx_vtu_vid_write(ps, vlan.vid);
if (err)
goto unlock;
do {
err = _mv88e6xxx_vtu_getnext(ps, &vlan);
if (err)
break;
if (!vlan.valid)
break;
err = _mv88e6xxx_port_fdb_dump_one(ps, vlan.fid, vlan.vid, port,
fdb, cb);
if (err)
break;
} while (vlan.vid < GLOBAL_VTU_VID_MASK);
unlock:
mutex_unlock(&ps->smi_mutex);
return err;
}
static int mv88e6xxx_port_bridge_join(struct dsa_switch *ds, int port,
struct net_device *bridge)
{
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
int i, err = 0;
if (!mv88e6xxx_has(ps, MV88E6XXX_FLAG_VLANTABLE))
return -EOPNOTSUPP;
mutex_lock(&ps->smi_mutex);
/* Assign the bridge and remap each port's VLANTable */
ps->ports[port].bridge_dev = bridge;
for (i = 0; i < ps->info->num_ports; ++i) {
if (ps->ports[i].bridge_dev == bridge) {
err = _mv88e6xxx_port_based_vlan_map(ps, i);
if (err)
break;
}
}
mutex_unlock(&ps->smi_mutex);
return err;
}
static void mv88e6xxx_port_bridge_leave(struct dsa_switch *ds, int port)
{
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
struct net_device *bridge = ps->ports[port].bridge_dev;
int i;
if (!mv88e6xxx_has(ps, MV88E6XXX_FLAG_VLANTABLE))
return;
mutex_lock(&ps->smi_mutex);
/* Unassign the bridge and remap each port's VLANTable */
ps->ports[port].bridge_dev = NULL;
for (i = 0; i < ps->info->num_ports; ++i)
if (i == port || ps->ports[i].bridge_dev == bridge)
if (_mv88e6xxx_port_based_vlan_map(ps, i))
netdev_warn(ds->ports[i].netdev,
"failed to remap\n");
mutex_unlock(&ps->smi_mutex);
}
static int _mv88e6xxx_phy_page_write(struct mv88e6xxx_priv_state *ps,
int port, int page, int reg, int val)
{
int ret;
ret = _mv88e6xxx_phy_write_indirect(ps, port, 0x16, page);
if (ret < 0)
goto restore_page_0;
ret = _mv88e6xxx_phy_write_indirect(ps, port, reg, val);
restore_page_0:
_mv88e6xxx_phy_write_indirect(ps, port, 0x16, 0x0);
return ret;
}
static int _mv88e6xxx_phy_page_read(struct mv88e6xxx_priv_state *ps,
int port, int page, int reg)
{
int ret;
ret = _mv88e6xxx_phy_write_indirect(ps, port, 0x16, page);
if (ret < 0)
goto restore_page_0;
ret = _mv88e6xxx_phy_read_indirect(ps, port, reg);
restore_page_0:
_mv88e6xxx_phy_write_indirect(ps, port, 0x16, 0x0);
return ret;
}
static int mv88e6xxx_switch_reset(struct mv88e6xxx_priv_state *ps)
{
bool ppu_active = mv88e6xxx_has(ps, MV88E6XXX_FLAG_PPU_ACTIVE);
u16 is_reset = (ppu_active ? 0x8800 : 0xc800);
struct gpio_desc *gpiod = ps->reset;
unsigned long timeout;
int ret;
int i;
/* Set all ports to the disabled state. */
for (i = 0; i < ps->info->num_ports; i++) {
ret = _mv88e6xxx_reg_read(ps, REG_PORT(i), PORT_CONTROL);
if (ret < 0)
return ret;
ret = _mv88e6xxx_reg_write(ps, REG_PORT(i), PORT_CONTROL,
ret & 0xfffc);
if (ret)
return ret;
}
/* Wait for transmit queues to drain. */
usleep_range(2000, 4000);
/* If there is a gpio connected to the reset pin, toggle it */
if (gpiod) {
gpiod_set_value_cansleep(gpiod, 1);
usleep_range(10000, 20000);
gpiod_set_value_cansleep(gpiod, 0);
usleep_range(10000, 20000);
}
/* Reset the switch. Keep the PPU active if requested. The PPU
* needs to be active to support indirect phy register access
* through global registers 0x18 and 0x19.
*/
if (ppu_active)
ret = _mv88e6xxx_reg_write(ps, REG_GLOBAL, 0x04, 0xc000);
else
ret = _mv88e6xxx_reg_write(ps, REG_GLOBAL, 0x04, 0xc400);
if (ret)
return ret;
/* Wait up to one second for reset to complete. */
timeout = jiffies + 1 * HZ;
while (time_before(jiffies, timeout)) {
ret = _mv88e6xxx_reg_read(ps, REG_GLOBAL, 0x00);
if (ret < 0)
return ret;
if ((ret & is_reset) == is_reset)
break;
usleep_range(1000, 2000);
}
if (time_after(jiffies, timeout))
ret = -ETIMEDOUT;
else
ret = 0;
return ret;
}
static int mv88e6xxx_power_on_serdes(struct mv88e6xxx_priv_state *ps)
{
int ret;
ret = _mv88e6xxx_phy_page_read(ps, REG_FIBER_SERDES, PAGE_FIBER_SERDES,
MII_BMCR);
if (ret < 0)
return ret;
if (ret & BMCR_PDOWN) {
ret &= ~BMCR_PDOWN;
ret = _mv88e6xxx_phy_page_write(ps, REG_FIBER_SERDES,
PAGE_FIBER_SERDES, MII_BMCR,
ret);
}
return ret;
}
static int mv88e6xxx_setup_port(struct mv88e6xxx_priv_state *ps, int port)
{
struct dsa_switch *ds = ps->ds;
int ret;
u16 reg;
if (mv88e6xxx_6352_family(ps) || mv88e6xxx_6351_family(ps) ||
mv88e6xxx_6165_family(ps) || mv88e6xxx_6097_family(ps) ||
mv88e6xxx_6185_family(ps) || mv88e6xxx_6095_family(ps) ||
mv88e6xxx_6065_family(ps) || mv88e6xxx_6320_family(ps)) {
/* MAC Forcing register: don't force link, speed,
* duplex or flow control state to any particular
* values on physical ports, but force the CPU port
* and all DSA ports to their maximum bandwidth and
* full duplex.
