linux_dsm_epyc7002/drivers/scsi/mpt2sas/mpt2sas_ctl.c

3077 lines
86 KiB
C
Raw Normal View History

/*
* Management Module Support for MPT (Message Passing Technology) based
* controllers
*
* This code is based on drivers/scsi/mpt2sas/mpt2_ctl.c
* Copyright (C) 2007-2013 LSI Corporation
* (mailto:DL-MPTFusionLinux@lsi.com)
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* NO WARRANTY
* THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR
* CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT
* LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT,
* MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is
* solely responsible for determining the appropriateness of using and
* distributing the Program and assumes all risks associated with its
* exercise of rights under this Agreement, including but not limited to
* the risks and costs of program errors, damage to or loss of data,
* programs or equipment, and unavailability or interruption of operations.
* DISCLAIMER OF LIABILITY
* NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
* TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
* USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED
* HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
* USA.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/errno.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/types.h>
#include <linux/pci.h>
#include <linux/delay.h>
#include <linux/mutex.h>
#include <linux/compat.h>
#include <linux/poll.h>
#include <linux/io.h>
#include <linux/uaccess.h>
#include "mpt2sas_base.h"
#include "mpt2sas_ctl.h"
static DEFINE_MUTEX(_ctl_mutex);
static struct fasync_struct *async_queue;
static DECLARE_WAIT_QUEUE_HEAD(ctl_poll_wait);
static int _ctl_send_release(struct MPT2SAS_ADAPTER *ioc, u8 buffer_type,
u8 *issue_reset);
/**
* enum block_state - blocking state
* @NON_BLOCKING: non blocking
* @BLOCKING: blocking
*
* These states are for ioctls that need to wait for a response
* from firmware, so they probably require sleep.
*/
enum block_state {
NON_BLOCKING,
BLOCKING,
};
#ifdef CONFIG_SCSI_MPT2SAS_LOGGING
/**
* _ctl_sas_device_find_by_handle - sas device search
* @ioc: per adapter object
* @handle: sas device handle (assigned by firmware)
* Context: Calling function should acquire ioc->sas_device_lock
*
* This searches for sas_device based on sas_address, then return sas_device
* object.
*/
static struct _sas_device *
_ctl_sas_device_find_by_handle(struct MPT2SAS_ADAPTER *ioc, u16 handle)
{
struct _sas_device *sas_device, *r;
r = NULL;
list_for_each_entry(sas_device, &ioc->sas_device_list, list) {
if (sas_device->handle != handle)
continue;
r = sas_device;
goto out;
}
out:
return r;
}
/**
* _ctl_display_some_debug - debug routine
* @ioc: per adapter object
* @smid: system request message index
* @calling_function_name: string pass from calling function
* @mpi_reply: reply message frame
* Context: none.
*
* Function for displaying debug info helpful when debugging issues
* in this module.
*/
static void
_ctl_display_some_debug(struct MPT2SAS_ADAPTER *ioc, u16 smid,
char *calling_function_name, MPI2DefaultReply_t *mpi_reply)
{
Mpi2ConfigRequest_t *mpi_request;
char *desc = NULL;
if (!(ioc->logging_level & MPT_DEBUG_IOCTL))
return;
mpi_request = mpt2sas_base_get_msg_frame(ioc, smid);
switch (mpi_request->Function) {
case MPI2_FUNCTION_SCSI_IO_REQUEST:
{
Mpi2SCSIIORequest_t *scsi_request =
(Mpi2SCSIIORequest_t *)mpi_request;
snprintf(ioc->tmp_string, MPT_STRING_LENGTH,
"scsi_io, cmd(0x%02x), cdb_len(%d)",
scsi_request->CDB.CDB32[0],
le16_to_cpu(scsi_request->IoFlags) & 0xF);
desc = ioc->tmp_string;
break;
}
case MPI2_FUNCTION_SCSI_TASK_MGMT:
desc = "task_mgmt";
break;
case MPI2_FUNCTION_IOC_INIT:
desc = "ioc_init";
break;
case MPI2_FUNCTION_IOC_FACTS:
desc = "ioc_facts";
break;
case MPI2_FUNCTION_CONFIG:
{
Mpi2ConfigRequest_t *config_request =
(Mpi2ConfigRequest_t *)mpi_request;
snprintf(ioc->tmp_string, MPT_STRING_LENGTH,
"config, type(0x%02x), ext_type(0x%02x), number(%d)",
(config_request->Header.PageType &
MPI2_CONFIG_PAGETYPE_MASK), config_request->ExtPageType,
config_request->Header.PageNumber);
desc = ioc->tmp_string;
break;
}
case MPI2_FUNCTION_PORT_FACTS:
desc = "port_facts";
break;
case MPI2_FUNCTION_PORT_ENABLE:
desc = "port_enable";
break;
case MPI2_FUNCTION_EVENT_NOTIFICATION:
desc = "event_notification";
break;
case MPI2_FUNCTION_FW_DOWNLOAD:
desc = "fw_download";
break;
case MPI2_FUNCTION_FW_UPLOAD:
desc = "fw_upload";
break;
case MPI2_FUNCTION_RAID_ACTION:
desc = "raid_action";
break;
case MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH:
{
Mpi2SCSIIORequest_t *scsi_request =
(Mpi2SCSIIORequest_t *)mpi_request;
snprintf(ioc->tmp_string, MPT_STRING_LENGTH,
"raid_pass, cmd(0x%02x), cdb_len(%d)",
scsi_request->CDB.CDB32[0],
le16_to_cpu(scsi_request->IoFlags) & 0xF);
desc = ioc->tmp_string;
break;
}
case MPI2_FUNCTION_SAS_IO_UNIT_CONTROL:
desc = "sas_iounit_cntl";
break;
case MPI2_FUNCTION_SATA_PASSTHROUGH:
desc = "sata_pass";
break;
case MPI2_FUNCTION_DIAG_BUFFER_POST:
desc = "diag_buffer_post";
break;
case MPI2_FUNCTION_DIAG_RELEASE:
desc = "diag_release";
break;
case MPI2_FUNCTION_SMP_PASSTHROUGH:
desc = "smp_passthrough";
break;
}
if (!desc)
return;
printk(MPT2SAS_INFO_FMT "%s: %s, smid(%d)\n",
ioc->name, calling_function_name, desc, smid);
if (!mpi_reply)
return;
if (mpi_reply->IOCStatus || mpi_reply->IOCLogInfo)
printk(MPT2SAS_INFO_FMT
"\tiocstatus(0x%04x), loginfo(0x%08x)\n",
ioc->name, le16_to_cpu(mpi_reply->IOCStatus),
le32_to_cpu(mpi_reply->IOCLogInfo));
if (mpi_request->Function == MPI2_FUNCTION_SCSI_IO_REQUEST ||
mpi_request->Function ==
MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH) {
Mpi2SCSIIOReply_t *scsi_reply =
(Mpi2SCSIIOReply_t *)mpi_reply;
struct _sas_device *sas_device = NULL;
unsigned long flags;
spin_lock_irqsave(&ioc->sas_device_lock, flags);
sas_device = _ctl_sas_device_find_by_handle(ioc,
le16_to_cpu(scsi_reply->DevHandle));
if (sas_device) {
printk(MPT2SAS_WARN_FMT "\tsas_address(0x%016llx), "
"phy(%d)\n", ioc->name, (unsigned long long)
sas_device->sas_address, sas_device->phy);
printk(MPT2SAS_WARN_FMT
"\tenclosure_logical_id(0x%016llx), slot(%d)\n",
ioc->name, sas_device->enclosure_logical_id,
sas_device->slot);
}
spin_unlock_irqrestore(&ioc->sas_device_lock, flags);
if (scsi_reply->SCSIState || scsi_reply->SCSIStatus)
printk(MPT2SAS_INFO_FMT
"\tscsi_state(0x%02x), scsi_status"
"(0x%02x)\n", ioc->name,
scsi_reply->SCSIState,
scsi_reply->SCSIStatus);
}
}
#endif
/**
* mpt2sas_ctl_done - ctl module completion routine
* @ioc: per adapter object
* @smid: system request message index
* @msix_index: MSIX table index supplied by the OS
* @reply: reply message frame(lower 32bit addr)
* Context: none.
*
* The callback handler when using ioc->ctl_cb_idx.
*
* Return 1 meaning mf should be freed from _base_interrupt
* 0 means the mf is freed from this function.
*/
u8
mpt2sas_ctl_done(struct MPT2SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
u32 reply)
{
MPI2DefaultReply_t *mpi_reply;
Mpi2SCSIIOReply_t *scsiio_reply;
const void *sense_data;
u32 sz;
if (ioc->ctl_cmds.status == MPT2_CMD_NOT_USED)
return 1;
if (ioc->ctl_cmds.smid != smid)
return 1;
ioc->ctl_cmds.status |= MPT2_CMD_COMPLETE;
mpi_reply = mpt2sas_base_get_reply_virt_addr(ioc, reply);
if (mpi_reply) {
memcpy(ioc->ctl_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
ioc->ctl_cmds.status |= MPT2_CMD_REPLY_VALID;
/* get sense data */
if (mpi_reply->Function == MPI2_FUNCTION_SCSI_IO_REQUEST ||
mpi_reply->Function ==
MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH) {
scsiio_reply = (Mpi2SCSIIOReply_t *)mpi_reply;
if (scsiio_reply->SCSIState &
MPI2_SCSI_STATE_AUTOSENSE_VALID) {
sz = min_t(u32, SCSI_SENSE_BUFFERSIZE,
le32_to_cpu(scsiio_reply->SenseCount));
sense_data = mpt2sas_base_get_sense_buffer(ioc,
smid);
memcpy(ioc->ctl_cmds.sense, sense_data, sz);
}
}
}
#ifdef CONFIG_SCSI_MPT2SAS_LOGGING
_ctl_display_some_debug(ioc, smid, "ctl_done", mpi_reply);
#endif
ioc->ctl_cmds.status &= ~MPT2_CMD_PENDING;
complete(&ioc->ctl_cmds.done);
return 1;
}
/**
* _ctl_check_event_type - determines when an event needs logging
* @ioc: per adapter object
* @event: firmware event
*
* The bitmask in ioc->event_type[] indicates which events should be
* be saved in the driver event_log. This bitmask is set by application.
*
* Returns 1 when event should be captured, or zero means no match.
*/
static int
_ctl_check_event_type(struct MPT2SAS_ADAPTER *ioc, u16 event)
{
u16 i;
u32 desired_event;
if (event >= 128 || !event || !ioc->event_log)
return 0;
desired_event = (1 << (event % 32));
if (!desired_event)
desired_event = 1;
i = event / 32;
return desired_event & ioc->event_type[i];
}
/**
* mpt2sas_ctl_add_to_event_log - add event
* @ioc: per adapter object
* @mpi_reply: reply message frame
*
* Return nothing.
*/
void
mpt2sas_ctl_add_to_event_log(struct MPT2SAS_ADAPTER *ioc,
Mpi2EventNotificationReply_t *mpi_reply)
{
struct MPT2_IOCTL_EVENTS *event_log;
u16 event;
int i;
u32 sz, event_data_sz;
u8 send_aen = 0;
if (!ioc->event_log)
return;
event = le16_to_cpu(mpi_reply->Event);
if (_ctl_check_event_type(ioc, event)) {
/* insert entry into circular event_log */
i = ioc->event_context % MPT2SAS_CTL_EVENT_LOG_SIZE;
event_log = ioc->event_log;
event_log[i].event = event;
event_log[i].context = ioc->event_context++;
event_data_sz = le16_to_cpu(mpi_reply->EventDataLength)*4;
sz = min_t(u32, event_data_sz, MPT2_EVENT_DATA_SIZE);
memset(event_log[i].data, 0, MPT2_EVENT_DATA_SIZE);
memcpy(event_log[i].data, mpi_reply->EventData, sz);
send_aen = 1;
}
/* This aen_event_read_flag flag is set until the
* application has read the event log.
* For MPI2_EVENT_LOG_ENTRY_ADDED, we always notify.
*/
if (event == MPI2_EVENT_LOG_ENTRY_ADDED ||
(send_aen && !ioc->aen_event_read_flag)) {
ioc->aen_event_read_flag = 1;
wake_up_interruptible(&ctl_poll_wait);
if (async_queue)
kill_fasync(&async_queue, SIGIO, POLL_IN);
}
}
/**
* mpt2sas_ctl_event_callback - firmware event handler (called at ISR time)
* @ioc: per adapter object
* @msix_index: MSIX table index supplied by the OS
* @reply: reply message frame(lower 32bit addr)
* Context: interrupt.
*
* This function merely adds a new work task into ioc->firmware_event_thread.
* The tasks are worked from _firmware_event_work in user context.
*
* Returns void.
*/
void
mpt2sas_ctl_event_callback(struct MPT2SAS_ADAPTER *ioc, u8 msix_index,
u32 reply)
{
Mpi2EventNotificationReply_t *mpi_reply;
mpi_reply = mpt2sas_base_get_reply_virt_addr(ioc, reply);
if (unlikely(!mpi_reply)) {
printk(MPT2SAS_ERR_FMT "mpi_reply not valid at %s:%d/%s()!\n",
ioc->name, __FILE__, __LINE__, __func__);
return;
}
mpt2sas_ctl_add_to_event_log(ioc, mpi_reply);
return;
}
/**
* _ctl_verify_adapter - validates ioc_number passed from application
* @ioc: per adapter object
* @iocpp: The ioc pointer is returned in this.
*
* Return (-1) means error, else ioc_number.
*/
static int
_ctl_verify_adapter(int ioc_number, struct MPT2SAS_ADAPTER **iocpp)
{
struct MPT2SAS_ADAPTER *ioc;
list_for_each_entry(ioc, &mpt2sas_ioc_list, list) {
if (ioc->id != ioc_number)
continue;
*iocpp = ioc;
return ioc_number;
}
*iocpp = NULL;
return -1;
}
/**
* mpt2sas_ctl_reset_handler - reset callback handler (for ctl)
* @ioc: per adapter object
* @reset_phase: phase
*
* The handler for doing any required cleanup or initialization.
*
* The reset phase can be MPT2_IOC_PRE_RESET, MPT2_IOC_AFTER_RESET,
* MPT2_IOC_DONE_RESET
*/
void
mpt2sas_ctl_reset_handler(struct MPT2SAS_ADAPTER *ioc, int reset_phase)
{
int i;
u8 issue_reset;
switch (reset_phase) {
case MPT2_IOC_PRE_RESET:
dtmprintk(ioc, printk(MPT2SAS_INFO_FMT "%s: "
"MPT2_IOC_PRE_RESET\n", ioc->name, __func__));
for (i = 0; i < MPI2_DIAG_BUF_TYPE_COUNT; i++) {
if (!(ioc->diag_buffer_status[i] &
MPT2_DIAG_BUFFER_IS_REGISTERED))
continue;
if ((ioc->diag_buffer_status[i] &
MPT2_DIAG_BUFFER_IS_RELEASED))
continue;
_ctl_send_release(ioc, i, &issue_reset);
}
break;
case MPT2_IOC_AFTER_RESET:
dtmprintk(ioc, printk(MPT2SAS_INFO_FMT "%s: "
"MPT2_IOC_AFTER_RESET\n", ioc->name, __func__));
if (ioc->ctl_cmds.status & MPT2_CMD_PENDING) {
ioc->ctl_cmds.status |= MPT2_CMD_RESET;
mpt2sas_base_free_smid(ioc, ioc->ctl_cmds.smid);
complete(&ioc->ctl_cmds.done);
}
break;
case MPT2_IOC_DONE_RESET:
dtmprintk(ioc, printk(MPT2SAS_INFO_FMT "%s: "
"MPT2_IOC_DONE_RESET\n", ioc->name, __func__));
for (i = 0; i < MPI2_DIAG_BUF_TYPE_COUNT; i++) {
if (!(ioc->diag_buffer_status[i] &
MPT2_DIAG_BUFFER_IS_REGISTERED))
continue;
if ((ioc->diag_buffer_status[i] &
MPT2_DIAG_BUFFER_IS_RELEASED))
continue;
ioc->diag_buffer_status[i] |=
MPT2_DIAG_BUFFER_IS_DIAG_RESET;
}
break;
}
}
/**
* _ctl_fasync -
* @fd -
* @filep -
* @mode -
*
* Called when application request fasyn callback handler.
