linux_dsm_epyc7002/arch/x86/mm/numa_emulation.c

587 lines
15 KiB
C
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 21:07:57 +07:00
// SPDX-License-Identifier: GPL-2.0
/*
* NUMA emulation
*/
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/topology.h>
#include <linux/memblock.h>
#include <asm/dma.h>
#include "numa_internal.h"
x86: delete __cpuinit usage from all x86 files The __cpuinit type of throwaway sections might have made sense some time ago when RAM was more constrained, but now the savings do not offset the cost and complications. For example, the fix in commit 5e427ec2d0 ("x86: Fix bit corruption at CPU resume time") is a good example of the nasty type of bugs that can be created with improper use of the various __init prefixes. After a discussion on LKML[1] it was decided that cpuinit should go the way of devinit and be phased out. Once all the users are gone, we can then finally remove the macros themselves from linux/init.h. Note that some harmless section mismatch warnings may result, since notify_cpu_starting() and cpu_up() are arch independent (kernel/cpu.c) are flagged as __cpuinit -- so if we remove the __cpuinit from arch specific callers, we will also get section mismatch warnings. As an intermediate step, we intend to turn the linux/init.h cpuinit content into no-ops as early as possible, since that will get rid of these warnings. In any case, they are temporary and harmless. This removes all the arch/x86 uses of the __cpuinit macros from all C files. x86 only had the one __CPUINIT used in assembly files, and it wasn't paired off with a .previous or a __FINIT, so we can delete it directly w/o any corresponding additional change there. [1] https://lkml.org/lkml/2013/5/20/589 Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Acked-by: Ingo Molnar <mingo@kernel.org> Acked-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: H. Peter Anvin <hpa@linux.intel.com> Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
2013-06-19 05:23:59 +07:00
static int emu_nid_to_phys[MAX_NUMNODES];
static char *emu_cmdline __initdata;
void __init numa_emu_cmdline(char *str)
{
emu_cmdline = str;
}
static int __init emu_find_memblk_by_nid(int nid, const struct numa_meminfo *mi)
{
int i;
for (i = 0; i < mi->nr_blks; i++)
if (mi->blk[i].nid == nid)
return i;
return -ENOENT;
}
static u64 __init mem_hole_size(u64 start, u64 end)
{
unsigned long start_pfn = PFN_UP(start);
unsigned long end_pfn = PFN_DOWN(end);
if (start_pfn < end_pfn)
return PFN_PHYS(absent_pages_in_range(start_pfn, end_pfn));
return 0;
}
/*
* Sets up nid to range from @start to @end. The return value is -errno if
* something went wrong, 0 otherwise.
*/
static int __init emu_setup_memblk(struct numa_meminfo *ei,
struct numa_meminfo *pi,
int nid, int phys_blk, u64 size)
{
struct numa_memblk *eb = &ei->blk[ei->nr_blks];
struct numa_memblk *pb = &pi->blk[phys_blk];
if (ei->nr_blks >= NR_NODE_MEMBLKS) {
pr_err("NUMA: Too many emulated memblks, failing emulation\n");
return -EINVAL;
}
ei->nr_blks++;
eb->start = pb->start;
eb->end = pb->start + size;
eb->nid = nid;
if (emu_nid_to_phys[nid] == NUMA_NO_NODE)
emu_nid_to_phys[nid] = pb->nid;
pb->start += size;
if (pb->start >= pb->end) {
WARN_ON_ONCE(pb->start > pb->end);
numa_remove_memblk_from(phys_blk, pi);
}
printk(KERN_INFO "Faking node %d at [mem %#018Lx-%#018Lx] (%LuMB)\n",
nid, eb->start, eb->end - 1, (eb->end - eb->start) >> 20);
return 0;
}
/*
* Sets up nr_nodes fake nodes interleaved over physical nodes ranging from addr
* to max_addr.
*
* Returns zero on success or negative on error.
*/
static int __init split_nodes_interleave(struct numa_meminfo *ei,
struct numa_meminfo *pi,
u64 addr, u64 max_addr, int nr_nodes)
{
nodemask_t physnode_mask = numa_nodes_parsed;
u64 size;
int big;
int nid = 0;
int i, ret;
if (nr_nodes <= 0)
return -1;
if (nr_nodes > MAX_NUMNODES) {
pr_info("numa=fake=%d too large, reducing to %d\n",
nr_nodes, MAX_NUMNODES);
nr_nodes = MAX_NUMNODES;
}
/*
* Calculate target node size. x86_32 freaks on __udivdi3() so do
* the division in ulong number of pages and convert back.
*/
size = max_addr - addr - mem_hole_size(addr, max_addr);
size = PFN_PHYS((unsigned long)(size >> PAGE_SHIFT) / nr_nodes);
/*
* Calculate the number of big nodes that can be allocated as a result
* of consolidating the remainder.
*/
big = ((size & ~FAKE_NODE_MIN_HASH_MASK) * nr_nodes) /
FAKE_NODE_MIN_SIZE;
size &= FAKE_NODE_MIN_HASH_MASK;
if (!size) {
pr_err("Not enough memory for each node. "
"NUMA emulation disabled.\n");
return -1;
}
/*
* Continue to fill physical nodes with fake nodes until there is no
* memory left on any of them.
*/
while (nodes_weight(physnode_mask)) {
for_each_node_mask(i, physnode_mask) {
u64 dma32_end = PFN_PHYS(MAX_DMA32_PFN);
u64 start, limit, end;
int phys_blk;
phys_blk = emu_find_memblk_by_nid(i, pi);
if (phys_blk < 0) {
node_clear(i, physnode_mask);
continue;
}
start = pi->blk[phys_blk].start;
limit = pi->blk[phys_blk].end;
end = start + size;
if (nid < big)
end += FAKE_NODE_MIN_SIZE;
/*
* Continue to add memory to this fake node if its
* non-reserved memory is less than the per-node size.
*/
while (end - start - mem_hole_size(start, end) < size) {
end += FAKE_NODE_MIN_SIZE;
if (end > limit) {
end = limit;
break;
}
}
/*
* If there won't be at least FAKE_NODE_MIN_SIZE of
* non-reserved memory in ZONE_DMA32 for the next node,
* this one must extend to the boundary.
*/
if (end < dma32_end && dma32_end - end -
mem_hole_size(end, dma32_end) < FAKE_NODE_MIN_SIZE)
end = dma32_end;
/*
* If there won't be enough non-reserved memory for the
* next node, this one must extend to the end of the
* physical node.
*/
if (limit - end - mem_hole_size(end, limit) < size)
end = limit;
ret = emu_setup_memblk(ei, pi, nid++ % nr_nodes,
phys_blk,
min(end, limit) - start);
if (ret < 0)
return ret;
}
}
return 0;
}
/*
* Returns the end address of a node so that there is at least `size' amount of
* non-reserved memory or `max_addr' is reached.
*/
static u64 __init find_end_of_node(u64 start, u64 max_addr, u64 size)
{
u64 end = start + size;
while (end - start - mem_hole_size(start, end) < size) {
end += FAKE_NODE_MIN_SIZE;
if (end > max_addr) {
end = max_addr;
break;
}
}
return end;
}
x86/numa_emulation: Introduce uniform split capability The current NUMA emulation capabilities for splitting System RAM by a fixed size or by a set number of nodes may result in some nodes being larger than others. The implementation prioritizes establishing a minimum usable memory size over satisfying the requested number of NUMA nodes. Introduce a uniform split capability that evenly partitions each physical NUMA node into N emulated nodes. For example numa=fake=3U creates 6 emulated nodes total on a system that has 2 physical nodes. This capability is useful for debugging and evaluating platform memory-side-cache capabilities as described by the ACPI HMAT (see 5.2.27.5 Memory Side Cache Information Structure in ACPI 6.2a) Compare numa=fake=6 that results in only 5 nodes being created against numa=fake=3U which takes the 2 physical nodes and evenly divides them. numa=fake=6 available: 5 nodes (0-4) node 0 cpus: 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 node 0 size: 2648 MB node 0 free: 2443 MB node 1 cpus: 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 node 1 size: 2672 MB node 1 free: 2442 MB node 2 cpus: 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 node 2 size: 5291 MB node 2 free: 5278 MB node 3 cpus: 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 node 3 size: 2677 MB node 3 free: 2665 MB node 4 cpus: 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 node 4 size: 2676 MB node 4 free: 2663 MB node distances: node 0 1 2 3 4 0: 10 20 10 20 20 1: 20 10 20 10 10 2: 10 20 10 20 20 3: 20 10 20 10 10 4: 20 10 20 10 10 numa=fake=3U available: 6 nodes (0-5) node 0 cpus: 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 node 0 size: 2900 MB node 0 free: 2637 MB node 1 cpus: 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 node 1 size: 3023 MB node 1 free: 3012 MB node 2 cpus: 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 node 2 size: 2015 MB node 2 free: 2004 MB node 3 cpus: 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 node 3 size: 2704 MB node 3 free: 2522 MB node 4 cpus: 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 node 4 size: 2709 MB node 4 free: 2698 MB node 5 cpus: 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 node 5 size: 2612 MB node 5 free: 2601 MB node distances: node 0 1 2 3 4 5 0: 10 10 10 20 20 20 1: 10 10 10 20 20 20 2: 10 10 10 20 20 20 3: 20 20 20 10 10 10 4: 20 20 20 10 10 10 5: 20 20 20 10 10 10 Signed-off-by: Dan Williams <dan.j.williams@intel.com> Cc: David Rientjes <rientjes@google.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Wei Yang <richard.weiyang@gmail.com> Cc: linux-mm@kvack.org Link: http://lkml.kernel.org/r/153089328617.27680.14930758266174305832.stgit@dwillia2-desk3.amr.corp.intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-07-06 23:08:06 +07:00
static u64 uniform_size(u64 max_addr, u64 base, u64 hole, int nr_nodes)
{
unsigned long max_pfn = PHYS_PFN(max_addr);
unsigned long base_pfn = PHYS_PFN(base);
unsigned long hole_pfns = PHYS_PFN(hole);
return PFN_PHYS((max_pfn - base_pfn - hole_pfns) / nr_nodes);
}
/*
* Sets up fake nodes of `size' interleaved over physical nodes ranging from
* `addr' to `max_addr'.
