linux_dsm_epyc7002/arch/x86/include/asm/mwait.h

146 lines
4.4 KiB
C
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 21:07:57 +07:00
/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _ASM_X86_MWAIT_H
#define _ASM_X86_MWAIT_H
#include <linux/sched.h>
#include <linux/sched/idle.h>
#include <asm/cpufeature.h>
x86/speculation/mds: Conditionally clear CPU buffers on idle entry Add a static key which controls the invocation of the CPU buffer clear mechanism on idle entry. This is independent of other MDS mitigations because the idle entry invocation to mitigate the potential leakage due to store buffer repartitioning is only necessary on SMT systems. Add the actual invocations to the different halt/mwait variants which covers all usage sites. mwaitx is not patched as it's not available on Intel CPUs. The buffer clear is only invoked before entering the C-State to prevent that stale data from the idling CPU is spilled to the Hyper-Thread sibling after the Store buffer got repartitioned and all entries are available to the non idle sibling. When coming out of idle the store buffer is partitioned again so each sibling has half of it available. Now CPU which returned from idle could be speculatively exposed to contents of the sibling, but the buffers are flushed either on exit to user space or on VMENTER. When later on conditional buffer clearing is implemented on top of this, then there is no action required either because before returning to user space the context switch will set the condition flag which causes a flush on the return to user path. Note, that the buffer clearing on idle is only sensible on CPUs which are solely affected by MSBDS and not any other variant of MDS because the other MDS variants cannot be mitigated when SMT is enabled, so the buffer clearing on idle would be a window dressing exercise. This intentionally does not handle the case in the acpi/processor_idle driver which uses the legacy IO port interface for C-State transitions for two reasons: - The acpi/processor_idle driver was replaced by the intel_idle driver almost a decade ago. Anything Nehalem upwards supports it and defaults to that new driver. - The legacy IO port interface is likely to be used on older and therefore unaffected CPUs or on systems which do not receive microcode updates anymore, so there is no point in adding that. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Borislav Petkov <bp@suse.de> Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Reviewed-by: Frederic Weisbecker <frederic@kernel.org> Reviewed-by: Jon Masters <jcm@redhat.com> Tested-by: Jon Masters <jcm@redhat.com>
2019-02-19 05:04:01 +07:00
#include <asm/nospec-branch.h>
#define MWAIT_SUBSTATE_MASK 0xf
#define MWAIT_CSTATE_MASK 0xf
#define MWAIT_SUBSTATE_SIZE 4
#define MWAIT_HINT2CSTATE(hint) (((hint) >> MWAIT_SUBSTATE_SIZE) & MWAIT_CSTATE_MASK)
#define MWAIT_HINT2SUBSTATE(hint) ((hint) & MWAIT_CSTATE_MASK)
#define CPUID_MWAIT_LEAF 5
#define CPUID5_ECX_EXTENSIONS_SUPPORTED 0x1
#define CPUID5_ECX_INTERRUPT_BREAK 0x2
#define MWAIT_ECX_INTERRUPT_BREAK 0x1
x86/asm: Add MONITORX/MWAITX instruction support AMD Carrizo processors (Family 15h, Models 60h-6fh) added a new feature called MWAITX (MWAIT with extensions) as an extension to MONITOR/MWAIT. This new instruction controls a configurable timer which causes the core to exit wait state on timer expiration, in addition to "normal" MWAIT condition of reading from a monitored VA. Compared to MONITOR/MWAIT, there are minor differences in opcode and input parameters: MWAITX ECX[1]: enable timer if set MWAITX EBX[31:0]: max wait time expressed in SW P0 clocks == TSC. The software P0 frequency is the same as the TSC frequency. MWAIT MWAITX opcode 0f 01 c9 | 0f 01 fb ECX[0] value of RFLAGS.IF seen by instruction ECX[1] unused/#GP if set | enable timer if set ECX[31:2] unused/#GP if set EAX unused (reserve for hint) EBX[31:0] unused | max wait time (SW P0 == TSC) MONITOR MONITORX opcode 0f 01 c8 | 0f 01 fa EAX (logical) address to monitor ECX #GP if not zero Max timeout = EBX/(TSC frequency) Signed-off-by: Huang Rui <ray.huang@amd.com> Signed-off-by: Borislav Petkov <bp@suse.de> Cc: Aaron Lu <aaron.lu@intel.