*/
static int
_ctl_fasync(int fd, struct file *filep, int mode)
{
return fasync_helper(fd, filep, mode, &async_queue);
}
/**
* _ctl_poll -
* @file -
* @wait -
*
*/
static unsigned int
_ctl_poll(struct file *filep, poll_table *wait)
{
struct MPT2SAS_ADAPTER *ioc;
poll_wait(filep, &ctl_poll_wait, wait);
list_for_each_entry(ioc, &mpt2sas_ioc_list, list) {
if (ioc->aen_event_read_flag)
return POLLIN | POLLRDNORM;
}
return 0;
}
/**
* _ctl_set_task_mid - assign an active smid to tm request
* @ioc: per adapter object
* @karg - (struct mpt2_ioctl_command)
* @tm_request - pointer to mf from user space
*
* Returns 0 when an smid if found, else fail.
* during failure, the reply frame is filled.
*/
static int
_ctl_set_task_mid(struct MPT2SAS_ADAPTER *ioc, struct mpt2_ioctl_command *karg,
Mpi2SCSITaskManagementRequest_t *tm_request)
{
u8 found = 0;
u16 i;
u16 handle;
struct scsi_cmnd *scmd;
struct MPT2SAS_DEVICE *priv_data;
unsigned long flags;
Mpi2SCSITaskManagementReply_t *tm_reply;
u32 sz;
u32 lun;
char *desc = NULL;
if (tm_request->TaskType == MPI2_SCSITASKMGMT_TASKTYPE_ABORT_TASK)
desc = "abort_task";
else if (tm_request->TaskType == MPI2_SCSITASKMGMT_TASKTYPE_QUERY_TASK)
desc = "query_task";
else
return 0;
lun = scsilun_to_int((struct scsi_lun *)tm_request->LUN);
handle = le16_to_cpu(tm_request->DevHandle);
spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
for (i = ioc->scsiio_depth; i && !found; i--) {
scmd = ioc->scsi_lookup[i - 1].scmd;
if (scmd == NULL || scmd->device == NULL ||
scmd->device->hostdata == NULL)
continue;
if (lun != scmd->device->lun)
continue;
priv_data = scmd->device->hostdata;
if (priv_data->sas_target == NULL)
continue;
if (priv_data->sas_target->handle != handle)
continue;
tm_request->TaskMID = cpu_to_le16(ioc->scsi_lookup[i - 1].smid);
found = 1;
}
spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
if (!found) {
dctlprintk(ioc, printk(MPT2SAS_INFO_FMT "%s: "
"handle(0x%04x), lun(%d), no active mid!!\n", ioc->name,
desc, le16_to_cpu(tm_request->DevHandle), lun));
tm_reply = ioc->ctl_cmds.reply;
tm_reply->DevHandle = tm_request->DevHandle;
tm_reply->Function = MPI2_FUNCTION_SCSI_TASK_MGMT;
tm_reply->TaskType = tm_request->TaskType;
tm_reply->MsgLength = sizeof(Mpi2SCSITaskManagementReply_t)/4;
tm_reply->VP_ID = tm_request->VP_ID;
tm_reply->VF_ID = tm_request->VF_ID;
sz = min_t(u32, karg->max_reply_bytes, ioc->reply_sz);
if (copy_to_user(karg->reply_frame_buf_ptr, ioc->ctl_cmds.reply,
sz))
printk(KERN_ERR "failure at %s:%d/%s()!\n", __FILE__,
__LINE__, __func__);
return 1;
}
dctlprintk(ioc, printk(MPT2SAS_INFO_FMT "%s: "
"handle(0x%04x), lun(%d), task_mid(%d)\n", ioc->name,
desc, le16_to_cpu(tm_request->DevHandle), lun,
le16_to_cpu(tm_request->TaskMID)));
return 0;
}
/**
* _ctl_do_mpt_command - main handler for MPT2COMMAND opcode
* @ioc: per adapter object
* @karg - (struct mpt2_ioctl_command)
* @mf - pointer to mf in user space
*/
static long
_ctl_do_mpt_command(struct MPT2SAS_ADAPTER *ioc, struct mpt2_ioctl_command karg,
void __user *mf)
{
MPI2RequestHeader_t *mpi_request = NULL, *request;
MPI2DefaultReply_t *mpi_reply;
u32 ioc_state;
u16 ioc_status;
u16 smid;
unsigned long timeout, timeleft;
u8 issue_reset;
u32 sz;
void *psge;
void *data_out = NULL;
dma_addr_t data_out_dma;
size_t data_out_sz = 0;
void *data_in = NULL;
dma_addr_t data_in_dma;
size_t data_in_sz = 0;
u32 sgl_flags;
long ret;
u16 wait_state_count;
issue_reset = 0;
if (ioc->ctl_cmds.status != MPT2_CMD_NOT_USED) {
printk(MPT2SAS_ERR_FMT "%s: ctl_cmd in use\n",
ioc->name, __func__);
ret = -EAGAIN;
goto out;
}
wait_state_count = 0;
ioc_state = mpt2sas_base_get_iocstate(ioc, 1);
while (ioc_state != MPI2_IOC_STATE_OPERATIONAL) {
if (wait_state_count++ == 10) {
printk(MPT2SAS_ERR_FMT
"%s: failed due to ioc not operational\n",
ioc->name, __func__);
ret = -EFAULT;
goto out;
}
ssleep(1);
ioc_state = mpt2sas_base_get_iocstate(ioc, 1);
printk(MPT2SAS_INFO_FMT "%s: waiting for "
"operational state(count=%d)\n", ioc->name,
__func__, wait_state_count);
}
if (wait_state_count)
printk(MPT2SAS_INFO_FMT "%s: ioc is operational\n",
ioc->name, __func__);
mpi_request = kzalloc(ioc->request_sz, GFP_KERNEL);
if (!mpi_request) {
printk(MPT2SAS_ERR_FMT "%s: failed obtaining a memory for "
"mpi_request\n", ioc->name, __func__);
ret = -ENOMEM;
goto out;
}
/* Check for overflow and wraparound */
if (karg.data_sge_offset * 4 > ioc->request_sz ||
karg.data_sge_offset > (UINT_MAX / 4)) {
ret = -EINVAL;
goto out;
}
/* copy in request message frame from user */
if (copy_from_user(mpi_request, mf, karg.data_sge_offset*4)) {
printk(KERN_ERR "failure at %s:%d/%s()!\n", __FILE__, __LINE__,
__func__);
ret = -EFAULT;
goto out;
}
if (mpi_request->Function == MPI2_FUNCTION_SCSI_TASK_MGMT) {
smid = mpt2sas_base_get_smid_hpr(ioc, ioc->ctl_cb_idx);
if (!smid) {
printk(MPT2SAS_ERR_FMT "%s: failed obtaining a smid\n",
ioc->name, __func__);
ret = -EAGAIN;
goto out;
}
} else {
smid = mpt2sas_base_get_smid_scsiio(ioc, ioc->ctl_cb_idx, NULL);
if (!smid) {
printk(MPT2SAS_ERR_FMT "%s: failed obtaining a smid\n",
ioc->name, __func__);
ret = -EAGAIN;
goto out;
}
}
ret = 0;
ioc->ctl_cmds.status = MPT2_CMD_PENDING;
memset(ioc->ctl_cmds.reply, 0, ioc->reply_sz);
request = mpt2sas_base_get_msg_frame(ioc, smid);
memcpy(request, mpi_request, karg.data_sge_offset*4);
ioc->ctl_cmds.smid = smid;
data_out_sz = karg.data_out_size;
data_in_sz = karg.data_in_size;
if (mpi_request->Function == MPI2_FUNCTION_SCSI_IO_REQUEST ||
mpi_request->Function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH) {
if (!le16_to_cpu(mpi_request->FunctionDependent1) ||
le16_to_cpu(mpi_request->FunctionDependent1) >
ioc->facts.MaxDevHandle) {
ret = -EINVAL;
mpt2sas_base_free_smid(ioc, smid);
goto out;
}
}
/* obtain dma-able memory for data transfer */
if (data_out_sz) /* WRITE */ {
data_out = pci_alloc_consistent(ioc->pdev, data_out_sz,
&data_out_dma);
if (!data_out) {
printk(KERN_ERR "failure at %s:%d/%s()!\n", __FILE__,
__LINE__, __func__);
ret = -ENOMEM;
mpt2sas_base_free_smid(ioc, smid);
goto out;
}
if (copy_from_user(data_out, karg.data_out_buf_ptr,
data_out_sz)) {
printk(KERN_ERR "failure at %s:%d/%s()!\n", __FILE__,
__LINE__, __func__);
ret = -EFAULT;
mpt2sas_base_free_smid(ioc, smid);
goto out;
}
}
if (data_in_sz) /* READ */ {
data_in = pci_alloc_consistent(ioc->pdev, data_in_sz,
&data_in_dma);
if (!data_in) {
printk(KERN_ERR "failure at %s:%d/%s()!\n", __FILE__,
__LINE__, __func__);
ret = -ENOMEM;
mpt2sas_base_free_smid(ioc, smid);
goto out;
}
}
/* add scatter gather elements */
psge = (void *)request + (karg.data_sge_offset*4);
if (!data_out_sz && !data_in_sz) {
mpt2sas_base_build_zero_len_sge(ioc, psge);
} else if (data_out_sz && data_in_sz) {
/* WRITE sgel first */
sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_HOST_TO_IOC);
sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
ioc->base_add_sg_single(psge, sgl_flags |
data_out_sz, data_out_dma);
/* incr sgel */
psge += ioc->sge_size;
/* READ sgel last */
sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
MPI2_SGE_FLAGS_END_OF_LIST);
sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
ioc->base_add_sg_single(psge, sgl_flags |
data_in_sz, data_in_dma);
} else if (data_out_sz) /* WRITE */ {
sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
MPI2_SGE_FLAGS_END_OF_LIST | MPI2_SGE_FLAGS_HOST_TO_IOC);
sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
ioc->base_add_sg_single(psge, sgl_flags |
data_out_sz, data_out_dma);
} else if (data_in_sz) /* READ */ {
sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
MPI2_SGE_FLAGS_END_OF_LIST);
sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
ioc->base_add_sg_single(psge, sgl_flags |
data_in_sz, data_in_dma);
}
/* send command to firmware */
#ifdef CONFIG_SCSI_MPT2SAS_LOGGING
_ctl_display_some_debug(ioc, smid, "ctl_request", NULL);
#endif
init_completion(&ioc->ctl_cmds.done);
switch (mpi_request->Function) {
case MPI2_FUNCTION_SCSI_IO_REQUEST:
case MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH:
{
Mpi2SCSIIORequest_t *scsiio_request =
(Mpi2SCSIIORequest_t *)request;
scsiio_request->SenseBufferLength = SCSI_SENSE_BUFFERSIZE;
scsiio_request->SenseBufferLowAddress =
mpt2sas_base_get_sense_buffer_dma(ioc, smid);
memset(ioc->ctl_cmds.sense, 0, SCSI_SENSE_BUFFERSIZE);
if (mpi_request->Function == MPI2_FUNCTION_SCSI_IO_REQUEST)
mpt2sas_base_put_smid_scsi_io(ioc, smid,
le16_to_cpu(mpi_request->FunctionDependent1));
else
mpt2sas_base_put_smid_default(ioc, smid);
break;
}
case MPI2_FUNCTION_SCSI_TASK_MGMT:
{
Mpi2SCSITaskManagementRequest_t *tm_request =
(Mpi2SCSITaskManagementRequest_t *)request;
dtmprintk(ioc, printk(MPT2SAS_INFO_FMT "TASK_MGMT: "
"handle(0x%04x), task_type(0x%02x)\n", ioc->name,
le16_to_cpu(tm_request->DevHandle), tm_request->TaskType));
if (tm_request->TaskType ==
MPI2_SCSITASKMGMT_TASKTYPE_ABORT_TASK ||
tm_request->TaskType ==
MPI2_SCSITASKMGMT_TASKTYPE_QUERY_TASK) {
if (_ctl_set_task_mid(ioc, &karg, tm_request)) {
mpt2sas_base_free_smid(ioc, smid);
goto out;
}
}
mpt2sas_scsih_set_tm_flag(ioc, le16_to_cpu(
tm_request->DevHandle));
mpt2sas_base_put_smid_hi_priority(ioc, smid);
break;
}
case MPI2_FUNCTION_SMP_PASSTHROUGH:
{
Mpi2SmpPassthroughRequest_t *smp_request =
(Mpi2SmpPassthroughRequest_t *)mpi_request;
u8 *data;
/* ioc determines which port to use */
smp_request->PhysicalPort = 0xFF;
if (smp_request->PassthroughFlags &
MPI2_SMP_PT_REQ_PT_FLAGS_IMMEDIATE)
data = (u8 *)&smp_request->SGL;
else {
if (unlikely(data_out == NULL)) {
printk(KERN_ERR "failure at %s:%d/%s()!\n",
__FILE__, __LINE__, __func__);
mpt2sas_base_free_smid(ioc, smid);
ret = -EINVAL;
goto out;
}
data = data_out;
}
if (data[1] == 0x91 && (data[10] == 1 || data[10] == 2)) {
ioc->ioc_link_reset_in_progress = 1;
ioc->ignore_loginfos = 1;
}
mpt2sas_base_put_smid_default(ioc, smid);
break;
}
case MPI2_FUNCTION_SAS_IO_UNIT_CONTROL:
{
Mpi2SasIoUnitControlRequest_t *sasiounit_request =
(Mpi2SasIoUnitControlRequest_t *)mpi_request;
if (sasiounit_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET
|| sasiounit_request->Operation ==
MPI2_SAS_OP_PHY_LINK_RESET) {
ioc->ioc_link_reset_in_progress = 1;
ioc->ignore_loginfos = 1;
}
mpt2sas_base_put_smid_default(ioc, smid);
break;
}
default:
mpt2sas_base_put_smid_default(ioc, smid);
break;
}
if (karg.timeout < MPT2_IOCTL_DEFAULT_TIMEOUT)
timeout = MPT2_IOCTL_DEFAULT_TIMEOUT;
else
timeout = karg.timeout;
timeleft = wait_for_completion_timeout(&ioc->ctl_cmds.done,
timeout*HZ);
if (mpi_request->Function == MPI2_FUNCTION_SCSI_TASK_MGMT) {
Mpi2SCSITaskManagementRequest_t *tm_request =
(Mpi2SCSITaskManagementRequest_t *)mpi_request;
mpt2sas_scsih_clear_tm_flag(ioc, le16_to_cpu(
tm_request->DevHandle));