*
* Returns zero on success or negative on error.
*/
x86/numa_emulation: Introduce uniform split capability The current NUMA emulation capabilities for splitting System RAM by a fixed size or by a set number of nodes may result in some nodes being larger than others. The implementation prioritizes establishing a minimum usable memory size over satisfying the requested number of NUMA nodes. Introduce a uniform split capability that evenly partitions each physical NUMA node into N emulated nodes. For example numa=fake=3U creates 6 emulated nodes total on a system that has 2 physical nodes. This capability is useful for debugging and evaluating platform memory-side-cache capabilities as described by the ACPI HMAT (see 5.2.27.5 Memory Side Cache Information Structure in ACPI 6.2a) Compare numa=fake=6 that results in only 5 nodes being created against numa=fake=3U which takes the 2 physical nodes and evenly divides them. numa=fake=6 available: 5 nodes (0-4) node 0 cpus: 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 node 0 size: 2648 MB node 0 free: 2443 MB node 1 cpus: 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 node 1 size: 2672 MB node 1 free: 2442 MB node 2 cpus: 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 node 2 size: 5291 MB node 2 free: 5278 MB node 3 cpus: 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 node 3 size: 2677 MB node 3 free: 2665 MB node 4 cpus: 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 node 4 size: 2676 MB node 4 free: 2663 MB node distances: node 0 1 2 3 4 0: 10 20 10 20 20 1: 20 10 20 10 10 2: 10 20 10 20 20 3: 20 10 20 10 10 4: 20 10 20 10 10 numa=fake=3U available: 6 nodes (0-5) node 0 cpus: 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 node 0 size: 2900 MB node 0 free: 2637 MB node 1 cpus: 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 node 1 size: 3023 MB node 1 free: 3012 MB node 2 cpus: 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 node 2 size: 2015 MB node 2 free: 2004 MB node 3 cpus: 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 node 3 size: 2704 MB node 3 free: 2522 MB node 4 cpus: 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 node 4 size: 2709 MB node 4 free: 2698 MB node 5 cpus: 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 node 5 size: 2612 MB node 5 free: 2601 MB node distances: node 0 1 2 3 4 5 0: 10 10 10 20 20 20 1: 10 10 10 20 20 20 2: 10 10 10 20 20 20 3: 20 20 20 10 10 10 4: 20 20 20 10 10 10 5: 20 20 20 10 10 10 Signed-off-by: Dan Williams <dan.j.williams@intel.com> Cc: David Rientjes <rientjes@google.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Wei Yang <richard.weiyang@gmail.com> Cc: linux-mm@kvack.org Link: http://lkml.kernel.org/r/153089328617.27680.14930758266174305832.stgit@dwillia2-desk3.amr.corp.intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-07-06 23:08:06 +07:00
static int __init split_nodes_size_interleave_uniform(struct numa_meminfo *ei,
struct numa_meminfo *pi,
x86/numa_emulation: Introduce uniform split capability The current NUMA emulation capabilities for splitting System RAM by a fixed size or by a set number of nodes may result in some nodes being larger than others. The implementation prioritizes establishing a minimum usable memory size over satisfying the requested number of NUMA nodes. Introduce a uniform split capability that evenly partitions each physical NUMA node into N emulated nodes. For example numa=fake=3U creates 6 emulated nodes total on a system that has 2 physical nodes. This capability is useful for debugging and evaluating platform memory-side-cache capabilities as described by the ACPI HMAT (see 5.2.27.5 Memory Side Cache Information Structure in ACPI 6.2a) Compare numa=fake=6 that results in only 5 nodes being created against numa=fake=3U which takes the 2 physical nodes and evenly divides them. numa=fake=6 available: 5 nodes (0-4) node 0 cpus: 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 node 0 size: 2648 MB node 0 free: 2443 MB node 1 cpus: 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 node 1 size: 2672 MB node 1 free: 2442 MB node 2 cpus: 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 node 2 size: 5291 MB node 2 free: 5278 MB node 3 cpus: 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 node 3 size: 2677 MB node 3 free: 2665 MB node 4 cpus: 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 node 4 size: 2676 MB node 4 free: 2663 MB node distances: node 0 1 2 3 4 0: 10 20 10 20 20 1: 20 10 20 10 10 2: 10 20 10 20 20 3: 20 10 20 10 10 4: 20 10 20 10 10 numa=fake=3U available: 6 nodes (0-5) node 0 cpus: 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 node 0 size: 2900 MB node 0 free: 2637 MB node 1 cpus: 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 node 1 size: 3023 MB node 1 free: 3012 MB node 2 cpus: 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 node 2 size: 2015 MB node 2 free: 2004 MB node 3 cpus: 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 node 3 size: 2704 MB node 3 free: 2522 MB node 4 cpus: 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 node 4 size: 2709 MB node 4 free: 2698 MB node 5 cpus: 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 node 5 size: 2612 MB node 5 free: 2601 MB node distances: node 0 1 2 3 4 5 0: 10 10 10 20 20 20 1: 10 10 10 20 20 20 2: 10 10 10 20 20 20 3: 20 20 20 10 10 10 4: 20 20 20 10 10 10 5: 20 20 20 10 10 10 Signed-off-by: Dan Williams <dan.j.williams@intel.com> Cc: David Rientjes <rientjes@google.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Wei Yang <richard.weiyang@gmail.com> Cc: linux-mm@kvack.org Link: http://lkml.kernel.org/r/153089328617.27680.14930758266174305832.stgit@dwillia2-desk3.amr.corp.intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-07-06 23:08:06 +07:00
u64 addr, u64 max_addr, u64 size,
int nr_nodes, struct numa_memblk *pblk,
int nid)
{
nodemask_t physnode_mask = numa_nodes_parsed;
x86/numa_emulation: Introduce uniform split capability The current NUMA emulation capabilities for splitting System RAM by a fixed size or by a set number of nodes may result in some nodes being larger than others. The implementation prioritizes establishing a minimum usable memory size over satisfying the requested number of NUMA nodes. Introduce a uniform split capability that evenly partitions each physical NUMA node into N emulated nodes. For example numa=fake=3U creates 6 emulated nodes total on a system that has 2 physical nodes. This capability is useful for debugging and evaluating platform memory-side-cache capabilities as described by the ACPI HMAT (see 5.2.27.5 Memory Side Cache Information Structure in ACPI 6.2a) Compare numa=fake=6 that results in only 5 nodes being created against numa=fake=3U which takes the 2 physical nodes and evenly divides them. numa=fake=6 available: 5 nodes (0-4) node 0 cpus: 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 node 0 size: 2648 MB node 0 free: 2443 MB node 1 cpus: 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 node 1 size: 2672 MB node 1 free: 2442 MB node 2 cpus: 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 node 2 size: 5291 MB node 2 free: 5278 MB node 3 cpus: 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 node 3 size: 2677 MB node 3 free: 2665 MB node 4 cpus: 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 node 4 size: 2676 MB node 4 free: 2663 MB node distances: node 0 1 2 3 4 0: 10 20 10 20 20 1: 20 10 20 10 10 2: 10 20 10 20 20 3: 20 10 20 10 10 4: 20 10 20 10 10 numa=fake=3U available: 6 nodes (0-5) node 0 cpus: 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 node 0 size: 2900 MB node 0 free: 2637 MB node 1 cpus: 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 node 1 size: 3023 MB node 1 free: 3012 MB node 2 cpus: 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 node 2 size: 2015 MB node 2 free: 2004 MB node 3 cpus: 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 node 3 size: 2704 MB node 3 free: 2522 MB node 4 cpus: 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 node 4 size: 2709 MB node 4 free: 2698 MB node 5 cpus: 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 node 5 size: 2612 MB node 5 free: 2601 MB node distances: node 0 1 2 3 4 5 0: 10 10 10 20 20 20 1: 10 10 10 20 20 20 2: 10 10 10 20 20 20 3: 20 20 20 10 10 10 4: 20 20 20 10 10 10 5: 20 20 20 10 10 10 Signed-off-by: Dan Williams <dan.j.williams@intel.com> Cc: David Rientjes <rientjes@google.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Wei Yang <richard.weiyang@gmail.com> Cc: linux-mm@kvack.org Link: http://lkml.kernel.org/r/153089328617.27680.14930758266174305832.stgit@dwillia2-desk3.amr.corp.intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-07-06 23:08:06 +07:00
int i, ret, uniform = 0;
u64 min_size;