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Andreas Herrmann <herrmann.der.user@gmail.com> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Dirk Brandewie <dirk.j.brandewie@intel.com> Cc: Fengguang Wu <fengguang.wu@intel.com> Cc: Frédéric Weisbecker <fweisbec@gmail.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: John Stultz <john.stultz@linaro.org> Cc: Josh Triplett <josh@joshtriplett.org> Cc: Len Brown <lenb@kernel.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <bitbucket@online.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rafael J. Wysocki <rjw@rjwysocki.net> Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Tony Li <tony.li@amd.com> Link: http://lkml.kernel.org/r/1439201994-28067-3-git-send-email-bp@alien8.de Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-08-10 17:19:53 +07:00
#define MWAITX_ECX_TIMER_ENABLE BIT(1)
#define MWAITX_MAX_WAIT_CYCLES UINT_MAX
#define MWAITX_DISABLE_CSTATES 0xf0
#define TPAUSE_C01_STATE 1
#define TPAUSE_C02_STATE 0
static inline void __monitor(const void *eax, unsigned long ecx,
unsigned long edx)
{
/* "monitor %eax, %ecx, %edx;" */
asm volatile(".byte 0x0f, 0x01, 0xc8;"
:: "a" (eax), "c" (ecx), "d"(edx));
}
x86/asm: Add MONITORX/MWAITX instruction support AMD Carrizo processors (Family 15h, Models 60h-6fh) added a new feature called MWAITX (MWAIT with extensions) as an extension to MONITOR/MWAIT. This new instruction controls a configurable timer which causes the core to exit wait state on timer expiration, in addition to "normal" MWAIT condition of reading from a monitored VA. Compared to MONITOR/MWAIT, there are minor differences in opcode and input parameters: MWAITX ECX[1]: enable timer if set MWAITX EBX[31:0]: max wait time expressed in SW P0 clocks == TSC. The software P0 frequency is the same as the TSC frequency. MWAIT MWAITX opcode 0f 01 c9 | 0f 01 fb ECX[0] value of RFLAGS.IF seen by instruction ECX[1] unused/#GP if set | enable timer if set ECX[31:2] unused/#GP if set EAX unused (reserve for hint) EBX[31:0] unused | max wait time (SW P0 == TSC) MONITOR MONITORX opcode 0f 01 c8 | 0f 01 fa EAX (logical) address to monitor ECX #GP if not zero Max timeout = EBX/(TSC frequency) Signed-off-by: Huang Rui <ray.huang@amd.com> Signed-off-by: Borislav Petkov <bp@suse.de> Cc: Aaron Lu <aaron.lu@intel.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Andreas Herrmann <herrmann.der.user@gmail.com> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Dirk Brandewie <dirk.j.brandewie@intel.com> Cc: Fengguang Wu <fengguang.wu@intel.com> Cc: Frédéric Weisbecker <fweisbec@gmail.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: John Stultz <john.stultz@linaro.org> Cc: Josh Triplett <josh@joshtriplett.org> Cc: Len Brown <lenb@kernel.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <bitbucket@online.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rafael J. Wysocki <rjw@rjwysocki.net> Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Tony Li <tony.li@amd.com> Link: http://lkml.kernel.org/r/1439201994-28067-3-git-send-email-bp@alien8.de Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-08-10 17:19:53 +07:00
static inline void __monitorx(const void *eax, unsigned long ecx,
unsigned long edx)
{
/* "monitorx %eax, %ecx, %edx;" */
asm volatile(".byte 0x0f, 0x01, 0xfa;"
:: "a" (eax), "c" (ecx), "d"(edx));
}
static inline void __mwait(unsigned long eax, unsigned long ecx)
{