*/
reg = _mv88e6xxx_reg_read(ps, REG_PORT(port), PORT_PCS_CTRL);
if (dsa_is_cpu_port(ds, port) || dsa_is_dsa_port(ds, port)) {
net: dsa: actually force the speed on the CPU port Commit 54d792f257c6 ("net: dsa: Centralise global and port setup code into mv88e6xxx.") merged in the 4.2 merge window broke the link speed forcing for the CPU port of Marvell DSA switches. The original code was: /* MAC Forcing register: don't force link, speed, duplex * or flow control state to any particular values on physical * ports, but force the CPU port and all DSA ports to 1000 Mb/s * full duplex. */ if (dsa_is_cpu_port(ds, p) || ds->dsa_port_mask & (1 << p)) REG_WRITE(addr, 0x01, 0x003e); else REG_WRITE(addr, 0x01, 0x0003); but the new code does a read-modify-write: reg = _mv88e6xxx_reg_read(ds, REG_PORT(port), PORT_PCS_CTRL); if (dsa_is_cpu_port(ds, port) || ds->dsa_port_mask & (1 << port)) { reg |= PORT_PCS_CTRL_FORCE_LINK | PORT_PCS_CTRL_LINK_UP | PORT_PCS_CTRL_DUPLEX_FULL | PORT_PCS_CTRL_FORCE_DUPLEX; if (mv88e6xxx_6065_family(ds)) reg |= PORT_PCS_CTRL_100; else reg |= PORT_PCS_CTRL_1000; The link speed in the PCS control register is a two bit field. Forcing the link speed in this way doesn't ensure that the bit field is set to the correct value - on the hardware I have here, the speed bitfield remains set to 0x03, resulting in the speed not being forced to gigabit. We must clear both bits before forcing the link speed. Fixes: 54d792f257c6 ("net: dsa: Centralise global and port setup code into mv88e6xxx.") Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> Acked-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-09-22 03:42:59 +07:00
reg &= ~PORT_PCS_CTRL_UNFORCED;
reg |= PORT_PCS_CTRL_FORCE_LINK |
PORT_PCS_CTRL_LINK_UP |
PORT_PCS_CTRL_DUPLEX_FULL |
PORT_PCS_CTRL_FORCE_DUPLEX;
if (mv88e6xxx_6065_family(ps))
reg |= PORT_PCS_CTRL_100;
else
reg |= PORT_PCS_CTRL_1000;
} else {
reg |= PORT_PCS_CTRL_UNFORCED;
}
ret = _mv88e6xxx_reg_write(ps, REG_PORT(port),
PORT_PCS_CTRL, reg);
if (ret)
return ret;
}
/* Port Control: disable Drop-on-Unlock, disable Drop-on-Lock,
* disable Header mode, enable IGMP/MLD snooping, disable VLAN
* tunneling, determine priority by looking at 802.1p and IP
* priority fields (IP prio has precedence), and set STP state
* to Forwarding.
*
* If this is the CPU link, use DSA or EDSA tagging depending
* on which tagging mode was configured.
*
* If this is a link to another switch, use DSA tagging mode.
*
* If this is the upstream port for this switch, enable
* forwarding of unknown unicasts and multicasts.
*/
reg = 0;
if (mv88e6xxx_6352_family(ps) || mv88e6xxx_6351_family(ps) ||
mv88e6xxx_6165_family(ps) || mv88e6xxx_6097_family(ps) ||
mv88e6xxx_6095_family(ps) || mv88e6xxx_6065_family(ps) ||
mv88e6xxx_6185_family(ps) || mv88e6xxx_6320_family(ps))
reg = PORT_CONTROL_IGMP_MLD_SNOOP |
PORT_CONTROL_USE_TAG | PORT_CONTROL_USE_IP |
PORT_CONTROL_STATE_FORWARDING;
if (dsa_is_cpu_port(ds, port)) {
if (mv88e6xxx_6095_family(ps) || mv88e6xxx_6185_family(ps))
reg |= PORT_CONTROL_DSA_TAG;
if (mv88e6xxx_6352_family(ps) || mv88e6xxx_6351_family(ps) ||
mv88e6xxx_6165_family(ps) || mv88e6xxx_6097_family(ps) ||
mv88e6xxx_6320_family(ps)) {
if (ds->dst->tag_protocol == DSA_TAG_PROTO_EDSA)
reg |= PORT_CONTROL_FRAME_ETHER_TYPE_DSA;
else
reg |= PORT_CONTROL_FRAME_MODE_DSA;
reg |= PORT_CONTROL_FORWARD_UNKNOWN |
PORT_CONTROL_FORWARD_UNKNOWN_MC;
}
if (mv88e6xxx_6352_family(ps) || mv88e6xxx_6351_family(ps) ||
mv88e6xxx_6165_family(ps) || mv88e6xxx_6097_family(ps) ||
mv88e6xxx_6095_family(ps) || mv88e6xxx_6065_family(ps) ||
mv88e6xxx_6185_family(ps) || mv88e6xxx_6320_family(ps)) {
if (ds->dst->tag_protocol == DSA_TAG_PROTO_EDSA)
reg |= PORT_CONTROL_EGRESS_ADD_TAG;
}
}
if (dsa_is_dsa_port(ds, port)) {
if (mv88e6xxx_6095_family(ps) || mv88e6xxx_6185_family(ps))
reg |= PORT_CONTROL_DSA_TAG;
if (mv88e6xxx_6352_family(ps) || mv88e6xxx_6351_family(ps) ||
mv88e6xxx_6165_family(ps) || mv88e6xxx_6097_family(ps) ||
mv88e6xxx_6320_family(ps)) {
reg |= PORT_CONTROL_FRAME_MODE_DSA;
}
if (port == dsa_upstream_port(ds))
reg |= PORT_CONTROL_FORWARD_UNKNOWN |
PORT_CONTROL_FORWARD_UNKNOWN_MC;
}
if (reg) {
ret = _mv88e6xxx_reg_write(ps, REG_PORT(port),
PORT_CONTROL, reg);
if (ret)
return ret;
}
/* If this port is connected to a SerDes, make sure the SerDes is not
* powered down.
