linux_dsm_epyc7002/arch/x86/kernel/cpu/Makefile

62 lines
1.8 KiB
Makefile
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 21:07:57 +07:00
# SPDX-License-Identifier: GPL-2.0
#
# Makefile for x86-compatible CPU details, features and quirks
#
# Don't trace early stages of a secondary CPU boot
ifdef CONFIG_FUNCTION_TRACER
CFLAGS_REMOVE_common.o = -pg
CFLAGS_REMOVE_perf_event.o = -pg
endif
kernel: add kcov code coverage kcov provides code coverage collection for coverage-guided fuzzing (randomized testing). Coverage-guided fuzzing is a testing technique that uses coverage feedback to determine new interesting inputs to a system. A notable user-space example is AFL (http://lcamtuf.coredump.cx/afl/). However, this technique is not widely used for kernel testing due to missing compiler and kernel support. kcov does not aim to collect as much coverage as possible. It aims to collect more or less stable coverage that is function of syscall inputs. To achieve this goal it does not collect coverage in soft/hard interrupts and instrumentation of some inherently non-deterministic or non-interesting parts of kernel is disbled (e.g. scheduler, locking). Currently there is a single coverage collection mode (tracing), but the API anticipates additional collection modes. Initially I also implemented a second mode which exposes coverage in a fixed-size hash table of counters (what Quentin used in his original patch). I've dropped the second mode for simplicity. This patch adds the necessary support on kernel side. The complimentary compiler support was added in gcc revision 231296. We've used this support to build syzkaller system call fuzzer, which has found 90 kernel bugs in just 2 months: https://github.com/google/syzkaller/wiki/Found-Bugs We've also found 30+ bugs in our internal systems with syzkaller. Another (yet unexplored) direction where kcov coverage would greatly help is more traditional "blob mutation". For example, mounting a random blob as a filesystem, or receiving a random blob over wire. Why not gcov. Typical fuzzing loop looks as follows: (1) reset coverage, (2) execute a bit of code, (3) collect coverage, repeat. A typical coverage can be just a dozen of basic blocks (e.g. an invalid input). In such context gcov becomes prohibitively expensive as reset/collect coverage steps depend on total number of basic blocks/edges in program (in case of kernel it is about 2M). Cost of kcov depends only on number of executed basic blocks/edges. On top of that, kernel requires per-thread coverage because there are always background threads and unrelated processes that also produce coverage. With inlined gcov instrumentation per-thread coverage is not possible. kcov exposes kernel PCs and control flow to user-space which is insecure. But debugfs should not be mapped as user accessible. Based on a patch by Quentin Casasnovas. [akpm@linux-foundation.org: make task_struct.kcov_mode have type `enum kcov_mode'] [akpm@linux-foundation.org: unbreak allmodconfig] [akpm@linux-foundation.org: follow x86 Makefile layout standards] Signed-off-by: Dmitry Vyukov <dvyukov@google.com> Reviewed-by: Kees Cook <keescook@chromium.org> Cc: syzkaller <syzkaller@googlegroups.com> Cc: Vegard Nossum <vegard.nossum@oracle.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Tavis Ormandy <taviso@google.com> Cc: Will Deacon <will.deacon@arm.com> Cc: Quentin Casasnovas <quentin.casasnovas@oracle.com> Cc: Kostya Serebryany <kcc@google.com> Cc: Eric Dumazet <edumazet@google.com> Cc: Alexander Potapenko <glider@google.com> Cc: Kees Cook <keescook@google.com> Cc: Bjorn Helgaas <bhelgaas@google.com> Cc: Sasha Levin <sasha.levin@oracle.com> Cc: David Drysdale <drysdale@google.com> Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org> Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com> Cc: Kirill A. Shutemov <kirill@shutemov.name> Cc: Jiri Slaby <jslaby@suse.cz> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-23 04:27:30 +07:00