x86/numa_emulation: Introduce uniform split capability The current NUMA emulation capabilities for splitting System RAM by a fixed size or by a set number of nodes may result in some nodes being larger than others. The implementation prioritizes establishing a minimum usable memory size over satisfying the requested number of NUMA nodes. Introduce a uniform split capability that evenly partitions each physical NUMA node into N emulated nodes. For example numa=fake=3U creates 6 emulated nodes total on a system that has 2 physical nodes. This capability is useful for debugging and evaluating platform memory-side-cache capabilities as described by the ACPI HMAT (see 5.2.27.5 Memory Side Cache Information Structure in ACPI 6.2a) Compare numa=fake=6 that results in only 5 nodes being created against numa=fake=3U which takes the 2 physical nodes and evenly divides them. numa=fake=6 available: 5 nodes (0-4) node 0 cpus: 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 node 0 size: 2648 MB node 0 free: 2443 MB node 1 cpus: 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 node 1 size: 2672 MB node 1 free: 2442 MB node 2 cpus: 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 node 2 size: 5291 MB node 2 free: 5278 MB node 3 cpus: 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 node 3 size: 2677 MB node 3 free: 2665 MB node 4 cpus: 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 node 4 size: 2676 MB node 4 free: 2663 MB node distances: node 0 1 2 3 4 0: 10 20 10 20 20 1: 20 10 20 10 10 2: 10 20 10 20 20 3: 20 10 20 10 10 4: 20 10 20 10 10 numa=fake=3U available: 6 nodes (0-5) node 0 cpus: 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 node 0 size: 2900 MB node 0 free: 2637 MB node 1 cpus: 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 node 1 size: 3023 MB node 1 free: 3012 MB node 2 cpus: 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 node 2 size: 2015 MB node 2 free: 2004 MB node 3 cpus: 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 node 3 size: 2704 MB node 3 free: 2522 MB node 4 cpus: 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 node 4 size: 2709 MB node 4 free: 2698 MB node 5 cpus: 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 node 5 size: 2612 MB node 5 free: 2601 MB node distances: node 0 1 2 3 4 5 0: 10 10 10 20 20 20 1: 10 10 10 20 20 20 2: 10 10 10 20 20 20 3: 20 20 20 10 10 10 4: 20 20 20 10 10 10 5: 20 20 20 10 10 10 Signed-off-by: Dan Williams <dan.j.williams@intel.com> Cc: David Rientjes <rientjes@google.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Wei Yang <richard.weiyang@gmail.com> Cc: linux-mm@kvack.org Link: http://lkml.kernel.org/r/153089328617.27680.14930758266174305832.stgit@dwillia2-desk3.amr.corp.intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-07-06 23:08:06 +07:00
if ((!size && !nr_nodes) || (nr_nodes && !pblk))
return -1;
x86/numa_emulation: Introduce uniform split capability The current NUMA emulation capabilities for splitting System RAM by a fixed size or by a set number of nodes may result in some nodes being larger than others. The implementation prioritizes establishing a minimum usable memory size over satisfying the requested number of NUMA nodes. Introduce a uniform split capability that evenly partitions each physical NUMA node into N emulated nodes. For example numa=fake=3U creates 6 emulated nodes total on a system that has 2 physical nodes. This capability is useful for debugging and evaluating platform memory-side-cache capabilities as described by the ACPI HMAT (see 5.2.27.5 Memory Side Cache Information Structure in ACPI 6.2a) Compare numa=fake=6 that results in only 5 nodes being created against numa=fake=3U which takes the 2 physical nodes and evenly divides them. numa=fake=6 available: 5 nodes (0-4) node 0 cpus: 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 node 0 size: 2648 MB node 0 free: 2443 MB node 1 cpus: 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 node 1 size: 2672 MB node 1 free: 2442 MB node 2 cpus: 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 node 2 size: 5291 MB node 2 free: 5278 MB node 3 cpus: 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 node 3 size: 2677 MB node 3 free: 2665 MB node 4 cpus: 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 node 4 size: 2676 MB node 4 free: 2663 MB node distances: node 0 1 2 3 4 0: 10 20 10 20 20 1: 20 10 20 10 10 2: 10 20 10 20 20 3: 20 10 20 10 10 4: 20 10 20 10 10 numa=fake=3U available: 6 nodes (0-5) node 0 cpus: 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 node 0 size: 2900 MB node 0 free: 2637 MB node 1 cpus: 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 node 1 size: 3023 MB node 1 free: 3012 MB node 2 cpus: 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 node 2 size: 2015 MB node 2 free: 2004 MB node 3 cpus: 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 node 3 size: 2704 MB node 3 free: 2522 MB node 4 cpus: 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 node 4 size: 2709 MB node 4 free: 2698 MB node 5 cpus: 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 node 5 size: 2612 MB node 5 free: 2601 MB node distances: node 0 1 2 3 4 5 0: 10 10 10 20 20 20 1: 10 10 10 20 20 20 2: 10 10 10 20 20 20 3: 20 20 20 10 10 10 4: 20 20 20 10 10 10 5: 20 20 20 10 10 10 Signed-off-by: Dan Williams <dan.j.williams@intel.com> Cc: David Rientjes <rientjes@google.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Wei Yang <richard.weiyang@gmail.com> Cc: linux-mm@kvack.org Link: http://lkml.kernel.org/r/153089328617.27680.14930758266174305832.stgit@dwillia2-desk3.amr.corp.intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-07-06 23:08:06 +07:00
/*
x86/numa_emulation: Introduce uniform split capability The current NUMA emulation capabilities for splitting System RAM by a fixed size or by a set number of nodes may result in some nodes being larger than others. The implementation prioritizes establishing a minimum usable memory size over satisfying the requested number of NUMA nodes. Introduce a uniform split capability that evenly partitions each physical NUMA node into N emulated nodes. For example numa=fake=3U creates 6 emulated nodes total on a system that has 2 physical nodes. This capability is useful for debugging and evaluating platform memory-side-cache capabilities as described by the ACPI HMAT (see 5.2.27.5 Memory Side Cache Information Structure in ACPI 6.2a) Compare numa=fake=6 that results in only 5 nodes being created against numa=fake=3U which takes the 2 physical nodes and evenly divides them. numa=fake=6 available: 5 nodes (0-4) node 0 cpus: 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 node 0 size: 2648 MB node 0 free: 2443 MB node 1 cpus: 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 node 1 size: 2672 MB node 1 free: 2442 MB node 2 cpus: 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 node 2 size: 5291 MB node 2 free: 5278 MB node 3 cpus: 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 node 3 size: 2677 MB node 3 free: 2665 MB node 4 cpus: 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 node 4 size: 2676 MB node 4 free: 2663 MB node distances: node 0 1 2 3 4 0: 10 20 10 20 20 1: 20 10 20 10 10 2: 10 20 10 20 20 3: 20 10 20 10 10 4: 20 10 20 10 10 numa=fake=3U available: 6 nodes (0-5) node 0 cpus: 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 node 0 size: 2900 MB node 0 free: 2637 MB node 1 cpus: 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 node 1 size: 3023 MB node 1 free: 3012 MB node 2 cpus: 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 node 2 size: 2015 MB node 2 free: 2004 MB node 3 cpus: 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 node 3 size: 2704 MB node 3 free: 2522 MB node 4 cpus: 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 node 4 size: 2709 MB node 4 free: 2698 MB node 5 cpus: 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 node 5 size: 2612 MB node 5 free: 2601 MB node distances: node 0 1 2 3 4 5 0: 10 10 10 20 20 20 1: 10 10 10 20 20 20 2: 10 10 10 20 20 20 3: 20 20 20 10 10 10 4: 20 20 20 10 10 10 5: 20 20 20 10 10 10 Signed-off-by: Dan Williams <dan.j.williams@intel.com> Cc: David Rientjes <rientjes@google.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Wei Yang <richard.weiyang@gmail.com> Cc: linux-mm@kvack.org Link: http://lkml.kernel.org/r/153089328617.27680.14930758266174305832.stgit@dwillia2-desk3.amr.corp.intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-07-06 23:08:06 +07:00
* In the 'uniform' case split the passed in physical node by
* nr_nodes, in the non-uniform case, ignore the passed in
* physical block and try to create nodes of at least size
* @size.
*
* In the uniform case, split the nodes strictly by physical
* capacity, i.e. ignore holes. In the non-uniform case account
* for holes and treat @size as a minimum floor.
