linux_dsm_epyc7002/kernel/irq/manage.c

654 lines
16 KiB
C
Raw Normal View History

/*
* linux/kernel/irq/manage.c
*
* Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar
* Copyright (C) 2005-2006 Thomas Gleixner
*
* This file contains driver APIs to the irq subsystem.
*/
#include <linux/irq.h>
#include <linux/module.h>
#include <linux/random.h>
#include <linux/interrupt.h>
#include <linux/slab.h>
#include "internals.h"
#ifdef CONFIG_SMP
cpumask_t irq_default_affinity = CPU_MASK_ALL;
/**
* synchronize_irq - wait for pending IRQ handlers (on other CPUs)
* @irq: interrupt number to wait for
*
* This function waits for any pending IRQ handlers for this interrupt
* to complete before returning. If you use this function while
* holding a resource the IRQ handler may need you will deadlock.
*
* This function may be called - with care - from IRQ context.
*/
void synchronize_irq(unsigned int irq)
{
struct irq_desc *desc = irq_desc + irq;
unsigned int status;
if (irq >= NR_IRQS)
return;
do {
unsigned long flags;
/*
* Wait until we're out of the critical section. This might
* give the wrong answer due to the lack of memory barriers.
*/
while (desc->status & IRQ_INPROGRESS)
cpu_relax();
/* Ok, that indicated we're done: double-check carefully. */
spin_lock_irqsave(&desc->lock, flags);
status = desc->status;
spin_unlock_irqrestore(&desc->lock, flags);
/* Oops, that failed? */
} while (status & IRQ_INPROGRESS);
}
EXPORT_SYMBOL(synchronize_irq);
/**
* irq_can_set_affinity - Check if the affinity of a given irq can be set
* @irq: Interrupt to check
*
*/
int irq_can_set_affinity(unsigned int irq)
{
struct irq_desc *desc = irq_desc + irq;
if (CHECK_IRQ_PER_CPU(desc->status) || !desc->chip ||
!desc->chip->set_affinity)
return 0;
return 1;
}
/**
* irq_set_affinity - Set the irq affinity of a given irq
* @irq: Interrupt to set affinity
* @cpumask: cpumask
*
*/
int irq_set_affinity(unsigned int irq, cpumask_t cpumask)
{
struct irq_desc *desc = irq_desc + irq;
if (!desc->chip->set_affinity)
return -EINVAL;
set_balance_irq_affinity(irq, cpumask);
#ifdef CONFIG_GENERIC_PENDING_IRQ
set_pending_irq(irq, cpumask);
#else
desc->affinity = cpumask;
desc->chip->set_affinity(irq, cpumask);
#endif
return 0;
}
#ifndef CONFIG_AUTO_IRQ_AFFINITY
/*
* Generic version of the affinity autoselector.
*/
int irq_select_affinity(unsigned int irq)
{
cpumask_t mask;
if (!irq_can_set_affinity(irq))
return 0;
cpus_and(mask, cpu_online_map, irq_default_affinity);
irq_desc[irq].affinity = mask;
irq_desc[irq].chip->set_affinity(irq, mask);
set_balance_irq_affinity(irq, mask);
return 0;
}
#endif
#endif
/**
* disable_irq_nosync - disable an irq without waiting
* @irq: Interrupt to disable
*
* Disable the selected interrupt line. Disables and Enables are
* nested.
* Unlike disable_irq(), this function does not ensure existing
* instances of the IRQ handler have completed before returning.
*
* This function may be called from IRQ context.