*/
if (mv88e6xxx_6352_family(ps)) {
ret = _mv88e6xxx_reg_read(ps, REG_PORT(port), PORT_STATUS);
if (ret < 0)
return ret;
ret &= PORT_STATUS_CMODE_MASK;
if ((ret == PORT_STATUS_CMODE_100BASE_X) ||
(ret == PORT_STATUS_CMODE_1000BASE_X) ||
(ret == PORT_STATUS_CMODE_SGMII)) {
ret = mv88e6xxx_power_on_serdes(ps);
if (ret < 0)
return ret;
}
}
/* Port Control 2: don't force a good FCS, set the maximum frame size to
* 10240 bytes, disable 802.1q tags checking, don't discard tagged or
* untagged frames on this port, do a destination address lookup on all
* received packets as usual, disable ARP mirroring and don't send a
* copy of all transmitted/received frames on this port to the CPU.
*/
reg = 0;
if (mv88e6xxx_6352_family(ps) || mv88e6xxx_6351_family(ps) ||
mv88e6xxx_6165_family(ps) || mv88e6xxx_6097_family(ps) ||
mv88e6xxx_6095_family(ps) || mv88e6xxx_6320_family(ps) ||
mv88e6xxx_6185_family(ps))
reg = PORT_CONTROL_2_MAP_DA;
if (mv88e6xxx_6352_family(ps) || mv88e6xxx_6351_family(ps) ||
mv88e6xxx_6165_family(ps) || mv88e6xxx_6320_family(ps))
reg |= PORT_CONTROL_2_JUMBO_10240;
if (mv88e6xxx_6095_family(ps) || mv88e6xxx_6185_family(ps)) {
/* Set the upstream port this port should use */
reg |= dsa_upstream_port(ds);
/* enable forwarding of unknown multicast addresses to
* the upstream port
*/
if (port == dsa_upstream_port(ds))
reg |= PORT_CONTROL_2_FORWARD_UNKNOWN;
}
reg |= PORT_CONTROL_2_8021Q_DISABLED;
if (reg) {
ret = _mv88e6xxx_reg_write(ps, REG_PORT(port),
PORT_CONTROL_2, reg);
if (ret)
return ret;
}
/* Port Association Vector: when learning source addresses
* of packets, add the address to the address database using
* a port bitmap that has only the bit for this port set and
* the other bits clear.
*/
reg = 1 << port;
/* Disable learning for CPU port */
if (dsa_is_cpu_port(ds, port))
reg = 0;
ret = _mv88e6xxx_reg_write(ps, REG_PORT(port), PORT_ASSOC_VECTOR, reg);
if (ret)
return ret;
/* Egress rate control 2: disable egress rate control. */
ret = _mv88e6xxx_reg_write(ps, REG_PORT(port), PORT_RATE_CONTROL_2,
0x0000);
if (ret)
return ret;
if (mv88e6xxx_6352_family(ps) || mv88e6xxx_6351_family(ps) ||
mv88e6xxx_6165_family(ps) || mv88e6xxx_6097_family(ps) ||
mv88e6xxx_6320_family(ps)) {
/* Do not limit the period of time that this port can
* be paused for by the remote end or the period of
* time that this port can pause the remote end.
*/
ret = _mv88e6xxx_reg_write(ps, REG_PORT(port),
PORT_PAUSE_CTRL, 0x0000);
if (ret)
return ret;
/* Port ATU control: disable limiting the number of
* address database entries that this port is allowed
* to use.
*/
ret = _mv88e6xxx_reg_write(ps, REG_PORT(port),
PORT_ATU_CONTROL, 0x0000);
/* Priority Override: disable DA, SA and VTU priority
* override.
*/
ret = _mv88e6xxx_reg_write(ps, REG_PORT(port),
PORT_PRI_OVERRIDE, 0x0000);
if (ret)
return ret;
/* Port Ethertype: use the Ethertype DSA Ethertype
* value.
*/
ret = _mv88e6xxx_reg_write(ps, REG_PORT(port),
PORT_ETH_TYPE, ETH_P_EDSA);
if (ret)
return ret;
/* Tag Remap: use an identity 802.1p prio -> switch
* prio mapping.
*/
ret = _mv88e6xxx_reg_write(ps, REG_PORT(port),
PORT_TAG_REGMAP_0123, 0x3210);
if (ret)
return ret;
/* Tag Remap 2: use an identity 802.1p prio -> switch
* prio mapping.
*/
ret = _mv88e6xxx_reg_write(ps, REG_PORT(port),
PORT_TAG_REGMAP_4567, 0x7654);
if (ret)
return ret;
}
if (mv88e6xxx_6352_family(ps) || mv88e6xxx_6351_family(ps) ||
mv88e6xxx_6165_family(ps) || mv88e6xxx_6097_family(ps) ||
mv88e6xxx_6185_family(ps) || mv88e6xxx_6095_family(ps) ||
mv88e6xxx_6320_family(ps)) {
/* Rate Control: disable ingress rate limiting. */
ret = _mv88e6xxx_reg_write(ps, REG_PORT(port),
PORT_RATE_CONTROL, 0x0001);
if (ret)
return ret;
}
/* Port Control 1: disable trunking, disable sending
* learning messages to this port.
