linux_dsm_epyc7002/drivers/mtd/nand/pxa3xx_nand.c

1314 lines
33 KiB
C
Raw Normal View History

/*
* drivers/mtd/nand/pxa3xx_nand.c
*
* Copyright © 2005 Intel Corporation
* Copyright © 2006 Marvell International Ltd.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/platform_device.h>
#include <linux/dma-mapping.h>
#include <linux/delay.h>
#include <linux/clk.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/nand.h>
#include <linux/mtd/partitions.h>
#include <linux/io.h>
#include <linux/irq.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 15:04:11 +07:00
#include <linux/slab.h>
#include <mach/dma.h>
#include <plat/pxa3xx_nand.h>
#define CHIP_DELAY_TIMEOUT (2 * HZ/10)
#define NAND_STOP_DELAY (2 * HZ/50)
#define PAGE_CHUNK_SIZE (2048)
/* registers and bit definitions */
#define NDCR (0x00) /* Control register */
#define NDTR0CS0 (0x04) /* Timing Parameter 0 for CS0 */
#define NDTR1CS0 (0x0C) /* Timing Parameter 1 for CS0 */
#define NDSR (0x14) /* Status Register */
#define NDPCR (0x18) /* Page Count Register */
#define NDBDR0 (0x1C) /* Bad Block Register 0 */
#define NDBDR1 (0x20) /* Bad Block Register 1 */
#define NDDB (0x40) /* Data Buffer */
#define NDCB0 (0x48) /* Command Buffer0 */
#define NDCB1 (0x4C) /* Command Buffer1 */
#define NDCB2 (0x50) /* Command Buffer2 */
#define NDCR_SPARE_EN (0x1 << 31)
#define NDCR_ECC_EN (0x1 << 30)
#define NDCR_DMA_EN (0x1 << 29)
#define NDCR_ND_RUN (0x1 << 28)
#define NDCR_DWIDTH_C (0x1 << 27)
#define NDCR_DWIDTH_M (0x1 << 26)
#define NDCR_PAGE_SZ (0x1 << 24)
#define NDCR_NCSX (0x1 << 23)
#define NDCR_ND_MODE (0x3 << 21)
#define NDCR_NAND_MODE (0x0)
#define NDCR_CLR_PG_CNT (0x1 << 20)
#define NDCR_STOP_ON_UNCOR (0x1 << 19)
#define NDCR_RD_ID_CNT_MASK (0x7 << 16)
#define NDCR_RD_ID_CNT(x) (((x) << 16) & NDCR_RD_ID_CNT_MASK)
#define NDCR_RA_START (0x1 << 15)
#define NDCR_PG_PER_BLK (0x1 << 14)
#define NDCR_ND_ARB_EN (0x1 << 12)
#define NDCR_INT_MASK (0xFFF)
#define NDSR_MASK (0xfff)
#define NDSR_RDY (0x1 << 12)
#define NDSR_FLASH_RDY (0x1 << 11)
#define NDSR_CS0_PAGED (0x1 << 10)
#define NDSR_CS1_PAGED (0x1 << 9)
#define NDSR_CS0_CMDD (0x1 << 8)
#define NDSR_CS1_CMDD (0x1 << 7)
#define NDSR_CS0_BBD (0x1 << 6)
#define NDSR_CS1_BBD (0x1 << 5)
#define NDSR_DBERR (0x1 << 4)
#define NDSR_SBERR (0x1 << 3)
#define NDSR_WRDREQ (0x1 << 2)
#define NDSR_RDDREQ (0x1 << 1)
#define NDSR_WRCMDREQ (0x1)
#define NDCB0_ST_ROW_EN (0x1 << 26)
#define NDCB0_AUTO_RS (0x1 << 25)
#define NDCB0_CSEL (0x1 << 24)
#define NDCB0_CMD_TYPE_MASK (0x7 << 21)
#define NDCB0_CMD_TYPE(x) (((x) << 21) & NDCB0_CMD_TYPE_MASK)
#define NDCB0_NC (0x1 << 20)
#define NDCB0_DBC (0x1 << 19)
#define NDCB0_ADDR_CYC_MASK (0x7 << 16)
#define NDCB0_ADDR_CYC(x) (((x) << 16) & NDCB0_ADDR_CYC_MASK)
#define NDCB0_CMD2_MASK (0xff << 8)
#define NDCB0_CMD1_MASK (0xff)
#define NDCB0_ADDR_CYC_SHIFT (16)
/* macros for registers read/write */
#define nand_writel(info, off, val) \
__raw_writel((val), (info)->mmio_base + (off))
#define nand_readl(info, off) \
__raw_readl((info)->mmio_base + (off))
/* error code and state */
enum {
ERR_NONE = 0,
ERR_DMABUSERR = -1,
ERR_SENDCMD = -2,
ERR_DBERR = -3,
ERR_BBERR = -4,
ERR_SBERR = -5,
};
enum {
STATE_IDLE = 0,
STATE_PREPARED,
STATE_CMD_HANDLE,
STATE_DMA_READING,
STATE_DMA_WRITING,
STATE_DMA_DONE,
STATE_PIO_READING,
STATE_PIO_WRITING,
STATE_CMD_DONE,
STATE_READY,
};
struct pxa3xx_nand_host {
struct nand_chip chip;
struct pxa3xx_nand_cmdset *cmdset;
struct mtd_info *mtd;
void *info_data;
/* page size of attached chip */
unsigned int page_size;
int use_ecc;
int cs;
/* calculated from pxa3xx_nand_flash data */
unsigned int col_addr_cycles;
unsigned int row_addr_cycles;
size_t read_id_bytes;
/* cached register value */
uint32_t reg_ndcr;
uint32_t ndtr0cs0;
uint32_t ndtr1cs0;
};
struct pxa3xx_nand_info {
struct nand_hw_control controller;
struct platform_device *pdev;
struct clk *clk;
void __iomem *mmio_base;
unsigned long mmio_phys;
struct completion cmd_complete;