} else if ((mpi_request->Function == MPI2_FUNCTION_SMP_PASSTHROUGH ||
mpi_request->Function == MPI2_FUNCTION_SAS_IO_UNIT_CONTROL) &&
ioc->ioc_link_reset_in_progress) {
ioc->ioc_link_reset_in_progress = 0;
ioc->ignore_loginfos = 0;
}
if (!(ioc->ctl_cmds.status & MPT2_CMD_COMPLETE)) {
printk(MPT2SAS_ERR_FMT "%s: timeout\n", ioc->name,
__func__);
_debug_dump_mf(mpi_request, karg.data_sge_offset);
if (!(ioc->ctl_cmds.status & MPT2_CMD_RESET))
issue_reset = 1;
goto issue_host_reset;
}
mpi_reply = ioc->ctl_cmds.reply;
ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
#ifdef CONFIG_SCSI_MPT2SAS_LOGGING
if (mpi_reply->Function == MPI2_FUNCTION_SCSI_TASK_MGMT &&
(ioc->logging_level & MPT_DEBUG_TM)) {
Mpi2SCSITaskManagementReply_t *tm_reply =
(Mpi2SCSITaskManagementReply_t *)mpi_reply;
printk(MPT2SAS_INFO_FMT "TASK_MGMT: "
"IOCStatus(0x%04x), IOCLogInfo(0x%08x), "
"TerminationCount(0x%08x)\n", ioc->name,
le16_to_cpu(tm_reply->IOCStatus),
le32_to_cpu(tm_reply->IOCLogInfo),
le32_to_cpu(tm_reply->TerminationCount));
}
#endif
/* copy out xdata to user */
if (data_in_sz) {
if (copy_to_user(karg.data_in_buf_ptr, data_in,
data_in_sz)) {
printk(KERN_ERR "failure at %s:%d/%s()!\n", __FILE__,
__LINE__, __func__);
ret = -ENODATA;
goto out;
}
}
/* copy out reply message frame to user */
if (karg.max_reply_bytes) {
sz = min_t(u32, karg.max_reply_bytes, ioc->reply_sz);
if (copy_to_user(karg.reply_frame_buf_ptr, ioc->ctl_cmds.reply,
sz)) {
printk(KERN_ERR "failure at %s:%d/%s()!\n", __FILE__,
__LINE__, __func__);
ret = -ENODATA;
goto out;
}
}
/* copy out sense to user */
if (karg.max_sense_bytes && (mpi_request->Function ==
MPI2_FUNCTION_SCSI_IO_REQUEST || mpi_request->Function ==
MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH)) {
sz = min_t(u32, karg.max_sense_bytes, SCSI_SENSE_BUFFERSIZE);
if (copy_to_user(karg.sense_data_ptr,
ioc->ctl_cmds.sense, sz)) {
printk(KERN_ERR "failure at %s:%d/%s()!\n", __FILE__,
__LINE__, __func__);
ret = -ENODATA;
goto out;
}
}
issue_host_reset:
if (issue_reset) {
ret = -ENODATA;
if ((mpi_request->Function == MPI2_FUNCTION_SCSI_IO_REQUEST ||
mpi_request->Function ==
MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH ||
mpi_request->Function == MPI2_FUNCTION_SATA_PASSTHROUGH)) {
printk(MPT2SAS_INFO_FMT "issue target reset: handle "
"= (0x%04x)\n", ioc->name,
le16_to_cpu(mpi_request->FunctionDependent1));
mpt2sas_halt_firmware(ioc);
mpt2sas_scsih_issue_tm(ioc,
le16_to_cpu(mpi_request->FunctionDependent1), 0, 0,
0, MPI2_SCSITASKMGMT_TASKTYPE_TARGET_RESET, 0, 10,
TM_MUTEX_ON);
ioc->tm_cmds.status = MPT2_CMD_NOT_USED;
} else
mpt2sas_base_hard_reset_handler(ioc, CAN_SLEEP,
FORCE_BIG_HAMMER);
}
out:
/* free memory associated with sg buffers */
if (data_in)
pci_free_consistent(ioc->pdev, data_in_sz, data_in,
data_in_dma);
if (data_out)
pci_free_consistent(ioc->pdev, data_out_sz, data_out,
data_out_dma);
kfree(mpi_request);
ioc->ctl_cmds.status = MPT2_CMD_NOT_USED;
return ret;
}
/**
* _ctl_getiocinfo - main handler for MPT2IOCINFO opcode
* @ioc: per adapter object
* @arg - user space buffer containing ioctl content
*/
static long
_ctl_getiocinfo(struct MPT2SAS_ADAPTER *ioc, void __user *arg)
{
struct mpt2_ioctl_iocinfo karg;
if (copy_from_user(&karg, arg, sizeof(karg))) {
printk(KERN_ERR "failure at %s:%d/%s()!\n",
__FILE__, __LINE__, __func__);
return -EFAULT;
}
dctlprintk(ioc, printk(MPT2SAS_INFO_FMT "%s: enter\n", ioc->name,
__func__));
memset(&karg, 0 , sizeof(karg));
[SCSI] mpt2sas : WarpDrive New product SSS6200 support added This patch has Support for the new solid state device product SSS6200 from LSI and relavent features w.r.t SSS6200. The major feature added in this driver is supporting Direct-I/O to the SSS6200 storage.There are some additional changes done to avoid exposing the RAID member disks to the OS and hiding/exposing drives based on the OEM Specific Flag in Manufacturing Page10 (this is required to handle specific changes in the SSS6200 firmware). Each and every changes are listed below. 1. Hiding IR related messages. For SSS6200, the driver is modified not to print IR related events. Even if the debugging is enabled the IR related messages will not be displayed. In some places if there is a need to display a message related to IR the string "IR" is replaced with string "DD" and the string "volume" is replaced with "direct drive". But the function names are not changed hence there are some places where the reference to volume can be seen if debug level is set. 2. Removed RAID transport support In Linux the user can retrieve RAID volume information from the sysfs directory. This support is removed for SSS6200. 3. Direct I/O support. The driver tries to enable direct I/O when a volume is reported to the driver by the firmware through IRCC events and the driver does this just before reporting to the OS, hence all the OS issued I/O can go through direct path if they can, The first validation is to see whether the manufacturing page10 flag is set to expose all drives always. If that is set, the driver will not enable direct I/O and displays the message "DDIO" is disabled globally as drives are exposed. The driver checks whether there is more than one volume in the controller, if so the direct I/O will be disabled globally for all volumes in the controller and the message displayed will be "DDIO is disabled globally as number of drives > 1. If retrieving number of PD is failed the driver will not enable direct I/O and displays the message Failure in computing number of drives DDIO disabled. If memory allocation for RAIDVolumePage0 is failed, the driver will not enable direct I/O and displays the message Memory allocation failure for RVPG0 DDIO disabled. If retrieving RAIDVolumePage0 is failed the driver will not enable direct I/O and displays the message Failure in retrieving RVPG0 DDIO disabled If the number of PD in a volume is greater than 8, then the direct I/O will be disabled. If any of individual drives handle retrieval is failed then the DD-IO will be disabled. If the volume is not RAID0 or if the block size is not 512 then the DD-IO will be disabled. If the volume size is greater than 2TB then the DD-IO will be disabled. If the driver is not able to find a valid stripe exponent using the configured stripe size then the DD-IO will be disabled When the DD-IO is enabled the driver will check every I/O request issued to the storage and checks whether the request is either READ6/WRITE6/READ10/WRITE10, if it is and if the complete I/O transfer is within a stripe size then the I/O is redirected to the drive directly instead of the volume. On completion of every I/O, if the completion is failure means if the reply is address reply with a reply frame associated with it, then the type of I/O will be checked, if the I/O is direct then the I/O will be retried to the volume once. Signed-off-by: Kashyap Desai <kashyap.desai@lsi.com> Reviewed-by: Eric Moore <eric.moore@lsi.com> Reviewed-by: Sathya Prakash <sathya.prakash@lsi.com> Signed-off-by: James Bottomley <James.Bottomley@suse.de>
2011-04-07 14:02:49 +07:00
if (ioc->is_warpdrive)
karg.adapter_type = MPT2_IOCTL_INTERFACE_SAS2_SSS6200;
else
karg.adapter_type = MPT2_IOCTL_INTERFACE_SAS2;
if (ioc->pfacts)
karg.port_number = ioc->pfacts[0].PortNumber;
karg.hw_rev = ioc->pdev->revision;
karg.pci_id = ioc->pdev->device;
karg.subsystem_device = ioc->pdev->subsystem_device;
karg.subsystem_vendor = ioc->pdev->subsystem_vendor;
karg.pci_information.u.bits.bus = ioc->pdev->bus->number;
karg.pci_information.u.bits.device = PCI_SLOT(ioc->pdev->devfn);
karg.pci_information.u.bits.function = PCI_FUNC(ioc->pdev->devfn);
karg.pci_information.segment_id = pci_domain_nr(ioc->pdev->bus);
karg.firmware_version = ioc->facts.FWVersion.Word;
strcpy(karg.driver_version, MPT2SAS_DRIVER_NAME);
strcat(karg.driver_version, "-");
strcat(karg.driver_version, MPT2SAS_DRIVER_VERSION);
karg.bios_version = le32_to_cpu(ioc->bios_pg3.BiosVersion);
if (copy_to_user(arg, &karg, sizeof(karg))) {
printk(KERN_ERR "failure at %s:%d/%s()!\n",
__FILE__, __LINE__, __func__);
return -EFAULT;
}
return 0;
}
/**
* _ctl_eventquery - main handler for MPT2EVENTQUERY opcode
* @ioc: per adapter object
* @arg - user space buffer containing ioctl content
*/
static long
_ctl_eventquery(struct MPT2SAS_ADAPTER *ioc, void __user *arg)
{
struct mpt2_ioctl_eventquery karg;
if (copy_from_user(&karg, arg, sizeof(karg))) {
printk(KERN_ERR "failure at %s:%d/%s()!\n",
__FILE__, __LINE__, __func__);
return -EFAULT;
}
dctlprintk(ioc, printk(MPT2SAS_INFO_FMT "%s: enter\n", ioc->name,
__func__));
karg.event_entries = MPT2SAS_CTL_EVENT_LOG_SIZE;
memcpy(karg.event_types, ioc->event_type,
MPI2_EVENT_NOTIFY_EVENTMASK_WORDS * sizeof(u32));
if (copy_to_user(arg, &karg, sizeof(karg))) {
printk(KERN_ERR "failure at %s:%d/%s()!\n",
__FILE__, __LINE__, __func__);
return -EFAULT;
}
return 0;
}
/**
* _ctl_eventenable - main handler for MPT2EVENTENABLE opcode
* @ioc: per adapter object
* @arg - user space buffer containing ioctl content
*/
static long
_ctl_eventenable(struct MPT2SAS_ADAPTER *ioc, void __user *arg)
{
struct mpt2_ioctl_eventenable karg;
if (copy_from_user(&karg, arg, sizeof(karg))) {
printk(KERN_ERR "failure at %s:%d/%s()!\n",
__FILE__, __LINE__, __func__);
return -EFAULT;
}
dctlprintk(ioc, printk(MPT2SAS_INFO_FMT "%s: enter\n", ioc->name,
__func__));
if (ioc->event_log)
return 0;
memcpy(ioc->event_type, karg.event_types,
MPI2_EVENT_NOTIFY_EVENTMASK_WORDS * sizeof(u32));
mpt2sas_base_validate_event_type(ioc, ioc->event_type);
/* initialize event_log */
ioc->event_context = 0;
ioc->aen_event_read_flag = 0;
ioc->event_log = kcalloc(MPT2SAS_CTL_EVENT_LOG_SIZE,
sizeof(struct MPT2_IOCTL_EVENTS), GFP_KERNEL);
if (!ioc->event_log) {
printk(KERN_ERR "failure at %s:%d/%s()!\n",
__FILE__, __LINE__, __func__);
return -ENOMEM;
}
return 0;
}
/**
* _ctl_eventreport - main handler for MPT2EVENTREPORT opcode
* @ioc: per adapter object
* @arg - user space buffer containing ioctl content
*/
static long
_ctl_eventreport(struct MPT2SAS_ADAPTER *ioc, void __user *arg)
{
struct mpt2_ioctl_eventreport karg;
u32 number_bytes, max_events, max;
struct mpt2_ioctl_eventreport __user *uarg = arg;
if (copy_from_user(&karg, arg, sizeof(karg))) {
printk(KERN_ERR "failure at %s:%d/%s()!\n",
__FILE__, __LINE__, __func__);
return -EFAULT;
}
dctlprintk(ioc, printk(MPT2SAS_INFO_FMT "%s: enter\n", ioc->name,
__func__));
number_bytes = karg.hdr.max_data_size -
sizeof(struct mpt2_ioctl_header);
max_events = number_bytes/sizeof(struct MPT2_IOCTL_EVENTS);
max = min_t(u32, MPT2SAS_CTL_EVENT_LOG_SIZE, max_events);
/* If fewer than 1 event is requested, there must have
* been some type of error.
