page_pool: refurbish version of page_pool code
Need a fast page recycle mechanism for ndo_xdp_xmit API for returning
pages on DMA-TX completion time, which have good cross CPU
performance, given DMA-TX completion time can happen on a remote CPU.
Refurbish my page_pool code, that was presented[1] at MM-summit 2016.
Adapted page_pool code to not depend the page allocator and
integration into struct page. The DMA mapping feature is kept,
even-though it will not be activated/used in this patchset.
[1] http://people.netfilter.org/hawk/presentations/MM-summit2016/generic_page_pool_mm_summit2016.pdf
V2: Adjustments requested by Tariq
- Changed page_pool_create return codes, don't return NULL, only
ERR_PTR, as this simplifies err handling in drivers.
V4: many small improvements and cleanups
- Add DOC comment section, that can be used by kernel-doc
- Improve fallback mode, to work better with refcnt based recycling
e.g. remove a WARN as pointed out by Tariq
e.g. quicker fallback if ptr_ring is empty.
V5: Fixed SPDX license as pointed out by Alexei
V6: Adjustments requested by Eric Dumazet
- Adjust ____cacheline_aligned_in_smp usage/placement
- Move rcu_head in struct page_pool
- Free pages quicker on destroy, minimize resources delayed an RCU period
- Remove code for forward/backward compat ABI interface
V8: Issues found by kbuild test robot
- Address sparse should be static warnings
- Only compile+link when a driver use/select page_pool,
mlx5 selects CONFIG_PAGE_POOL, although its first used in two patches
Signed-off-by: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2018-04-17 21:46:17 +07:00
|
|
|
/* SPDX-License-Identifier: GPL-2.0
|
|
|
|
*
|
|
|
|
* page_pool.c
|
|
|
|
* Author: Jesper Dangaard Brouer <netoptimizer@brouer.com>
|
|
|
|
* Copyright (C) 2016 Red Hat, Inc.
|
|
|
|
*/
|
|
|
|
#include <linux/types.h>
|
|
|
|
#include <linux/kernel.h>
|
|
|
|
#include <linux/slab.h>
|
|
|
|
|
|
|
|
#include <net/page_pool.h>
|
|
|
|
#include <linux/dma-direction.h>
|
|
|
|
#include <linux/dma-mapping.h>
|
|
|
|
#include <linux/page-flags.h>
|
|
|
|
#include <linux/mm.h> /* for __put_page() */
|
|
|
|
|
|
|
|
static int page_pool_init(struct page_pool *pool,
|
|
|
|
const struct page_pool_params *params)
|
|
|
|
{
|
|
|
|
unsigned int ring_qsize = 1024; /* Default */
|
|
|
|
|
|
|
|
memcpy(&pool->p, params, sizeof(pool->p));
|
|
|
|
|
|
|
|
/* Validate only known flags were used */
|
|
|
|
if (pool->p.flags & ~(PP_FLAG_ALL))
|
|
|
|
return -EINVAL;
|
|
|
|
|
|
|
|
if (pool->p.pool_size)
|
|
|
|
ring_qsize = pool->p.pool_size;
|
|
|
|
|
|
|
|
/* Sanity limit mem that can be pinned down */
|
|
|
|
if (ring_qsize > 32768)
|
|
|
|
return -E2BIG;
|
|
|
|
|
|
|
|
/* DMA direction is either DMA_FROM_DEVICE or DMA_BIDIRECTIONAL.
|
|
|
|
* DMA_BIDIRECTIONAL is for allowing page used for DMA sending,
|
|
|
|
* which is the XDP_TX use-case.