*/
void disable_irq_nosync(unsigned int irq)
{
struct irq_desc *desc = irq_desc + irq;
unsigned long flags;
if (irq >= NR_IRQS)
return;
spin_lock_irqsave(&desc->lock, flags);
if (!desc->depth++) {
desc->status |= IRQ_DISABLED;
[PATCH] genirq: rename desc->handler to desc->chip This patch-queue improves the generic IRQ layer to be truly generic, by adding various abstractions and features to it, without impacting existing functionality. While the queue can be best described as "fix and improve everything in the generic IRQ layer that we could think of", and thus it consists of many smaller features and lots of cleanups, the one feature that stands out most is the new 'irq chip' abstraction. The irq-chip abstraction is about describing and coding and IRQ controller driver by mapping its raw hardware capabilities [and quirks, if needed] in a straightforward way, without having to think about "IRQ flow" (level/edge/etc.) type of details. This stands in contrast with the current 'irq-type' model of genirq architectures, which 'mixes' raw hardware capabilities with 'flow' details. The patchset supports both types of irq controller designs at once, and converts i386 and x86_64 to the new irq-chip design. As a bonus side-effect of the irq-chip approach, chained interrupt controllers (master/slave PIC constructs, etc.) are now supported by design as well. The end result of this patchset intends to be simpler architecture-level code and more consolidation between architectures. We reused many bits of code and many concepts from Russell King's ARM IRQ layer, the merging of which was one of the motivations for this patchset. This patch: rename desc->handler to desc->chip. Originally i did not want to do this, because it's a big patch. But having both "desc->handler", "desc->handle_irq" and "action->handler" caused a large degree of confusion and made the code appear alot less clean than it truly is. I have also attempted a dual approach as well by introducing a desc->chip alias - but that just wasnt robust enough and broke frequently. So lets get over with this quickly. The conversion was done automatically via scripts and converts all the code in the kernel. This renaming patch is the first one amongst the patches, so that the remaining patches can stay flexible and can be merged and split up without having some big monolithic patch act as a merge barrier. [akpm@osdl.org: build fix] [akpm@osdl.org: another build fix] Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-29 16:24:36 +07:00
desc->chip->disable(irq);
}
spin_unlock_irqrestore(&desc->lock, flags);
}
EXPORT_SYMBOL(disable_irq_nosync);
/**
* disable_irq - disable an irq and wait for completion
* @irq: Interrupt to disable
*
* Disable the selected interrupt line. Enables and Disables are
* nested.
* This function waits for any pending IRQ handlers for this interrupt
* to complete before returning. If you use this function while
* holding a resource the IRQ handler may need you will deadlock.
*
* This function may be called - with care - from IRQ context.
*/
void disable_irq(unsigned int irq)
{
struct irq_desc *desc = irq_desc + irq;
if (irq >= NR_IRQS)
return;
disable_irq_nosync(irq);
if (desc->action)
synchronize_irq(irq);
}
EXPORT_SYMBOL(disable_irq);
static void __enable_irq(struct irq_desc *desc, unsigned int irq)
{
switch (desc->depth) {
case 0:
WARN(1, KERN_WARNING "Unbalanced enable for IRQ %d\n", irq);
break;
case 1: {
unsigned int status = desc->status & ~IRQ_DISABLED;
/* Prevent probing on this irq: */
desc->status = status | IRQ_NOPROBE;
check_irq_resend(desc, irq);
/* fall-through */
}
default:
desc->depth--;
}
}
/**
* enable_irq - enable handling of an irq
* @irq: Interrupt to enable
*
* Undoes the effect of one call to disable_irq(). If this
* matches the last disable, processing of interrupts on this
* IRQ line is re-enabled.
*
* This function may be called from IRQ context.
*/
void enable_irq(unsigned int irq)
{
struct irq_desc *desc = irq_desc + irq;
unsigned long flags;
if (irq >= NR_IRQS)
return;
spin_lock_irqsave(&desc->lock, flags);
__enable_irq(desc, irq);
spin_unlock_irqrestore(&desc->lock, flags);
}
EXPORT_SYMBOL(enable_irq);
int set_irq_wake_real(unsigned int irq, unsigned int on)
{
struct irq_desc *desc = irq_desc + irq;
int ret = -ENXIO;
if (desc->chip->set_wake)
ret = desc->chip->set_wake(irq, on);
return ret;
}
/**
* set_irq_wake - control irq power management wakeup
* @irq: interrupt to control
* @on: enable/disable power management wakeup
*
* Enable/disable power management wakeup mode, which is
* disabled by default. Enables and disables must match,
* just as they match for non-wakeup mode support.