*/
ret = _mv88e6xxx_reg_write(ps, REG_PORT(port), PORT_CONTROL_1, 0x0000);
if (ret)
return ret;
/* Port based VLAN map: give each port the same default address
* database, and allow bidirectional communication between the
* CPU and DSA port(s), and the other ports.
*/
ret = _mv88e6xxx_port_fid_set(ps, port, 0);
if (ret)
return ret;
ret = _mv88e6xxx_port_based_vlan_map(ps, port);
if (ret)
return ret;
/* Default VLAN ID and priority: don't set a default VLAN
* ID, and set the default packet priority to zero.
*/
ret = _mv88e6xxx_reg_write(ps, REG_PORT(port), PORT_DEFAULT_VLAN,
0x0000);
if (ret)
return ret;
return 0;
}
static int mv88e6xxx_setup_global(struct mv88e6xxx_priv_state *ps)
{
struct dsa_switch *ds = ps->ds;
u32 upstream_port = dsa_upstream_port(ds);
u16 reg;
int err;
int i;
/* Enable the PHY Polling Unit if present, don't discard any packets,
* and mask all interrupt sources.
*/
reg = 0;
if (mv88e6xxx_has(ps, MV88E6XXX_FLAG_PPU) ||
mv88e6xxx_has(ps, MV88E6XXX_FLAG_PPU_ACTIVE))
reg |= GLOBAL_CONTROL_PPU_ENABLE;
err = _mv88e6xxx_reg_write(ps, REG_GLOBAL, GLOBAL_CONTROL, reg);
if (err)
return err;
/* Configure the upstream port, and configure it as the port to which
* ingress and egress and ARP monitor frames are to be sent.
*/
reg = upstream_port << GLOBAL_MONITOR_CONTROL_INGRESS_SHIFT |
upstream_port << GLOBAL_MONITOR_CONTROL_EGRESS_SHIFT |
upstream_port << GLOBAL_MONITOR_CONTROL_ARP_SHIFT;
err = _mv88e6xxx_reg_write(ps, REG_GLOBAL, GLOBAL_MONITOR_CONTROL, reg);
if (err)
return err;
/* Disable remote management, and set the switch's DSA device number. */
err = _mv88e6xxx_reg_write(ps, REG_GLOBAL, GLOBAL_CONTROL_2,
GLOBAL_CONTROL_2_MULTIPLE_CASCADE |
(ds->index & 0x1f));
if (err)
return err;
/* Set the default address aging time to 5 minutes, and
* enable address learn messages to be sent to all message
* ports.
*/
err = _mv88e6xxx_reg_write(ps, REG_GLOBAL, GLOBAL_ATU_CONTROL,
0x0140 | GLOBAL_ATU_CONTROL_LEARN2ALL);
if (err)
return err;
/* Configure the IP ToS mapping registers. */
err = _mv88e6xxx_reg_write(ps, REG_GLOBAL, GLOBAL_IP_PRI_0, 0x0000);
if (err)
return err;
err = _mv88e6xxx_reg_write(ps, REG_GLOBAL, GLOBAL_IP_PRI_1, 0x0000);
if (err)
return err;
err = _mv88e6xxx_reg_write(ps, REG_GLOBAL, GLOBAL_IP_PRI_2, 0x5555);
if (err)
return err;
err = _mv88e6xxx_reg_write(ps, REG_GLOBAL, GLOBAL_IP_PRI_3, 0x5555);
if (err)
return err;
err = _mv88e6xxx_reg_write(ps, REG_GLOBAL, GLOBAL_IP_PRI_4, 0xaaaa);
if (err)
return err;
err = _mv88e6xxx_reg_write(ps, REG_GLOBAL, GLOBAL_IP_PRI_5, 0xaaaa);
if (err)
return err;
err = _mv88e6xxx_reg_write(ps, REG_GLOBAL, GLOBAL_IP_PRI_6, 0xffff);
if (err)
return err;
err = _mv88e6xxx_reg_write(ps, REG_GLOBAL, GLOBAL_IP_PRI_7, 0xffff);
if (err)
return err;
/* Configure the IEEE 802.1p priority mapping register. */
err = _mv88e6xxx_reg_write(ps, REG_GLOBAL, GLOBAL_IEEE_PRI, 0xfa41);
if (err)
return err;
/* Send all frames with destination addresses matching
* 01:80:c2:00:00:0x to the CPU port.
*/
err = _mv88e6xxx_reg_write(ps, REG_GLOBAL2, GLOBAL2_MGMT_EN_0X, 0xffff);
if (err)
return err;
/* Ignore removed tag data on doubly tagged packets, disable
* flow control messages, force flow control priority to the
* highest, and send all special multicast frames to the CPU
* port at the highest priority.