unsigned int buf_start;
unsigned int buf_count;
/* DMA information */
int drcmr_dat;
int drcmr_cmd;
unsigned char *data_buff;
unsigned char *oob_buff;
dma_addr_t data_buff_phys;
int data_dma_ch;
struct pxa_dma_desc *data_desc;
dma_addr_t data_desc_addr;
struct pxa3xx_nand_host *host[NUM_CHIP_SELECT];
unsigned int state;
int cs;
int use_ecc; /* use HW ECC ? */
int use_dma; /* use DMA ? */
int is_ready;
unsigned int page_size; /* page size of attached chip */
unsigned int data_size; /* data size in FIFO */
unsigned int oob_size;
int retcode;
/* generated NDCBx register values */
uint32_t ndcb0;
uint32_t ndcb1;
uint32_t ndcb2;
};
static bool use_dma = 1;
module_param(use_dma, bool, 0444);
MODULE_PARM_DESC(use_dma, "enable DMA for data transferring to/from NAND HW");
/*
* Default NAND flash controller configuration setup by the
* bootloader. This configuration is used only when pdata->keep_config is set
*/
static struct pxa3xx_nand_cmdset default_cmdset = {
.read1 = 0x3000,
.read2 = 0x0050,
.program = 0x1080,
.read_status = 0x0070,
.read_id = 0x0090,
.erase = 0xD060,
.reset = 0x00FF,
.lock = 0x002A,
.unlock = 0x2423,
.lock_status = 0x007A,
};
static struct pxa3xx_nand_timing timing[] = {
{ 40, 80, 60, 100, 80, 100, 90000, 400, 40, },
{ 10, 0, 20, 40, 30, 40, 11123, 110, 10, },
{ 10, 25, 15, 25, 15, 30, 25000, 60, 10, },
{ 10, 35, 15, 25, 15, 25, 25000, 60, 10, },
};
static struct pxa3xx_nand_flash builtin_flash_types[] = {
{ "DEFAULT FLASH", 0, 0, 2048, 8, 8, 0, &timing[0] },
{ "64MiB 16-bit", 0x46ec, 32, 512, 16, 16, 4096, &timing[1] },
{ "256MiB 8-bit", 0xdaec, 64, 2048, 8, 8, 2048, &timing[1] },
{ "4GiB 8-bit", 0xd7ec, 128, 4096, 8, 8, 8192, &timing[1] },
{ "128MiB 8-bit", 0xa12c, 64, 2048, 8, 8, 1024, &timing[2] },
{ "128MiB 16-bit", 0xb12c, 64, 2048, 16, 16, 1024, &timing[2] },
{ "512MiB 8-bit", 0xdc2c, 64, 2048, 8, 8, 4096, &timing[2] },
{ "512MiB 16-bit", 0xcc2c, 64, 2048, 16, 16, 4096, &timing[2] },
{ "256MiB 16-bit", 0xba20, 64, 2048, 16, 16, 2048, &timing[3] },
};
/* Define a default flash type setting serve as flash detecting only */
#define DEFAULT_FLASH_TYPE (&builtin_flash_types[0])
const char *mtd_names[] = {"pxa3xx_nand-0", "pxa3xx_nand-1", NULL};
#define NDTR0_tCH(c) (min((c), 7) << 19)
#define NDTR0_tCS(c) (min((c), 7) << 16)
#define NDTR0_tWH(c) (min((c), 7) << 11)
#define NDTR0_tWP(c) (min((c), 7) << 8)
#define NDTR0_tRH(c) (min((c), 7) << 3)
#define NDTR0_tRP(c) (min((c), 7) << 0)
#define NDTR1_tR(c) (min((c), 65535) << 16)
#define NDTR1_tWHR(c) (min((c), 15) << 4)
#define NDTR1_tAR(c) (min((c), 15) << 0)
/* convert nano-seconds to nand flash controller clock cycles */
#define ns2cycle(ns, clk) (int)((ns) * (clk / 1000000) / 1000)
static void pxa3xx_nand_set_timing(struct pxa3xx_nand_host *host,
const struct pxa3xx_nand_timing *t)
{
struct pxa3xx_nand_info *info = host->info_data;
unsigned long nand_clk = clk_get_rate(info->clk);
uint32_t ndtr0, ndtr1;
ndtr0 = NDTR0_tCH(ns2cycle(t->tCH, nand_clk)) |
NDTR0_tCS(ns2cycle(t->tCS, nand_clk)) |
NDTR0_tWH(ns2cycle(t->tWH, nand_clk)) |
NDTR0_tWP(ns2cycle(t->tWP, nand_clk)) |
NDTR0_tRH(ns2cycle(t->tRH, nand_clk)) |
NDTR0_tRP(ns2cycle(t->tRP, nand_clk));
ndtr1 = NDTR1_tR(ns2cycle(t->tR, nand_clk)) |
NDTR1_tWHR(ns2cycle(t->tWHR, nand_clk)) |
NDTR1_tAR(ns2cycle(t->tAR, nand_clk));
host->ndtr0cs0 = ndtr0;
host->ndtr1cs0 = ndtr1;
nand_writel(info, NDTR0CS0, ndtr0);
nand_writel(info, NDTR1CS0, ndtr1);
}
static void pxa3xx_set_datasize(struct pxa3xx_nand_info *info)
{
struct pxa3xx_nand_host *host = info->host[info->cs];
int oob_enable = host->reg_ndcr & NDCR_SPARE_EN;
info->data_size = host->page_size;
if (!oob_enable) {
info->oob_size = 0;
return;
}
switch (host->page_size) {
case 2048:
info->oob_size = (info->use_ecc) ? 40 : 64;
break;
case 512:
info->oob_size = (info->use_ecc) ? 8 : 16;
break;
}
}
/**
* NOTE: it is a must to set ND_RUN firstly, then write
* command buffer, otherwise, it does not work.