*/
x86/numa_emulation: Introduce uniform split capability The current NUMA emulation capabilities for splitting System RAM by a fixed size or by a set number of nodes may result in some nodes being larger than others. The implementation prioritizes establishing a minimum usable memory size over satisfying the requested number of NUMA nodes. Introduce a uniform split capability that evenly partitions each physical NUMA node into N emulated nodes. For example numa=fake=3U creates 6 emulated nodes total on a system that has 2 physical nodes. This capability is useful for debugging and evaluating platform memory-side-cache capabilities as described by the ACPI HMAT (see 5.2.27.5 Memory Side Cache Information Structure in ACPI 6.2a) Compare numa=fake=6 that results in only 5 nodes being created against numa=fake=3U which takes the 2 physical nodes and evenly divides them. numa=fake=6 available: 5 nodes (0-4) node 0 cpus: 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 node 0 size: 2648 MB node 0 free: 2443 MB node 1 cpus: 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 node 1 size: 2672 MB node 1 free: 2442 MB node 2 cpus: 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 node 2 size: 5291 MB node 2 free: 5278 MB node 3 cpus: 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 node 3 size: 2677 MB node 3 free: 2665 MB node 4 cpus: 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 node 4 size: 2676 MB node 4 free: 2663 MB node distances: node 0 1 2 3 4 0: 10 20 10 20 20 1: 20 10 20 10 10 2: 10 20 10 20 20 3: 20 10 20 10 10 4: 20 10 20 10 10 numa=fake=3U available: 6 nodes (0-5) node 0 cpus: 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 node 0 size: 2900 MB node 0 free: 2637 MB node 1 cpus: 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 node 1 size: 3023 MB node 1 free: 3012 MB node 2 cpus: 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 node 2 size: 2015 MB node 2 free: 2004 MB node 3 cpus: 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 node 3 size: 2704 MB node 3 free: 2522 MB node 4 cpus: 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 node 4 size: 2709 MB node 4 free: 2698 MB node 5 cpus: 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 node 5 size: 2612 MB node 5 free: 2601 MB node distances: node 0 1 2 3 4 5 0: 10 10 10 20 20 20 1: 10 10 10 20 20 20 2: 10 10 10 20 20 20 3: 20 20 20 10 10 10 4: 20 20 20 10 10 10 5: 20 20 20 10 10 10 Signed-off-by: Dan Williams <dan.j.williams@intel.com> Cc: David Rientjes <rientjes@google.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Wei Yang <richard.weiyang@gmail.com> Cc: linux-mm@kvack.org Link: http://lkml.kernel.org/r/153089328617.27680.14930758266174305832.stgit@dwillia2-desk3.amr.corp.intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-07-06 23:08:06 +07:00
if (!nr_nodes)
nr_nodes = MAX_NUMNODES;
else {
nodes_clear(physnode_mask);
node_set(pblk->nid, physnode_mask);
uniform = 1;
}
if (uniform) {
min_size = uniform_size(max_addr, addr, 0, nr_nodes);
size = min_size;
} else {
/*
* The limit on emulated nodes is MAX_NUMNODES, so the
* size per node is increased accordingly if the
* requested size is too small. This creates a uniform
* distribution of node sizes across the entire machine
* (but not necessarily over physical nodes).
*/
min_size = uniform_size(max_addr, addr,
mem_hole_size(addr, max_addr), nr_nodes);
}
min_size = ALIGN(max(min_size, FAKE_NODE_MIN_SIZE), FAKE_NODE_MIN_SIZE);
if (size < min_size) {
pr_err("Fake node size %LuMB too small, increasing to %LuMB\n",
size >> 20, min_size >> 20);
size = min_size;
}
x86/numa_emulation: Introduce uniform split capability The current NUMA emulation capabilities for splitting System RAM by a fixed size or by a set number of nodes may result in some nodes being larger than others. The implementation prioritizes establishing a minimum usable memory size over satisfying the requested number of NUMA nodes. Introduce a uniform split capability that evenly partitions each physical NUMA node into N emulated nodes. For example numa=fake=3U creates 6 emulated nodes total on a system that has 2 physical nodes. This capability is useful for debugging and evaluating platform memory-side-cache capabilities as described by the ACPI HMAT (see 5.2.27.5 Memory Side Cache Information Structure in ACPI 6.2a) Compare numa=fake=6 that results in only 5 nodes being created against numa=fake=3U which takes the 2 physical nodes and evenly divides them. numa=fake=6 available: 5 nodes (0-4) node 0 cpus: 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 node 0 size: 2648 MB node 0 free: 2443 MB node 1 cpus: 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 node 1 size: 2672 MB node 1 free: 2442 MB node 2 cpus: 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 node 2 size: 5291 MB node 2 free: 5278 MB node 3 cpus: 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 node 3 size: 2677 MB node 3 free: 2665 MB node 4 cpus: 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 node 4 size: 2676 MB node 4 free: 2663 MB node distances: node 0 1 2 3 4 0: 10 20 10 20 20 1: 20 10 20 10 10 2: 10 20 10 20 20 3: 20 10 20 10 10 4: 20 10 20 10 10 numa=fake=3U available: 6 nodes (0-5) node 0 cpus: 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 node 0 size: 2900 MB node 0 free: 2637 MB node 1 cpus: 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 node 1 size: 3023 MB node 1 free: 3012 MB node 2 cpus: 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 node 2 size: 2015 MB node 2 free: 2004 MB node 3 cpus: 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 node 3 size: 2704 MB node 3 free: 2522 MB node 4 cpus: 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 node 4 size: 2709 MB node 4 free: 2698 MB node 5 cpus: 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 node 5 size: 2612 MB node 5 free: 2601 MB node distances: node 0 1 2 3 4 5 0: 10 10 10 20 20 20 1: 10 10 10 20 20 20 2: 10 10 10 20 20 20 3: 20 20 20 10 10 10 4: 20 20 20 10 10 10 5: 20 20 20 10 10 10 Signed-off-by: Dan Williams <dan.j.williams@intel.com> Cc: David Rientjes <rientjes@google.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Wei Yang <richard.weiyang@gmail.com> Cc: linux-mm@kvack.org Link: http://lkml.kernel.org/r/153089328617.27680.14930758266174305832.stgit@dwillia2-desk3.amr.corp.intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-07-06 23:08:06 +07:00
size = ALIGN_DOWN(size, FAKE_NODE_MIN_SIZE);
/*
* Fill physical nodes with fake nodes of size until there is no memory
* left on any of them.
*/
while (nodes_weight(physnode_mask)) {
for_each_node_mask(i, physnode_mask) {
u64 dma32_end = PFN_PHYS(MAX_DMA32_PFN);
u64 start, limit, end;
int phys_blk;
phys_blk = emu_find_memblk_by_nid(i, pi);
if (phys_blk < 0) {
node_clear(i, physnode_mask);
continue;
}
x86/numa_emulation: Introduce uniform split capability The current NUMA emulation capabilities for splitting System RAM by a fixed size or by a set number of nodes may result in some nodes being larger than others. The implementation prioritizes establishing a minimum usable memory size over satisfying the requested number of NUMA nodes. Introduce a uniform split capability that evenly partitions each physical NUMA node into N emulated nodes. For example numa=fake=3U creates 6 emulated nodes total on a system that has 2 physical nodes. This capability is useful for debugging and evaluating platform memory-side-cache capabilities as described by the ACPI HMAT (see 5.2.27.5 Memory Side Cache Information Structure in ACPI 6.2a) Compare numa=fake=6 that results in only 5 nodes being created against numa=fake=3U which takes the 2 physical nodes and evenly divides them. numa=fake=6 available: 5 nodes (0-4) node 0 cpus: 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 node 0 size: 2648 MB node 0 free: 2443 MB node 1 cpus: 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 node 1 size: 2672 MB node 1 free: 2442 MB node 2 cpus: 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 node 2 size: 5291 MB node 2 free: 5278 MB node 3 cpus: 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 node 3 size: 2677 MB node 3 free: 2665 MB node 4 cpus: 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 node 4 size: 2676 MB node 4 free: 2663 MB node distances: node 0 1 2 3 4 0: 10 20 10 20 20 1: 20 10 20 10 10 2: 10 20 10 20 20 3: 20 10 20 10 10 4: 20 10 20 10 10 numa=fake=3U available: 6 nodes (0-5) node 0 cpus: 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 node 0 size: 2900 MB node 0 free: 2637 MB node 1 cpus: 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 node 1 size: 3023 MB node 1 free: 3012 MB node 2 cpus: 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 node 2 size: 2015 MB node 2 free: 2004 MB node 3 cpus: 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 node 3 size: 2704 MB node 3 free: 2522 MB node 4 cpus: 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 node 4 size: 2709 MB node 4 free: 2698 MB node 5 cpus: 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 node 5 size: 2612 MB node 5 free: 2601 MB node distances: node 0 1 2 3 4 5 0: 10 10 10 20 20 20 1: 10 10 10 20 20 20 2: 10 10 10 20 20 20 3: 20 20 20 10 10 10 4: 20 20 20 10 10 10 5: 20 20 20 10 10 10 Signed-off-by: Dan Williams <dan.j.williams@intel.com> Cc: David Rientjes <rientjes@google.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Wei Yang <richard.weiyang@gmail.com> Cc: linux-mm@kvack.org Link: http://lkml.kernel.org/r/153089328617.27680.14930758266174305832.stgit@dwillia2-desk3.amr.corp.intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-07-06 23:08:06 +07:00
start = pi->blk[phys_blk].start;
limit = pi->blk[phys_blk].end;
x86/numa_emulation: Introduce uniform split capability The current NUMA emulation capabilities for splitting System RAM by a fixed size or by a set number of nodes may result in some nodes being larger than others. The implementation prioritizes establishing a minimum usable memory size over satisfying the requested number of NUMA nodes. Introduce a uniform split capability that evenly partitions each physical NUMA node into N emulated nodes. For example numa=fake=3U creates 6 emulated nodes total on a system that has 2 physical nodes. This capability is useful for debugging and evaluating platform memory-side-cache capabilities as described by the ACPI HMAT (see 5.2.27.5 Memory Side Cache Information Structure in ACPI 6.2a) Compare numa=fake=6 that results in only 5 nodes being created against numa=fake=3U which takes the 2 physical nodes and evenly divides them. numa=fake=6 available: 5 nodes (0-4) node 0 cpus: 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 node 0 size: 2648 MB node 0 free: 2443 MB node 1 cpus: 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 node 1 size: 2672 MB node 1 free: 2442 MB node 2 cpus: 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 node 2 size: 5291 MB node 2 free: 5278 MB node 3 cpus: 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 node 3 size: 2677 MB node 3 free: 2665 MB node 4 cpus: 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 node 4 size: 2676 MB node 4 free: 2663 MB node distances: node 0 1 2 3 4 0: 10 20 10 20 20 1: 20 10 20 10 10 2: 10 20 10 20 20 3: 20 10 20 10 10 4: 20 10 20 10 10 numa=fake=3U available: 6 nodes (0-5) node 0 cpus: 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 node 0 size: 2900 MB node 0 free: 2637 MB node 1 cpus: 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 node 1 size: 3023 MB node 1 free: 3012 MB node 2 cpus: 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 node 2 size: 2015 MB node 2 free: 2004 MB node 3 cpus: 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 node 3 size: 2704 MB node 3 free: 2522 MB node 4 cpus: 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 node 4 size: 2709 MB node 4 free: 2698 MB node 5 cpus: 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 node 5 size: 2612 MB node 5 free: 2601 MB node distances: node 0 1 2 3 4 5 0: 10 10 10 20 20 20 1: 10 10 10 20 20 20 2: 10 10 10 20 20 20 3: 20 20 20 10 10 10 4: 20 20 20 10 10 10 5: 20 20 20 10 10 10 Signed-off-by: Dan Williams <dan.j.williams@intel.com> Cc: David Rientjes <rientjes@google.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Wei Yang <richard.weiyang@gmail.com> Cc: linux-mm@kvack.org Link: http://lkml.kernel.org/r/153089328617.27680.14930758266174305832.stgit@dwillia2-desk3.amr.corp.intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-07-06 23:08:06 +07:00
if (uniform)
end = start + size;
else
end = find_end_of_node(start, limit, size);
/*
* If there won't be at least FAKE_NODE_MIN_SIZE of
* non-reserved memory in ZONE_DMA32 for the next node,
* this one must extend to the boundary.