*/
err = _mv88e6xxx_reg_write(ps, REG_GLOBAL2, GLOBAL2_SWITCH_MGMT,
0x7 | GLOBAL2_SWITCH_MGMT_RSVD2CPU | 0x70 |
GLOBAL2_SWITCH_MGMT_FORCE_FLOW_CTRL_PRI);
if (err)
return err;
/* Program the DSA routing table. */
for (i = 0; i < 32; i++) {
int nexthop = 0x1f;
if (i != ds->index && i < DSA_MAX_SWITCHES)
nexthop = ds->rtable[i] & 0x1f;
err = _mv88e6xxx_reg_write(
ps, REG_GLOBAL2,
GLOBAL2_DEVICE_MAPPING,
GLOBAL2_DEVICE_MAPPING_UPDATE |
(i << GLOBAL2_DEVICE_MAPPING_TARGET_SHIFT) | nexthop);
if (err)
return err;
}
/* Clear all trunk masks. */
for (i = 0; i < 8; i++) {
err = _mv88e6xxx_reg_write(ps, REG_GLOBAL2, GLOBAL2_TRUNK_MASK,
0x8000 |
(i << GLOBAL2_TRUNK_MASK_NUM_SHIFT) |
((1 << ps->info->num_ports) - 1));
if (err)
return err;
}
/* Clear all trunk mappings. */
for (i = 0; i < 16; i++) {
err = _mv88e6xxx_reg_write(
ps, REG_GLOBAL2,
GLOBAL2_TRUNK_MAPPING,
GLOBAL2_TRUNK_MAPPING_UPDATE |
(i << GLOBAL2_TRUNK_MAPPING_ID_SHIFT));
if (err)
return err;
}
if (mv88e6xxx_6352_family(ps) || mv88e6xxx_6351_family(ps) ||
mv88e6xxx_6165_family(ps) || mv88e6xxx_6097_family(ps) ||
mv88e6xxx_6320_family(ps)) {
/* Send all frames with destination addresses matching
* 01:80:c2:00:00:2x to the CPU port.
*/
err = _mv88e6xxx_reg_write(ps, REG_GLOBAL2,
GLOBAL2_MGMT_EN_2X, 0xffff);
if (err)
return err;
/* Initialise cross-chip port VLAN table to reset
* defaults.
*/
err = _mv88e6xxx_reg_write(ps, REG_GLOBAL2,
GLOBAL2_PVT_ADDR, 0x9000);
if (err)
return err;
/* Clear the priority override table. */
for (i = 0; i < 16; i++) {
err = _mv88e6xxx_reg_write(ps, REG_GLOBAL2,
GLOBAL2_PRIO_OVERRIDE,
0x8000 | (i << 8));
if (err)
return err;
}
}
if (mv88e6xxx_6352_family(ps) || mv88e6xxx_6351_family(ps) ||
mv88e6xxx_6165_family(ps) || mv88e6xxx_6097_family(ps) ||
mv88e6xxx_6185_family(ps) || mv88e6xxx_6095_family(ps) ||
mv88e6xxx_6320_family(ps)) {
/* Disable ingress rate limiting by resetting all
* ingress rate limit registers to their initial
* state.
*/
for (i = 0; i < ps->info->num_ports; i++) {
err = _mv88e6xxx_reg_write(ps, REG_GLOBAL2,
GLOBAL2_INGRESS_OP,
0x9000 | (i << 8));
if (err)
return err;
}
}
/* Clear the statistics counters for all ports */
err = _mv88e6xxx_reg_write(ps, REG_GLOBAL, GLOBAL_STATS_OP,
GLOBAL_STATS_OP_FLUSH_ALL);
if (err)
return err;
/* Wait for the flush to complete. */
err = _mv88e6xxx_stats_wait(ps);
if (err)
return err;
/* Clear all ATU entries */
err = _mv88e6xxx_atu_flush(ps, 0, true);
if (err)
return err;
/* Clear all the VTU and STU entries */
err = _mv88e6xxx_vtu_stu_flush(ps);
if (err < 0)
return err;
return err;
}
static int mv88e6xxx_setup(struct dsa_switch *ds)
{
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
int err;
int i;
ps->ds = ds;
if (mv88e6xxx_has(ps, MV88E6XXX_FLAG_EEPROM))
mutex_init(&ps->eeprom_mutex);
if (mv88e6xxx_has(ps, MV88E6XXX_FLAG_PPU))
mv88e6xxx_ppu_state_init(ps);
mutex_lock(&ps->smi_mutex);
err = mv88e6xxx_switch_reset(ps);
if (err)
goto unlock;
err = mv88e6xxx_setup_global(ps);
if (err)
goto unlock;
for (i = 0; i < ps->info->num_ports; i++) {
err = mv88e6xxx_setup_port(ps, i);
if (err)
goto unlock;
}
unlock:
mutex_unlock(&ps->smi_mutex);
return err;
}
int mv88e6xxx_phy_page_read(struct dsa_switch *ds, int port, int page, int reg)
{
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
int ret;
mutex_lock(&ps->smi_mutex);
ret = _mv88e6xxx_phy_page_read(ps, port, page, reg);
mutex_unlock(&ps->smi_mutex);
return ret;
}
int mv88e6xxx_phy_page_write(struct dsa_switch *ds, int port, int page,
int reg, int val)
{
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
int ret;
mutex_lock(&ps->smi_mutex);
ret = _mv88e6xxx_phy_page_write(ps, port, page, reg, val);
mutex_unlock(&ps->smi_mutex);
return ret;
}
static int mv88e6xxx_port_to_phy_addr(struct mv88e6xxx_priv_state *ps,
int port)
{
if (port >= 0 && port < ps->info->num_ports)
return port;
return -EINVAL;
}
static int mv88e6xxx_phy_read(struct dsa_switch *ds, int port, int regnum)
{
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