* We enable all the interrupt at the same time, and
* let pxa3xx_nand_irq to handle all logic.
*/
static void pxa3xx_nand_start(struct pxa3xx_nand_info *info)
{
struct pxa3xx_nand_host *host = info->host[info->cs];
uint32_t ndcr;
ndcr = host->reg_ndcr;
ndcr |= info->use_ecc ? NDCR_ECC_EN : 0;
ndcr |= info->use_dma ? NDCR_DMA_EN : 0;
ndcr |= NDCR_ND_RUN;
/* clear status bits and run */
nand_writel(info, NDCR, 0);
nand_writel(info, NDSR, NDSR_MASK);
nand_writel(info, NDCR, ndcr);
}
static void pxa3xx_nand_stop(struct pxa3xx_nand_info *info)
{
uint32_t ndcr;
int timeout = NAND_STOP_DELAY;
/* wait RUN bit in NDCR become 0 */
ndcr = nand_readl(info, NDCR);
while ((ndcr & NDCR_ND_RUN) && (timeout-- > 0)) {
ndcr = nand_readl(info, NDCR);
udelay(1);
}
if (timeout <= 0) {
ndcr &= ~NDCR_ND_RUN;
nand_writel(info, NDCR, ndcr);
}
/* clear status bits */
nand_writel(info, NDSR, NDSR_MASK);
}
static void enable_int(struct pxa3xx_nand_info *info, uint32_t int_mask)
{
uint32_t ndcr;
ndcr = nand_readl(info, NDCR);
nand_writel(info, NDCR, ndcr & ~int_mask);
}
static void disable_int(struct pxa3xx_nand_info *info, uint32_t int_mask)
{
uint32_t ndcr;
ndcr = nand_readl(info, NDCR);
nand_writel(info, NDCR, ndcr | int_mask);
}
static void handle_data_pio(struct pxa3xx_nand_info *info)
{
switch (info->state) {
case STATE_PIO_WRITING:
__raw_writesl(info->mmio_base + NDDB, info->data_buff,
DIV_ROUND_UP(info->data_size, 4));
if (info->oob_size > 0)
__raw_writesl(info->mmio_base + NDDB, info->oob_buff,
DIV_ROUND_UP(info->oob_size, 4));
break;
case STATE_PIO_READING:
__raw_readsl(info->mmio_base + NDDB, info->data_buff,
DIV_ROUND_UP(info->data_size, 4));
if (info->oob_size > 0)
__raw_readsl(info->mmio_base + NDDB, info->oob_buff,
DIV_ROUND_UP(info->oob_size, 4));
break;
default:
dev_err(&info->pdev->dev, "%s: invalid state %d\n", __func__,
info->state);
BUG();
}
}
static void start_data_dma(struct pxa3xx_nand_info *info)
{
struct pxa_dma_desc *desc = info->data_desc;
int dma_len = ALIGN(info->data_size + info->oob_size, 32);
desc->ddadr = DDADR_STOP;
desc->dcmd = DCMD_ENDIRQEN | DCMD_WIDTH4 | DCMD_BURST32 | dma_len;
switch (info->state) {
case STATE_DMA_WRITING:
desc->dsadr = info->data_buff_phys;
desc->dtadr = info->mmio_phys + NDDB;
desc->dcmd |= DCMD_INCSRCADDR | DCMD_FLOWTRG;
break;
case STATE_DMA_READING:
desc->dtadr = info->data_buff_phys;
desc->dsadr = info->mmio_phys + NDDB;
desc->dcmd |= DCMD_INCTRGADDR | DCMD_FLOWSRC;
break;
default:
dev_err(&info->pdev->dev, "%s: invalid state %d\n", __func__,
info->state);
BUG();
}
DRCMR(info->drcmr_dat) = DRCMR_MAPVLD | info->data_dma_ch;
DDADR(info->data_dma_ch) = info->data_desc_addr;
DCSR(info->data_dma_ch) |= DCSR_RUN;
}
static void pxa3xx_nand_data_dma_irq(int channel, void *data)
{
struct pxa3xx_nand_info *info = data;
uint32_t dcsr;
dcsr = DCSR(channel);
DCSR(channel) = dcsr;
if (dcsr & DCSR_BUSERR) {
info->retcode = ERR_DMABUSERR;
}
info->state = STATE_DMA_DONE;
enable_int(info, NDCR_INT_MASK);
nand_writel(info, NDSR, NDSR_WRDREQ | NDSR_RDDREQ);
}
static irqreturn_t pxa3xx_nand_irq(int irq, void *devid)
{
struct pxa3xx_nand_info *info = devid;
unsigned int status, is_completed = 0;
unsigned int ready, cmd_done;
if (info->cs == 0) {
ready = NDSR_FLASH_RDY;
cmd_done = NDSR_CS0_CMDD;
} else {
ready = NDSR_RDY;
cmd_done = NDSR_CS1_CMDD;
}
status = nand_readl(info, NDSR);
if (status & NDSR_DBERR)
info->retcode = ERR_DBERR;
if (status & NDSR_SBERR)
info->retcode = ERR_SBERR;
if (status & (NDSR_RDDREQ | NDSR_WRDREQ)) {
/* whether use dma to transfer data */
if (info->use_dma) {
disable_int(info, NDCR_INT_MASK);
info->state = (status & NDSR_RDDREQ) ?
STATE_DMA_READING : STATE_DMA_WRITING;
start_data_dma(info);
goto NORMAL_IRQ_EXIT;
} else {
info->state = (status & NDSR_RDDREQ) ?