|
|
|
|
*/
|
|
|
|
if ((pool->p.dma_dir != DMA_FROM_DEVICE) &&
|
|
|
|
(pool->p.dma_dir != DMA_BIDIRECTIONAL))
|
|
|
|
return -EINVAL;
|
|
|
|
|
|
|
|
if (ptr_ring_init(&pool->ring, ring_qsize, GFP_KERNEL) < 0)
|
|
|
|
return -ENOMEM;
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
struct page_pool *page_pool_create(const struct page_pool_params *params)
|
|
|
|
{
|
|
|
|
struct page_pool *pool;
|
|
|
|
int err = 0;
|
|
|
|
|
|
|
|
pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, params->nid);
|
|
|
|
if (!pool)
|
|
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
|
|
|
|
err = page_pool_init(pool, params);
|
|
|
|
if (err < 0) {
|
|
|
|
pr_warn("%s() gave up with errno %d\n", __func__, err);
|
|
|
|
kfree(pool);
|
|
|
|
return ERR_PTR(err);
|
|
|
|
}
|
|
|
|
return pool;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(page_pool_create);
|
|
|
|
|
|
|
|
/* fast path */
|
|
|
|
static struct page *__page_pool_get_cached(struct page_pool *pool)
|
|
|
|
{
|
|
|
|
struct ptr_ring *r = &pool->ring;
|
|
|
|
struct page *page;
|
|
|
|
|
|
|
|
/* Quicker fallback, avoid locks when ring is empty */
|
|
|
|
if (__ptr_ring_empty(r))
|
|
|
|
return NULL;
|
|
|
|
|
|
|
|
/* Test for safe-context, caller should provide this guarantee */
|
|
|
|
if (likely(in_serving_softirq())) {
|
|
|
|
if (likely(pool->alloc.count)) {
|
|
|
|
/* Fast-path */
|
|
|
|
page = pool->alloc.cache[--pool->alloc.count];
|
|
|
|
return page;
|
|
|
|
}
|
|
|
|
/* Slower-path: Alloc array empty, time to refill
|
|
|
|
*
|
|
|
|
* Open-coded bulk ptr_ring consumer.
|
|
|
|
*
|
|
|
|
* Discussion: the ring consumer lock is not really
|
|
|
|
* needed due to the softirq/NAPI protection, but
|
|
|
|
* later need the ability to reclaim pages on the
|
|
|
|
* ring. Thus, keeping the locks.
|
|
|
|
*/
|
|
|
|
spin_lock(&r->consumer_lock);
|
|
|
|
while ((page = __ptr_ring_consume(r))) {
|
|
|
|
if (pool->alloc.count == PP_ALLOC_CACHE_REFILL)
|
|
|
|
break;
|
|
|
|
pool->alloc.cache[pool->alloc.count++] = page;
|
|
|
|
}
|
|
|
|
spin_unlock(&r->consumer_lock);
|
|
|
|
return page;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Slow-path: Get page from locked ring queue */
|
|
|
|
page = ptr_ring_consume(&pool->ring);
|
|
|
|
return page;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* slow path */
|
|
|
|
noinline
|
|
|
|
static struct page *__page_pool_alloc_pages_slow(struct page_pool *pool,
|
|
|
|
gfp_t _gfp)
|
|
|
|
{
|
|
|
|
struct page *page;
|
|
|
|
gfp_t gfp = _gfp;
|
|
|
|
dma_addr_t dma;
|
|
|
|
|
|
|
|
/* We could always set __GFP_COMP, and avoid this branch, as
|
|
|
|
* prep_new_page() can handle order-0 with __GFP_COMP.
|
|
|
|
*/
|
|
|
|
if (pool->p.order)
|
|
|
|
gfp |= __GFP_COMP;
|
|
|
|
|
|
|
|
/* FUTURE development:
|
|
|
|
*
|
|
|
|
* Current slow-path essentially falls back to single page
|
|
|
|
* allocations, which doesn't improve performance. This code
|
|
|
|
* need bulk allocation support from the page allocator code.
|
|
|
|
*/
|
|
|
|
|
|
|
|
/* Cache was empty, do real allocation */
|
|
|
|
page = alloc_pages_node(pool->p.nid, gfp, pool->p.order);
|
|
|
|
if (!page)
|
|
|
|
return NULL;
|
|
|
|
|
|
|
|
if (!(pool->p.flags & PP_FLAG_DMA_MAP))
|
|
|
|
goto skip_dma_map;
|
|
|
|
|
|
|
|
/* Setup DMA mapping: use page->private for DMA-addr
|
|
|
|
* This mapping is kept for lifetime of page, until leaving pool.
|
|
|
|
*/
|
|
|
|
dma = dma_map_page(pool->p.dev, page, 0,
|
|
|
|
(PAGE_SIZE << pool->p.order),
|
|
|
|
pool->p.dma_dir);
|
|
|
|
if (dma_mapping_error(pool->p.dev, dma)) {
|
|
|
|
put_page(page);
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
set_page_private(page, dma); /* page->private = dma; */
|
|
|
|
|
|
|
|
skip_dma_map:
|
|
|
|
/* When page just alloc'ed is should/must have refcnt 1. */
|
|
|
|
return page;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* For using page_pool replace: alloc_pages() API calls, but provide
|
|
|
|
* synchronization guarantee for allocation side.