int addr = mv88e6xxx_port_to_phy_addr(ps, port);
int ret;
if (addr < 0)
return 0xffff;
mutex_lock(&ps->smi_mutex);
if (mv88e6xxx_has(ps, MV88E6XXX_FLAG_PPU))
ret = mv88e6xxx_phy_read_ppu(ps, addr, regnum);
else if (mv88e6xxx_has(ps, MV88E6XXX_FLAG_SMI_PHY))
ret = _mv88e6xxx_phy_read_indirect(ps, addr, regnum);
else
ret = _mv88e6xxx_phy_read(ps, addr, regnum);
mutex_unlock(&ps->smi_mutex);
return ret;
}
static int mv88e6xxx_phy_write(struct dsa_switch *ds, int port, int regnum,
u16 val)
{
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
int addr = mv88e6xxx_port_to_phy_addr(ps, port);
int ret;
if (addr < 0)
return 0xffff;
mutex_lock(&ps->smi_mutex);
if (mv88e6xxx_has(ps, MV88E6XXX_FLAG_PPU))
ret = mv88e6xxx_phy_write_ppu(ps, addr, regnum, val);
else if (mv88e6xxx_has(ps, MV88E6XXX_FLAG_SMI_PHY))
ret = _mv88e6xxx_phy_write_indirect(ps, addr, regnum, val);
else
ret = _mv88e6xxx_phy_write(ps, addr, regnum, val);
mutex_unlock(&ps->smi_mutex);
return ret;
}
#ifdef CONFIG_NET_DSA_HWMON
static int mv88e61xx_get_temp(struct dsa_switch *ds, int *temp)
{
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
int ret;
int val;
*temp = 0;
mutex_lock(&ps->smi_mutex);
ret = _mv88e6xxx_phy_write(ps, 0x0, 0x16, 0x6);
if (ret < 0)
goto error;
/* Enable temperature sensor */
ret = _mv88e6xxx_phy_read(ps, 0x0, 0x1a);
if (ret < 0)
goto error;
ret = _mv88e6xxx_phy_write(ps, 0x0, 0x1a, ret | (1 << 5));
if (ret < 0)
goto error;
/* Wait for temperature to stabilize */
usleep_range(10000, 12000);
val = _mv88e6xxx_phy_read(ps, 0x0, 0x1a);
if (val < 0) {
ret = val;
goto error;
}
/* Disable temperature sensor */
ret = _mv88e6xxx_phy_write(ps, 0x0, 0x1a, ret & ~(1 << 5));
if (ret < 0)
goto error;
*temp = ((val & 0x1f) - 5) * 5;
error:
_mv88e6xxx_phy_write(ps, 0x0, 0x16, 0x0);
mutex_unlock(&ps->smi_mutex);
return ret;
}
static int mv88e63xx_get_temp(struct dsa_switch *ds, int *temp)
{
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
int phy = mv88e6xxx_6320_family(ps) ? 3 : 0;
int ret;
*temp = 0;
ret = mv88e6xxx_phy_page_read(ds, phy, 6, 27);
if (ret < 0)
return ret;
*temp = (ret & 0xff) - 25;
return 0;
}
static int mv88e6xxx_get_temp(struct dsa_switch *ds, int *temp)
{
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
if (!mv88e6xxx_has(ps, MV88E6XXX_FLAG_TEMP))
return -EOPNOTSUPP;
if (mv88e6xxx_6320_family(ps) || mv88e6xxx_6352_family(ps))
return mv88e63xx_get_temp(ds, temp);
return mv88e61xx_get_temp(ds, temp);
}
static int mv88e6xxx_get_temp_limit(struct dsa_switch *ds, int *temp)
{
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
int phy = mv88e6xxx_6320_family(ps) ? 3 : 0;
int ret;
if (!mv88e6xxx_has(ps, MV88E6XXX_FLAG_TEMP_LIMIT))
return -EOPNOTSUPP;
*temp = 0;
ret = mv88e6xxx_phy_page_read(ds, phy, 6, 26);
if (ret < 0)
return ret;
*temp = (((ret >> 8) & 0x1f) * 5) - 25;
return 0;
}
static int mv88e6xxx_set_temp_limit(struct dsa_switch *ds, int temp)
{
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
int phy = mv88e6xxx_6320_family(ps) ? 3 : 0;
int ret;
if (!mv88e6xxx_has(ps, MV88E6XXX_FLAG_TEMP_LIMIT))
return -EOPNOTSUPP;
ret = mv88e6xxx_phy_page_read(ds, phy, 6, 26);
if (ret < 0)
return ret;
temp = clamp_val(DIV_ROUND_CLOSEST(temp, 5) + 5, 0, 0x1f);
return mv88e6xxx_phy_page_write(ds, phy, 6, 26,
(ret & 0xe0ff) | (temp << 8));
}
static int mv88e6xxx_get_temp_alarm(struct dsa_switch *ds, bool *alarm)
{
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
int phy = mv88e6xxx_6320_family(ps) ? 3 : 0;
int ret;
if (!mv88e6xxx_has(ps, MV88E6XXX_FLAG_TEMP_LIMIT))
return -EOPNOTSUPP;
*alarm = false;
ret = mv88e6xxx_phy_page_read(ds, phy, 6, 26);
if (ret < 0)
return ret;
*alarm = !!(ret & 0x40);
return 0;
}
#endif /* CONFIG_NET_DSA_HWMON */
static const struct mv88e6xxx_info mv88e6xxx_table[] = {
[MV88E6085] = {
.prod_num = PORT_SWITCH_ID_PROD_NUM_6085,
.family = MV88E6XXX_FAMILY_6097,
.name = "Marvell 88E6085",
.num_databases = 4096,
.num_ports = 10,
.flags = MV88E6XXX_FLAGS_FAMILY_6097,
},
[MV88E6095] = {
.prod_num = PORT_SWITCH_ID_PROD_NUM_6095,