STATE_PIO_READING : STATE_PIO_WRITING;
handle_data_pio(info);
}
}
if (status & cmd_done) {
info->state = STATE_CMD_DONE;
is_completed = 1;
}
if (status & ready) {
info->is_ready = 1;
info->state = STATE_READY;
}
if (status & NDSR_WRCMDREQ) {
nand_writel(info, NDSR, NDSR_WRCMDREQ);
status &= ~NDSR_WRCMDREQ;
info->state = STATE_CMD_HANDLE;
nand_writel(info, NDCB0, info->ndcb0);
nand_writel(info, NDCB0, info->ndcb1);
nand_writel(info, NDCB0, info->ndcb2);
}
/* clear NDSR to let the controller exit the IRQ */
nand_writel(info, NDSR, status);
if (is_completed)
complete(&info->cmd_complete);
NORMAL_IRQ_EXIT:
return IRQ_HANDLED;
}
static inline int is_buf_blank(uint8_t *buf, size_t len)
{
for (; len > 0; len--)
if (*buf++ != 0xff)
return 0;
return 1;
}
static int prepare_command_pool(struct pxa3xx_nand_info *info, int command,
uint16_t column, int page_addr)
{
uint16_t cmd;
int addr_cycle, exec_cmd;
struct pxa3xx_nand_host *host;
struct mtd_info *mtd;
host = info->host[info->cs];
mtd = host->mtd;
addr_cycle = 0;
exec_cmd = 1;
/* reset data and oob column point to handle data */
info->buf_start = 0;
info->buf_count = 0;
info->oob_size = 0;
info->use_ecc = 0;
info->is_ready = 0;
info->retcode = ERR_NONE;
if (info->cs != 0)
info->ndcb0 = NDCB0_CSEL;
else
info->ndcb0 = 0;
switch (command) {
case NAND_CMD_READ0:
case NAND_CMD_PAGEPROG:
info->use_ecc = 1;
case NAND_CMD_READOOB:
pxa3xx_set_datasize(info);
break;
case NAND_CMD_SEQIN:
exec_cmd = 0;
break;
default:
info->ndcb1 = 0;
info->ndcb2 = 0;
break;
}
addr_cycle = NDCB0_ADDR_CYC(host->row_addr_cycles
+ host->col_addr_cycles);
switch (command) {
case NAND_CMD_READOOB:
case NAND_CMD_READ0:
cmd = host->cmdset->read1;
if (command == NAND_CMD_READOOB)
info->buf_start = mtd->writesize + column;
else
info->buf_start = column;
if (unlikely(host->page_size < PAGE_CHUNK_SIZE))
info->ndcb0 |= NDCB0_CMD_TYPE(0)
| addr_cycle
| (cmd & NDCB0_CMD1_MASK);
else
info->ndcb0 |= NDCB0_CMD_TYPE(0)
| NDCB0_DBC
| addr_cycle
| cmd;
case NAND_CMD_SEQIN:
/* small page addr setting */
if (unlikely(host->page_size < PAGE_CHUNK_SIZE)) {
info->ndcb1 = ((page_addr & 0xFFFFFF) << 8)
| (column & 0xFF);
info->ndcb2 = 0;
} else {
info->ndcb1 = ((page_addr & 0xFFFF) << 16)
| (column & 0xFFFF);
if (page_addr & 0xFF0000)
info->ndcb2 = (page_addr & 0xFF0000) >> 16;
else
info->ndcb2 = 0;
}
info->buf_count = mtd->writesize + mtd->oobsize;
memset(info->data_buff, 0xFF, info->buf_count);
break;
case NAND_CMD_PAGEPROG:
if (is_buf_blank(info->data_buff,
(mtd->writesize + mtd->oobsize))) {
exec_cmd = 0;
break;
}
cmd = host->cmdset->program;
info->ndcb0 |= NDCB0_CMD_TYPE(0x1)
| NDCB0_AUTO_RS
| NDCB0_ST_ROW_EN
| NDCB0_DBC
| cmd
| addr_cycle;
break;
case NAND_CMD_READID:
cmd = host->cmdset->read_id;
info->buf_count = host->read_id_bytes;
info->ndcb0 |= NDCB0_CMD_TYPE(3)
| NDCB0_ADDR_CYC(1)
| cmd;
info->data_size = 8;
break;
case NAND_CMD_STATUS:
cmd = host->cmdset->read_status;
info->buf_count = 1;
info->ndcb0 |= NDCB0_CMD_TYPE(4)
| NDCB0_ADDR_CYC(1)
| cmd;
info->data_size = 8;
break;
case NAND_CMD_ERASE1:
cmd = host->cmdset->erase;
info->ndcb0 |= NDCB0_CMD_TYPE(2)
| NDCB0_AUTO_RS
| NDCB0_ADDR_CYC(3)
| NDCB0_DBC
| cmd;
info->ndcb1 = page_addr;
info->ndcb2 = 0;
break;
case NAND_CMD_RESET:
cmd = host->cmdset->reset;
info->ndcb0 |= NDCB0_CMD_TYPE(5)
| cmd;
break;
case NAND_CMD_ERASE2:
exec_cmd = 0;
break;
default:
exec_cmd = 0;
dev_err(&info->pdev->dev, "non-supported command %x\n",
command);
break;
}
return exec_cmd;
}
static void pxa3xx_nand_cmdfunc(struct mtd_info *mtd, unsigned command,
int column, int page_addr)
{
struct pxa3xx_nand_host *host = mtd->priv;
struct pxa3xx_nand_info *info = host->info_data;
int ret, exec_cmd;
/*
* if this is a x16 device ,then convert the input
* "byte" address into a "word" address appropriate
* for indexing a word-oriented device
*/
if (host->reg_ndcr & NDCR_DWIDTH_M)
column /= 2;
/*
* There may be different NAND chip hooked to
* different chip select, so check whether
* chip select has been changed, if yes, reset the timing
*/
if (info->cs != host->cs) {
info->cs = host->cs;
nand_writel(info, NDTR0CS0, host->ndtr0cs0);
nand_writel(info, NDTR1CS0, host->ndtr1cs0);
}
info->state = STATE_PREPARED;
exec_cmd = prepare_command_pool(info, command, column, page_addr);
if (exec_cmd) {
init_completion(&info->cmd_complete);
pxa3xx_nand_start(info);
ret = wait_for_completion_timeout(&info->cmd_complete,
CHIP_DELAY_TIMEOUT);
if (!ret) {
dev_err(&info->pdev->dev, "Wait time out!!!\n");
/* Stop State Machine for next command cycle */
pxa3xx_nand_stop(info);
}
}
info->state = STATE_IDLE;
}
static int pxa3xx_nand_write_page_hwecc(struct mtd_info *mtd,