*/
if (!max || !ioc->event_log)
return -ENODATA;
number_bytes = max * sizeof(struct MPT2_IOCTL_EVENTS);
if (copy_to_user(uarg->event_data, ioc->event_log, number_bytes)) {
printk(KERN_ERR "failure at %s:%d/%s()!\n",
__FILE__, __LINE__, __func__);
return -EFAULT;
}
/* reset flag so SIGIO can restart */
ioc->aen_event_read_flag = 0;
return 0;
}
/**
* _ctl_do_reset - main handler for MPT2HARDRESET opcode
* @ioc: per adapter object
* @arg - user space buffer containing ioctl content
*/
static long
_ctl_do_reset(struct MPT2SAS_ADAPTER *ioc, void __user *arg)
{
struct mpt2_ioctl_diag_reset karg;
int retval;
if (copy_from_user(&karg, arg, sizeof(karg))) {
printk(KERN_ERR "failure at %s:%d/%s()!\n",
__FILE__, __LINE__, __func__);
return -EFAULT;
}
[SCSI] mpt2sas: New feature - Fast Load Support New feature Fast Load Support. (1)Asynchronous SCSI scanning: This will allow the drivers to scan for devices in parallel while other device drivers are loading at the same time. This will improve the amount of time it takes for the OS to load. (2) Reporting Devices while port enable is active: This feature will allow devices to be reported to OS immediately while port enable is active. The previous implementation waits for port enable to complete, and then report devices. This feature is only enabled on IT firmware configurations when there are no boot device configured in BIOS Configuration Utility, else the driver will wait till port enable completes reporting devices. For IR firmware, this feature is turned off. This feature is to address large SAS topologies (>100 drives) when the boot OS is using onboard SATA device, in other words, the boot devices is not connected to our controller. (3) Scanning for devices after diagnostic reset completes: A new routine _scsih_scan_start is added. This will scan the expander pages, IR pages, and sas device pages, then reporting new devices to SCSI Mid layer. It seems the driver is not supporting adding devices while diagnostic reset is active. Apparently this is due to the sanity checks on ioc->shost_recovery flag throughout the context of kernel work thread FIFO, and the mpt2sas_fw_work. Signed-off-by: Nagalakshmi Nandigama <nagalakshmi.nandigama@lsi.com> Signed-off-by: James Bottomley <JBottomley@Parallels.com>
2011-10-19 17:06:26 +07:00
if (ioc->shost_recovery || ioc->pci_error_recovery ||
ioc->is_driver_loading)
return -EAGAIN;
dctlprintk(ioc, printk(MPT2SAS_INFO_FMT "%s: enter\n", ioc->name,
__func__));
retval = mpt2sas_base_hard_reset_handler(ioc, CAN_SLEEP,
FORCE_BIG_HAMMER);
printk(MPT2SAS_INFO_FMT "host reset: %s\n",
ioc->name, ((!retval) ? "SUCCESS" : "FAILED"));
return 0;
}
/**
* _ctl_btdh_search_sas_device - searching for sas device
* @ioc: per adapter object
* @btdh: btdh ioctl payload
*/
static int
_ctl_btdh_search_sas_device(struct MPT2SAS_ADAPTER *ioc,
struct mpt2_ioctl_btdh_mapping *btdh)
{
struct _sas_device *sas_device;
unsigned long flags;
int rc = 0;
if (list_empty(&ioc->sas_device_list))
return rc;
spin_lock_irqsave(&ioc->sas_device_lock, flags);
list_for_each_entry(sas_device, &ioc->sas_device_list, list) {
if (btdh->bus == 0xFFFFFFFF && btdh->id == 0xFFFFFFFF &&
btdh->handle == sas_device->handle) {
btdh->bus = sas_device->channel;
btdh->id = sas_device->id;
rc = 1;
goto out;
} else if (btdh->bus == sas_device->channel && btdh->id ==
sas_device->id && btdh->handle == 0xFFFF) {
btdh->handle = sas_device->handle;
rc = 1;
goto out;
}
}
out:
spin_unlock_irqrestore(&ioc->sas_device_lock, flags);
return rc;
}
/**
* _ctl_btdh_search_raid_device - searching for raid device
* @ioc: per adapter object
* @btdh: btdh ioctl payload
*/
static int
_ctl_btdh_search_raid_device(struct MPT2SAS_ADAPTER *ioc,
struct mpt2_ioctl_btdh_mapping *btdh)
{
struct _raid_device *raid_device;
unsigned long flags;
int rc = 0;
if (list_empty(&ioc->raid_device_list))
return rc;
spin_lock_irqsave(&ioc->raid_device_lock, flags);
list_for_each_entry(raid_device, &ioc->raid_device_list, list) {
if (btdh->bus == 0xFFFFFFFF && btdh->id == 0xFFFFFFFF &&
btdh->handle == raid_device->handle) {
btdh->bus = raid_device->channel;
btdh->id = raid_device->id;
rc = 1;
goto out;
} else if (btdh->bus == raid_device->channel && btdh->id ==
raid_device->id && btdh->handle == 0xFFFF) {
btdh->handle = raid_device->handle;
rc = 1;
goto out;
}
}
out:
spin_unlock_irqrestore(&ioc->raid_device_lock, flags);
return rc;
}
/**
* _ctl_btdh_mapping - main handler for MPT2BTDHMAPPING opcode
* @ioc: per adapter object
* @arg - user space buffer containing ioctl content
*/
static long
_ctl_btdh_mapping(struct MPT2SAS_ADAPTER *ioc, void __user *arg)
{
struct mpt2_ioctl_btdh_mapping karg;
int rc;
if (copy_from_user(&karg, arg, sizeof(karg))) {
printk(KERN_ERR "failure at %s:%d/%s()!\n",
__FILE__, __LINE__, __func__);
return -EFAULT;
}
dctlprintk(ioc, printk(MPT2SAS_INFO_FMT "%s\n", ioc->name,
__func__));
rc = _ctl_btdh_search_sas_device(ioc, &karg);
if (!rc)
_ctl_btdh_search_raid_device(ioc, &karg);
if (copy_to_user(arg, &karg, sizeof(karg))) {
printk(KERN_ERR "failure at %s:%d/%s()!\n",
__FILE__, __LINE__, __func__);
return -EFAULT;
}
return 0;
}
/**
* _ctl_diag_capability - return diag buffer capability
* @ioc: per adapter object
* @buffer_type: specifies either TRACE, SNAPSHOT, or EXTENDED
*
* returns 1 when diag buffer support is enabled in firmware
*/
static u8
_ctl_diag_capability(struct MPT2SAS_ADAPTER *ioc, u8 buffer_type)
{
u8 rc = 0;
switch (buffer_type) {
case MPI2_DIAG_BUF_TYPE_TRACE:
if (ioc->facts.IOCCapabilities &
MPI2_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER)
rc = 1;
break;
case MPI2_DIAG_BUF_TYPE_SNAPSHOT:
if (ioc->facts.IOCCapabilities &
MPI2_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER)
rc = 1;
break;
case MPI2_DIAG_BUF_TYPE_EXTENDED:
if (ioc->facts.IOCCapabilities &
MPI2_IOCFACTS_CAPABILITY_EXTENDED_BUFFER)
rc = 1;
}
return rc;
}
/**
* _ctl_diag_register_2 - wrapper for registering diag buffer support
* @ioc: per adapter object
* @diag_register: the diag_register struct passed in from user space
*
*/
static long
_ctl_diag_register_2(struct MPT2SAS_ADAPTER *ioc,
struct mpt2_diag_register *diag_register)
{
int rc, i;
void *request_data = NULL;
dma_addr_t request_data_dma;
u32 request_data_sz = 0;
Mpi2DiagBufferPostRequest_t *mpi_request;
Mpi2DiagBufferPostReply_t *mpi_reply;
u8 buffer_type;
unsigned long timeleft;
u16 smid;
u16 ioc_status;
u8 issue_reset = 0;
dctlprintk(ioc, printk(MPT2SAS_INFO_FMT "%s\n", ioc->name,
__func__));
if (ioc->ctl_cmds.status != MPT2_CMD_NOT_USED) {
printk(MPT2SAS_ERR_FMT "%s: ctl_cmd in use\n",
ioc->name, __func__);
rc = -EAGAIN;
goto out;
}
buffer_type = diag_register->buffer_type;
if (!_ctl_diag_capability(ioc, buffer_type)) {
printk(MPT2SAS_ERR_FMT "%s: doesn't have capability for "
"buffer_type(0x%02x)\n", ioc->name, __func__, buffer_type);
return -EPERM;
}
if (ioc->diag_buffer_status[buffer_type] &
MPT2_DIAG_BUFFER_IS_REGISTERED) {
printk(MPT2SAS_ERR_FMT "%s: already has a registered "
"buffer for buffer_type(0x%02x)\n", ioc->name, __func__,
buffer_type);
return -EINVAL;
}
if (diag_register->requested_buffer_size % 4) {
printk(MPT2SAS_ERR_FMT "%s: the requested_buffer_size "
"is not 4 byte aligned\n", ioc->name, __func__);
return -EINVAL;
}
smid = mpt2sas_base_get_smid(ioc, ioc->ctl_cb_idx);
if (!smid) {
printk(MPT2SAS_ERR_FMT "%s: failed obtaining a smid\n",
ioc->name, __func__);
rc = -EAGAIN;
goto out;
}
rc = 0;
ioc->ctl_cmds.status = MPT2_CMD_PENDING;
memset(ioc->ctl_cmds.reply, 0, ioc->reply_sz);
mpi_request = mpt2sas_base_get_msg_frame(ioc, smid);
ioc->ctl_cmds.smid = smid;
request_data = ioc->diag_buffer[buffer_type];
request_data_sz = diag_register->requested_buffer_size;
ioc->unique_id[buffer_type] = diag_register->unique_id;
ioc->diag_buffer_status[buffer_type] = 0;
memcpy(ioc->product_specific[buffer_type],
diag_register->product_specific, MPT2_PRODUCT_SPECIFIC_DWORDS);
ioc->diagnostic_flags[buffer_type] = diag_register->diagnostic_flags;
if (request_data) {
request_data_dma = ioc->diag_buffer_dma[buffer_type];
if (request_data_sz != ioc->diag_buffer_sz[buffer_type]) {
pci_free_consistent(ioc->pdev,
ioc->diag_buffer_sz[buffer_type],
request_data, request_data_dma);
request_data = NULL;
}
}
if (request_data == NULL) {
ioc->diag_buffer_sz[buffer_type] = 0;
ioc->diag_buffer_dma[buffer_type] = 0;
request_data = pci_alloc_consistent(
ioc->pdev, request_data_sz, &request_data_dma);
if (request_data == NULL) {
printk(MPT2SAS_ERR_FMT "%s: failed allocating memory"
" for diag buffers, requested size(%d)\n",
ioc->name, __func__, request_data_sz);
mpt2sas_base_free_smid(ioc, smid);
return -ENOMEM;
}
ioc->diag_buffer[buffer_type] = request_data;
ioc->diag_buffer_sz[buffer_type] = request_data_sz;
ioc->diag_buffer_dma[buffer_type] = request_data_dma;
}
mpi_request->Function = MPI2_FUNCTION_DIAG_BUFFER_POST;
mpi_request->BufferType = diag_register->buffer_type;
mpi_request->Flags = cpu_to_le32(diag_register->diagnostic_flags);
mpi_request->BufferAddress = cpu_to_le64(request_data_dma);
mpi_request->BufferLength = cpu_to_le32(request_data_sz);
mpi_request->VF_ID = 0; /* TODO */
mpi_request->VP_ID = 0;
dctlprintk(ioc, printk(MPT2SAS_INFO_FMT "%s: diag_buffer(0x%p), "
"dma(0x%llx), sz(%d)\n", ioc->name, __func__, request_data,
(unsigned long long)request_data_dma,
le32_to_cpu(mpi_request->BufferLength)));
for (i = 0; i < MPT2_PRODUCT_SPECIFIC_DWORDS; i++)
mpi_request->ProductSpecific[i] =
cpu_to_le32(ioc->product_specific[buffer_type][i]);
init_completion(&ioc->ctl_cmds.done);
mpt2sas_base_put_smid_default(ioc, smid);
timeleft = wait_for_completion_timeout(&ioc->ctl_cmds.done,
MPT2_IOCTL_DEFAULT_TIMEOUT*HZ);
if (!(ioc->ctl_cmds.status & MPT2_CMD_COMPLETE)) {
printk(MPT2SAS_ERR_FMT "%s: timeout\n", ioc->name,
__func__);
_debug_dump_mf(mpi_request,
sizeof(Mpi2DiagBufferPostRequest_t)/4);
if (!(ioc->ctl_cmds.status & MPT2_CMD_RESET))
issue_reset = 1;
goto issue_host_reset;
}
/* process the completed Reply Message Frame */
if ((ioc->ctl_cmds.status & MPT2_CMD_REPLY_VALID) == 0) {
printk(MPT2SAS_ERR_FMT "%s: no reply message\n",
ioc->name, __func__);
rc = -EFAULT;
goto out;
}
mpi_reply = ioc->ctl_cmds.reply;
ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
if (ioc_status == MPI2_IOCSTATUS_SUCCESS) {
ioc->diag_buffer_status[buffer_type] |=
MPT2_DIAG_BUFFER_IS_REGISTERED;
dctlprintk(ioc, printk(MPT2SAS_INFO_FMT "%s: success\n",
ioc->name, __func__));
} else {
printk(MPT2SAS_INFO_FMT "%s: ioc_status(0x%04x) "
"log_info(0x%08x)\n", ioc->name, __func__,
ioc_status, le32_to_cpu(mpi_reply->IOCLogInfo));
rc = -EFAULT;
}
issue_host_reset:
if (issue_reset)
mpt2sas_base_hard_reset_handler(ioc, CAN_SLEEP,
FORCE_BIG_HAMMER);
out:
if (rc && request_data)
pci_free_consistent(ioc->pdev, request_data_sz,
request_data, request_data_dma);
ioc->ctl_cmds.status = MPT2_CMD_NOT_USED;
return rc;
}
/**
* mpt2sas_enable_diag_buffer - enabling diag_buffers support driver load time
* @ioc: per adapter object
* @bits_to_register: bitwise field where trace is bit 0, and snapshot is bit 1
*
* This is called when command line option diag_buffer_enable is enabled
* at driver load time.
*/
void
mpt2sas_enable_diag_buffer(struct MPT2SAS_ADAPTER *ioc, u8 bits_to_register)
{
struct mpt2_diag_register diag_register;
memset(&diag_register, 0, sizeof(struct mpt2_diag_register));
if (bits_to_register & 1) {
printk(MPT2SAS_INFO_FMT "registering trace buffer support\n",
ioc->name);
diag_register.buffer_type = MPI2_DIAG_BUF_TYPE_TRACE;
/* register for 1MB buffers */
diag_register.requested_buffer_size = (1024 * 1024);
diag_register.unique_id = 0x7075900;
_ctl_diag_register_2(ioc, &diag_register);
}
if (bits_to_register & 2) {
printk(MPT2SAS_INFO_FMT "registering snapshot buffer support\n",
ioc->name);
diag_register.buffer_type = MPI2_DIAG_BUF_TYPE_SNAPSHOT;
/* register for 2MB buffers */
diag_register.requested_buffer_size = 2 * (1024 * 1024);
diag_register.unique_id = 0x7075901;
_ctl_diag_register_2(ioc, &diag_register);
}
if (bits_to_register & 4) {
printk(MPT2SAS_INFO_FMT "registering extended buffer support\n",
ioc->name);
diag_register.buffer_type = MPI2_DIAG_BUF_TYPE_EXTENDED;
/* register for 2MB buffers */
diag_register.requested_buffer_size = 2 * (1024 * 1024);
diag_register.unique_id = 0x7075901;
_ctl_diag_register_2(ioc, &diag_register);
}
}
/**
* _ctl_diag_register - application register with driver
* @ioc: per adapter object
* @arg - user space buffer containing ioctl content
*
* This will allow the driver to setup any required buffers that will be
* needed by firmware to communicate with the driver.
*/
static long
_ctl_diag_register(struct MPT2SAS_ADAPTER *ioc, void __user *arg)
{
struct mpt2_diag_register karg;
long rc;
if (copy_from_user(&karg, arg, sizeof(karg))) {
printk(KERN_ERR "failure at %s:%d/%s()!\n",
__FILE__, __LINE__, __func__);
return -EFAULT;
}
rc = _ctl_diag_register_2(ioc, &karg);
return rc;
}
/**
* _ctl_diag_unregister - application unregister with driver
* @ioc: per adapter object
* @arg - user space buffer containing ioctl content
*
* This will allow the driver to cleanup any memory allocated for diag
* messages and to free up any resources.
*/
static long
_ctl_diag_unregister(struct MPT2SAS_ADAPTER *ioc, void __user *arg)
{
struct mpt2_diag_unregister karg;
void *request_data;
dma_addr_t request_data_dma;
u32 request_data_sz;
u8 buffer_type;
if (copy_from_user(&karg, arg, sizeof(karg))) {
printk(KERN_ERR "failure at %s:%d/%s()!\n",
__FILE__, __LINE__, __func__);
return -EFAULT;
}
dctlprintk(ioc, printk(MPT2SAS_INFO_FMT "%s\n", ioc->name,
__func__));
buffer_type = karg.unique_id & 0x000000ff;
if (!_ctl_diag_capability(ioc, buffer_type)) {
printk(MPT2SAS_ERR_FMT "%s: doesn't have capability for "
"buffer_type(0x%02x)\n", ioc->name, __func__, buffer_type);
return -EPERM;
}
if ((ioc->diag_buffer_status[buffer_type] &
MPT2_DIAG_BUFFER_IS_REGISTERED) == 0) {
printk(MPT2SAS_ERR_FMT "%s: buffer_type(0x%02x) is not "
"registered\n", ioc->name, __func__, buffer_type);
return -EINVAL;
}
if ((ioc->diag_buffer_status[buffer_type] &
MPT2_DIAG_BUFFER_IS_RELEASED) == 0) {
printk(MPT2SAS_ERR_FMT "%s: buffer_type(0x%02x) has not been "
"released\n", ioc->name, __func__, buffer_type);
return -EINVAL;
}
if (karg.unique_id != ioc->unique_id[buffer_type]) {
printk(MPT2SAS_ERR_FMT "%s: unique_id(0x%08x) is not "
"registered\n", ioc->name, __func__, karg.unique_id);
return -EINVAL;
}
request_data = ioc->diag_buffer[buffer_type];
if (!request_data) {
printk(MPT2SAS_ERR_FMT "%s: doesn't have memory allocated for "
"buffer_type(0x%02x)\n", ioc->name, __func__, buffer_type);
return -ENOMEM;
}
request_data_sz = ioc->diag_buffer_sz[buffer_type];
request_data_dma = ioc->diag_buffer_dma[buffer_type];
pci_free_consistent(ioc->pdev, request_data_sz,
request_data, request_data_dma);
ioc->diag_buffer[buffer_type] = NULL;
ioc->diag_buffer_status[buffer_type] = 0;
return 0;
}
/**
* _ctl_diag_query - query relevant info associated with diag buffers
* @ioc: per adapter object
* @arg - user space buffer containing ioctl content
*
* The application will send only buffer_type and unique_id. Driver will
* inspect unique_id first, if valid, fill in all the info. If unique_id is
* 0x00, the driver will return info specified by Buffer Type.