x86/speculation/mds: Conditionally clear CPU buffers on idle entry Add a static key which controls the invocation of the CPU buffer clear mechanism on idle entry. This is independent of other MDS mitigations because the idle entry invocation to mitigate the potential leakage due to store buffer repartitioning is only necessary on SMT systems. Add the actual invocations to the different halt/mwait variants which covers all usage sites. mwaitx is not patched as it's not available on Intel CPUs. The buffer clear is only invoked before entering the C-State to prevent that stale data from the idling CPU is spilled to the Hyper-Thread sibling after the Store buffer got repartitioned and all entries are available to the non idle sibling. When coming out of idle the store buffer is partitioned again so each sibling has half of it available. Now CPU which returned from idle could be speculatively exposed to contents of the sibling, but the buffers are flushed either on exit to user space or on VMENTER. When later on conditional buffer clearing is implemented on top of this, then there is no action required either because before returning to user space the context switch will set the condition flag which causes a flush on the return to user path. Note, that the buffer clearing on idle is only sensible on CPUs which are solely affected by MSBDS and not any other variant of MDS because the other MDS variants cannot be mitigated when SMT is enabled, so the buffer clearing on idle would be a window dressing exercise. This intentionally does not handle the case in the acpi/processor_idle driver which uses the legacy IO port interface for C-State transitions for two reasons: - The acpi/processor_idle driver was replaced by the intel_idle driver almost a decade ago. Anything Nehalem upwards supports it and defaults to that new driver. - The legacy IO port interface is likely to be used on older and therefore unaffected CPUs or on systems which do not receive microcode updates anymore, so there is no point in adding that. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Borislav Petkov <bp@suse.de> Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Reviewed-by: Frederic Weisbecker <frederic@kernel.org> Reviewed-by: Jon Masters <jcm@redhat.com> Tested-by: Jon Masters <jcm@redhat.com>
2019-02-19 05:04:01 +07:00
mds_idle_clear_cpu_buffers();
/* "mwait %eax, %ecx;" */
asm volatile(".byte 0x0f, 0x01, 0xc9;"
:: "a" (eax), "c" (ecx));
}
x86/asm: Add MONITORX/MWAITX instruction support AMD Carrizo processors (Family 15h, Models 60h-6fh) added a new feature called MWAITX (MWAIT with extensions) as an extension to MONITOR/MWAIT. This new instruction controls a configurable timer which causes the core to exit wait state on timer expiration, in addition to "normal" MWAIT condition of reading from a monitored VA. Compared to MONITOR/MWAIT, there are minor differences in opcode and input parameters: MWAITX ECX[1]: enable timer if set MWAITX EBX[31:0]: max wait time expressed in SW P0 clocks == TSC. The software P0 frequency is the same as the TSC frequency. MWAIT MWAITX opcode 0f 01 c9 | 0f 01 fb ECX[0] value of RFLAGS.IF seen by instruction ECX[1] unused/#GP if set | enable timer if set ECX[31:2] unused/#GP if set EAX unused (reserve for hint) EBX[31:0] unused | max wait time (SW P0 == TSC) MONITOR MONITORX opcode 0f 01 c8 | 0f 01 fa EAX (logical) address to monitor ECX #GP if not zero Max timeout = EBX/(TSC frequency) Signed-off-by: Huang Rui <ray.huang@amd.com> Signed-off-by: Borislav Petkov <bp@suse.de> Cc: Aaron Lu <aaron.lu@intel.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Andreas Herrmann <herrmann.der.user@gmail.com> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Dirk Brandewie <dirk.j.brandewie@intel.com> Cc: Fengguang Wu <fengguang.wu@intel.com> Cc: Frédéric Weisbecker <fweisbec@gmail.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: John Stultz <john.stultz@linaro.org> Cc: Josh Triplett <josh@joshtriplett.org> Cc: Len Brown <lenb@kernel.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <bitbucket@online.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rafael J. Wysocki <rjw@rjwysocki.net> Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Tony Li <tony.li@amd.com> Link: http://lkml.kernel.org/r/1439201994-28067-3-git-send-email-bp@alien8.de Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-08-10 17:19:53 +07:00
/*
* MWAITX allows for a timer expiration to get the core out a wait state in
* addition to the default MWAIT exit condition of a store appearing at a
* monitored virtual address.