mtd: nand: add 'oob_required' argument to NAND {read,write}_page interfaces New NAND controllers can perform read/write via HW engines which don't expose OOB data in their DMA mode. To reflect this, we should rework the nand_chip / nand_ecc_ctrl interfaces that assume that drivers will always read/write OOB data in the nand_chip.oob_poi buffer. A better interface includes a boolean argument that explicitly tells the callee when OOB data is requested by the calling layer (for reading/writing to/from nand_chip.oob_poi). This patch adds the 'oob_required' parameter to each relevant {read,write}_page interface; all 'oob_required' parameters are left unused for now. The next patch will set the parameter properly in the nand_base.c callers, and follow-up patches will make use of 'oob_required' in some of the callee functions. Note that currently, there is no harm in ignoring the 'oob_required' parameter and *always* utilizing nand_chip.oob_poi, but there can be performance/complexity/design benefits from avoiding filling oob_poi in the common case. I will try to implement this for some drivers which can be ported easily. Note: I couldn't compile-test all of these easily, as some had ARCH dependencies. [dwmw2: Merge later 1/0 vs. true/false cleanup] Signed-off-by: Brian Norris <computersforpeace@gmail.com> Reviewed-by: Shmulik Ladkani <shmulik.ladkani@gmail.com> Acked-by: Jiandong Zheng <jdzheng@broadcom.com> Acked-by: Mike Dunn <mikedunn@newsguy.com> Signed-off-by: Artem Bityutskiy <artem.bityutskiy@linux.intel.com> Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
2012-05-03 00:14:55 +07:00
struct nand_chip *chip, const uint8_t *buf, int oob_required)
{
chip->write_buf(mtd, buf, mtd->writesize);
chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
return 0;
}
static int pxa3xx_nand_read_page_hwecc(struct mtd_info *mtd,
mtd: nand: add 'oob_required' argument to NAND {read,write}_page interfaces New NAND controllers can perform read/write via HW engines which don't expose OOB data in their DMA mode. To reflect this, we should rework the nand_chip / nand_ecc_ctrl interfaces that assume that drivers will always read/write OOB data in the nand_chip.oob_poi buffer. A better interface includes a boolean argument that explicitly tells the callee when OOB data is requested by the calling layer (for reading/writing to/from nand_chip.oob_poi). This patch adds the 'oob_required' parameter to each relevant {read,write}_page interface; all 'oob_required' parameters are left unused for now. The next patch will set the parameter properly in the nand_base.c callers, and follow-up patches will make use of 'oob_required' in some of the callee functions. Note that currently, there is no harm in ignoring the 'oob_required' parameter and *always* utilizing nand_chip.oob_poi, but there can be performance/complexity/design benefits from avoiding filling oob_poi in the common case. I will try to implement this for some drivers which can be ported easily. Note: I couldn't compile-test all of these easily, as some had ARCH dependencies. [dwmw2: Merge later 1/0 vs. true/false cleanup] Signed-off-by: Brian Norris <computersforpeace@gmail.com> Reviewed-by: Shmulik Ladkani <shmulik.ladkani@gmail.com> Acked-by: Jiandong Zheng <jdzheng@broadcom.com> Acked-by: Mike Dunn <mikedunn@newsguy.com> Signed-off-by: Artem Bityutskiy <artem.bityutskiy@linux.intel.com> Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
2012-05-03 00:14:55 +07:00
struct nand_chip *chip, uint8_t *buf, int oob_required,
int page)
{
struct pxa3xx_nand_host *host = mtd->priv;
struct pxa3xx_nand_info *info = host->info_data;
chip->read_buf(mtd, buf, mtd->writesize);
chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
if (info->retcode == ERR_SBERR) {
switch (info->use_ecc) {
case 1:
mtd->ecc_stats.corrected++;
break;
case 0:
default:
break;
}
} else if (info->retcode == ERR_DBERR) {
/*
* for blank page (all 0xff), HW will calculate its ECC as
* 0, which is different from the ECC information within
* OOB, ignore such double bit errors
*/
if (is_buf_blank(buf, mtd->writesize))
info->retcode = ERR_NONE;
else
mtd->ecc_stats.failed++;
}
return 0;
}
static uint8_t pxa3xx_nand_read_byte(struct mtd_info *mtd)
{
struct pxa3xx_nand_host *host = mtd->priv;
struct pxa3xx_nand_info *info = host->info_data;
char retval = 0xFF;
if (info->buf_start < info->buf_count)
/* Has just send a new command? */
retval = info->data_buff[info->buf_start++];
return retval;
}
static u16 pxa3xx_nand_read_word(struct mtd_info *mtd)
{
struct pxa3xx_nand_host *host = mtd->priv;
struct pxa3xx_nand_info *info = host->info_data;
u16 retval = 0xFFFF;