*/
if (end < dma32_end && dma32_end - end -
mem_hole_size(end, dma32_end) < FAKE_NODE_MIN_SIZE)
end = dma32_end;
/*
* If there won't be enough non-reserved memory for the
* next node, this one must extend to the end of the
* physical node.
*/
x86/numa_emulation: Introduce uniform split capability The current NUMA emulation capabilities for splitting System RAM by a fixed size or by a set number of nodes may result in some nodes being larger than others. The implementation prioritizes establishing a minimum usable memory size over satisfying the requested number of NUMA nodes. Introduce a uniform split capability that evenly partitions each physical NUMA node into N emulated nodes. For example numa=fake=3U creates 6 emulated nodes total on a system that has 2 physical nodes. This capability is useful for debugging and evaluating platform memory-side-cache capabilities as described by the ACPI HMAT (see 5.2.27.5 Memory Side Cache Information Structure in ACPI 6.2a) Compare numa=fake=6 that results in only 5 nodes being created against numa=fake=3U which takes the 2 physical nodes and evenly divides them. numa=fake=6 available: 5 nodes (0-4) node 0 cpus: 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 node 0 size: 2648 MB node 0 free: 2443 MB node 1 cpus: 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 node 1 size: 2672 MB node 1 free: 2442 MB node 2 cpus: 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 node 2 size: 5291 MB node 2 free: 5278 MB node 3 cpus: 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 node 3 size: 2677 MB node 3 free: 2665 MB node 4 cpus: 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 node 4 size: 2676 MB node 4 free: 2663 MB node distances: node 0 1 2 3 4 0: 10 20 10 20 20 1: 20 10 20 10 10 2: 10 20 10 20 20 3: 20 10 20 10 10 4: 20 10 20 10 10 numa=fake=3U available: 6 nodes (0-5) node 0 cpus: 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 node 0 size: 2900 MB node 0 free: 2637 MB node 1 cpus: 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 node 1 size: 3023 MB node 1 free: 3012 MB node 2 cpus: 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 node 2 size: 2015 MB node 2 free: 2004 MB node 3 cpus: 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 node 3 size: 2704 MB node 3 free: 2522 MB node 4 cpus: 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 node 4 size: 2709 MB node 4 free: 2698 MB node 5 cpus: 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 node 5 size: 2612 MB node 5 free: 2601 MB node distances: node 0 1 2 3 4 5 0: 10 10 10 20 20 20 1: 10 10 10 20 20 20 2: 10 10 10 20 20 20 3: 20 20 20 10 10 10 4: 20 20 20 10 10 10 5: 20 20 20 10 10 10 Signed-off-by: Dan Williams <dan.j.williams@intel.com> Cc: David Rientjes <rientjes@google.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Wei Yang <richard.weiyang@gmail.com> Cc: linux-mm@kvack.org Link: http://lkml.kernel.org/r/153089328617.27680.14930758266174305832.stgit@dwillia2-desk3.amr.corp.intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-07-06 23:08:06 +07:00
if ((limit - end - mem_hole_size(end, limit) < size)
&& !uniform)
end = limit;
ret = emu_setup_memblk(ei, pi, nid++ % MAX_NUMNODES,
phys_blk,
min(end, limit) - start);
if (ret < 0)
return ret;
}
}
x86/numa_emulation: Introduce uniform split capability The current NUMA emulation capabilities for splitting System RAM by a fixed size or by a set number of nodes may result in some nodes being larger than others. The implementation prioritizes establishing a minimum usable memory size over satisfying the requested number of NUMA nodes. Introduce a uniform split capability that evenly partitions each physical NUMA node into N emulated nodes. For example numa=fake=3U creates 6 emulated nodes total on a system that has 2 physical nodes. This capability is useful for debugging and evaluating platform memory-side-cache capabilities as described by the ACPI HMAT (see 5.2.27.5 Memory Side Cache Information Structure in ACPI 6.2a) Compare numa=fake=6 that results in only 5 nodes being created against numa=fake=3U which takes the 2 physical nodes and evenly divides them. numa=fake=6 available: 5 nodes (0-4) node 0 cpus: 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 node 0 size: 2648 MB node 0 free: 2443 MB node 1 cpus: 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 node 1 size: 2672 MB node 1 free: 2442 MB node 2 cpus: 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 node 2 size: 5291 MB node 2 free: 5278 MB node 3 cpus: 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 node 3 size: 2677 MB node 3 free: 2665 MB node 4 cpus: 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 node 4 size: 2676 MB node 4 free: 2663 MB node distances: node 0 1 2 3 4 0: 10 20 10 20 20 1: 20 10 20 10 10 2: 10 20 10 20 20 3: 20 10 20 10 10 4: 20 10 20 10 10 numa=fake=3U available: 6 nodes (0-5) node 0 cpus: 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 node 0 size: 2900 MB node 0 free: 2637 MB node 1 cpus: 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 node 1 size: 3023 MB node 1 free: 3012 MB node 2 cpus: 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 node 2 size: 2015 MB node 2 free: 2004 MB node 3 cpus: 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 node 3 size: 2704 MB node 3 free: 2522 MB node 4 cpus: 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 node 4 size: 2709 MB node 4 free: 2698 MB node 5 cpus: 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 node 5 size: 2612 MB node 5 free: 2601 MB node distances: node 0 1 2 3 4 5 0: 10 10 10 20 20 20 1: 10 10 10 20 20 20 2: 10 10 10 20 20 20 3: 20 20 20 10 10 10 4: 20 20 20 10 10 10 5: 20 20 20 10 10 10 Signed-off-by: Dan Williams <dan.j.williams@intel.com> Cc: David Rientjes <rientjes@google.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Wei Yang <richard.weiyang@gmail.com> Cc: linux-mm@kvack.org Link: http://lkml.kernel.org/r/153089328617.27680.14930758266174305832.stgit@dwillia2-desk3.amr.corp.intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-07-06 23:08:06 +07:00
return nid;
}
static int __init split_nodes_size_interleave(struct numa_meminfo *ei,
struct numa_meminfo *pi,
u64 addr, u64 max_addr, u64 size)
{
return split_nodes_size_interleave_uniform(ei, pi, addr, max_addr, size,
0, NULL, NUMA_NO_NODE);
}
int __init setup_emu2phys_nid(int *dfl_phys_nid)
{
int i, max_emu_nid = 0;
*dfl_phys_nid = NUMA_NO_NODE;
for (i = 0; i < ARRAY_SIZE(emu_nid_to_phys); i++) {
if (emu_nid_to_phys[i] != NUMA_NO_NODE) {
max_emu_nid = i;
if (*dfl_phys_nid == NUMA_NO_NODE)
*dfl_phys_nid = emu_nid_to_phys[i];
}
}
return max_emu_nid;
}
/**
* numa_emulation - Emulate NUMA nodes
* @numa_meminfo: NUMA configuration to massage
* @numa_dist_cnt: The size of the physical NUMA distance table
*
* Emulate NUMA nodes according to the numa=fake kernel parameter.
* @numa_meminfo contains the physical memory configuration and is modified
* to reflect the emulated configuration on success. @numa_dist_cnt is
* used to determine the size of the physical distance table.
*
* On success, the following modifications are made.
*
* - @numa_meminfo is updated to reflect the emulated nodes.
*
* - __apicid_to_node[] is updated such that APIC IDs are mapped to the
* emulated nodes.
*
* - NUMA distance table is rebuilt to represent distances between emulated
* nodes. The distances are determined considering how emulated nodes
* are mapped to physical nodes and match the actual distances.
*
* - emu_nid_to_phys[] reflects how emulated nodes are mapped to physical
* nodes. This is used by numa_add_cpu() and numa_remove_cpu().