*/
static long
_ctl_diag_query(struct MPT2SAS_ADAPTER *ioc, void __user *arg)
{
struct mpt2_diag_query karg;
void *request_data;
int i;
u8 buffer_type;
if (copy_from_user(&karg, arg, sizeof(karg))) {
printk(KERN_ERR "failure at %s:%d/%s()!\n",
__FILE__, __LINE__, __func__);
return -EFAULT;
}
dctlprintk(ioc, printk(MPT2SAS_INFO_FMT "%s\n", ioc->name,
__func__));
karg.application_flags = 0;
buffer_type = karg.buffer_type;
if (!_ctl_diag_capability(ioc, buffer_type)) {
printk(MPT2SAS_ERR_FMT "%s: doesn't have capability for "
"buffer_type(0x%02x)\n", ioc->name, __func__, buffer_type);
return -EPERM;
}
if ((ioc->diag_buffer_status[buffer_type] &
MPT2_DIAG_BUFFER_IS_REGISTERED) == 0) {
printk(MPT2SAS_ERR_FMT "%s: buffer_type(0x%02x) is not "
"registered\n", ioc->name, __func__, buffer_type);
return -EINVAL;
}
if (karg.unique_id & 0xffffff00) {
if (karg.unique_id != ioc->unique_id[buffer_type]) {
printk(MPT2SAS_ERR_FMT "%s: unique_id(0x%08x) is not "
"registered\n", ioc->name, __func__,
karg.unique_id);
return -EINVAL;
}
}
request_data = ioc->diag_buffer[buffer_type];
if (!request_data) {
printk(MPT2SAS_ERR_FMT "%s: doesn't have buffer for "
"buffer_type(0x%02x)\n", ioc->name, __func__, buffer_type);
return -ENOMEM;
}
if (ioc->diag_buffer_status[buffer_type] & MPT2_DIAG_BUFFER_IS_RELEASED)
karg.application_flags = (MPT2_APP_FLAGS_APP_OWNED |
MPT2_APP_FLAGS_BUFFER_VALID);
else
karg.application_flags = (MPT2_APP_FLAGS_APP_OWNED |
MPT2_APP_FLAGS_BUFFER_VALID |
MPT2_APP_FLAGS_FW_BUFFER_ACCESS);
for (i = 0; i < MPT2_PRODUCT_SPECIFIC_DWORDS; i++)
karg.product_specific[i] =
ioc->product_specific[buffer_type][i];
karg.total_buffer_size = ioc->diag_buffer_sz[buffer_type];
karg.driver_added_buffer_size = 0;
karg.unique_id = ioc->unique_id[buffer_type];
karg.diagnostic_flags = ioc->diagnostic_flags[buffer_type];
if (copy_to_user(arg, &karg, sizeof(struct mpt2_diag_query))) {
printk(MPT2SAS_ERR_FMT "%s: unable to write mpt2_diag_query "
"data @ %p\n", ioc->name, __func__, arg);
return -EFAULT;
}
return 0;
}
/**
* _ctl_send_release - Diag Release Message
* @ioc: per adapter object
* @buffer_type - specifies either TRACE, SNAPSHOT, or EXTENDED
* @issue_reset - specifies whether host reset is required.
*
*/
static int
_ctl_send_release(struct MPT2SAS_ADAPTER *ioc, u8 buffer_type, u8 *issue_reset)
{
Mpi2DiagReleaseRequest_t *mpi_request;
Mpi2DiagReleaseReply_t *mpi_reply;
u16 smid;
u16 ioc_status;
u32 ioc_state;
int rc;
unsigned long timeleft;
dctlprintk(ioc, printk(MPT2SAS_INFO_FMT "%s\n", ioc->name,
__func__));
rc = 0;
*issue_reset = 0;
ioc_state = mpt2sas_base_get_iocstate(ioc, 1);
if (ioc_state != MPI2_IOC_STATE_OPERATIONAL) {
dctlprintk(ioc, printk(MPT2SAS_INFO_FMT "%s: "
"skipping due to FAULT state\n", ioc->name,
__func__));
rc = -EAGAIN;
goto out;
}
if (ioc->ctl_cmds.status != MPT2_CMD_NOT_USED) {
printk(MPT2SAS_ERR_FMT "%s: ctl_cmd in use\n",
ioc->name, __func__);
rc = -EAGAIN;
goto out;
}
smid = mpt2sas_base_get_smid(ioc, ioc->ctl_cb_idx);
if (!smid) {
printk(MPT2SAS_ERR_FMT "%s: failed obtaining a smid\n",
ioc->name, __func__);
rc = -EAGAIN;
goto out;
}
ioc->ctl_cmds.status = MPT2_CMD_PENDING;
memset(ioc->ctl_cmds.reply, 0, ioc->reply_sz);
mpi_request = mpt2sas_base_get_msg_frame(ioc, smid);
ioc->ctl_cmds.smid = smid;
mpi_request->Function = MPI2_FUNCTION_DIAG_RELEASE;
mpi_request->BufferType = buffer_type;
mpi_request->VF_ID = 0; /* TODO */
mpi_request->VP_ID = 0;
init_completion(&ioc->ctl_cmds.done);
mpt2sas_base_put_smid_default(ioc, smid);
timeleft = wait_for_completion_timeout(&ioc->ctl_cmds.done,
MPT2_IOCTL_DEFAULT_TIMEOUT*HZ);
if (!(ioc->ctl_cmds.status & MPT2_CMD_COMPLETE)) {
printk(MPT2SAS_ERR_FMT "%s: timeout\n", ioc->name,
__func__);
_debug_dump_mf(mpi_request,
sizeof(Mpi2DiagReleaseRequest_t)/4);
if (!(ioc->ctl_cmds.status & MPT2_CMD_RESET))
*issue_reset = 1;
rc = -EFAULT;
goto out;
}
/* process the completed Reply Message Frame */
if ((ioc->ctl_cmds.status & MPT2_CMD_REPLY_VALID) == 0) {
printk(MPT2SAS_ERR_FMT "%s: no reply message\n",
ioc->name, __func__);
rc = -EFAULT;
goto out;
}
mpi_reply = ioc->ctl_cmds.reply;
ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
if (ioc_status == MPI2_IOCSTATUS_SUCCESS) {
ioc->diag_buffer_status[buffer_type] |=
MPT2_DIAG_BUFFER_IS_RELEASED;
dctlprintk(ioc, printk(MPT2SAS_INFO_FMT "%s: success\n",
ioc->name, __func__));
} else {
printk(MPT2SAS_INFO_FMT "%s: ioc_status(0x%04x) "
"log_info(0x%08x)\n", ioc->name, __func__,
ioc_status, le32_to_cpu(mpi_reply->IOCLogInfo));
rc = -EFAULT;
}
out:
ioc->ctl_cmds.status = MPT2_CMD_NOT_USED;
return rc;
}
/**
* _ctl_diag_release - request to send Diag Release Message to firmware
* @arg - user space buffer containing ioctl content
*
* This allows ownership of the specified buffer to returned to the driver,
* allowing an application to read the buffer without fear that firmware is
* overwritting information in the buffer.
*/
static long
_ctl_diag_release(struct MPT2SAS_ADAPTER *ioc, void __user *arg)
{
struct mpt2_diag_release karg;
void *request_data;
int rc;
u8 buffer_type;
u8 issue_reset = 0;
if (copy_from_user(&karg, arg, sizeof(karg))) {
printk(KERN_ERR "failure at %s:%d/%s()!\n",
__FILE__, __LINE__, __func__);
return -EFAULT;
}
dctlprintk(ioc, printk(MPT2SAS_INFO_FMT "%s\n", ioc->name,
__func__));
buffer_type = karg.unique_id & 0x000000ff;
if (!_ctl_diag_capability(ioc, buffer_type)) {
printk(MPT2SAS_ERR_FMT "%s: doesn't have capability for "
"buffer_type(0x%02x)\n", ioc->name, __func__, buffer_type);
return -EPERM;
}
if ((ioc->diag_buffer_status[buffer_type] &
MPT2_DIAG_BUFFER_IS_REGISTERED) == 0) {
printk(MPT2SAS_ERR_FMT "%s: buffer_type(0x%02x) is not "
"registered\n", ioc->name, __func__, buffer_type);
return -EINVAL;
}
if (karg.unique_id != ioc->unique_id[buffer_type]) {
printk(MPT2SAS_ERR_FMT "%s: unique_id(0x%08x) is not "
"registered\n", ioc->name, __func__, karg.unique_id);
return -EINVAL;
}
if (ioc->diag_buffer_status[buffer_type] &
MPT2_DIAG_BUFFER_IS_RELEASED) {
printk(MPT2SAS_ERR_FMT "%s: buffer_type(0x%02x) "
"is already released\n", ioc->name, __func__,
buffer_type);
return 0;
}
request_data = ioc->diag_buffer[buffer_type];
if (!request_data) {
printk(MPT2SAS_ERR_FMT "%s: doesn't have memory allocated for "
"buffer_type(0x%02x)\n", ioc->name, __func__, buffer_type);
return -ENOMEM;
}
/* buffers were released by due to host reset */
if ((ioc->diag_buffer_status[buffer_type] &
MPT2_DIAG_BUFFER_IS_DIAG_RESET)) {
ioc->diag_buffer_status[buffer_type] |=
MPT2_DIAG_BUFFER_IS_RELEASED;
ioc->diag_buffer_status[buffer_type] &=
~MPT2_DIAG_BUFFER_IS_DIAG_RESET;
printk(MPT2SAS_ERR_FMT "%s: buffer_type(0x%02x) "
"was released due to host reset\n", ioc->name, __func__,
buffer_type);
return 0;
}
rc = _ctl_send_release(ioc, buffer_type, &issue_reset);
if (issue_reset)
mpt2sas_base_hard_reset_handler(ioc, CAN_SLEEP,
FORCE_BIG_HAMMER);
return rc;
}
/**
* _ctl_diag_read_buffer - request for copy of the diag buffer
* @ioc: per adapter object
* @arg - user space buffer containing ioctl content
*/
static long
_ctl_diag_read_buffer(struct MPT2SAS_ADAPTER *ioc, void __user *arg)
{
struct mpt2_diag_read_buffer karg;
struct mpt2_diag_read_buffer __user *uarg = arg;
void *request_data, *diag_data;
Mpi2DiagBufferPostRequest_t *mpi_request;
Mpi2DiagBufferPostReply_t *mpi_reply;
int rc, i;
u8 buffer_type;
unsigned long timeleft, request_size, copy_size;
u16 smid;
u16 ioc_status;
u8 issue_reset = 0;
if (copy_from_user(&karg, arg, sizeof(karg))) {
printk(KERN_ERR "failure at %s:%d/%s()!\n",
__FILE__, __LINE__, __func__);
return -EFAULT;
}
dctlprintk(ioc, printk(MPT2SAS_INFO_FMT "%s\n", ioc->name,
__func__));
buffer_type = karg.unique_id & 0x000000ff;
if (!_ctl_diag_capability(ioc, buffer_type)) {
printk(MPT2SAS_ERR_FMT "%s: doesn't have capability for "
"buffer_type(0x%02x)\n", ioc->name, __func__, buffer_type);
return -EPERM;
}
if (karg.unique_id != ioc->unique_id[buffer_type]) {
printk(MPT2SAS_ERR_FMT "%s: unique_id(0x%08x) is not "
"registered\n", ioc->name, __func__, karg.unique_id);
return -EINVAL;
}
request_data = ioc->diag_buffer[buffer_type];
if (!request_data) {
printk(MPT2SAS_ERR_FMT "%s: doesn't have buffer for "
"buffer_type(0x%02x)\n", ioc->name, __func__, buffer_type);
return -ENOMEM;
}
request_size = ioc->diag_buffer_sz[buffer_type];
if ((karg.starting_offset % 4) || (karg.bytes_to_read % 4)) {
printk(MPT2SAS_ERR_FMT "%s: either the starting_offset "
"or bytes_to_read are not 4 byte aligned\n", ioc->name,
__func__);
return -EINVAL;
}
if (karg.starting_offset > request_size)
return -EINVAL;
diag_data = (void *)(request_data + karg.starting_offset);
dctlprintk(ioc, printk(MPT2SAS_INFO_FMT "%s: diag_buffer(%p), "
"offset(%d), sz(%d)\n", ioc->name, __func__,
diag_data, karg.starting_offset, karg.bytes_to_read));
/* Truncate data on requests that are too large */
if ((diag_data + karg.bytes_to_read < diag_data) ||
(diag_data + karg.bytes_to_read > request_data + request_size))
copy_size = request_size - karg.starting_offset;
else
copy_size = karg.bytes_to_read;
if (copy_to_user((void __user *)uarg->diagnostic_data,
diag_data, copy_size)) {
printk(MPT2SAS_ERR_FMT "%s: Unable to write "
"mpt_diag_read_buffer_t data @ %p\n", ioc->name,
__func__, diag_data);
return -EFAULT;
}
if ((karg.flags & MPT2_FLAGS_REREGISTER) == 0)
return 0;
dctlprintk(ioc, printk(MPT2SAS_INFO_FMT "%s: Reregister "
"buffer_type(0x%02x)\n", ioc->name, __func__, buffer_type));
if ((ioc->diag_buffer_status[buffer_type] &
MPT2_DIAG_BUFFER_IS_RELEASED) == 0) {
dctlprintk(ioc, printk(MPT2SAS_INFO_FMT "%s: "
"buffer_type(0x%02x) is still registered\n", ioc->name,
__func__, buffer_type));
return 0;
}
/* Get a free request frame and save the message context.