if (!(info->buf_start & 0x01) && info->buf_start < info->buf_count) {
retval = *((u16 *)(info->data_buff+info->buf_start));
info->buf_start += 2;
}
return retval;
}
static void pxa3xx_nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
{
struct pxa3xx_nand_host *host = mtd->priv;
struct pxa3xx_nand_info *info = host->info_data;
int real_len = min_t(size_t, len, info->buf_count - info->buf_start);
memcpy(buf, info->data_buff + info->buf_start, real_len);
info->buf_start += real_len;
}
static void pxa3xx_nand_write_buf(struct mtd_info *mtd,
const uint8_t *buf, int len)
{
struct pxa3xx_nand_host *host = mtd->priv;
struct pxa3xx_nand_info *info = host->info_data;
int real_len = min_t(size_t, len, info->buf_count - info->buf_start);
memcpy(info->data_buff + info->buf_start, buf, real_len);
info->buf_start += real_len;
}
static void pxa3xx_nand_select_chip(struct mtd_info *mtd, int chip)
{
return;
}
static int pxa3xx_nand_waitfunc(struct mtd_info *mtd, struct nand_chip *this)
{
struct pxa3xx_nand_host *host = mtd->priv;
struct pxa3xx_nand_info *info = host->info_data;
/* pxa3xx_nand_send_command has waited for command complete */
if (this->state == FL_WRITING || this->state == FL_ERASING) {
if (info->retcode == ERR_NONE)
return 0;
else {
/*
* any error make it return 0x01 which will tell
* the caller the erase and write fail
*/
return 0x01;
}
}
return 0;
}
static int pxa3xx_nand_config_flash(struct pxa3xx_nand_info *info,
const struct pxa3xx_nand_flash *f)
{
struct platform_device *pdev = info->pdev;
struct pxa3xx_nand_platform_data *pdata = pdev->dev.platform_data;
struct pxa3xx_nand_host *host = info->host[info->cs];
uint32_t ndcr = 0x0; /* enable all interrupts */
if (f->page_size != 2048 && f->page_size != 512) {
dev_err(&pdev->dev, "Current only support 2048 and 512 size\n");
return -EINVAL;
}
if (f->flash_width != 16 && f->flash_width != 8) {
dev_err(&pdev->dev, "Only support 8bit and 16 bit!\n");
return -EINVAL;
}
/* calculate flash information */
host->cmdset = &default_cmdset;
host->page_size = f->page_size;
host->read_id_bytes = (f->page_size == 2048) ? 4 : 2;
/* calculate addressing information */
host->col_addr_cycles = (f->page_size == 2048) ? 2 : 1;
if (f->num_blocks * f->page_per_block > 65536)
host->row_addr_cycles = 3;
else
host->row_addr_cycles = 2;
ndcr |= (pdata->enable_arbiter) ? NDCR_ND_ARB_EN : 0;
ndcr |= (host->col_addr_cycles == 2) ? NDCR_RA_START : 0;
ndcr |= (f->page_per_block == 64) ? NDCR_PG_PER_BLK : 0;
ndcr |= (f->page_size == 2048) ? NDCR_PAGE_SZ : 0;
ndcr |= (f->flash_width == 16) ? NDCR_DWIDTH_M : 0;
ndcr |= (f->dfc_width == 16) ? NDCR_DWIDTH_C : 0;
ndcr |= NDCR_RD_ID_CNT(host->read_id_bytes);
ndcr |= NDCR_SPARE_EN; /* enable spare by default */
host->reg_ndcr = ndcr;
pxa3xx_nand_set_timing(host, f->timing);
return 0;
}
static int pxa3xx_nand_detect_config(struct pxa3xx_nand_info *info)
{
/*
* We set 0 by hard coding here, for we don't support keep_config
* when there is more than one chip attached to the controller
*/
struct pxa3xx_nand_host *host = info->host[0];
uint32_t ndcr = nand_readl(info, NDCR);
if (ndcr & NDCR_PAGE_SZ) {
host->page_size = 2048;
host->read_id_bytes = 4;
} else {
host->page_size = 512;
host->read_id_bytes = 2;
}
host->reg_ndcr = ndcr & ~NDCR_INT_MASK;
host->cmdset = &default_cmdset;
host->ndtr0cs0 = nand_readl(info, NDTR0CS0);
host->ndtr1cs0 = nand_readl(info, NDTR1CS0);
return 0;
}
/* the maximum possible buffer size for large page with OOB data
* is: 2048 + 64 = 2112 bytes, allocate a page here for both the
* data buffer and the DMA descriptor
*/
#define MAX_BUFF_SIZE PAGE_SIZE
static int pxa3xx_nand_init_buff(struct pxa3xx_nand_info *info)
{
struct platform_device *pdev = info->pdev;
int data_desc_offset = MAX_BUFF_SIZE - sizeof(struct pxa_dma_desc);
if (use_dma == 0) {
info->data_buff = kmalloc(MAX_BUFF_SIZE, GFP_KERNEL);
if (info->data_buff == NULL)
return -ENOMEM;
return 0;
}
info->data_buff = dma_alloc_coherent(&pdev->dev, MAX_BUFF_SIZE,
&info->data_buff_phys, GFP_KERNEL);
if (info->data_buff == NULL) {
dev_err(&pdev->dev, "failed to allocate dma buffer\n");
return -ENOMEM;
}
info->data_desc = (void *)info->data_buff + data_desc_offset;
info->data_desc_addr = info->data_buff_phys + data_desc_offset;
info->data_dma_ch = pxa_request_dma("nand-data", DMA_PRIO_LOW,
pxa3xx_nand_data_dma_irq, info);
if (info->data_dma_ch < 0) {
dev_err(&pdev->dev, "failed to request data dma\n");
dma_free_coherent(&pdev->dev, MAX_BUFF_SIZE,
info->data_buff, info->data_buff_phys);
return info->data_dma_ch;
}
return 0;
}
static int pxa3xx_nand_sensing(struct pxa3xx_nand_info *info)
{
struct mtd_info *mtd;
int ret;
mtd = info->host[info->cs]->mtd;