*
* Registers:
*
* MWAITX ECX[1]: enable timer if set
* MWAITX EBX[31:0]: max wait time expressed in SW P0 clocks. The software P0
* frequency is the same as the TSC frequency.
*
* Below is a comparison between MWAIT and MWAITX on AMD processors:
*
* MWAIT MWAITX
* opcode 0f 01 c9 | 0f 01 fb
* ECX[0] value of RFLAGS.IF seen by instruction
* ECX[1] unused/#GP if set | enable timer if set
* ECX[31:2] unused/#GP if set
* EAX unused (reserve for hint)
* EBX[31:0] unused | max wait time (P0 clocks)
*
* MONITOR MONITORX
* opcode 0f 01 c8 | 0f 01 fa
* EAX (logical) address to monitor
* ECX #GP if not zero
*/
static inline void __mwaitx(unsigned long eax, unsigned long ebx,
unsigned long ecx)
{
x86/speculation/mds: Conditionally clear CPU buffers on idle entry Add a static key which controls the invocation of the CPU buffer clear mechanism on idle entry. This is independent of other MDS mitigations because the idle entry invocation to mitigate the potential leakage due to store buffer repartitioning is only necessary on SMT systems. Add the actual invocations to the different halt/mwait variants which covers all usage sites. mwaitx is not patched as it's not available on Intel CPUs. The buffer clear is only invoked before entering the C-State to prevent that stale data from the idling CPU is spilled to the Hyper-Thread sibling after the Store buffer got repartitioned and all entries are available to the non idle sibling. When coming out of idle the store buffer is partitioned again so each sibling has half of it available. Now CPU which returned from idle could be speculatively exposed to contents of the sibling, but the buffers are flushed either on exit to user space or on VMENTER. When later on conditional buffer clearing is implemented on top of this, then there is no action required either because before returning to user space the context switch will set the condition flag which causes a flush on the return to user path. Note, that the buffer clearing on idle is only sensible on CPUs which are solely affected by MSBDS and not any other variant of MDS because the other MDS variants cannot be mitigated when SMT is enabled, so the buffer clearing on idle would be a window dressing exercise. This intentionally does not handle the case in the acpi/processor_idle driver which uses the legacy IO port interface for C-State transitions for two reasons: - The acpi/processor_idle driver was replaced by the intel_idle driver almost a decade ago. Anything Nehalem upwards supports it and defaults to that new driver. - The legacy IO port interface is likely to be used on older and therefore unaffected CPUs or on systems which do not receive microcode updates anymore, so there is no point in adding that. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Borislav Petkov <bp@suse.de> Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Reviewed-by: Frederic Weisbecker <frederic@kernel.org> Reviewed-by: Jon Masters <jcm@redhat.com> Tested-by: Jon Masters <jcm@redhat.com>
2019-02-19 05:04:01 +07:00
/* No MDS buffer clear as this is AMD/HYGON only */