.family = MV88E6XXX_FAMILY_6095,
.name = "Marvell 88E6095/88E6095F",
.num_databases = 256,
.num_ports = 11,
.flags = MV88E6XXX_FLAGS_FAMILY_6095,
},
[MV88E6123] = {
.prod_num = PORT_SWITCH_ID_PROD_NUM_6123,
.family = MV88E6XXX_FAMILY_6165,
.name = "Marvell 88E6123",
.num_databases = 4096,
.num_ports = 3,
.flags = MV88E6XXX_FLAGS_FAMILY_6165,
},
[MV88E6131] = {
.prod_num = PORT_SWITCH_ID_PROD_NUM_6131,
.family = MV88E6XXX_FAMILY_6185,
.name = "Marvell 88E6131",
.num_databases = 256,
.num_ports = 8,
.flags = MV88E6XXX_FLAGS_FAMILY_6185,
},
[MV88E6161] = {
.prod_num = PORT_SWITCH_ID_PROD_NUM_6161,
.family = MV88E6XXX_FAMILY_6165,
.name = "Marvell 88E6161",
.num_databases = 4096,
.num_ports = 6,
.flags = MV88E6XXX_FLAGS_FAMILY_6165,
},
[MV88E6165] = {
.prod_num = PORT_SWITCH_ID_PROD_NUM_6165,
.family = MV88E6XXX_FAMILY_6165,
.name = "Marvell 88E6165",
.num_databases = 4096,
.num_ports = 6,
.flags = MV88E6XXX_FLAGS_FAMILY_6165,
},
[MV88E6171] = {
.prod_num = PORT_SWITCH_ID_PROD_NUM_6171,
.family = MV88E6XXX_FAMILY_6351,
.name = "Marvell 88E6171",
.num_databases = 4096,
.num_ports = 7,
.flags = MV88E6XXX_FLAGS_FAMILY_6351,
},
[MV88E6172] = {
.prod_num = PORT_SWITCH_ID_PROD_NUM_6172,
.family = MV88E6XXX_FAMILY_6352,
.name = "Marvell 88E6172",
.num_databases = 4096,
.num_ports = 7,
.flags = MV88E6XXX_FLAGS_FAMILY_6352,
},
[MV88E6175] = {
.prod_num = PORT_SWITCH_ID_PROD_NUM_6175,
.family = MV88E6XXX_FAMILY_6351,
.name = "Marvell 88E6175",
.num_databases = 4096,
.num_ports = 7,
.flags = MV88E6XXX_FLAGS_FAMILY_6351,
},
[MV88E6176] = {
.prod_num = PORT_SWITCH_ID_PROD_NUM_6176,
.family = MV88E6XXX_FAMILY_6352,
.name = "Marvell 88E6176",
.num_databases = 4096,
.num_ports = 7,
.flags = MV88E6XXX_FLAGS_FAMILY_6352,
},
[MV88E6185] = {
.prod_num = PORT_SWITCH_ID_PROD_NUM_6185,
.family = MV88E6XXX_FAMILY_6185,
.name = "Marvell 88E6185",
.num_databases = 256,
.num_ports = 10,
.flags = MV88E6XXX_FLAGS_FAMILY_6185,
},
[MV88E6240] = {
.prod_num = PORT_SWITCH_ID_PROD_NUM_6240,
.family = MV88E6XXX_FAMILY_6352,
.name = "Marvell 88E6240",
.num_databases = 4096,
.num_ports = 7,
.flags = MV88E6XXX_FLAGS_FAMILY_6352,
},
[MV88E6320] = {
.prod_num = PORT_SWITCH_ID_PROD_NUM_6320,
.family = MV88E6XXX_FAMILY_6320,
.name = "Marvell 88E6320",
.num_databases = 4096,
.num_ports = 7,
.flags = MV88E6XXX_FLAGS_FAMILY_6320,
},
[MV88E6321] = {
.prod_num = PORT_SWITCH_ID_PROD_NUM_6321,
.family = MV88E6XXX_FAMILY_6320,
.name = "Marvell 88E6321",
.num_databases = 4096,
.num_ports = 7,
.flags = MV88E6XXX_FLAGS_FAMILY_6320,
},
[MV88E6350] = {
.prod_num = PORT_SWITCH_ID_PROD_NUM_6350,
.family = MV88E6XXX_FAMILY_6351,
.name = "Marvell 88E6350",
.num_databases = 4096,
.num_ports = 7,
.flags = MV88E6XXX_FLAGS_FAMILY_6351,
},
[MV88E6351] = {
.prod_num = PORT_SWITCH_ID_PROD_NUM_6351,
.family = MV88E6XXX_FAMILY_6351,
.name = "Marvell 88E6351",
.num_databases = 4096,
.num_ports = 7,
.flags = MV88E6XXX_FLAGS_FAMILY_6351,
},
[MV88E6352] = {
.prod_num = PORT_SWITCH_ID_PROD_NUM_6352,
.family = MV88E6XXX_FAMILY_6352,
.name = "Marvell 88E6352",
.num_databases = 4096,
.num_ports = 7,
.flags = MV88E6XXX_FLAGS_FAMILY_6352,
},
};
static const struct mv88e6xxx_info *
mv88e6xxx_lookup_info(unsigned int prod_num, const struct mv88e6xxx_info *table,
unsigned int num)
{
int i;
for (i = 0; i < num; ++i)
if (table[i].prod_num == prod_num)
return &table[i];
return NULL;
}
static const char *mv88e6xxx_drv_probe(struct device *dsa_dev,
struct device *host_dev, int sw_addr,
void **priv)
{
const struct mv88e6xxx_info *info;
struct mv88e6xxx_priv_state *ps;
struct mii_bus *bus;
const char *name;
int id, prod_num, rev;
bus = dsa_host_dev_to_mii_bus(host_dev);
if (!bus)
return NULL;
id = __mv88e6xxx_reg_read(bus, sw_addr, REG_PORT(0), PORT_SWITCH_ID);
if (id < 0)
return NULL;
prod_num = (id & 0xfff0) >> 4;
rev = id & 0x000f;
info = mv88e6xxx_lookup_info(prod_num, mv88e6xxx_table,
ARRAY_SIZE(mv88e6xxx_table));
if (!info)
return NULL;
name = info->name;
ps = devm_kzalloc(dsa_dev, sizeof(*ps), GFP_KERNEL);
