License cleanup: add SPDX GPL-2.0 license identifier to files with no license
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 21:07:57 +07:00
|
|
|
/* SPDX-License-Identifier: GPL-2.0 */
|
2017-02-09 00:51:30 +07:00
|
|
|
#ifndef _LINUX_SCHED_USER_H
|
|
|
|
#define _LINUX_SCHED_USER_H
|
|
|
|
|
2017-02-09 00:51:55 +07:00
|
|
|
#include <linux/uidgid.h>
|
|
|
|
#include <linux/atomic.h>
|
2018-08-22 11:55:38 +07:00
|
|
|
#include <linux/refcount.h>
|
2018-02-23 00:15:06 +07:00
|
|
|
#include <linux/ratelimit.h>
|
2017-02-09 00:51:30 +07:00
|
|
|
|
2017-02-02 16:22:42 +07:00
|
|
|
struct key;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Some day this will be a full-fledged user tracking system..
|
|
|
|
*/
|
|
|
|
struct user_struct {
|
2018-08-22 11:55:38 +07:00
|
|
|
refcount_t __count; /* reference count */
|
2017-02-02 16:22:42 +07:00
|
|
|
atomic_t processes; /* How many processes does this user have? */
|
|
|
|
atomic_t sigpending; /* How many pending signals does this user have? */
|
|
|
|
#ifdef CONFIG_FANOTIFY
|
|
|
|
atomic_t fanotify_listeners;
|
|
|
|
#endif
|
|
|
|
#ifdef CONFIG_EPOLL
|
|
|
|
atomic_long_t epoll_watches; /* The number of file descriptors currently watched */
|
|
|
|
#endif
|
|
|
|
#ifdef CONFIG_POSIX_MQUEUE
|
|
|
|
/* protected by mq_lock */
|
|
|
|
unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
|
|
|
|
#endif
|
|
|
|
unsigned long locked_shm; /* How many pages of mlocked shm ? */
|
|
|
|
unsigned long unix_inflight; /* How many files in flight in unix sockets */
|
|
|
|
atomic_long_t pipe_bufs; /* how many pages are allocated in pipe buffers */
|
|
|
|
|
|
|
|
#ifdef CONFIG_KEYS
|
|
|
|
struct key *uid_keyring; /* UID specific keyring */
|
|
|
|
struct key *session_keyring; /* UID's default session keyring */
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/* Hash table maintenance information */
|
|
|
|
struct hlist_node uidhash_node;
|
|
|
|
kuid_t uid;
|
|
|
|
|
2017-08-04 03:29:43 +07:00
|
|
|
#if defined(CONFIG_PERF_EVENTS) || defined(CONFIG_BPF_SYSCALL) || \
|
Add io_uring IO interface
The submission queue (SQ) and completion queue (CQ) rings are shared
between the application and the kernel. This eliminates the need to
copy data back and forth to submit and complete IO.
IO submissions use the io_uring_sqe data structure, and completions
are generated in the form of io_uring_cqe data structures. The SQ
ring is an index into the io_uring_sqe array, which makes it possible
to submit a batch of IOs without them being contiguous in the ring.
The CQ ring is always contiguous, as completion events are inherently
unordered, and hence any io_uring_cqe entry can point back to an
arbitrary submission.
Two new system calls are added for this:
io_uring_setup(entries, params)
Sets up an io_uring instance for doing async IO. On success,
returns a file descriptor that the application can mmap to
gain access to the SQ ring, CQ ring, and io_uring_sqes.
io_uring_enter(fd, to_submit, min_complete, flags, sigset, sigsetsize)
Initiates IO against the rings mapped to this fd, or waits for
them to complete, or both. The behavior is controlled by the
parameters passed in. If 'to_submit' is non-zero, then we'll
try and submit new IO. If IORING_ENTER_GETEVENTS is set, the
kernel will wait for 'min_complete' events, if they aren't
already available. It's valid to set IORING_ENTER_GETEVENTS
and 'min_complete' == 0 at the same time, this allows the
kernel to return already completed events without waiting
for them. This is useful only for polling, as for IRQ
driven IO, the application can just check the CQ ring
without entering the kernel.
With this setup, it's possible to do async IO with a single system
call. Future developments will enable polled IO with this interface,
and polled submission as well. The latter will enable an application
to do IO without doing ANY system calls at all.
For IRQ driven IO, an application only needs to enter the kernel for
completions if it wants to wait for them to occur.
Each io_uring is backed by a workqueue, to support buffered async IO
as well. We will only punt to an async context if the command would
need to wait for IO on the device side. Any data that can be accessed
directly in the page cache is done inline. This avoids the slowness
issue of usual threadpools, since cached data is accessed as quickly
as a sync interface.
Sample application: http://git.kernel.dk/cgit/fio/plain/t/io_uring.c
Reviewed-by: Hannes Reinecke <hare@suse.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2019-01-08 00:46:33 +07:00
|
|
|
defined(CONFIG_NET) || defined(CONFIG_IO_URING)
|
2017-02-02 16:22:42 +07:00
|
|
|
atomic_long_t locked_vm;
|
|
|
|
#endif
|
2018-02-23 00:15:06 +07:00
|
|
|
|
|
|
|
/* Miscellaneous per-user rate limit */
|
|
|
|
struct ratelimit_state ratelimit;
|
2017-02-02 16:22:42 +07:00
|
|
|
};
|
|
|
|
|
|
|
|
extern int uids_sysfs_init(void);
|
|
|
|
|
|
|
|
extern struct user_struct *find_user(kuid_t);
|
|
|
|
|
|
|
|
extern struct user_struct root_user;
|
|
|
|
#define INIT_USER (&root_user)
|
|
|
|
|
|
|
|
|
|
|
|
/* per-UID process charging. */
|
|
|
|
extern struct user_struct * alloc_uid(kuid_t);
|
|
|
|
static inline struct user_struct *get_uid(struct user_struct *u)
|
|
|
|
{
|
2018-08-22 11:55:38 +07:00
|
|
|
refcount_inc(&u->__count);
|
2017-02-02 16:22:42 +07:00
|
|
|
return u;
|
|
|
|
}
|
|
|
|
extern void free_uid(struct user_struct *);
|
|
|
|
|
2017-02-09 00:51:30 +07:00
|
|
|
#endif /* _LINUX_SCHED_USER_H */
|