x86/asm: Add MONITORX/MWAITX instruction support AMD Carrizo processors (Family 15h, Models 60h-6fh) added a new feature called MWAITX (MWAIT with extensions) as an extension to MONITOR/MWAIT. This new instruction controls a configurable timer which causes the core to exit wait state on timer expiration, in addition to "normal" MWAIT condition of reading from a monitored VA. Compared to MONITOR/MWAIT, there are minor differences in opcode and input parameters: MWAITX ECX[1]: enable timer if set MWAITX EBX[31:0]: max wait time expressed in SW P0 clocks == TSC. The software P0 frequency is the same as the TSC frequency. MWAIT MWAITX opcode 0f 01 c9 | 0f 01 fb ECX[0] value of RFLAGS.IF seen by instruction ECX[1] unused/#GP if set | enable timer if set ECX[31:2] unused/#GP if set EAX unused (reserve for hint) EBX[31:0] unused | max wait time (SW P0 == TSC) MONITOR MONITORX opcode 0f 01 c8 | 0f 01 fa EAX (logical) address to monitor ECX #GP if not zero Max timeout = EBX/(TSC frequency) Signed-off-by: Huang Rui <ray.huang@amd.com> Signed-off-by: Borislav Petkov <bp@suse.de> Cc: Aaron Lu <aaron.lu@intel.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Andreas Herrmann <herrmann.der.user@gmail.com> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Dirk Brandewie <dirk.j.brandewie@intel.com> Cc: Fengguang Wu <fengguang.wu@intel.com> Cc: Frédéric Weisbecker <fweisbec@gmail.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: John Stultz <john.stultz@linaro.org> Cc: Josh Triplett <josh@joshtriplett.org> Cc: Len Brown <lenb@kernel.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <bitbucket@online.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rafael J. Wysocki <rjw@rjwysocki.net> Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Tony Li <tony.li@amd.com> Link: http://lkml.kernel.org/r/1439201994-28067-3-git-send-email-bp@alien8.de Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-08-10 17:19:53 +07:00
/* "mwaitx %eax, %ebx, %ecx;" */
asm volatile(".byte 0x0f, 0x01, 0xfb;"
:: "a" (eax), "b" (ebx), "c" (ecx));
}
sched/idle/x86: Restore mwait_idle() to fix boot hangs, to improve power savings and to improve performance In Linux-3.9 we removed the mwait_idle() loop: 69fb3676df33 ("x86 idle: remove mwait_idle() and "idle=mwait" cmdline param") The reasoning was that modern machines should be sufficiently happy during the boot process using the default_idle() HALT loop, until cpuidle loads and either acpi_idle or intel_idle invoke the newer MWAIT-with-hints idle loop. But two machines reported problems: 1. Certain Core2-era machines support MWAIT-C1 and HALT only. MWAIT-C1 is preferred for optimal power and performance. But if they support just C1, cpuidle never loads and so they use the boot-time default idle loop forever. 2. Some laptops will boot-hang if HALT is used, but will boot successfully if MWAIT is used. This appears to be a hidden assumption in BIOS SMI, that is presumably valid on the proprietary OS where the BIOS was validated. https://bugzilla.kernel.org/show_bug.cgi?id=60770 So here we effectively revert the patch above, restoring the mwait_idle() loop. However, we don't bother restoring the idle=mwait cmdline parameter, since it appears to add no value. Maintainer notes: For 3.9, simply revert 69fb3676df for 3.10, patch -F3 applies, fuzz needed due to __cpuinit use in context For 3.11, 3.12, 3.13, this patch applies cleanly Tested-by: Mike Galbraith <bitbucket@online.de> Signed-off-by: Len Brown <len.brown@intel.com> Acked-by: Mike Galbraith <bitbucket@online.de> Cc: <stable@vger.kernel.org> # 3.9+ Cc: Borislav Petkov <bp@alien8.de> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Ian Malone <ibmalone@gmail.com> Cc: Josh Boyer <jwboyer@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/345254a551eb5a6a866e048d7ab570fd2193aca4.1389763084.git.len.brown@intel.com [ Ported to recent kernels. ] Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-01-15 12:37:34 +07:00