if (!ps)
return NULL;
ps->bus = bus;
ps->sw_addr = sw_addr;
ps->info = info;
mutex_init(&ps->smi_mutex);
*priv = ps;
dev_info(&ps->bus->dev, "switch 0x%x probed: %s, revision %u\n",
prod_num, name, rev);
return name;
}
struct dsa_switch_driver mv88e6xxx_switch_driver = {
.tag_protocol = DSA_TAG_PROTO_EDSA,
.probe = mv88e6xxx_drv_probe,
.setup = mv88e6xxx_setup,
.set_addr = mv88e6xxx_set_addr,
.phy_read = mv88e6xxx_phy_read,
.phy_write = mv88e6xxx_phy_write,
.adjust_link = mv88e6xxx_adjust_link,
.get_strings = mv88e6xxx_get_strings,
.get_ethtool_stats = mv88e6xxx_get_ethtool_stats,
.get_sset_count = mv88e6xxx_get_sset_count,
.set_eee = mv88e6xxx_set_eee,
.get_eee = mv88e6xxx_get_eee,
#ifdef CONFIG_NET_DSA_HWMON
.get_temp = mv88e6xxx_get_temp,
.get_temp_limit = mv88e6xxx_get_temp_limit,
.set_temp_limit = mv88e6xxx_set_temp_limit,
.get_temp_alarm = mv88e6xxx_get_temp_alarm,
#endif
.get_eeprom_len = mv88e6xxx_get_eeprom_len,
.get_eeprom = mv88e6xxx_get_eeprom,
.set_eeprom = mv88e6xxx_set_eeprom,
.get_regs_len = mv88e6xxx_get_regs_len,
.get_regs = mv88e6xxx_get_regs,
.port_bridge_join = mv88e6xxx_port_bridge_join,
.port_bridge_leave = mv88e6xxx_port_bridge_leave,
.port_stp_state_set = mv88e6xxx_port_stp_state_set,
.port_vlan_filtering = mv88e6xxx_port_vlan_filtering,
.port_vlan_prepare = mv88e6xxx_port_vlan_prepare,
.port_vlan_add = mv88e6xxx_port_vlan_add,
.port_vlan_del = mv88e6xxx_port_vlan_del,
.port_vlan_dump = mv88e6xxx_port_vlan_dump,
.port_fdb_prepare = mv88e6xxx_port_fdb_prepare,
.port_fdb_add = mv88e6xxx_port_fdb_add,
.port_fdb_del = mv88e6xxx_port_fdb_del,
.port_fdb_dump = mv88e6xxx_port_fdb_dump,
};
int mv88e6xxx_probe(struct mdio_device *mdiodev)
{
struct device *dev = &mdiodev->dev;
struct device_node *np = dev->of_node;
struct mv88e6xxx_priv_state *ps;
int id, prod_num, rev;
struct dsa_switch *ds;
u32 eeprom_len;
int err;
ds = devm_kzalloc(dev, sizeof(*ds) + sizeof(*ps), GFP_KERNEL);
if (!ds)
return -ENOMEM;
ps = (struct mv88e6xxx_priv_state *)(ds + 1);
ds->priv = ps;
ds->dev = dev;
ps->dev = dev;
ps->ds = ds;
ps->bus = mdiodev->bus;
ps->sw_addr = mdiodev->addr;
mutex_init(&ps->smi_mutex);
get_device(&ps->bus->dev);
ds->drv = &mv88e6xxx_switch_driver;
id = mv88e6xxx_reg_read(ps, REG_PORT(0), PORT_SWITCH_ID);
if (id < 0)
return id;
prod_num = (id & 0xfff0) >> 4;
rev = id & 0x000f;
ps->info = mv88e6xxx_lookup_info(prod_num, mv88e6xxx_table,
ARRAY_SIZE(mv88e6xxx_table));
if (!ps->info)
return -ENODEV;
ps->reset = devm_gpiod_get(&mdiodev->dev, "reset", GPIOD_ASIS);
if (IS_ERR(ps->reset)) {
err = PTR_ERR(ps->reset);
if (err == -ENOENT) {
/* Optional, so not an error */
ps->reset = NULL;
} else {
return err;
}
}
if (mv88e6xxx_has(ps, MV88E6XXX_FLAG_EEPROM) &&
!of_property_read_u32(np, "eeprom-length", &eeprom_len))
ps->eeprom_len = eeprom_len;
dev_set_drvdata(dev, ds);
dev_info(dev, "switch 0x%x probed: %s, revision %u\n",
prod_num, ps->info->name, rev);
return 0;
}
static void mv88e6xxx_remove(struct mdio_device *mdiodev)
{
struct dsa_switch *ds = dev_get_drvdata(&mdiodev->dev);
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
put_device(&ps->bus->dev);
}
static const struct of_device_id mv88e6xxx_of_match[] = {
{ .compatible = "marvell,mv88e6085" },
{ /* sentinel */ },
};
MODULE_DEVICE_TABLE(of, mv88e6xxx_of_match);
static struct mdio_driver mv88e6xxx_driver = {
.probe = mv88e6xxx_probe,
.remove = mv88e6xxx_remove,
.mdiodrv.driver = {
.name = "mv88e6085",
.of_match_table = mv88e6xxx_of_match,
},
};
static int __init mv88e6xxx_init(void)
{
register_switch_driver(&mv88e6xxx_switch_driver);
return mdio_driver_register(&mv88e6xxx_driver);
}
module_init(mv88e6xxx_init);
static void __exit mv88e6xxx_cleanup(void)
{
mdio_driver_unregister(&mv88e6xxx_driver);
unregister_switch_driver(&mv88e6xxx_switch_driver);
}
module_exit(mv88e6xxx_cleanup);
MODULE_AUTHOR("Lennert Buytenhek <buytenh@wantstofly.org>");
MODULE_DESCRIPTION("Driver for Marvell 88E6XXX ethernet switch chips");
MODULE_LICENSE("GPL");