*
* Wakeup mode lets this IRQ wake the system from sleep
* states like "suspend to RAM".
*/
int set_irq_wake(unsigned int irq, unsigned int on)
{
struct irq_desc *desc = irq_desc + irq;
unsigned long flags;
int ret = 0;
/* wakeup-capable irqs can be shared between drivers that
* don't need to have the same sleep mode behaviors.
*/
spin_lock_irqsave(&desc->lock, flags);
if (on) {
if (desc->wake_depth++ == 0) {
ret = set_irq_wake_real(irq, on);
if (ret)
desc->wake_depth = 0;
else
desc->status |= IRQ_WAKEUP;
}
} else {
if (desc->wake_depth == 0) {
WARN(1, "Unbalanced IRQ %d wake disable\n", irq);
} else if (--desc->wake_depth == 0) {
ret = set_irq_wake_real(irq, on);
if (ret)
desc->wake_depth = 1;
else
desc->status &= ~IRQ_WAKEUP;
}
}
spin_unlock_irqrestore(&desc->lock, flags);
return ret;
}
EXPORT_SYMBOL(set_irq_wake);
/*
* Internal function that tells the architecture code whether a
* particular irq has been exclusively allocated or is available
* for driver use.
*/
int can_request_irq(unsigned int irq, unsigned long irqflags)
{
struct irqaction *action;
if (irq >= NR_IRQS || irq_desc[irq].status & IRQ_NOREQUEST)
return 0;
action = irq_desc[irq].action;
if (action)
if (irqflags & action->flags & IRQF_SHARED)
action = NULL;
return !action;
}
void compat_irq_chip_set_default_handler(struct irq_desc *desc)
{
/*
* If the architecture still has not overriden
* the flow handler then zap the default. This
* should catch incorrect flow-type setting.
*/
if (desc->handle_irq == &handle_bad_irq)
desc->handle_irq = NULL;
}
static int __irq_set_trigger(struct irq_chip *chip, unsigned int irq,
unsigned long flags)
{
int ret;
if (!chip || !chip->set_type) {
/*
* IRQF_TRIGGER_* but the PIC does not support multiple
* flow-types?
*/
pr_warning("No set_type function for IRQ %d (%s)\n", irq,
chip ? (chip->name ? : "unknown") : "unknown");
return 0;
}
ret = chip->set_type(irq, flags & IRQF_TRIGGER_MASK);
if (ret)
pr_err("setting flow type for irq %u failed (%pF)\n",
irq, chip->set_type);
return ret;
}
/*
* Internal function to register an irqaction - typically used to
* allocate special interrupts that are part of the architecture.
*/
int setup_irq(unsigned int irq, struct irqaction *new)
{
struct irq_desc *desc = irq_desc + irq;
struct irqaction *old, **p;
const char *old_name = NULL;
unsigned long flags;
int shared = 0;
int ret;
if (irq >= NR_IRQS)
return -EINVAL;
if (desc->chip == &no_irq_chip)
return -ENOSYS;
/*
* Some drivers like serial.c use request_irq() heavily,
* so we have to be careful not to interfere with a
* running system.
*/
if (new->flags & IRQF_SAMPLE_RANDOM) {
/*
* This function might sleep, we want to call it first,
* outside of the atomic block.
* Yes, this might clear the entropy pool if the wrong
* driver is attempted to be loaded, without actually
* installing a new handler, but is this really a problem,
* only the sysadmin is able to do this.
*/
rand_initialize_irq(irq);
}
/*
* The following block of code has to be executed atomically
*/
spin_lock_irqsave(&desc->lock, flags);
p = &desc->action;
old = *p;
if (old) {
/*
* Can't share interrupts unless both agree to and are
* the same type (level, edge, polarity). So both flag
* fields must have IRQF_SHARED set and the bits which
* set the trigger type must match.