*/
if (ioc->ctl_cmds.status != MPT2_CMD_NOT_USED) {
printk(MPT2SAS_ERR_FMT "%s: ctl_cmd in use\n",
ioc->name, __func__);
rc = -EAGAIN;
goto out;
}
smid = mpt2sas_base_get_smid(ioc, ioc->ctl_cb_idx);
if (!smid) {
printk(MPT2SAS_ERR_FMT "%s: failed obtaining a smid\n",
ioc->name, __func__);
rc = -EAGAIN;
goto out;
}
rc = 0;
ioc->ctl_cmds.status = MPT2_CMD_PENDING;
memset(ioc->ctl_cmds.reply, 0, ioc->reply_sz);
mpi_request = mpt2sas_base_get_msg_frame(ioc, smid);
ioc->ctl_cmds.smid = smid;
mpi_request->Function = MPI2_FUNCTION_DIAG_BUFFER_POST;
mpi_request->BufferType = buffer_type;
mpi_request->BufferLength =
cpu_to_le32(ioc->diag_buffer_sz[buffer_type]);
mpi_request->BufferAddress =
cpu_to_le64(ioc->diag_buffer_dma[buffer_type]);
for (i = 0; i < MPT2_PRODUCT_SPECIFIC_DWORDS; i++)
mpi_request->ProductSpecific[i] =
cpu_to_le32(ioc->product_specific[buffer_type][i]);
mpi_request->VF_ID = 0; /* TODO */
mpi_request->VP_ID = 0;
init_completion(&ioc->ctl_cmds.done);
mpt2sas_base_put_smid_default(ioc, smid);
timeleft = wait_for_completion_timeout(&ioc->ctl_cmds.done,
MPT2_IOCTL_DEFAULT_TIMEOUT*HZ);
if (!(ioc->ctl_cmds.status & MPT2_CMD_COMPLETE)) {
printk(MPT2SAS_ERR_FMT "%s: timeout\n", ioc->name,
__func__);
_debug_dump_mf(mpi_request,
sizeof(Mpi2DiagBufferPostRequest_t)/4);
if (!(ioc->ctl_cmds.status & MPT2_CMD_RESET))
issue_reset = 1;
goto issue_host_reset;
}
/* process the completed Reply Message Frame */
if ((ioc->ctl_cmds.status & MPT2_CMD_REPLY_VALID) == 0) {
printk(MPT2SAS_ERR_FMT "%s: no reply message\n",
ioc->name, __func__);
rc = -EFAULT;
goto out;
}
mpi_reply = ioc->ctl_cmds.reply;
ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
if (ioc_status == MPI2_IOCSTATUS_SUCCESS) {
ioc->diag_buffer_status[buffer_type] |=
MPT2_DIAG_BUFFER_IS_REGISTERED;
dctlprintk(ioc, printk(MPT2SAS_INFO_FMT "%s: success\n",
ioc->name, __func__));
} else {
printk(MPT2SAS_INFO_FMT "%s: ioc_status(0x%04x) "
"log_info(0x%08x)\n", ioc->name, __func__,
ioc_status, le32_to_cpu(mpi_reply->IOCLogInfo));
rc = -EFAULT;
}
issue_host_reset:
if (issue_reset)
mpt2sas_base_hard_reset_handler(ioc, CAN_SLEEP,
FORCE_BIG_HAMMER);
out:
ioc->ctl_cmds.status = MPT2_CMD_NOT_USED;
return rc;
}
#ifdef CONFIG_COMPAT
/**
* _ctl_compat_mpt_command - convert 32bit pointers to 64bit.
* @ioc: per adapter object
* @cmd - ioctl opcode
* @arg - (struct mpt2_ioctl_command32)
*
* MPT2COMMAND32 - Handle 32bit applications running on 64bit os.
*/
static long
_ctl_compat_mpt_command(struct MPT2SAS_ADAPTER *ioc, unsigned cmd,
void __user *arg)
{
struct mpt2_ioctl_command32 karg32;
struct mpt2_ioctl_command32 __user *uarg;
struct mpt2_ioctl_command karg;
if (_IOC_SIZE(cmd) != sizeof(struct mpt2_ioctl_command32))
return -EINVAL;
uarg = (struct mpt2_ioctl_command32 __user *) arg;
if (copy_from_user(&karg32, (char __user *)arg, sizeof(karg32))) {
printk(KERN_ERR "failure at %s:%d/%s()!\n",
__FILE__, __LINE__, __func__);
return -EFAULT;
}
memset(&karg, 0, sizeof(struct mpt2_ioctl_command));
karg.hdr.ioc_number = karg32.hdr.ioc_number;
karg.hdr.port_number = karg32.hdr.port_number;
karg.hdr.max_data_size = karg32.hdr.max_data_size;
karg.timeout = karg32.timeout;
karg.max_reply_bytes = karg32.max_reply_bytes;
karg.data_in_size = karg32.data_in_size;
karg.data_out_size = karg32.data_out_size;
karg.max_sense_bytes = karg32.max_sense_bytes;
karg.data_sge_offset = karg32.data_sge_offset;
karg.reply_frame_buf_ptr = compat_ptr(karg32.reply_frame_buf_ptr);
karg.data_in_buf_ptr = compat_ptr(karg32.data_in_buf_ptr);
karg.data_out_buf_ptr = compat_ptr(karg32.data_out_buf_ptr);
karg.sense_data_ptr = compat_ptr(karg32.sense_data_ptr);
return _ctl_do_mpt_command(ioc, karg, &uarg->mf);
}
#endif
/**
* _ctl_ioctl_main - main ioctl entry point
* @file - (struct file)
* @cmd - ioctl opcode
* @arg -
* compat - handles 32 bit applications in 64bit os
*/
static long
_ctl_ioctl_main(struct file *file, unsigned int cmd, void __user *arg,
u8 compat)
{
struct MPT2SAS_ADAPTER *ioc;
struct mpt2_ioctl_header ioctl_header;
enum block_state state;
long ret = -EINVAL;
/* get IOCTL header */
if (copy_from_user(&ioctl_header, (char __user *)arg,
sizeof(struct mpt2_ioctl_header))) {
printk(KERN_ERR "failure at %s:%d/%s()!\n",
__FILE__, __LINE__, __func__);
return -EFAULT;
}
if (_ctl_verify_adapter(ioctl_header.ioc_number, &ioc) == -1 || !ioc)
return -ENODEV;
if (ioc->shost_recovery || ioc->pci_error_recovery ||
ioc->is_driver_loading)
return -EAGAIN;
state = (file->f_flags & O_NONBLOCK) ? NON_BLOCKING : BLOCKING;
if (state == NON_BLOCKING) {
if (!mutex_trylock(&ioc->ctl_cmds.mutex))
return -EAGAIN;
} else if (mutex_lock_interruptible(&ioc->ctl_cmds.mutex)) {
return -ERESTARTSYS;
}
switch (cmd) {
case MPT2IOCINFO:
if (_IOC_SIZE(cmd) == sizeof(struct mpt2_ioctl_iocinfo))
ret = _ctl_getiocinfo(ioc, arg);
break;
#ifdef CONFIG_COMPAT
case MPT2COMMAND32:
#endif
case MPT2COMMAND:
{
struct mpt2_ioctl_command __user *uarg;
struct mpt2_ioctl_command karg;
#ifdef CONFIG_COMPAT
if (compat) {
ret = _ctl_compat_mpt_command(ioc, cmd, arg);
break;
}
#endif
if (copy_from_user(&karg, arg, sizeof(karg))) {
printk(KERN_ERR "failure at %s:%d/%s()!\n",
__FILE__, __LINE__, __func__);
ret = -EFAULT;
break;
}
if (_IOC_SIZE(cmd) == sizeof(struct mpt2_ioctl_command)) {
uarg = arg;
ret = _ctl_do_mpt_command(ioc, karg, &uarg->mf);
}
break;
}
case MPT2EVENTQUERY:
if (_IOC_SIZE(cmd) == sizeof(struct mpt2_ioctl_eventquery))
ret = _ctl_eventquery(ioc, arg);
break;
case MPT2EVENTENABLE:
if (_IOC_SIZE(cmd) == sizeof(struct mpt2_ioctl_eventenable))
ret = _ctl_eventenable(ioc, arg);
break;
case MPT2EVENTREPORT:
ret = _ctl_eventreport(ioc, arg);
break;
case MPT2HARDRESET:
if (_IOC_SIZE(cmd) == sizeof(struct mpt2_ioctl_diag_reset))
ret = _ctl_do_reset(ioc, arg);
break;
case MPT2BTDHMAPPING:
if (_IOC_SIZE(cmd) == sizeof(struct mpt2_ioctl_btdh_mapping))
ret = _ctl_btdh_mapping(ioc, arg);
break;
case MPT2DIAGREGISTER:
if (_IOC_SIZE(cmd) == sizeof(struct mpt2_diag_register))
ret = _ctl_diag_register(ioc, arg);
break;
case MPT2DIAGUNREGISTER:
if (_IOC_SIZE(cmd) == sizeof(struct mpt2_diag_unregister))
ret = _ctl_diag_unregister(ioc, arg);
break;
case MPT2DIAGQUERY:
if (_IOC_SIZE(cmd) == sizeof(struct mpt2_diag_query))
ret = _ctl_diag_query(ioc, arg);
break;
case MPT2DIAGRELEASE:
if (_IOC_SIZE(cmd) == sizeof(struct mpt2_diag_release))
ret = _ctl_diag_release(ioc, arg);
break;
case MPT2DIAGREADBUFFER:
if (_IOC_SIZE(cmd) == sizeof(struct mpt2_diag_read_buffer))
ret = _ctl_diag_read_buffer(ioc, arg);
break;
default:
dctlprintk(ioc, printk(MPT2SAS_INFO_FMT
"unsupported ioctl opcode(0x%08x)\n", ioc->name, cmd));
break;
}
mutex_unlock(&ioc->ctl_cmds.mutex);
return ret;
}
/**
* _ctl_ioctl - main ioctl entry point (unlocked)
* @file - (struct file)
* @cmd - ioctl opcode
* @arg -
*/
static long
_ctl_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
long ret;
ret = _ctl_ioctl_main(file, cmd, (void __user *)arg, 0);
return ret;
}
#ifdef CONFIG_COMPAT
/**
* _ctl_ioctl_compat - main ioctl entry point (compat)
* @file -
* @cmd -
* @arg -
*
* This routine handles 32 bit applications in 64bit os.
*/
static long
_ctl_ioctl_compat(struct file *file, unsigned cmd, unsigned long arg)
{
long ret;
ret = _ctl_ioctl_main(file, cmd, (void __user *)arg, 1);
return ret;
}
#endif
/* scsi host attributes */
/**
* _ctl_version_fw_show - firmware version
* @cdev - pointer to embedded class device
* @buf - the buffer returned
*
* A sysfs 'read-only' shost attribute.
*/
static ssize_t
_ctl_version_fw_show(struct device *cdev, struct device_attribute *attr,
char *buf)
{
struct Scsi_Host *shost = class_to_shost(cdev);
struct MPT2SAS_ADAPTER *ioc = shost_priv(shost);
return snprintf(buf, PAGE_SIZE, "%02d.%02d.%02d.%02d\n",
(ioc->facts.FWVersion.Word & 0xFF000000) >> 24,
(ioc->facts.FWVersion.Word & 0x00FF0000) >> 16,
(ioc->facts.FWVersion.Word & 0x0000FF00) >> 8,
ioc->facts.FWVersion.Word & 0x000000FF);
}
static DEVICE_ATTR(version_fw, S_IRUGO, _ctl_version_fw_show, NULL);
/**
* _ctl_version_bios_show - bios version
* @cdev - pointer to embedded class device
* @buf - the buffer returned
*
* A sysfs 'read-only' shost attribute.
*/
static ssize_t
_ctl_version_bios_show(struct device *cdev, struct device_attribute *attr,
char *buf)
{
struct Scsi_Host *shost = class_to_shost(cdev);
struct MPT2SAS_ADAPTER *ioc = shost_priv(shost);
u32 version = le32_to_cpu(ioc->bios_pg3.BiosVersion);
return snprintf(buf, PAGE_SIZE, "%02d.%02d.%02d.%02d\n",
(version & 0xFF000000) >> 24,
(version & 0x00FF0000) >> 16,
(version & 0x0000FF00) >> 8,
version & 0x000000FF);
}
static DEVICE_ATTR(version_bios, S_IRUGO, _ctl_version_bios_show, NULL);
/**
* _ctl_version_mpi_show - MPI (message passing interface) version
* @cdev - pointer to embedded class device
* @buf - the buffer returned
*
* A sysfs 'read-only' shost attribute.
*/
static ssize_t
_ctl_version_mpi_show(struct device *cdev, struct device_attribute *attr,
char *buf)
{
struct Scsi_Host *shost = class_to_shost(cdev);
struct MPT2SAS_ADAPTER *ioc = shost_priv(shost);
return snprintf(buf, PAGE_SIZE, "%03x.%02x\n",
ioc->facts.MsgVersion, ioc->facts.HeaderVersion >> 8);
}
static DEVICE_ATTR(version_mpi, S_IRUGO, _ctl_version_mpi_show, NULL);
/**
* _ctl_version_product_show - product name
* @cdev - pointer to embedded class device
* @buf - the buffer returned
*
* A sysfs 'read-only' shost attribute.
*/
static ssize_t
_ctl_version_product_show(struct device *cdev, struct device_attribute *attr,
char *buf)
{
struct Scsi_Host *shost = class_to_shost(cdev);
struct MPT2SAS_ADAPTER *ioc = shost_priv(shost);
return snprintf(buf, 16, "%s\n", ioc->manu_pg0.ChipName);
}
static DEVICE_ATTR(version_product, S_IRUGO,
_ctl_version_product_show, NULL);
/**
* _ctl_version_nvdata_persistent_show - ndvata persistent version
* @cdev - pointer to embedded class device
* @buf - the buffer returned
*
* A sysfs 'read-only' shost attribute.
*/
static ssize_t
_ctl_version_nvdata_persistent_show(struct device *cdev,
struct device_attribute *attr, char *buf)
{
struct Scsi_Host *shost = class_to_shost(cdev);
struct MPT2SAS_ADAPTER *ioc = shost_priv(shost);
return snprintf(buf, PAGE_SIZE, "%08xh\n",
le32_to_cpu(ioc->iounit_pg0.NvdataVersionPersistent.Word));
}
static DEVICE_ATTR(version_nvdata_persistent, S_IRUGO,
_ctl_version_nvdata_persistent_show, NULL);
/**
* _ctl_version_nvdata_default_show - nvdata default version
* @cdev - pointer to embedded class device
* @buf - the buffer returned
*
* A sysfs 'read-only' shost attribute.
*/
static ssize_t
_ctl_version_nvdata_default_show(struct device *cdev,
struct device_attribute *attr, char *buf)
{
struct Scsi_Host *shost = class_to_shost(cdev);
struct MPT2SAS_ADAPTER *ioc = shost_priv(shost);
return snprintf(buf, PAGE_SIZE, "%08xh\n",
le32_to_cpu(ioc->iounit_pg0.NvdataVersionDefault.Word));
}
static DEVICE_ATTR(version_nvdata_default, S_IRUGO,
_ctl_version_nvdata_default_show, NULL);
/**
* _ctl_board_name_show - board name
* @cdev - pointer to embedded class device
* @buf - the buffer returned
*
* A sysfs 'read-only' shost attribute.
*/
static ssize_t
_ctl_board_name_show(struct device *cdev, struct device_attribute *attr,
char *buf)
{
struct Scsi_Host *shost = class_to_shost(cdev);
struct MPT2SAS_ADAPTER *ioc = shost_priv(shost);
return snprintf(buf, 16, "%s\n", ioc->manu_pg0.BoardName);
}
static DEVICE_ATTR(board_name, S_IRUGO, _ctl_board_name_show, NULL);
/**
* _ctl_board_assembly_show - board assembly name
* @cdev - pointer to embedded class device
* @buf - the buffer returned
*
* A sysfs 'read-only' shost attribute.