*
* If emulation is not enabled or fails, emu_nid_to_phys[] is filled with
* identity mapping and no other modification is made.
*/
void __init numa_emulation(struct numa_meminfo *numa_meminfo, int numa_dist_cnt)
{
static struct numa_meminfo ei __initdata;
static struct numa_meminfo pi __initdata;
const u64 max_addr = PFN_PHYS(max_pfn);
u8 *phys_dist = NULL;
size_t phys_size = numa_dist_cnt * numa_dist_cnt * sizeof(phys_dist[0]);
int max_emu_nid, dfl_phys_nid;
int i, j, ret;
if (!emu_cmdline)
goto no_emu;
memset(&ei, 0, sizeof(ei));
pi = *numa_meminfo;
for (i = 0; i < MAX_NUMNODES; i++)
emu_nid_to_phys[i] = NUMA_NO_NODE;
/*
* If the numa=fake command-line contains a 'M' or 'G', it represents
* the fixed node size. Otherwise, if it is just a single number N,
* split the system RAM into N fake nodes.
*/
x86/numa_emulation: Introduce uniform split capability The current NUMA emulation capabilities for splitting System RAM by a fixed size or by a set number of nodes may result in some nodes being larger than others. The implementation prioritizes establishing a minimum usable memory size over satisfying the requested number of NUMA nodes. Introduce a uniform split capability that evenly partitions each physical NUMA node into N emulated nodes. For example numa=fake=3U creates 6 emulated nodes total on a system that has 2 physical nodes. This capability is useful for debugging and evaluating platform memory-side-cache capabilities as described by the ACPI HMAT (see 5.2.27.5 Memory Side Cache Information Structure in ACPI 6.2a) Compare numa=fake=6 that results in only 5 nodes being created against numa=fake=3U which takes the 2 physical nodes and evenly divides them. numa=fake=6 available: 5 nodes (0-4) node 0 cpus: 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 node 0 size: 2648 MB node 0 free: 2443 MB node 1 cpus: 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 node 1 size: 2672 MB node 1 free: 2442 MB node 2 cpus: 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 node 2 size: 5291 MB node 2 free: 5278 MB node 3 cpus: 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 node 3 size: 2677 MB node 3 free: 2665 MB node 4 cpus: 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 node 4 size: 2676 MB node 4 free: 2663 MB node distances: node 0 1 2 3 4 0: 10 20 10 20 20 1: 20 10 20 10 10 2: 10 20 10 20 20 3: 20 10 20 10 10 4: 20 10 20 10 10 numa=fake=3U available: 6 nodes (0-5) node 0 cpus: 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 node 0 size: 2900 MB node 0 free: 2637 MB node 1 cpus: 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 node 1 size: 3023 MB node 1 free: 3012 MB node 2 cpus: 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 node 2 size: 2015 MB node 2 free: 2004 MB node 3 cpus: 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 node 3 size: 2704 MB node 3 free: 2522 MB node 4 cpus: 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 node 4 size: 2709 MB node 4 free: 2698 MB node 5 cpus: 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 node 5 size: 2612 MB node 5 free: 2601 MB node distances: node 0 1 2 3 4 5 0: 10 10 10 20 20 20 1: 10 10 10 20 20 20 2: 10 10 10 20 20 20 3: 20 20 20 10 10 10 4: 20 20 20 10 10 10 5: 20 20 20 10 10 10 Signed-off-by: Dan Williams <dan.j.williams@intel.com> Cc: David Rientjes <rientjes@google.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Wei Yang <richard.weiyang@gmail.com> Cc: linux-mm@kvack.org Link: http://lkml.kernel.org/r/153089328617.27680.14930758266174305832.stgit@dwillia2-desk3.amr.corp.intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-07-06 23:08:06 +07:00
if (strchr(emu_cmdline, 'U')) {
nodemask_t physnode_mask = numa_nodes_parsed;
unsigned long n;
int nid = 0;
n = simple_strtoul(emu_cmdline, &emu_cmdline, 0);
ret = -1;
for_each_node_mask(i, physnode_mask) {
x86/numa_emulation: Fix uniform-split numa emulation The numa_emulation() routine in the 'uniform' case walks through all the physical 'memblk' instances and divides them into N emulated nodes with split_nodes_size_interleave_uniform(). As each physical node is consumed it is removed from the physical memblk array in the numa_remove_memblk_from() helper. Since split_nodes_size_interleave_uniform() handles advancing the array as the 'memblk' is consumed it is expected that the base of the array is always specified as the argument. Otherwise, on multi-socket (> 2) configurations the uniform-split capability can generate an invalid numa configuration leading to boot failures with signatures like the following: rcu: INFO: rcu_sched detected stalls on CPUs/tasks: Sending NMI from CPU 0 to CPUs 2: NMI backtrace for cpu 2 CPU: 2 PID: 1332 Comm: pgdatinit0 Not tainted 4.19.0-rc8-next-20181019-baseline #59 RIP: 0010:__init_single_page.isra.74+0x81/0x90 [..] Call Trace: deferred_init_pages+0xaa/0xe3 deferred_init_memmap+0x18f/0x318 kthread+0xf8/0x130 ? deferred_free_pages.isra.105+0xc9/0xc9 ? kthread_stop+0x110/0x110 ret_from_fork+0x35/0x40 Fixes: 1f6a2c6d9f121 ("x86/numa_emulation: Introduce uniform split capability") Signed-off-by: Dave Jiang <dave.jiang@intel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Alexander Duyck <alexander.h.duyck@linux.intel.com> Reviewed-by: Dave Hansen <dave.hansen@linux.intel.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: stable@vger.kernel.org Link: https://lkml.kernel.org/r/154049911459.2685845.9210186007479774286.stgit@dwillia2-desk3.amr.corp.intel.com
2018-10-26 03:26:45 +07:00
/*
* The reason we pass in blk[0] is due to
* numa_remove_memblk_from() called by
* emu_setup_memblk() will delete entry 0
* and then move everything else up in the pi.blk
* array. Therefore we should always be looking
* at blk[0].
*/
x86/numa_emulation: Introduce uniform split capability The current NUMA emulation capabilities for splitting System RAM by a fixed size or by a set number of nodes may result in some nodes being larger than others. The implementation prioritizes establishing a minimum usable memory size over satisfying the requested number of NUMA nodes. Introduce a uniform split capability that evenly partitions each physical NUMA node into N emulated nodes. For example numa=fake=3U creates 6 emulated nodes total on a system that has 2 physical nodes. This capability is useful for debugging and evaluating platform memory-side-cache capabilities as described by the ACPI HMAT (see 5.2.27.5 Memory Side Cache Information Structure in ACPI 6.2a) Compare numa=fake=6 that results in only 5 nodes being created against numa=fake=3U which takes the 2 physical nodes and evenly divides them. numa=fake=6 available: 5 nodes (0-4) node 0 cpus: 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 node 0 size: 2648 MB node 0 free: 2443 MB node 1 cpus: 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 node 1 size: 2672 MB node 1 free: 2442 MB node 2 cpus: 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 node 2 size: 5291 MB node 2 free: 5278 MB node 3 cpus: 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 node 3 size: 2677 MB node 3 free: 2665 MB node 4 cpus: 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 node 4 size: 2676 MB node 4 free: 2663 MB node distances: node 0 1 2 3 4 0: 10 20 10 20 20 1: 20 10 20 10 10 2: 10 20 10 20 20 3: 20 10 20 10 10 4: 20 10 20 10 10 numa=fake=3U available: 6 nodes (0-5) node 0 cpus: 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 node 0 size: 2900 MB node 0 free: 2637 MB node 1 cpus: 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 node 1 size: 3023 MB node 1 free: 3012 MB node 2 cpus: 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 node 2 size: 2015 MB node 2 free: 2004 MB node 3 cpus: 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 node 3 size: 2704 MB node 3 free: 2522 MB node 4 cpus: 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 node 4 size: 2709 MB node 4 free: 2698 MB node 5 cpus: 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 node 5 size: 2612 MB node 5 free: 2601 MB node distances: node 0 1 2 3 4 5 0: 10 10 10 20 20 20 1: 10 10 10 20 20 20 2: 10 10 10 20 20 20 3: 20 20 20 10 10 10 4: 20 20 20 10 10 10 5: 20 20 20 10 10 10 Signed-off-by: Dan Williams <dan.j.williams@intel.com> Cc: David Rientjes <rientjes@google.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Wei Yang <richard.weiyang@gmail.com> Cc: linux-mm@kvack.org Link: http://lkml.kernel.org/r/153089328617.27680.14930758266174305832.stgit@dwillia2-desk3.amr.corp.intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-07-06 23:08:06 +07:00