*/
if (!((old->flags & new->flags) & IRQF_SHARED) ||
((old->flags ^ new->flags) & IRQF_TRIGGER_MASK)) {
old_name = old->name;
goto mismatch;
}
#if defined(CONFIG_IRQ_PER_CPU)
/* All handlers must agree on per-cpuness */
if ((old->flags & IRQF_PERCPU) !=
(new->flags & IRQF_PERCPU))
goto mismatch;
#endif
/* add new interrupt at end of irq queue */
do {
p = &old->next;
old = *p;
} while (old);
shared = 1;
}
if (!shared) {
irq_chip_set_defaults(desc->chip);
/* Setup the type (level, edge polarity) if configured: */
if (new->flags & IRQF_TRIGGER_MASK) {
ret = __irq_set_trigger(desc->chip, irq, new->flags);
if (ret) {
spin_unlock_irqrestore(&desc->lock, flags);
return ret;
}
} else
compat_irq_chip_set_default_handler(desc);
#if defined(CONFIG_IRQ_PER_CPU)
if (new->flags & IRQF_PERCPU)
desc->status |= IRQ_PER_CPU;
#endif
desc->status &= ~(IRQ_AUTODETECT | IRQ_WAITING |
IRQ_INPROGRESS | IRQ_SPURIOUS_DISABLED);
if (!(desc->status & IRQ_NOAUTOEN)) {
desc->depth = 0;
desc->status &= ~IRQ_DISABLED;
if (desc->chip->startup)
desc->chip->startup(irq);
else
desc->chip->enable(irq);
} else
/* Undo nested disables: */
desc->depth = 1;
/* Set default affinity mask once everything is setup */
irq_select_affinity(irq);
}
*p = new;
/* Exclude IRQ from balancing */
if (new->flags & IRQF_NOBALANCING)
desc->status |= IRQ_NO_BALANCING;
/* Reset broken irq detection when installing new handler */
desc->irq_count = 0;
desc->irqs_unhandled = 0;
/*
* Check whether we disabled the irq via the spurious handler
* before. Reenable it and give it another chance.
*/
if (shared && (desc->status & IRQ_SPURIOUS_DISABLED)) {
desc->status &= ~IRQ_SPURIOUS_DISABLED;
__enable_irq(desc, irq);
}
spin_unlock_irqrestore(&desc->lock, flags);
new->irq = irq;
register_irq_proc(irq);
new->dir = NULL;
register_handler_proc(irq, new);
return 0;
mismatch:
#ifdef CONFIG_DEBUG_SHIRQ
if (!(new->flags & IRQF_PROBE_SHARED)) {
printk(KERN_ERR "IRQ handler type mismatch for IRQ %d\n", irq);
if (old_name)
printk(KERN_ERR "current handler: %s\n", old_name);
dump_stack();
}
#endif
spin_unlock_irqrestore(&desc->lock, flags);
return -EBUSY;
}
/**
* free_irq - free an interrupt
* @irq: Interrupt line to free
* @dev_id: Device identity to free
*
* Remove an interrupt handler. The handler is removed and if the
* interrupt line is no longer in use by any driver it is disabled.
* On a shared IRQ the caller must ensure the interrupt is disabled
* on the card it drives before calling this function. The function
* does not return until any executing interrupts for this IRQ
* have completed.
*
* This function must not be called from interrupt context.