/* use the common timing to make a try */
ret = pxa3xx_nand_config_flash(info, &builtin_flash_types[0]);
if (ret)
return ret;
pxa3xx_nand_cmdfunc(mtd, NAND_CMD_RESET, 0, 0);
if (info->is_ready)
return 0;
return -ENODEV;
}
static int pxa3xx_nand_scan(struct mtd_info *mtd)
{
struct pxa3xx_nand_host *host = mtd->priv;
struct pxa3xx_nand_info *info = host->info_data;
struct platform_device *pdev = info->pdev;
struct pxa3xx_nand_platform_data *pdata = pdev->dev.platform_data;
struct nand_flash_dev pxa3xx_flash_ids[2], *def = NULL;
const struct pxa3xx_nand_flash *f = NULL;
struct nand_chip *chip = mtd->priv;
uint32_t id = -1;
uint64_t chipsize;
int i, ret, num;
if (pdata->keep_config && !pxa3xx_nand_detect_config(info))
goto KEEP_CONFIG;
ret = pxa3xx_nand_sensing(info);
if (ret) {
dev_info(&info->pdev->dev, "There is no chip on cs %d!\n",
info->cs);
return ret;
}
chip->cmdfunc(mtd, NAND_CMD_READID, 0, 0);
id = *((uint16_t *)(info->data_buff));
if (id != 0)
dev_info(&info->pdev->dev, "Detect a flash id %x\n", id);
else {
dev_warn(&info->pdev->dev,
"Read out ID 0, potential timing set wrong!!\n");
return -EINVAL;
}
num = ARRAY_SIZE(builtin_flash_types) + pdata->num_flash - 1;
for (i = 0; i < num; i++) {
if (i < pdata->num_flash)
f = pdata->flash + i;
else
f = &builtin_flash_types[i - pdata->num_flash + 1];
/* find the chip in default list */
if (f->chip_id == id)
break;
}
if (i >= (ARRAY_SIZE(builtin_flash_types) + pdata->num_flash - 1)) {
dev_err(&info->pdev->dev, "ERROR!! flash not defined!!!\n");
return -EINVAL;
}
ret = pxa3xx_nand_config_flash(info, f);
if (ret) {
dev_err(&info->pdev->dev, "ERROR! Configure failed\n");
return ret;
}
pxa3xx_flash_ids[0].name = f->name;
pxa3xx_flash_ids[0].id = (f->chip_id >> 8) & 0xffff;
pxa3xx_flash_ids[0].pagesize = f->page_size;
chipsize = (uint64_t)f->num_blocks * f->page_per_block * f->page_size;
pxa3xx_flash_ids[0].chipsize = chipsize >> 20;
pxa3xx_flash_ids[0].erasesize = f->page_size * f->page_per_block;
if (f->flash_width == 16)
pxa3xx_flash_ids[0].options = NAND_BUSWIDTH_16;
pxa3xx_flash_ids[1].name = NULL;
def = pxa3xx_flash_ids;
KEEP_CONFIG:
chip->ecc.mode = NAND_ECC_HW;
chip->ecc.size = host->page_size;
chip->ecc.strength = 1;
if (host->reg_ndcr & NDCR_DWIDTH_M)
chip->options |= NAND_BUSWIDTH_16;
if (nand_scan_ident(mtd, 1, def))
return -ENODEV;
/* calculate addressing information */
if (mtd->writesize >= 2048)
host->col_addr_cycles = 2;
else
host->col_addr_cycles = 1;
info->oob_buff = info->data_buff + mtd->writesize;
if ((mtd->size >> chip->page_shift) > 65536)
host->row_addr_cycles = 3;
else
host->row_addr_cycles = 2;
mtd->name = mtd_names[0];
return nand_scan_tail(mtd);
}
static int alloc_nand_resource(struct platform_device *pdev)
{
struct pxa3xx_nand_platform_data *pdata;
struct pxa3xx_nand_info *info;
struct pxa3xx_nand_host *host;
struct nand_chip *chip;
struct mtd_info *mtd;
struct resource *r;
int ret, irq, cs;
pdata = pdev->dev.platform_data;
info = kzalloc(sizeof(*info) + (sizeof(*mtd) +
sizeof(*host)) * pdata->num_cs, GFP_KERNEL);
if (!info) {
dev_err(&pdev->dev, "failed to allocate memory\n");
return -ENOMEM;
}
info->pdev = pdev;
for (cs = 0; cs < pdata->num_cs; cs++) {
mtd = (struct mtd_info *)((unsigned int)&info[1] +
(sizeof(*mtd) + sizeof(*host)) * cs);
chip = (struct nand_chip *)(&mtd[1]);
host = (struct pxa3xx_nand_host *)chip;
info->host[cs] = host;
host->mtd = mtd;
host->cs = cs;
host->info_data = info;
mtd->priv = host;
mtd->owner = THIS_MODULE;
chip->ecc.read_page = pxa3xx_nand_read_page_hwecc;
chip->ecc.write_page = pxa3xx_nand_write_page_hwecc;
chip->controller = &info->controller;
chip->waitfunc = pxa3xx_nand_waitfunc;
chip->select_chip = pxa3xx_nand_select_chip;
chip->cmdfunc = pxa3xx_nand_cmdfunc;
chip->read_word = pxa3xx_nand_read_word;
chip->read_byte = pxa3xx_nand_read_byte;
chip->read_buf = pxa3xx_nand_read_buf;
chip->write_buf = pxa3xx_nand_write_buf;
}
spin_lock_init(&chip->controller->lock);
init_waitqueue_head(&chip->controller->wq);
info->clk = clk_get(&pdev->dev, NULL);
if (IS_ERR(info->clk)) {
dev_err(&pdev->dev, "failed to get nand clock\n");
ret = PTR_ERR(info->clk);
goto fail_free_mtd;
}
clk_enable(info->clk);
r = platform_get_resource(pdev, IORESOURCE_DMA, 0);
if (r == NULL) {
dev_err(&pdev->dev, "no resource defined for data DMA\n");
ret = -ENXIO;
goto fail_put_clk;
}
info->drcmr_dat = r->start;
r = platform_get_resource(pdev, IORESOURCE_DMA, 1);
if (r == NULL) {
dev_err(&pdev->dev, "no resource defined for command DMA\n");
ret = -ENXIO;
goto fail_put_clk;
}
info->drcmr_cmd = r->start;
irq = platform_get_irq(pdev, 0);
if (irq < 0) {
dev_err(&pdev->dev, "no IRQ resource defined\n");
ret = -ENXIO;