static inline void __sti_mwait(unsigned long eax, unsigned long ecx)
{
trace_hardirqs_on();
mds_idle_clear_cpu_buffers();
sched/idle/x86: Restore mwait_idle() to fix boot hangs, to improve power savings and to improve performance In Linux-3.9 we removed the mwait_idle() loop: 69fb3676df33 ("x86 idle: remove mwait_idle() and "idle=mwait" cmdline param") The reasoning was that modern machines should be sufficiently happy during the boot process using the default_idle() HALT loop, until cpuidle loads and either acpi_idle or intel_idle invoke the newer MWAIT-with-hints idle loop. But two machines reported problems: 1. Certain Core2-era machines support MWAIT-C1 and HALT only. MWAIT-C1 is preferred for optimal power and performance. But if they support just C1, cpuidle never loads and so they use the boot-time default idle loop forever. 2. Some laptops will boot-hang if HALT is used, but will boot successfully if MWAIT is used. This appears to be a hidden assumption in BIOS SMI, that is presumably valid on the proprietary OS where the BIOS was validated. https://bugzilla.kernel.org/show_bug.cgi?id=60770 So here we effectively revert the patch above, restoring the mwait_idle() loop. However, we don't bother restoring the idle=mwait cmdline parameter, since it appears to add no value. Maintainer notes: For 3.9, simply revert 69fb3676df for 3.10, patch -F3 applies, fuzz needed due to __cpuinit use in context For 3.11, 3.12, 3.13, this patch applies cleanly Tested-by: Mike Galbraith <bitbucket@online.de> Signed-off-by: Len Brown <len.brown@intel.com> Acked-by: Mike Galbraith <bitbucket@online.de> Cc: <stable@vger.kernel.org> # 3.9+ Cc: Borislav Petkov <bp@alien8.de> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Ian Malone <ibmalone@gmail.com> Cc: Josh Boyer <jwboyer@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/345254a551eb5a6a866e048d7ab570fd2193aca4.1389763084.git.len.brown@intel.com [ Ported to recent kernels. ] Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-01-15 12:37:34 +07:00
/* "mwait %eax, %ecx;" */
asm volatile("sti; .byte 0x0f, 0x01, 0xc9;"
:: "a" (eax), "c" (ecx));
}
/*
* This uses new MONITOR/MWAIT instructions on P4 processors with PNI,
* which can obviate IPI to trigger checking of need_resched.
* We execute MONITOR against need_resched and enter optimized wait state
* through MWAIT. Whenever someone changes need_resched, we would be woken
* up from MWAIT (without an IPI).
*
* New with Core Duo processors, MWAIT can take some hints based on CPU
* capability.
*/
static inline void mwait_idle_with_hints(unsigned long eax, unsigned long ecx)
{
if (static_cpu_has_bug(X86_BUG_MONITOR) || !current_set_polling_and_test()) {
if (static_cpu_has_bug(X86_BUG_CLFLUSH_MONITOR)) {
mb();
clflush((void *)&current_thread_info()->flags);
mb();
}
__monitor((void *)&current_thread_info()->flags, 0, 0);
if (!need_resched())
__mwait(eax, ecx);
}
current_clr_polling();
}
/*
* Caller can specify whether to enter C0.1 (low latency, less
* power saving) or C0.2 state (saves more power, but longer wakeup
* latency). This may be overridden by the IA32_UMWAIT_CONTROL MSR
* which can force requests for C0.2 to be downgraded to C0.1.
*/
static inline void __tpause(u32 ecx, u32 edx, u32 eax)
{
/* "tpause %ecx, %edx, %eax;" */
#ifdef CONFIG_AS_TPAUSE
asm volatile("tpause %%ecx\n"
:
: "c"(ecx), "d"(edx), "a"(eax));
#else
asm volatile(".byte 0x66, 0x0f, 0xae, 0xf1\t\n"
:
: "c"(ecx), "d"(edx), "a"(eax));
#endif
}
#endif /* _ASM_X86_MWAIT_H */