*/
static ssize_t
_ctl_board_assembly_show(struct device *cdev, struct device_attribute *attr,
char *buf)
{
struct Scsi_Host *shost = class_to_shost(cdev);
struct MPT2SAS_ADAPTER *ioc = shost_priv(shost);
return snprintf(buf, 16, "%s\n", ioc->manu_pg0.BoardAssembly);
}
static DEVICE_ATTR(board_assembly, S_IRUGO,
_ctl_board_assembly_show, NULL);
/**
* _ctl_board_tracer_show - board tracer number
* @cdev - pointer to embedded class device
* @buf - the buffer returned
*
* A sysfs 'read-only' shost attribute.
*/
static ssize_t
_ctl_board_tracer_show(struct device *cdev, struct device_attribute *attr,
char *buf)
{
struct Scsi_Host *shost = class_to_shost(cdev);
struct MPT2SAS_ADAPTER *ioc = shost_priv(shost);
return snprintf(buf, 16, "%s\n", ioc->manu_pg0.BoardTracerNumber);
}
static DEVICE_ATTR(board_tracer, S_IRUGO,
_ctl_board_tracer_show, NULL);
/**
* _ctl_io_delay_show - io missing delay
* @cdev - pointer to embedded class device
* @buf - the buffer returned
*
* This is for firmware implemention for deboucing device
* removal events.
*
* A sysfs 'read-only' shost attribute.
*/
static ssize_t
_ctl_io_delay_show(struct device *cdev, struct device_attribute *attr,
char *buf)
{
struct Scsi_Host *shost = class_to_shost(cdev);
struct MPT2SAS_ADAPTER *ioc = shost_priv(shost);
return snprintf(buf, PAGE_SIZE, "%02d\n", ioc->io_missing_delay);
}
static DEVICE_ATTR(io_delay, S_IRUGO,
_ctl_io_delay_show, NULL);
/**
* _ctl_device_delay_show - device missing delay
* @cdev - pointer to embedded class device
* @buf - the buffer returned
*
* This is for firmware implemention for deboucing device
* removal events.
*
* A sysfs 'read-only' shost attribute.
*/
static ssize_t
_ctl_device_delay_show(struct device *cdev, struct device_attribute *attr,
char *buf)
{
struct Scsi_Host *shost = class_to_shost(cdev);
struct MPT2SAS_ADAPTER *ioc = shost_priv(shost);
return snprintf(buf, PAGE_SIZE, "%02d\n", ioc->device_missing_delay);
}
static DEVICE_ATTR(device_delay, S_IRUGO,
_ctl_device_delay_show, NULL);
/**
* _ctl_fw_queue_depth_show - global credits
* @cdev - pointer to embedded class device
* @buf - the buffer returned
*
* This is firmware queue depth limit
*
* A sysfs 'read-only' shost attribute.
*/
static ssize_t
_ctl_fw_queue_depth_show(struct device *cdev, struct device_attribute *attr,
char *buf)
{
struct Scsi_Host *shost = class_to_shost(cdev);
struct MPT2SAS_ADAPTER *ioc = shost_priv(shost);
return snprintf(buf, PAGE_SIZE, "%02d\n", ioc->facts.RequestCredit);
}
static DEVICE_ATTR(fw_queue_depth, S_IRUGO,
_ctl_fw_queue_depth_show, NULL);
/**
* _ctl_sas_address_show - sas address
* @cdev - pointer to embedded class device
* @buf - the buffer returned
*
* This is the controller sas address
*
* A sysfs 'read-only' shost attribute.
*/
static ssize_t
_ctl_host_sas_address_show(struct device *cdev, struct device_attribute *attr,
char *buf)
{
struct Scsi_Host *shost = class_to_shost(cdev);
struct MPT2SAS_ADAPTER *ioc = shost_priv(shost);
return snprintf(buf, PAGE_SIZE, "0x%016llx\n",
(unsigned long long)ioc->sas_hba.sas_address);
}
static DEVICE_ATTR(host_sas_address, S_IRUGO,
_ctl_host_sas_address_show, NULL);
/**
* _ctl_logging_level_show - logging level
* @cdev - pointer to embedded class device
* @buf - the buffer returned
*
* A sysfs 'read/write' shost attribute.
*/
static ssize_t
_ctl_logging_level_show(struct device *cdev, struct device_attribute *attr,
char *buf)
{
struct Scsi_Host *shost = class_to_shost(cdev);
struct MPT2SAS_ADAPTER *ioc = shost_priv(shost);
return snprintf(buf, PAGE_SIZE, "%08xh\n", ioc->logging_level);
}
static ssize_t
_ctl_logging_level_store(struct device *cdev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct Scsi_Host *shost = class_to_shost(cdev);
struct MPT2SAS_ADAPTER *ioc = shost_priv(shost);
int val = 0;
if (sscanf(buf, "%x", &val) != 1)
return -EINVAL;
ioc->logging_level = val;
printk(MPT2SAS_INFO_FMT "logging_level=%08xh\n", ioc->name,
ioc->logging_level);
return strlen(buf);
}
static DEVICE_ATTR(logging_level, S_IRUGO | S_IWUSR,
_ctl_logging_level_show, _ctl_logging_level_store);
/* device attributes */
/*
* _ctl_fwfault_debug_show - show/store fwfault_debug
* @cdev - pointer to embedded class device
* @buf - the buffer returned
*
* mpt2sas_fwfault_debug is command line option
* A sysfs 'read/write' shost attribute.
*/
static ssize_t
_ctl_fwfault_debug_show(struct device *cdev,
struct device_attribute *attr, char *buf)
{
struct Scsi_Host *shost = class_to_shost(cdev);
struct MPT2SAS_ADAPTER *ioc = shost_priv(shost);
return snprintf(buf, PAGE_SIZE, "%d\n", ioc->fwfault_debug);
}
static ssize_t
_ctl_fwfault_debug_store(struct device *cdev,
struct device_attribute *attr, const char *buf, size_t count)
{
struct Scsi_Host *shost = class_to_shost(cdev);
struct MPT2SAS_ADAPTER *ioc = shost_priv(shost);
int val = 0;
if (sscanf(buf, "%d", &val) != 1)
return -EINVAL;
ioc->fwfault_debug = val;
printk(MPT2SAS_INFO_FMT "fwfault_debug=%d\n", ioc->name,
ioc->fwfault_debug);
return strlen(buf);
}
static DEVICE_ATTR(fwfault_debug, S_IRUGO | S_IWUSR,
_ctl_fwfault_debug_show, _ctl_fwfault_debug_store);
/**
* _ctl_ioc_reset_count_show - ioc reset count
* @cdev - pointer to embedded class device
* @buf - the buffer returned
*
* This is firmware queue depth limit
*
* A sysfs 'read-only' shost attribute.
*/
static ssize_t
_ctl_ioc_reset_count_show(struct device *cdev, struct device_attribute *attr,
char *buf)
{
struct Scsi_Host *shost = class_to_shost(cdev);
struct MPT2SAS_ADAPTER *ioc = shost_priv(shost);
return snprintf(buf, PAGE_SIZE, "%08d\n", ioc->ioc_reset_count);
}
static DEVICE_ATTR(ioc_reset_count, S_IRUGO,
_ctl_ioc_reset_count_show, NULL);
[SCSI] mpt2sas: Added NUNA IO support in driver which uses multi-reply queue support of the HBA Support added for controllers capable of multi reply queues. The following are the modifications to the driver to support NUMA. 1) Create the new structure adapter_reply_queue to contain the reply queue info for every msix vector. This object will contain a reply_post_host_index, reply_post_free for each instance, msix_index, among other parameters. We will track all the reply queues on a link list called ioc->reply_queue_list. Each reply queue is aligned with each IRQ, and is passed to the interrupt via the bus_id parameter. (2) The driver will figure out the msix_vector_count from the PCIe MSIX capabilities register instead of the IOC Facts->MaxMSIxVectors. This is because the firmware is not filling in this field until the driver has already registered MSIX support. (3) If the ioc_facts reports that the controller is MSIX compatible in the capabilities, then the driver will request for multiple irqs. This count is calculated based on the minimum between the online cpus available and the ioc->msix_vector_count. This count is reported to firmware in the ioc_init request. (4) New routines were added _base_free_irq and _base_request_irq, so registering and freeing msix vectors were done thru simple function API. (5) The new routine _base_assign_reply_queues was added to align the msix indexes across cpus. This will initialize the array called ioc->cpu_msix_table. This array is looked up on every MPI request so the MSIxIndex is set appropriately. (6) A new shost sysfs attribute was added to report the reply_queue_count. (7) User needs to set the affinity cpu mask, so the interrupts occur on the same cpu that sent the original request. Signed-off-by: Nagalakshmi Nandigama <nagalakshmi.nandigama@lsi.com> Signed-off-by: James Bottomley <JBottomley@Parallels.com>
2011-09-08 07:48:50 +07:00
/**
* _ctl_ioc_reply_queue_count_show - number of reply queues
* @cdev - pointer to embedded class device
* @buf - the buffer returned
*
* This is number of reply queues
*
* A sysfs 'read-only' shost attribute.
*/
static ssize_t
_ctl_ioc_reply_queue_count_show(struct device *cdev,
struct device_attribute *attr, char *buf)
{
u8 reply_queue_count;
struct Scsi_Host *shost = class_to_shost(cdev);
struct MPT2SAS_ADAPTER *ioc = shost_priv(shost);
if ((ioc->facts.IOCCapabilities &
MPI2_IOCFACTS_CAPABILITY_MSI_X_INDEX) && ioc->msix_enable)
reply_queue_count = ioc->reply_queue_count;
else
reply_queue_count = 1;
return snprintf(buf, PAGE_SIZE, "%d\n", reply_queue_count);
}
static DEVICE_ATTR(reply_queue_count, S_IRUGO,
_ctl_ioc_reply_queue_count_show, NULL);
/**
* _ctl_BRM_status_show - Backup Rail Monitor Status
* @cdev - pointer to embedded class device
* @buf - the buffer returned
*
* This is number of reply queues
*
* A sysfs 'read-only' shost attribute.
*/
static ssize_t
_ctl_BRM_status_show(struct device *cdev, struct device_attribute *attr,
char *buf)
{
struct Scsi_Host *shost = class_to_shost(cdev);
struct MPT2SAS_ADAPTER *ioc = shost_priv(shost);
Mpi2IOUnitPage3_t *io_unit_pg3 = NULL;
Mpi2ConfigReply_t mpi_reply;
u16 backup_rail_monitor_status = 0;
u16 ioc_status;
int sz;
ssize_t rc = 0;
if (!ioc->is_warpdrive) {
printk(MPT2SAS_ERR_FMT "%s: BRM attribute is only for"\
"warpdrive\n", ioc->name, __func__);
goto out;
}
/* allocate upto GPIOVal 36 entries */
sz = offsetof(Mpi2IOUnitPage3_t, GPIOVal) + (sizeof(u16) * 36);
io_unit_pg3 = kzalloc(sz, GFP_KERNEL);
if (!io_unit_pg3) {
printk(MPT2SAS_ERR_FMT "%s: failed allocating memory"\
"for iounit_pg3: (%d) bytes\n", ioc->name, __func__, sz);
goto out;
}
if (mpt2sas_config_get_iounit_pg3(ioc, &mpi_reply, io_unit_pg3, sz) !=
0) {
printk(MPT2SAS_ERR_FMT
"%s: failed reading iounit_pg3\n", ioc->name,
__func__);
goto out;
}
ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & MPI2_IOCSTATUS_MASK;
if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
printk(MPT2SAS_ERR_FMT "%s: iounit_pg3 failed with"\
"ioc_status(0x%04x)\n", ioc->name, __func__, ioc_status);
goto out;
}
if (io_unit_pg3->GPIOCount < 25) {
printk(MPT2SAS_ERR_FMT "%s: iounit_pg3->GPIOCount less than"\
"25 entries, detected (%d) entries\n", ioc->name, __func__,
io_unit_pg3->GPIOCount);
goto out;
}
/* BRM status is in bit zero of GPIOVal[24] */
backup_rail_monitor_status = le16_to_cpu(io_unit_pg3->GPIOVal[24]);
rc = snprintf(buf, PAGE_SIZE, "%d\n", (backup_rail_monitor_status & 1));
out:
kfree(io_unit_pg3);
return rc;
}
static DEVICE_ATTR(BRM_status, S_IRUGO, _ctl_BRM_status_show, NULL);
struct DIAG_BUFFER_START {
__le32 Size;
__le32 DiagVersion;
u8 BufferType;
u8 Reserved[3];
__le32 Reserved1;
__le32 Reserved2;
__le32 Reserved3;
};
/**
* _ctl_host_trace_buffer_size_show - host buffer size (trace only)
* @cdev - pointer to embedded class device
* @buf - the buffer returned
*
* A sysfs 'read-only' shost attribute.
*/
static ssize_t
_ctl_host_trace_buffer_size_show(struct device *cdev,
struct device_attribute *attr, char *buf)
{
struct Scsi_Host *shost = class_to_shost(cdev);
struct MPT2SAS_ADAPTER *ioc = shost_priv(shost);
u32 size = 0;
struct DIAG_BUFFER_START *request_data;
if (!ioc->diag_buffer[MPI2_DIAG_BUF_TYPE_TRACE]) {
printk(MPT2SAS_ERR_FMT "%s: host_trace_buffer is not "
"registered\n", ioc->name, __func__);
return 0;
}
if ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
MPT2_DIAG_BUFFER_IS_REGISTERED) == 0) {
printk(MPT2SAS_ERR_FMT "%s: host_trace_buffer is not "
"registered\n", ioc->name, __func__);
return 0;
}
request_data = (struct DIAG_BUFFER_START *)
ioc->diag_buffer[MPI2_DIAG_BUF_TYPE_TRACE];
if ((le32_to_cpu(request_data->DiagVersion) == 0x00000000 ||
le32_to_cpu(request_data->DiagVersion) == 0x01000000) &&
le32_to_cpu(request_data->Reserved3) == 0x4742444c)
size = le32_to_cpu(request_data->Size);
ioc->ring_buffer_sz = size;
return snprintf(buf, PAGE_SIZE, "%d\n", size);
}
static DEVICE_ATTR(host_trace_buffer_size, S_IRUGO,
_ctl_host_trace_buffer_size_show, NULL);
/**
* _ctl_host_trace_buffer_show - firmware ring buffer (trace only)
* @cdev - pointer to embedded class device
* @buf - the buffer returned
*
* A sysfs 'read/write' shost attribute.
*
* You will only be able to read 4k bytes of ring buffer at a time.
* In order to read beyond 4k bytes, you will have to write out the
* offset to the same attribute, it will move the pointer.