|
|
|
|
*/
|
|
|
|
struct page *page_pool_alloc_pages(struct page_pool *pool, gfp_t gfp)
|
|
|
|
{
|
|
|
|
struct page *page;
|
|
|
|
|
|
|
|
/* Fast-path: Get a page from cache */
|
|
|
|
page = __page_pool_get_cached(pool);
|
|
|
|
if (page)
|
|
|
|
return page;
|
|
|
|
|
|
|
|
/* Slow-path: cache empty, do real allocation */
|
|
|
|
page = __page_pool_alloc_pages_slow(pool, gfp);
|
|
|
|
return page;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(page_pool_alloc_pages);
|
|
|
|
|
|
|
|
/* Cleanup page_pool state from page */
|
|
|
|
static void __page_pool_clean_page(struct page_pool *pool,
|
|
|
|
struct page *page)
|
|
|
|
{
|
|
|
|
if (!(pool->p.flags & PP_FLAG_DMA_MAP))
|
|
|
|
return;
|
|
|
|
|
|
|
|
/* DMA unmap */
|
|
|
|
dma_unmap_page(pool->p.dev, page_private(page),
|
|
|
|
PAGE_SIZE << pool->p.order, pool->p.dma_dir);
|
|
|
|
set_page_private(page, 0);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Return a page to the page allocator, cleaning up our state */
|
|
|
|
static void __page_pool_return_page(struct page_pool *pool, struct page *page)
|
|
|
|
{
|
|
|
|
__page_pool_clean_page(pool, page);
|
|
|
|
put_page(page);
|
|
|
|
/* An optimization would be to call __free_pages(page, pool->p.order)
|
|
|
|
* knowing page is not part of page-cache (thus avoiding a
|
|
|
|
* __page_cache_release() call).
|
|
|
|
*/
|
|
|
|
}
|
|
|
|
|
|
|
|
static bool __page_pool_recycle_into_ring(struct page_pool *pool,
|
|
|
|
struct page *page)
|
|
|
|
{
|
|
|
|
int ret;
|
|
|
|
/* BH protection not needed if current is serving softirq */
|
|
|
|
if (in_serving_softirq())
|
|
|
|
ret = ptr_ring_produce(&pool->ring, page);
|
|
|
|
else
|
|
|
|
ret = ptr_ring_produce_bh(&pool->ring, page);
|
|
|
|
|
|
|
|
return (ret == 0) ? true : false;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Only allow direct recycling in special circumstances, into the
|
|
|
|
* alloc side cache. E.g. during RX-NAPI processing for XDP_DROP use-case.
|
|
|
|
*
|
|
|
|
* Caller must provide appropriate safe context.
|
|
|
|
*/
|
|
|
|
static bool __page_pool_recycle_direct(struct page *page,
|
|
|
|
struct page_pool *pool)
|
|
|
|
{
|
|
|
|
if (unlikely(pool->alloc.count == PP_ALLOC_CACHE_SIZE))
|
|
|
|
return false;
|
|
|
|
|
|
|
|
/* Caller MUST have verified/know (page_ref_count(page) == 1) */
|
|
|
|
pool->alloc.cache[pool->alloc.count++] = page;
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
void __page_pool_put_page(struct page_pool *pool,
|
|
|
|
struct page *page, bool allow_direct)
|
|
|
|
{
|
|
|
|
/* This allocator is optimized for the XDP mode that uses
|
|
|
|
* one-frame-per-page, but have fallbacks that act like the
|
|
|
|
* regular page allocator APIs.
|
|
|
|
*
|
|
|
|
* refcnt == 1 means page_pool owns page, and can recycle it.
|
|
|
|
*/
|
|
|
|
if (likely(page_ref_count(page) == 1)) {
|
|
|
|
/* Read barrier done in page_ref_count / READ_ONCE */
|
|
|
|
|
|
|
|
if (allow_direct && in_serving_softirq())
|
|
|
|
if (__page_pool_recycle_direct(page, pool))
|
|
|
|
return;
|
|
|
|
|
|
|
|
if (!__page_pool_recycle_into_ring(pool, page)) {
|
|
|
|
/* Cache full, fallback to free pages */
|
|
|
|
__page_pool_return_page(pool, page);
|
|
|
|
}
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
/* Fallback/non-XDP mode: API user have elevated refcnt.
|
|
|
|
*
|
|
|
|
* Many drivers split up the page into fragments, and some
|
|
|
|
* want to keep doing this to save memory and do refcnt based
|
|
|
|
* recycling. Support this use case too, to ease drivers
|
|
|
|
* switching between XDP/non-XDP.