ret = split_nodes_size_interleave_uniform(&ei, &pi,
x86/numa_emulation: Fix uniform-split numa emulation The numa_emulation() routine in the 'uniform' case walks through all the physical 'memblk' instances and divides them into N emulated nodes with split_nodes_size_interleave_uniform(). As each physical node is consumed it is removed from the physical memblk array in the numa_remove_memblk_from() helper. Since split_nodes_size_interleave_uniform() handles advancing the array as the 'memblk' is consumed it is expected that the base of the array is always specified as the argument. Otherwise, on multi-socket (> 2) configurations the uniform-split capability can generate an invalid numa configuration leading to boot failures with signatures like the following: rcu: INFO: rcu_sched detected stalls on CPUs/tasks: Sending NMI from CPU 0 to CPUs 2: NMI backtrace for cpu 2 CPU: 2 PID: 1332 Comm: pgdatinit0 Not tainted 4.19.0-rc8-next-20181019-baseline #59 RIP: 0010:__init_single_page.isra.74+0x81/0x90 [..] Call Trace: deferred_init_pages+0xaa/0xe3 deferred_init_memmap+0x18f/0x318 kthread+0xf8/0x130 ? deferred_free_pages.isra.105+0xc9/0xc9 ? kthread_stop+0x110/0x110 ret_from_fork+0x35/0x40 Fixes: 1f6a2c6d9f121 ("x86/numa_emulation: Introduce uniform split capability") Signed-off-by: Dave Jiang <dave.jiang@intel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Alexander Duyck <alexander.h.duyck@linux.intel.com> Reviewed-by: Dave Hansen <dave.hansen@linux.intel.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: stable@vger.kernel.org Link: https://lkml.kernel.org/r/154049911459.2685845.9210186007479774286.stgit@dwillia2-desk3.amr.corp.intel.com
2018-10-26 03:26:45 +07:00
pi.blk[0].start, pi.blk[0].end, 0,
n, &pi.blk[0], nid);
x86/numa_emulation: Introduce uniform split capability The current NUMA emulation capabilities for splitting System RAM by a fixed size or by a set number of nodes may result in some nodes being larger than others. The implementation prioritizes establishing a minimum usable memory size over satisfying the requested number of NUMA nodes. Introduce a uniform split capability that evenly partitions each physical NUMA node into N emulated nodes. For example numa=fake=3U creates 6 emulated nodes total on a system that has 2 physical nodes. This capability is useful for debugging and evaluating platform memory-side-cache capabilities as described by the ACPI HMAT (see 5.2.27.5 Memory Side Cache Information Structure in ACPI 6.2a) Compare numa=fake=6 that results in only 5 nodes being created against numa=fake=3U which takes the 2 physical nodes and evenly divides them. numa=fake=6 available: 5 nodes (0-4) node 0 cpus: 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 node 0 size: 2648 MB node 0 free: 2443 MB node 1 cpus: 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 node 1 size: 2672 MB node 1 free: 2442 MB node 2 cpus: 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 node 2 size: 5291 MB node 2 free: 5278 MB node 3 cpus: 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 node 3 size: 2677 MB node 3 free: 2665 MB node 4 cpus: 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 node 4 size: 2676 MB node 4 free: 2663 MB node distances: node 0 1 2 3 4 0: 10 20 10 20 20 1: 20 10 20 10 10 2: 10 20 10 20 20 3: 20 10 20 10 10 4: 20 10 20 10 10 numa=fake=3U available: 6 nodes (0-5) node 0 cpus: 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 node 0 size: 2900 MB node 0 free: 2637 MB node 1 cpus: 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 node 1 size: 3023 MB node 1 free: 3012 MB node 2 cpus: 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 node 2 size: 2015 MB node 2 free: 2004 MB node 3 cpus: 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 node 3 size: 2704 MB node 3 free: 2522 MB node 4 cpus: 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 node 4 size: 2709 MB node 4 free: 2698 MB node 5 cpus: 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 node 5 size: 2612 MB node 5 free: 2601 MB node distances: node 0 1 2 3 4 5 0: 10 10 10 20 20 20 1: 10 10 10 20 20 20 2: 10 10 10 20 20 20 3: 20 20 20 10 10 10 4: 20 20 20 10 10 10 5: 20 20 20 10 10 10 Signed-off-by: Dan Williams <dan.j.williams@intel.com> Cc: David Rientjes <rientjes@google.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Wei Yang <richard.weiyang@gmail.com> Cc: linux-mm@kvack.org Link: http://lkml.kernel.org/r/153089328617.27680.14930758266174305832.stgit@dwillia2-desk3.amr.corp.intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-07-06 23:08:06 +07:00
if (ret < 0)
break;
if (ret < n) {
pr_info("%s: phys: %d only got %d of %ld nodes, failing\n",
__func__, i, ret, n);
ret = -1;
break;
}
nid = ret;
}
} else if (strchr(emu_cmdline, 'M') || strchr(emu_cmdline, 'G')) {
u64 size;
size = memparse(emu_cmdline, &emu_cmdline);
ret = split_nodes_size_interleave(&ei, &pi, 0, max_addr, size);
} else {
unsigned long n;
n = simple_strtoul(emu_cmdline, &emu_cmdline, 0);
ret = split_nodes_interleave(&ei, &pi, 0, max_addr, n);
}
if (*emu_cmdline == ':')
emu_cmdline++;
if (ret < 0)
goto no_emu;
if (numa_cleanup_meminfo(&ei) < 0) {
pr_warning("NUMA: Warning: constructed meminfo invalid, disabling emulation\n");
goto no_emu;
}
/* copy the physical distance table */
if (numa_dist_cnt) {
u64 phys;
phys = memblock_find_in_range(0, PFN_PHYS(max_pfn_mapped),
phys_size, PAGE_SIZE);
if (!phys) {
pr_warning("NUMA: Warning: can't allocate copy of distance table, disabling emulation\n");
goto no_emu;
}
memblock_reserve(phys, phys_size);
phys_dist = __va(phys);
for (i = 0; i < numa_dist_cnt; i++)
for (j = 0; j < numa_dist_cnt; j++)
phys_dist[i * numa_dist_cnt + j] =
node_distance(i, j);
}
/*
* Determine the max emulated nid and the default phys nid to use
* for unmapped nodes.
*/
max_emu_nid = setup_emu2phys_nid(&dfl_phys_nid);
/* commit */
*numa_meminfo = ei;
/* Make sure numa_nodes_parsed only contains emulated nodes */
nodes_clear(numa_nodes_parsed);
for (i = 0; i < ARRAY_SIZE(ei.blk); i++)
if (ei.blk[i].start != ei.blk[i].end &&
ei.blk[i].nid != NUMA_NO_NODE)
node_set(ei.blk[i].nid, numa_nodes_parsed);
/*
* Transform __apicid_to_node table to use emulated nids by
* reverse-mapping phys_nid. The maps should always exist but fall
* back to zero just in case.
*/
for (i = 0; i < ARRAY_SIZE(__apicid_to_node); i++) {
if (__apicid_to_node[i] == NUMA_NO_NODE)
continue;
for (j = 0; j < ARRAY_SIZE(emu_nid_to_phys); j++)
if (__apicid_to_node[i] == emu_nid_to_phys[j])
break;
__apicid_to_node[i] = j < ARRAY_SIZE(emu_nid_to_phys) ? j : 0;
}
/* make sure all emulated nodes are mapped to a physical node */
for (i = 0; i < ARRAY_SIZE(emu_nid_to_phys); i++)
if (emu_nid_to_phys[i] == NUMA_NO_NODE)
emu_nid_to_phys[i] = dfl_phys_nid;
/* transform distance table */
numa_reset_distance();
for (i = 0; i < max_emu_nid + 1; i++) {
for (j = 0; j < max_emu_nid + 1; j++) {
int physi = emu_nid_to_phys[i];
int physj = emu_nid_to_phys[j];
int dist;
if (get_option(&emu_cmdline, &dist) == 2)
;
else if (physi >= numa_dist_cnt || physj >= numa_dist_cnt)
dist = physi == physj ?