*/
static ssize_t
_ctl_host_trace_buffer_show(struct device *cdev, struct device_attribute *attr,
char *buf)
{
struct Scsi_Host *shost = class_to_shost(cdev);
struct MPT2SAS_ADAPTER *ioc = shost_priv(shost);
void *request_data;
u32 size;
if (!ioc->diag_buffer[MPI2_DIAG_BUF_TYPE_TRACE]) {
printk(MPT2SAS_ERR_FMT "%s: host_trace_buffer is not "
"registered\n", ioc->name, __func__);
return 0;
}
if ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
MPT2_DIAG_BUFFER_IS_REGISTERED) == 0) {
printk(MPT2SAS_ERR_FMT "%s: host_trace_buffer is not "
"registered\n", ioc->name, __func__);
return 0;
}
if (ioc->ring_buffer_offset > ioc->ring_buffer_sz)
return 0;
size = ioc->ring_buffer_sz - ioc->ring_buffer_offset;
size = (size > PAGE_SIZE) ? PAGE_SIZE : size;
request_data = ioc->diag_buffer[0] + ioc->ring_buffer_offset;
memcpy(buf, request_data, size);
return size;
}
static ssize_t
_ctl_host_trace_buffer_store(struct device *cdev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct Scsi_Host *shost = class_to_shost(cdev);
struct MPT2SAS_ADAPTER *ioc = shost_priv(shost);
int val = 0;
if (sscanf(buf, "%d", &val) != 1)
return -EINVAL;
ioc->ring_buffer_offset = val;
return strlen(buf);
}
static DEVICE_ATTR(host_trace_buffer, S_IRUGO | S_IWUSR,
_ctl_host_trace_buffer_show, _ctl_host_trace_buffer_store);
/*****************************************/
/**
* _ctl_host_trace_buffer_enable_show - firmware ring buffer (trace only)
* @cdev - pointer to embedded class device
* @buf - the buffer returned
*
* A sysfs 'read/write' shost attribute.
*
* This is a mechnism to post/release host_trace_buffers
*/
static ssize_t
_ctl_host_trace_buffer_enable_show(struct device *cdev,
struct device_attribute *attr, char *buf)
{
struct Scsi_Host *shost = class_to_shost(cdev);
struct MPT2SAS_ADAPTER *ioc = shost_priv(shost);
if ((!ioc->diag_buffer[MPI2_DIAG_BUF_TYPE_TRACE]) ||
((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
MPT2_DIAG_BUFFER_IS_REGISTERED) == 0))
return snprintf(buf, PAGE_SIZE, "off\n");
else if ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
MPT2_DIAG_BUFFER_IS_RELEASED))
return snprintf(buf, PAGE_SIZE, "release\n");
else
return snprintf(buf, PAGE_SIZE, "post\n");
}
static ssize_t
_ctl_host_trace_buffer_enable_store(struct device *cdev,
struct device_attribute *attr, const char *buf, size_t count)
{
struct Scsi_Host *shost = class_to_shost(cdev);
struct MPT2SAS_ADAPTER *ioc = shost_priv(shost);
char str[10] = "";
struct mpt2_diag_register diag_register;
u8 issue_reset = 0;
if (sscanf(buf, "%9s", str) != 1)
return -EINVAL;
if (!strcmp(str, "post")) {
/* exit out if host buffers are already posted */
if ((ioc->diag_buffer[MPI2_DIAG_BUF_TYPE_TRACE]) &&
(ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
MPT2_DIAG_BUFFER_IS_REGISTERED) &&
((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
MPT2_DIAG_BUFFER_IS_RELEASED) == 0))
goto out;
memset(&diag_register, 0, sizeof(struct mpt2_diag_register));
printk(MPT2SAS_INFO_FMT "posting host trace buffers\n",
ioc->name);
diag_register.buffer_type = MPI2_DIAG_BUF_TYPE_TRACE;
diag_register.requested_buffer_size = (1024 * 1024);
diag_register.unique_id = 0x7075900;
ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] = 0;
_ctl_diag_register_2(ioc, &diag_register);
} else if (!strcmp(str, "release")) {
/* exit out if host buffers are already released */
if (!ioc->diag_buffer[MPI2_DIAG_BUF_TYPE_TRACE])
goto out;
if ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
MPT2_DIAG_BUFFER_IS_REGISTERED) == 0)
goto out;
if ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
MPT2_DIAG_BUFFER_IS_RELEASED))
goto out;
printk(MPT2SAS_INFO_FMT "releasing host trace buffer\n",
ioc->name);
_ctl_send_release(ioc, MPI2_DIAG_BUF_TYPE_TRACE, &issue_reset);
}
out:
return strlen(buf);
}
static DEVICE_ATTR(host_trace_buffer_enable, S_IRUGO | S_IWUSR,
_ctl_host_trace_buffer_enable_show, _ctl_host_trace_buffer_enable_store);
struct device_attribute *mpt2sas_host_attrs[] = {
&dev_attr_version_fw,
&dev_attr_version_bios,
&dev_attr_version_mpi,
&dev_attr_version_product,
&dev_attr_version_nvdata_persistent,
&dev_attr_version_nvdata_default,
&dev_attr_board_name,
&dev_attr_board_assembly,
&dev_attr_board_tracer,
&dev_attr_io_delay,
&dev_attr_device_delay,
&dev_attr_logging_level,
&dev_attr_fwfault_debug,
&dev_attr_fw_queue_depth,
&dev_attr_host_sas_address,
&dev_attr_ioc_reset_count,
&dev_attr_host_trace_buffer_size,
&dev_attr_host_trace_buffer,
&dev_attr_host_trace_buffer_enable,
[SCSI] mpt2sas: Added NUNA IO support in driver which uses multi-reply queue support of the HBA Support added for controllers capable of multi reply queues. The following are the modifications to the driver to support NUMA. 1) Create the new structure adapter_reply_queue to contain the reply queue info for every msix vector. This object will contain a reply_post_host_index, reply_post_free for each instance, msix_index, among other parameters. We will track all the reply queues on a link list called ioc->reply_queue_list. Each reply queue is aligned with each IRQ, and is passed to the interrupt via the bus_id parameter. (2) The driver will figure out the msix_vector_count from the PCIe MSIX capabilities register instead of the IOC Facts->MaxMSIxVectors. This is because the firmware is not filling in this field until the driver has already registered MSIX support. (3) If the ioc_facts reports that the controller is MSIX compatible in the capabilities, then the driver will request for multiple irqs. This count is calculated based on the minimum between the online cpus available and the ioc->msix_vector_count. This count is reported to firmware in the ioc_init request. (4) New routines were added _base_free_irq and _base_request_irq, so registering and freeing msix vectors were done thru simple function API. (5) The new routine _base_assign_reply_queues was added to align the msix indexes across cpus. This will initialize the array called ioc->cpu_msix_table. This array is looked up on every MPI request so the MSIxIndex is set appropriately. (6) A new shost sysfs attribute was added to report the reply_queue_count. (7) User needs to set the affinity cpu mask, so the interrupts occur on the same cpu that sent the original request. Signed-off-by: Nagalakshmi Nandigama <nagalakshmi.nandigama@lsi.com> Signed-off-by: James Bottomley <JBottomley@Parallels.com>
2011-09-08 07:48:50 +07:00
&dev_attr_reply_queue_count,
&dev_attr_BRM_status,
NULL,
};
/**
* _ctl_device_sas_address_show - sas address
* @cdev - pointer to embedded class device
* @buf - the buffer returned
*
* This is the sas address for the target
*
* A sysfs 'read-only' shost attribute.
*/
static ssize_t
_ctl_device_sas_address_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct scsi_device *sdev = to_scsi_device(dev);
struct MPT2SAS_DEVICE *sas_device_priv_data = sdev->hostdata;
return snprintf(buf, PAGE_SIZE, "0x%016llx\n",
(unsigned long long)sas_device_priv_data->sas_target->sas_address);
}
static DEVICE_ATTR(sas_address, S_IRUGO, _ctl_device_sas_address_show, NULL);
/**
* _ctl_device_handle_show - device handle
* @cdev - pointer to embedded class device
* @buf - the buffer returned
*
* This is the firmware assigned device handle
*
* A sysfs 'read-only' shost attribute.
*/
static ssize_t
_ctl_device_handle_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct scsi_device *sdev = to_scsi_device(dev);
struct MPT2SAS_DEVICE *sas_device_priv_data = sdev->hostdata;
return snprintf(buf, PAGE_SIZE, "0x%04x\n",
sas_device_priv_data->sas_target->handle);
}
static DEVICE_ATTR(sas_device_handle, S_IRUGO, _ctl_device_handle_show, NULL);
struct device_attribute *mpt2sas_dev_attrs[] = {
&dev_attr_sas_address,
&dev_attr_sas_device_handle,
NULL,
};
static const struct file_operations ctl_fops = {
.owner = THIS_MODULE,
.unlocked_ioctl = _ctl_ioctl,
.poll = _ctl_poll,
.fasync = _ctl_fasync,
#ifdef CONFIG_COMPAT
.compat_ioctl = _ctl_ioctl_compat,
#endif
llseek: automatically add .llseek fop All file_operations should get a .llseek operation so we can make nonseekable_open the default for future file operations without a .llseek pointer. The three cases that we can automatically detect are no_llseek, seq_lseek and default_llseek. For cases where we can we can automatically prove that the file offset is always ignored, we use noop_llseek, which maintains the current behavior of not returning an error from a seek. New drivers should normally not use noop_llseek but instead use no_llseek and call nonseekable_open at open time. Existing drivers can be converted to do the same when the maintainer knows for certain that no user code relies on calling seek on the device file. The generated code is often incorrectly indented and right now contains comments that clarify for each added line why a specific variant was chosen. In the version that gets submitted upstream, the comments will be gone and I will manually fix the indentation, because there does not seem to be a way to do that using coccinelle. Some amount of new code is currently sitting in linux-next that should get the same modifications, which I will do at the end of the merge window. Many thanks to Julia Lawall for helping me learn to write a semantic patch that does all this. ===== begin semantic patch ===== // This adds an llseek= method to all file operations, // as a preparation for making no_llseek the default. // // The rules are // - use no_llseek explicitly if we do nonseekable_open // - use seq_lseek for sequential files // - use default_llseek if we know we access f_pos // - use noop_llseek if we know we don't access f_pos, // but we still want to allow users to call lseek // @ open1 exists @ identifier nested_open; @@ nested_open(...) { <+... nonseekable_open(...) ...+> } @ open exists@ identifier open_f; identifier i, f; identifier open1.nested_open; @@ int open_f(struct inode *i, struct file *f) { <+... ( nonseekable_open(...) | nested_open(...) ) ...+> } @ read disable optional_qualifier exists @ identifier read_f; identifier f, p, s, off; type ssize_t, size_t, loff_t; expression E; identifier func; @@ ssize_t read_f(struct file *f, char *p, size_t s, loff_t *off) { <+... ( *off = E | *off += E | func(..., off, ...) | E = *off ) ...+> } @ read_no_fpos disable optional_qualifier exists @ identifier read_f; identifier f, p, s, off; type ssize_t, size_t, loff_t; @@ ssize_t read_f(struct file *f, char *p, size_t s, loff_t *off) { ... when != off } @ write @ identifier write_f; identifier f, p, s, off; type ssize_t, size_t, loff_t; expression E; identifier func; @@ ssize_t write_f(struct file *f, const char *p, size_t s, loff_t *off) { <+... ( *off = E | *off += E | func(..., off, ...) | E = *off ) ...+> } @ write_no_fpos @ identifier write_f; identifier f, p, s, off; type ssize_t, size_t, loff_t; @@ ssize_t write_f(struct file *f, const char *p, size_t s, loff_t *off) { ... when != off } @ fops0 @ identifier fops; @@ struct file_operations fops = { ... }; @ has_llseek depends on fops0 @ identifier fops0.fops; identifier llseek_f; @@ struct file_operations fops = { ... .llseek = llseek_f, ... }; @ has_read depends on fops0 @ identifier fops0.fops; identifier read_f; @@ struct file_operations fops = { ... .read = read_f, ... }; @ has_write depends on fops0 @ identifier fops0.fops; identifier write_f; @@ struct file_operations fops = { ... .write = write_f, ... }; @ has_open depends on fops0 @ identifier fops0.fops; identifier open_f; @@ struct file_operations fops = { ... .open = open_f, ... }; // use no_llseek if we call nonseekable_open //////////////////////////////////////////// @ nonseekable1 depends on !has_llseek && has_open @ identifier fops0.fops; identifier nso ~= "nonseekable_open"; @@ struct file_operations fops = { ... .open = nso, ... +.llseek = no_llseek, /* nonseekable */ }; @ nonseekable2 depends on !has_llseek @ identifier fops0.fops; identifier open.open_f; @@ struct file_operations fops = { ... .open = open_f, ... +.llseek = no_llseek, /* open uses nonseekable */ }; // use seq_lseek for sequential files ///////////////////////////////////// @ seq depends on !has_llseek @ identifier fops0.fops; identifier sr ~= "seq_read"; @@ struct file_operations fops = { ... .read = sr, ... +.llseek = seq_lseek, /* we have seq_read */ }; // use default_llseek if there is a readdir /////////////////////////////////////////// @ fops1 depends on !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier readdir_e; @@ // any other fop is used that changes pos struct file_operations fops = { ... .readdir = readdir_e, ... +.llseek = default_llseek, /* readdir is present */ }; // use default_llseek if at least one of read/write touches f_pos ///////////////////////////////////////////////////////////////// @ fops2 depends on !fops1 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier read.read_f; @@ // read fops use offset struct file_operations fops = { ... .read = read_f, ... +.llseek = default_llseek, /* read accesses f_pos */ }; @ fops3 depends on !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier write.write_f; @@ // write fops use offset struct file_operations fops = { ... .write = write_f, ... + .llseek = default_llseek, /* write accesses f_pos */ }; // Use noop_llseek if neither read nor write accesses f_pos /////////////////////////////////////////////////////////// @ fops4 depends on !fops1 && !fops2 && !fops3 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier read_no_fpos.read_f; identifier write_no_fpos.write_f; @@ // write fops use offset struct file_operations fops = { ... .write = write_f, .read = read_f, ... +.llseek = noop_llseek, /* read and write both use no f_pos */ }; @ depends on has_write && !has_read && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier write_no_fpos.write_f; @@ struct file_operations fops = { ... .write = write_f, ... +.llseek = noop_llseek, /* write uses no f_pos */ }; @ depends on has_read && !has_write && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier read_no_fpos.read_f; @@ struct file_operations fops = { ... .read = read_f, ... +.llseek = noop_llseek, /* read uses no f_pos */ }; @ depends on !has_read && !has_write && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; @@ struct file_operations fops = { ... +.llseek = noop_llseek, /* no read or write fn */ }; ===== End semantic patch ===== Signed-off-by: Arnd Bergmann <arnd@arndb.de> Cc: Julia Lawall <julia@diku.dk> Cc: Christoph Hellwig <hch@infradead.org>
2010-08-15 23:52:59 +07:00
.llseek = noop_llseek,
};
static struct miscdevice ctl_dev = {
.minor = MPT2SAS_MINOR,
.name = MPT2SAS_DEV_NAME,
.fops = &ctl_fops,
};
/**
* mpt2sas_ctl_init - main entry point for ctl.
*
*/
void
mpt2sas_ctl_init(void)
{
async_queue = NULL;
if (misc_register(&ctl_dev) < 0)
printk(KERN_ERR "%s can't register misc device [minor=%d]\n",
MPT2SAS_DRIVER_NAME, MPT2SAS_MINOR);
init_waitqueue_head(&ctl_poll_wait);
}
/**
* mpt2sas_ctl_exit - exit point for ctl
*
*/
void
mpt2sas_ctl_exit(void)
{
struct MPT2SAS_ADAPTER *ioc;
int i;
list_for_each_entry(ioc, &mpt2sas_ioc_list, list) {
/* free memory associated to diag buffers */
for (i = 0; i < MPI2_DIAG_BUF_TYPE_COUNT; i++) {
if (!ioc->diag_buffer[i])
continue;
pci_free_consistent(ioc->pdev, ioc->diag_buffer_sz[i],
ioc->diag_buffer[i], ioc->diag_buffer_dma[i]);
ioc->diag_buffer[i] = NULL;
ioc->diag_buffer_status[i] = 0;
}
kfree(ioc->event_log);
}
misc_deregister(&ctl_dev);
}