# If these files are instrumented, boot hangs during the first second.
KCOV_INSTRUMENT_common.o := n
KCOV_INSTRUMENT_perf_event.o := n
# Make sure load_percpu_segment has no stackprotector
nostackp := $(call cc-option, -fno-stack-protector)
CFLAGS_common.o := $(nostackp)
obj-y := cacheinfo.o scattered.o topology.o
obj-y += common.o
obj-y += rdrand.o
Add driver auto probing for x86 features v4 There's a growing number of drivers that support a specific x86 feature or CPU. Currently loading these drivers currently on a generic distribution requires various driver specific hacks and it often doesn't work. This patch adds auto probing for drivers based on the x86 cpuid information, in particular based on vendor/family/model number and also based on CPUID feature bits. For example a common issue is not loading the SSE 4.2 accelerated CRC module: this can significantly lower the performance of BTRFS which relies on fast CRC. Another issue is loading the right CPUFREQ driver for the current CPU. Currently distributions often try all all possible driver until one sticks, which is not really a good way to do this. It works with existing udev without any changes. The code exports the x86 information as a generic string in sysfs that can be matched by udev's pattern matching. This scheme does not support numeric ranges, so if you want to handle e.g. ranges of model numbers they have to be encoded in ASCII or simply all models or families listed. Fixing that would require changing udev. Another issue is that udev will happily load all drivers that match, there is currently no nice way to stop a specific driver from being loaded if it's not needed (e.g. if you don't need fast CRC) But there are not that many cpu specific drivers around and they're all not that bloated, so this isn't a particularly serious issue. Originally this patch added the modalias to the normal cpu sysdevs. However sysdevs don't have all the infrastructure needed for udev, so it couldn't really autoload drivers. This patch instead adds the CPU modaliases to the cpuid devices, which are real devices with full support for udev. This implies that the cpuid driver has to be loaded to use this. This patch just adds infrastructure, some driver conversions in followups. Thanks to Kay for helping with some sysfs magic. v2: Constifcation, some updates v4: (trenn@suse.de): - Use kzalloc instead of kmalloc to terminate modalias buffer - Use uppercase hex values to match correctly against hex values containing letters Cc: Dave Jones <davej@redhat.com> Cc: Kay Sievers <kay.sievers@vrfy.org> Cc: Jen Axboe <axboe@kernel.dk> Cc: Herbert Xu <herbert@gondor.apana.org.au> Cc: Huang Ying <ying.huang@intel.com> Cc: Len Brown <lenb@kernel.org> Signed-off-by: Andi Kleen <ak@linux.intel.com> Signed-off-by: Thomas Renninger <trenn@suse.de> Acked-by: H. Peter Anvin <hpa@zytor.com> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2012-01-26 06:09:05 +07:00
obj-y += match.o
obj-y += bugs.o
x86 / CPU: Always show current CPU frequency in /proc/cpuinfo After commit 890da9cf0983 (Revert "x86: do not use cpufreq_quick_get() for /proc/cpuinfo "cpu MHz"") the "cpu MHz" number in /proc/cpuinfo on x86 can be either the nominal CPU frequency (which is constant) or the frequency most recently requested by a scaling governor in cpufreq, depending on the cpufreq configuration. That is somewhat inconsistent and is different from what it was before 4.13, so in order to restore the previous behavior, make it report the current CPU frequency like the scaling_cur_freq sysfs file in cpufreq. To that end, modify the /proc/cpuinfo implementation on x86 to use aperfmperf_snapshot_khz() to snapshot the APERF and MPERF feedback registers, if available, and use their values to compute the CPU frequency to be reported as "cpu MHz". However, do