*/
void free_irq(unsigned int irq, void *dev_id)
{
struct irq_desc *desc;
struct irqaction **p;
unsigned long flags;
WARN_ON(in_interrupt());
if (irq >= NR_IRQS)
return;
desc = irq_desc + irq;
spin_lock_irqsave(&desc->lock, flags);
p = &desc->action;
for (;;) {
struct irqaction *action = *p;
if (action) {
struct irqaction **pp = p;
p = &action->next;
if (action->dev_id != dev_id)
continue;
/* Found it - now remove it from the list of entries */
*pp = action->next;
[PATCH] uml: add and use generic hw_controller_type->release With Chris Wedgwood <cw@f00f.org> Currently UML must explicitly call the UML-specific free_irq_by_irq_and_dev() for each free_irq call it's done. This is needed because ->shutdown and/or ->disable are only called when the last "action" for that irq is removed. Instead, for UML shared IRQs (UML IRQs are very often, if not always, shared), for each dev_id some setup is done, which must be cleared on the release of that fd. For instance, for each open console a new instance (i.e. new dev_id) of the same IRQ is requested(). Exactly, a fd is stored in an array (pollfds), which is after read by a host thread and passed to poll(). Each event registered by poll() triggers an interrupt. So, for each free_irq() we must remove the corresponding host fd from the table, which we do via this -release() method. In this patch we add an appropriate hook for this, and remove all uses of it by pointing the hook to the said procedure; this is safe to do since the said procedure. Also some cosmetic improvements are included. This is heavily based on some work by Chris Wedgwood, which however didn't get the patch merged for something I'd call a "misunderstanding" (the need for this patch wasn't cleanly explained, thus adding the generic hook was felt as undesirable). Signed-off-by: Paolo 'Blaisorblade' Giarrusso <blaisorblade@yahoo.it> CC: Ingo Molnar <mingo@redhat.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-22 07:16:19 +07:00
/* Currently used only by UML, might disappear one day.*/
#ifdef CONFIG_IRQ_RELEASE_METHOD
[PATCH] genirq: rename desc->handler to desc->chip This patch-queue improves the generic IRQ layer to be truly generic, by adding various abstractions and features to it, without impacting existing functionality. While the queue can be best described as "fix and improve everything in the generic IRQ layer that we could think of", and thus it consists of many smaller features and lots of cleanups, the one feature that stands out most is the new 'irq chip' abstraction. The irq-chip abstraction is about describing and coding and IRQ controller driver by mapping its raw hardware capabilities [and quirks, if needed] in a straightforward way, without having to think about "IRQ flow" (level/edge/etc.) type of details. This stands in contrast with the current 'irq-type' model of genirq architectures, which 'mixes' raw hardware capabilities with 'flow' details. The patchset supports both types of irq controller designs at once, and converts i386 and x86_64 to the new irq-chip design. As a bonus side-effect of the irq-chip approach, chained interrupt controllers (master/slave PIC constructs, etc.) are now supported by design as well. The end result of this patchset intends to be simpler architecture-level code and more consolidation between architectures. We reused many bits of code and many concepts from Russell King's ARM IRQ layer, the merging of which was one of the motivations for this patchset. This patch: rename desc->handler to desc->chip. Originally i did not want to do this, because it's a big patch. But having both "desc->handler", "desc->handle_irq" and "action->handler" caused a large degree of confusion and made the code appear alot less clean than it truly is. I have also attempted a dual approach as well by introducing a desc->chip alias - but that just wasnt robust enough and broke frequently. So lets get over with this quickly. The conversion was done automatically via scripts and converts all the code in the kernel. This renaming patch is the first one amongst the patches, so that the remaining patches can stay flexible and can be merged and split up without having some big monolithic patch act as a merge barrier. [akpm@osdl.org: build fix] [akpm@osdl.org: another build fix] Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-29 16:24:36 +07:00
if (desc->chip->release)
desc->chip->release(irq, dev_id);
#endif