|
|
|
|
*
|
|
|
|
* In-case page_pool maintains the DMA mapping, API user must
|
|
|
|
* call page_pool_put_page once. In this elevated refcnt
|
|
|
|
* case, the DMA is unmapped/released, as driver is likely
|
|
|
|
* doing refcnt based recycle tricks, meaning another process
|
|
|
|
* will be invoking put_page.
|
|
|
|
*/
|
|
|
|
__page_pool_clean_page(pool, page);
|
|
|
|
put_page(page);
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(__page_pool_put_page);
|
|
|
|
|
|
|
|
static void __page_pool_empty_ring(struct page_pool *pool)
|
|
|
|
{
|
|
|
|
struct page *page;
|
|
|
|
|
|
|
|
/* Empty recycle ring */
|
2018-07-17 22:10:37 +07:00
|
|
|
while ((page = ptr_ring_consume_bh(&pool->ring))) {
|
page_pool: refurbish version of page_pool code
Need a fast page recycle mechanism for ndo_xdp_xmit API for returning
pages on DMA-TX completion time, which have good cross CPU
performance, given DMA-TX completion time can happen on a remote CPU.
Refurbish my page_pool code, that was presented[1] at MM-summit 2016.
Adapted page_pool code to not depend the page allocator and
integration into struct page. The DMA mapping feature is kept,
even-though it will not be activated/used in this patchset.
[1] http://people.netfilter.org/hawk/presentations/MM-summit2016/generic_page_pool_mm_summit2016.pdf
V2: Adjustments requested by Tariq
- Changed page_pool_create return codes, don't return NULL, only
ERR_PTR, as this simplifies err handling in drivers.
V4: many small improvements and cleanups
- Add DOC comment section, that can be used by kernel-doc
- Improve fallback mode, to work better with refcnt based recycling
e.g. remove a WARN as pointed out by Tariq
e.g. quicker fallback if ptr_ring is empty.
V5: Fixed SPDX license as pointed out by Alexei
V6: Adjustments requested by Eric Dumazet
- Adjust ____cacheline_aligned_in_smp usage/placement
- Move rcu_head in struct page_pool
- Free pages quicker on destroy, minimize resources delayed an RCU period
- Remove code for forward/backward compat ABI interface
V8: Issues found by kbuild test robot
- Address sparse should be static warnings
- Only compile+link when a driver use/select page_pool,
mlx5 selects CONFIG_PAGE_POOL, although its first used in two patches
Signed-off-by: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2018-04-17 21:46:17 +07:00
|
|
|
/* Verify the refcnt invariant of cached pages */
|
|
|
|
if (!(page_ref_count(page) == 1))
|
|
|
|
pr_crit("%s() page_pool refcnt %d violation\n",
|
|
|
|
__func__, page_ref_count(page));
|
|
|
|
|
|
|
|
__page_pool_return_page(pool, page);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void __page_pool_destroy_rcu(struct rcu_head *rcu)
|
|
|
|
{
|
|
|
|
struct page_pool *pool;
|
|
|
|
|
|
|
|
pool = container_of(rcu, struct page_pool, rcu);
|
|
|
|
|
|
|
|
WARN(pool->alloc.count, "API usage violation");
|
|
|
|
|
|
|
|
__page_pool_empty_ring(pool);
|
|
|
|
ptr_ring_cleanup(&pool->ring, NULL);
|
|
|
|
kfree(pool);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Cleanup and release resources */
|
|
|
|
void page_pool_destroy(struct page_pool *pool)
|
|
|
|
{
|
|
|
|
struct page *page;
|
|
|
|
|
|
|
|
/* Empty alloc cache, assume caller made sure this is
|
|
|
|
* no-longer in use, and page_pool_alloc_pages() cannot be
|
|
|
|
* call concurrently.
|
|
|
|
*/
|
|
|
|
while (pool->alloc.count) {
|
|
|
|
page = pool->alloc.cache[--pool->alloc.count];
|
|
|
|
__page_pool_return_page(pool, page);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* No more consumers should exist, but producers could still
|
|
|
|
* be in-flight.
|
|
|
|
*/
|
|
|
|
__page_pool_empty_ring(pool);
|
|
|
|
|
|
|
|
/* An xdp_mem_allocator can still ref page_pool pointer */
|
|
|
|
call_rcu(&pool->rcu, __page_pool_destroy_rcu);
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(page_pool_destroy);
|