goto fail_put_clk;
}
r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (r == NULL) {
dev_err(&pdev->dev, "no IO memory resource defined\n");
ret = -ENODEV;
goto fail_put_clk;
}
r = request_mem_region(r->start, resource_size(r), pdev->name);
if (r == NULL) {
dev_err(&pdev->dev, "failed to request memory resource\n");
ret = -EBUSY;
goto fail_put_clk;
}
info->mmio_base = ioremap(r->start, resource_size(r));
if (info->mmio_base == NULL) {
dev_err(&pdev->dev, "ioremap() failed\n");
ret = -ENODEV;
goto fail_free_res;
}
info->mmio_phys = r->start;
ret = pxa3xx_nand_init_buff(info);
if (ret)
goto fail_free_io;
/* initialize all interrupts to be disabled */
disable_int(info, NDSR_MASK);
ret = request_irq(irq, pxa3xx_nand_irq, IRQF_DISABLED,
pdev->name, info);
if (ret < 0) {
dev_err(&pdev->dev, "failed to request IRQ\n");
goto fail_free_buf;
}
platform_set_drvdata(pdev, info);
return 0;
fail_free_buf:
free_irq(irq, info);
if (use_dma) {
pxa_free_dma(info->data_dma_ch);
dma_free_coherent(&pdev->dev, MAX_BUFF_SIZE,
info->data_buff, info->data_buff_phys);
} else
kfree(info->data_buff);
fail_free_io:
iounmap(info->mmio_base);
fail_free_res:
release_mem_region(r->start, resource_size(r));
fail_put_clk:
clk_disable(info->clk);
clk_put(info->clk);
fail_free_mtd:
kfree(info);
return ret;
}
static int pxa3xx_nand_remove(struct platform_device *pdev)
{
struct pxa3xx_nand_info *info = platform_get_drvdata(pdev);
struct pxa3xx_nand_platform_data *pdata;
struct resource *r;
int irq, cs;
if (!info)
return 0;
pdata = pdev->dev.platform_data;
platform_set_drvdata(pdev, NULL);
irq = platform_get_irq(pdev, 0);
if (irq >= 0)
free_irq(irq, info);
if (use_dma) {
pxa_free_dma(info->data_dma_ch);
dma_free_writecombine(&pdev->dev, MAX_BUFF_SIZE,
info->data_buff, info->data_buff_phys);
} else
kfree(info->data_buff);
iounmap(info->mmio_base);
r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
release_mem_region(r->start, resource_size(r));
clk_disable(info->clk);
clk_put(info->clk);
for (cs = 0; cs < pdata->num_cs; cs++)
nand_release(info->host[cs]->mtd);
kfree(info);
return 0;
}
static int pxa3xx_nand_probe(struct platform_device *pdev)
{
struct pxa3xx_nand_platform_data *pdata;
struct pxa3xx_nand_info *info;
int ret, cs, probe_success;
pdata = pdev->dev.platform_data;
if (!pdata) {
dev_err(&pdev->dev, "no platform data defined\n");
return -ENODEV;
}
ret = alloc_nand_resource(pdev);
if (ret) {
dev_err(&pdev->dev, "alloc nand resource failed\n");
return ret;
}
info = platform_get_drvdata(pdev);
probe_success = 0;
for (cs = 0; cs < pdata->num_cs; cs++) {
info->cs = cs;
ret = pxa3xx_nand_scan(info->host[cs]->mtd);
if (ret) {
dev_warn(&pdev->dev, "failed to scan nand at cs %d\n",
cs);
continue;
}
ret = mtd_device_parse_register(info->host[cs]->mtd, NULL,
NULL, pdata->parts[cs],
pdata->nr_parts[cs]);
if (!ret)
probe_success = 1;
}
if (!probe_success) {
pxa3xx_nand_remove(pdev);
return -ENODEV;
}
return 0;
}
#ifdef CONFIG_PM
static int pxa3xx_nand_suspend(struct platform_device *pdev, pm_message_t state)
{
struct pxa3xx_nand_info *info = platform_get_drvdata(pdev);
struct pxa3xx_nand_platform_data *pdata;
struct mtd_info *mtd;
int cs;
pdata = pdev->dev.platform_data;
if (info->state) {
dev_err(&pdev->dev, "driver busy, state = %d\n", info->state);
return -EAGAIN;
}
for (cs = 0; cs < pdata->num_cs; cs++) {
mtd = info->host[cs]->mtd;
mtd_suspend(mtd);
}
return 0;
}
static int pxa3xx_nand_resume(struct platform_device *pdev)
{
struct pxa3xx_nand_info *info = platform_get_drvdata(pdev);
struct pxa3xx_nand_platform_data *pdata;
struct mtd_info *mtd;
int cs;
pdata = pdev->dev.platform_data;
/* We don't want to handle interrupt without calling mtd routine */
disable_int(info, NDCR_INT_MASK);
/*
* Directly set the chip select to a invalid value,
* then the driver would reset the timing according
* to current chip select at the beginning of cmdfunc
*/
info->cs = 0xff;
/*
* As the spec says, the NDSR would be updated to 0x1800 when
* doing the nand_clk disable/enable.
* To prevent it damaging state machine of the driver, clear
* all status before resume
*/
nand_writel(info, NDSR, NDSR_MASK);
for (cs = 0; cs < pdata->num_cs; cs++) {
mtd = info->host[cs]->mtd;
mtd_resume(mtd);
}
return 0;
}
#else
#define pxa3xx_nand_suspend NULL
#define pxa3xx_nand_resume NULL
#endif
static struct platform_driver pxa3xx_nand_driver = {
.driver = {
.name = "pxa3xx-nand",
},
.probe = pxa3xx_nand_probe,
.remove = pxa3xx_nand_remove,
.suspend = pxa3xx_nand_suspend,
.resume = pxa3xx_nand_resume,
};
module_platform_driver(pxa3xx_nand_driver);
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("PXA3xx NAND controller driver");