LOCAL_DISTANCE : REMOTE_DISTANCE;
else
dist = phys_dist[physi * numa_dist_cnt + physj];
numa_set_distance(i, j, dist);
}
}
/* free the copied physical distance table */
if (phys_dist)
memblock_free(__pa(phys_dist), phys_size);
return;
no_emu:
/* No emulation. Build identity emu_nid_to_phys[] for numa_add_cpu() */
for (i = 0; i < ARRAY_SIZE(emu_nid_to_phys); i++)
emu_nid_to_phys[i] = i;
}
#ifndef CONFIG_DEBUG_PER_CPU_MAPS
x86: delete __cpuinit usage from all x86 files The __cpuinit type of throwaway sections might have made sense some time ago when RAM was more constrained, but now the savings do not offset the cost and complications. For example, the fix in commit 5e427ec2d0 ("x86: Fix bit corruption at CPU resume time") is a good example of the nasty type of bugs that can be created with improper use of the various __init prefixes. After a discussion on LKML[1] it was decided that cpuinit should go the way of devinit and be phased out. Once all the users are gone, we can then finally remove the macros themselves from linux/init.h. Note that some harmless section mismatch warnings may result, since notify_cpu_starting() and cpu_up() are arch independent (kernel/cpu.c) are flagged as __cpuinit -- so if we remove the __cpuinit from arch specific callers, we will also get section mismatch warnings. As an intermediate step, we intend to turn the linux/init.h cpuinit content into no-ops as early as possible, since that will get rid of these warnings. In any case, they are temporary and harmless. This removes all the arch/x86 uses of the __cpuinit macros from all C files. x86 only had the one __CPUINIT used in assembly files, and it wasn't paired off with a .previous or a __FINIT, so we can delete it directly w/o any corresponding additional change there. [1] https://lkml.org/lkml/2013/5/20/589 Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Acked-by: Ingo Molnar <mingo@kernel.org> Acked-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: H. Peter Anvin <hpa@linux.intel.com> Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
2013-06-19 05:23:59 +07:00
void numa_add_cpu(int cpu)
{
int physnid, nid;
x86-64, NUMA: Fix numa_emulation code with node0 without RAM On one system that does not have RAM on node0. When numa_emulation is compiled in, and 1. boot system without numa=fake... 2. or boot system with numa=fake=128 to make emulation fail will get: [ 0.092026] ------------[ cut here ]------------ [ 0.096005] kernel BUG at arch/x86/mm/numa_emulation.c:439! [ 0.096005] invalid opcode: 0000 [#1] SMP [ 0.096005] last sysfs file: [ 0.096005] CPU 0 [ 0.096005] Modules linked in: [ 0.096005] [ 0.096005] Pid: 0, comm: swapper Not tainted 2.6.38-rc6-tip-yh-03869-gcb0491d-dirty #684 Sun Microsystems Sun Fire X4240/Sun Fire X4240 [ 0.096005] RIP: 0010:[<ffffffff81cdc65b>] [<ffffffff81cdc65b>] numa_add_cpu+0x56/0xcf [ 0.096005] RSP: 0000:ffffffff82437ed8 EFLAGS: 00010246 ... [ 0.096005] Call Trace: [ 0.096005] [<ffffffff81cd7931>] identify_cpu+0x2d7/0x2df [ 0.096005] [<ffffffff827e54fa>] identify_boot_cpu+0x10/0x30 [ 0.096005] [<ffffffff827e5704>] check_bugs+0x9/0x2d [ 0.096005] [<ffffffff827dceda>] start_kernel+0x3d7/0x3f1 [ 0.096005] [<ffffffff827dc2cc>] x86_64_start_reservations+0x9c/0xa0 [ 0.096005] [<ffffffff827dc4ad>] x86_64_start_kernel+0x1dd/0x1e8 [ 0.096005] Code: 74 06 48 8d 04 90 eb 0f 48 c7 c0 30 d9 00 00 48 03 04 d5 90 0f 60 82 8b 00 83 f8 ff 74 0d 0f a3 05 8b 7e 92 00 19 d2 85 d2 75 02 <0f> 0b 48 98 be 00 01 00 00 48 c7 c7 e0 44 60 82 44 8b 2c 85 e0 [ 0.096005] RIP [<ffffffff81cdc65b>] numa_add_cpu+0x56/0xcf [ 0.096005] RSP <ffffffff82437ed8> [ 0.096026] ---[ end trace a7919e7f17c0a725 ]--- We need to use early_cpu_to_node() directly, because numa_cpu_node() will return node0 that is not onlined. Signed-off-by: Yinghai Lu <yinghai@kernel.org> Signed-off-by: Tejun Heo <tj@kernel.org>
2011-03-04 20:49:28 +07:00
nid = early_cpu_to_node(cpu);
BUG_ON(nid == NUMA_NO_NODE || !node_online(nid));
physnid = emu_nid_to_phys[nid];
/*
* Map the cpu to each emulated node that is allocated on the physical
* node of the cpu's apic id.
*/
for_each_online_node(nid)
if (emu_nid_to_phys[nid] == physnid)
cpumask_set_cpu(cpu, node_to_cpumask_map[nid]);
}
x86: delete __cpuinit usage from all x86 files The __cpuinit type of throwaway sections might have made sense some time ago when RAM was more constrained, but now the savings do not offset the cost and complications. For example, the fix in commit 5e427ec2d0 ("x86: Fix bit corruption at CPU resume time") is a good example of the nasty type of bugs that can be created with improper use of the various __init prefixes. After a discussion on LKML[1] it was decided that cpuinit should go the way of devinit and be phased out. Once all the users are gone, we can then finally remove the macros themselves from linux/init.h. Note that some harmless section mismatch warnings may result, since notify_cpu_starting() and cpu_up() are arch independent (kernel/cpu.c) are flagged as __cpuinit -- so if we remove the __cpuinit from arch specific callers, we will also get section mismatch warnings. As an intermediate step, we intend to turn the linux/init.h cpuinit content into no-ops as early as possible, since that will get rid of these warnings. In any case, they are temporary and harmless. This removes all the arch/x86 uses of the __cpuinit macros from all C files. x86 only had the one __CPUINIT used in assembly files, and it wasn't paired off with a .previous or a __FINIT, so we can delete it directly w/o any corresponding additional change there. [1] https://lkml.org/lkml/2013/5/20/589 Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Acked-by: Ingo Molnar <mingo@kernel.org> Acked-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: H. Peter Anvin <hpa@linux.intel.com> Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
2013-06-19 05:23:59 +07:00
void numa_remove_cpu(int cpu)
{
int i;
for_each_online_node(i)
cpumask_clear_cpu(cpu, node_to_cpumask_map[i]);
}
#else /* !CONFIG_DEBUG_PER_CPU_MAPS */
x86: delete __cpuinit usage from all x86 files The __cpuinit type of throwaway sections might have made sense some time ago when RAM was more constrained, but now the savings do not offset the cost and complications. For example, the fix in commit 5e427ec2d0 ("x86: Fix bit corruption at CPU resume time") is a good example of the nasty type of bugs that can be created with improper use of the various __init prefixes. After a discussion on LKML[1] it was decided that cpuinit should go the way of devinit and be phased out. Once all the users are gone, we can then finally remove the macros themselves from linux/init.h. Note that some harmless section mismatch warnings may result, since notify_cpu_starting() and cpu_up() are arch independent (kernel/cpu.c) are flagged as __cpuinit -- so if we remove the __cpuinit from arch specific callers, we will also get section mismatch warnings. As an intermediate step, we intend to turn the linux/init.h cpuinit content into no-ops as early as possible, since that will get rid of these warnings. In any case, they are temporary and harmless. This removes all the arch/x86 uses of the __cpuinit macros from all C files. x86 only had the one __CPUINIT used in assembly files, and it wasn't paired off with a .previous or a __FINIT, so we can delete it directly w/o any corresponding additional change there. [1] https://lkml.org/lkml/2013/5/20/589 Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Acked-by: Ingo Molnar <mingo@kernel.org> Acked-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: H. Peter Anvin <hpa@linux.intel.com> Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
2013-06-19 05:23:59 +07:00
static void numa_set_cpumask(int cpu, bool enable)
{
int nid, physnid;
nid = early_cpu_to_node(cpu);
if (nid == NUMA_NO_NODE) {
/* early_cpu_to_node() already emits a warning and trace */
return;
}
physnid = emu_nid_to_phys[nid];
for_each_online_node(nid) {
if (emu_nid_to_phys[nid] != physnid)
continue;
debug_cpumask_set_cpu(cpu, nid, enable);
}
}
x86: delete __cpuinit usage from all x86 files The __cpuinit type of throwaway sections might have made sense some time ago when RAM was more constrained, but now the savings do not offset the cost and complications. For example, the fix in commit 5e427ec2d0 ("x86: Fix bit corruption at CPU resume time") is a good example of the nasty type of bugs that can be created with improper use of the various __init prefixes. After a discussion on LKML[1] it was decided that cpuinit should go the way of devinit and be phased out. Once all the users are gone, we can then finally remove the macros themselves from linux/init.h. Note that some harmless section mismatch warnings may result, since notify_cpu_starting() and cpu_up() are arch independent (kernel/cpu.c) are flagged as __cpuinit -- so if we remove the __cpuinit from arch specific callers, we will also get section mismatch warnings. As an intermediate step, we intend to turn the linux/init.h cpuinit content into no-ops as early as possible, since that will get rid of these warnings. In any case, they are temporary and harmless. This removes all the arch/x86 uses of the __cpuinit macros from all C files. x86 only had the one __CPUINIT used in assembly files, and it wasn't paired off with a .previous or a __FINIT, so we can delete it directly w/o any corresponding additional change there. [1] https://lkml.org/lkml/2013/5/20/589 Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Acked-by: Ingo Molnar <mingo@kernel.org> Acked-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: H. Peter Anvin <hpa@linux.intel.com> Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
2013-06-19 05:23:59 +07:00
void numa_add_cpu(int cpu)
{
numa_set_cpumask(cpu, true);
}
x86: delete __cpuinit usage from all x86 files The __cpuinit type of throwaway sections might have made sense some time ago when RAM was more constrained, but now the savings do not offset the cost and complications. For example, the fix in commit 5e427ec2d0 ("x86: Fix bit corruption at CPU resume time") is a good example of the nasty type of bugs that can be created with improper use of the various __init prefixes. After a discussion on LKML[1] it was decided that cpuinit should go the way of devinit and be phased out. Once all the users are gone, we can then finally remove the macros themselves from linux/init.h. Note that some harmless section mismatch warnings may result, since notify_cpu_starting() and cpu_up() are arch independent (kernel/cpu.c) are flagged as __cpuinit -- so if we remove the __cpuinit from arch specific callers, we will also get section mismatch warnings. As an intermediate step, we intend to turn the linux/init.h cpuinit content into no-ops as early as possible, since that will get rid of these warnings. In any case, they are temporary and harmless. This removes all the arch/x86 uses of the __cpuinit macros from all C files. x86 only had the one __CPUINIT used in assembly files, and it wasn't paired off with a .previous or a __FINIT, so we can delete it directly w/o any corresponding additional change there. [1] https://lkml.org/lkml/2013/5/20/589 Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Acked-by: Ingo Molnar <mingo@kernel.org> Acked-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: H. Peter Anvin <hpa@linux.intel.com> Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
2013-06-19 05:23:59 +07:00
void numa_remove_cpu(int cpu)
{
numa_set_cpumask(cpu, false);
}
#endif /* !CONFIG_DEBUG_PER_CPU_MAPS */