[PATCH] uml: add and use generic hw_controller_type->release With Chris Wedgwood <cw@f00f.org> Currently UML must explicitly call the UML-specific free_irq_by_irq_and_dev() for each free_irq call it's done. This is needed because ->shutdown and/or ->disable are only called when the last "action" for that irq is removed. Instead, for UML shared IRQs (UML IRQs are very often, if not always, shared), for each dev_id some setup is done, which must be cleared on the release of that fd. For instance, for each open console a new instance (i.e. new dev_id) of the same IRQ is requested(). Exactly, a fd is stored in an array (pollfds), which is after read by a host thread and passed to poll(). Each event registered by poll() triggers an interrupt. So, for each free_irq() we must remove the corresponding host fd from the table, which we do via this -release() method. In this patch we add an appropriate hook for this, and remove all uses of it by pointing the hook to the said procedure; this is safe to do since the said procedure. Also some cosmetic improvements are included. This is heavily based on some work by Chris Wedgwood, which however didn't get the patch merged for something I'd call a "misunderstanding" (the need for this patch wasn't cleanly explained, thus adding the generic hook was felt as undesirable). Signed-off-by: Paolo 'Blaisorblade' Giarrusso <blaisorblade@yahoo.it> CC: Ingo Molnar <mingo@redhat.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-22 07:16:19 +07:00
if (!desc->action) {
desc->status |= IRQ_DISABLED;
[PATCH] genirq: rename desc->handler to desc->chip This patch-queue improves the generic IRQ layer to be truly generic, by adding various abstractions and features to it, without impacting existing functionality. While the queue can be best described as "fix and improve everything in the generic IRQ layer that we could think of", and thus it consists of many smaller features and lots of cleanups, the one feature that stands out most is the new 'irq chip' abstraction. The irq-chip abstraction is about describing and coding and IRQ controller driver by mapping its raw hardware capabilities [and quirks, if needed] in a straightforward way, without having to think about "IRQ flow" (level/edge/etc.) type of details. This stands in contrast with the current 'irq-type' model of genirq architectures, which 'mixes' raw hardware capabilities with 'flow' details. The patchset supports both types of irq controller designs at once, and converts i386 and x86_64 to the new irq-chip design. As a bonus side-effect of the irq-chip approach, chained interrupt controllers (master/slave PIC constructs, etc.) are now supported by design as well. The end result of this patchset intends to be simpler architecture-level code and more consolidation between architectures. We reused many bits of code and many concepts from Russell King's ARM IRQ layer, the merging of which was one of the motivations for this patchset. This patch: rename desc->handler to desc->chip. Originally i did not want to do this, because it's a big patch. But having both "desc->handler", "desc->handle_irq" and "action->handler" caused a large degree of confusion and made the code appear alot less clean than it truly is. I have also attempted a dual approach as well by introducing a desc->chip alias - but that just wasnt robust enough and broke frequently. So lets get over with this quickly. The conversion was done automatically via scripts and converts all the code in the kernel. This renaming patch is the first one amongst the patches, so that the remaining patches can stay flexible and can be merged and split up without having some big monolithic patch act as a merge barrier. [akpm@osdl.org: build fix] [akpm@osdl.org: another build fix] Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-29 16:24:36 +07:00
if (desc->chip->shutdown)
desc->chip->shutdown(irq);
else
[PATCH] genirq: rename desc->handler to desc->chip This patch-queue improves the generic IRQ layer to be truly generic, by adding various abstractions and features to it, without impacting existing functionality. While the queue can be best described as "fix and improve everything in the generic IRQ layer that we could think of", and thus it consists of many smaller features and lots of cleanups, the one feature that stands out most is the new 'irq chip' abstraction. The irq-chip abstraction is about describing and coding and IRQ controller driver by mapping its raw hardware capabilities [and quirks, if needed] in a straightforward way, without having to think about "IRQ flow" (level/edge/etc.) type of details. This stands in contrast with the current 'irq-type' model of genirq architectures, which 'mixes' raw hardware capabilities with 'flow' details. The