that carefully enough to avoid accumulating delays that lead to unacceptable access times for /proc/cpuinfo on systems with many CPUs. Run aperfmperf_snapshot_khz() once on all CPUs asynchronously at the /proc/cpuinfo open time, add a single delay upfront (if necessary) at that point and simply compute the current frequency while running show_cpuinfo() for each individual CPU. Also, to avoid slowing down /proc/cpuinfo accesses too much, reduce the default delay between consecutive APERF and MPERF reads to 10 ms, which should be sufficient to get large enough numbers for the frequency computation in all cases. Fixes: 890da9cf0983 (Revert "x86: do not use cpufreq_quick_get() for /proc/cpuinfo "cpu MHz"") Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Ingo Molnar <mingo@kernel.org>
2017-11-15 08:13:40 +07:00
obj-y += aperfmperf.o
obj-y += cpuid-deps.o
obj-$(CONFIG_PROC_FS) += proc.o
obj-$(CONFIG_X86_FEATURE_NAMES) += capflags.o powerflags.o
obj-$(CONFIG_CPU_SUP_INTEL) += intel.o intel_pconfig.o
obj-$(CONFIG_CPU_SUP_AMD) += amd.o
obj-$(CONFIG_CPU_SUP_HYGON) += hygon.o
obj-$(CONFIG_CPU_SUP_CYRIX_32) += cyrix.o
obj-$(CONFIG_CPU_SUP_CENTAUR) += centaur.o
obj-$(CONFIG_CPU_SUP_TRANSMETA_32) += transmeta.o
obj-$(CONFIG_CPU_SUP_UMC_32) += umc.o
obj-$(CONFIG_INTEL_RDT) += intel_rdt.o intel_rdt_rdtgroup.o intel_rdt_monitor.o
obj-$(CONFIG_INTEL_RDT) += intel_rdt_ctrlmondata.o intel_rdt_pseudo_lock.o
x86/intel_rdt: Create debugfs files for pseudo-locking testing There is no simple yes/no test to determine if pseudo-locking was successful. In order to test pseudo-locking we expose a debugfs file for each pseudo-locked region that will record the latency of reading the pseudo-locked memory at a stride of 32 bytes (hardcoded). These numbers will give us an idea of locking was successful or not since they will reflect cache hits and cache misses (hardware prefetching is disabled during the test). The new debugfs file "pseudo_lock_measure" will, when the pseudo_lock_mem_latency tracepoint is enabled, record the latency of accessing each cache line twice. Kernel tracepoints offer us histograms (when CONFIG_HIST_TRIGGERS is enabled) that is a simple way to visualize the memory access latency and immediately see any cache misses. For example, the hist trigger below before trigger of the measurement will display the memory access latency and instances at each latency: echo 'hist:keys=latency' > /sys/kernel/debug/tracing/events/resctrl/\ pseudo_lock_mem_latency/trigger echo 1 > /sys/kernel/debug/tracing/events/resctrl/pseudo_lock_mem_latency/enable echo 1 > /sys/kernel/debug/resctrl/<newlock>/pseudo_lock_measure echo 0 > /sys/kernel/debug/tracing/events/resctrl/pseudo_lock_mem_latency/enable cat /sys/kernel/debug/tracing/events/resctrl/pseudo_lock_mem_latency/hist Signed-off-by: Reinette Chatre <reinette.chatre@intel.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: fenghua.yu@intel.com Cc: tony.luck@intel.com Cc: vikas.shivappa@linux.intel.com Cc: gavin.hindman@intel.com Cc: jithu.joseph@intel.com Cc: dave.hansen@intel.com Cc: hpa@zytor.com Link: https://lkml.kernel.org/r/6b2ea76181099d1b79ccfa7d3be24497ab2d1a45.1529706536.git.reinette.chatre@intel.com
2018-06-23 05:42:26 +07:00
CFLAGS_intel_rdt_pseudo_lock.o = -I$(src)
obj-$(CONFIG_X86_MCE) += mcheck/
obj-$(CONFIG_MTRR) += mtrr/
obj-$(CONFIG_MICROCODE) += microcode/
obj-$(CONFIG_X86_LOCAL_APIC) += perfctr-watchdog.o
obj-$(CONFIG_HYPERVISOR_GUEST) += vmware.o hypervisor.o mshyperv.o
ifdef CONFIG_X86_FEATURE_NAMES
quiet_cmd_mkcapflags = MKCAP $@
cmd_mkcapflags = $(CONFIG_SHELL) $(srctree)/$(src)/mkcapflags.sh $< $@
cpufeature = $(src)/../../include/asm/cpufeatures.h
targets += capflags.c
$(obj)/capflags.c: $(cpufeature) $(src)/mkcapflags.sh FORCE
$(call if_changed,mkcapflags)
endif
clean-files += capflags.c