patchset supports both types of irq controller designs at once, and converts i386 and x86_64 to the new irq-chip design. As a bonus side-effect of the irq-chip approach, chained interrupt controllers (master/slave PIC constructs, etc.) are now supported by design as well. The end result of this patchset intends to be simpler architecture-level code and more consolidation between architectures. We reused many bits of code and many concepts from Russell King's ARM IRQ layer, the merging of which was one of the motivations for this patchset. This patch: rename desc->handler to desc->chip. Originally i did not want to do this, because it's a big patch. But having both "desc->handler", "desc->handle_irq" and "action->handler" caused a large degree of confusion and made the code appear alot less clean than it truly is. I have also attempted a dual approach as well by introducing a desc->chip alias - but that just wasnt robust enough and broke frequently. So lets get over with this quickly. The conversion was done automatically via scripts and converts all the code in the kernel. This renaming patch is the first one amongst the patches, so that the remaining patches can stay flexible and can be merged and split up without having some big monolithic patch act as a merge barrier. [akpm@osdl.org: build fix] [akpm@osdl.org: another build fix] Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-29 16:24:36 +07:00
desc->chip->disable(irq);
}
spin_unlock_irqrestore(&desc->lock, flags);
unregister_handler_proc(irq, action);
/* Make sure it's not being used on another CPU */
synchronize_irq(irq);
#ifdef CONFIG_DEBUG_SHIRQ
/*
* It's a shared IRQ -- the driver ought to be
* prepared for it to happen even now it's
* being freed, so let's make sure.... We do
* this after actually deregistering it, to
* make sure that a 'real' IRQ doesn't run in
* parallel with our fake
*/
if (action->flags & IRQF_SHARED) {
local_irq_save(flags);
action->handler(irq, dev_id);
local_irq_restore(flags);
}
#endif
kfree(action);
return;
}
printk(KERN_ERR "Trying to free already-free IRQ %d\n", irq);
#ifdef CONFIG_DEBUG_SHIRQ
dump_stack();
#endif
spin_unlock_irqrestore(&desc->lock, flags);
return;
}
}
EXPORT_SYMBOL(free_irq);
/**
* request_irq - allocate an interrupt line
* @irq: Interrupt line to allocate
* @handler: Function to be called when the IRQ occurs
* @irqflags: Interrupt type flags
* @devname: An ascii name for the claiming device
* @dev_id: A cookie passed back to the handler function
*
* This call allocates interrupt resources and enables the
* interrupt line and IRQ handling. From the point this
* call is made your handler function may be invoked. Since
* your handler function must clear any interrupt the board
* raises, you must take care both to initialise your hardware
* and to set up the interrupt handler in the right order.
*
* Dev_id must be globally unique. Normally the address of the
* device data structure is used as the cookie. Since the handler
* receives this value it makes sense to use it.
*
* If your interrupt is shared you must pass a non NULL dev_id
* as this is required when freeing the interrupt.
*
* Flags:
*
* IRQF_SHARED Interrupt is shared
* IRQF_DISABLED Disable local interrupts while processing
* IRQF_SAMPLE_RANDOM The interrupt can be used for entropy
*
*/
int request_irq(unsigned int irq, irq_handler_t handler,
unsigned long irqflags, const char *devname, void *dev_id)
{
struct irqaction *action;
int retval;
[PATCH] lockdep: core Do 'make oldconfig' and accept all the defaults for new config options - reboot into the kernel and if everything goes well it should boot up fine and you should have /proc/lockdep and /proc/lockdep_stats files. Typically if the lock validator finds some problem it will print out voluminous debug output that begins with "BUG: ..." and which syslog output can be used by kernel developers to figure out the precise locking scenario. What does the lock validator do? It "observes" and maps all locking rules as they occur dynamically (as triggered by the kernel's natural use of spinlocks, rwlocks, mutexes and rwsems). Whenever the lock validator subsystem detects a new locking scenario, it validates this new rule against the existing set of rules. If this new rule is consistent with the existing set of rules then the new rule is added transparently and the kernel continues as normal. If the new rule could create a deadlock scenario then this condition is printed out. When determining validity of locking, all possible "deadlock scenarios" are considered: assuming arbitrary number of CPUs, arbitrary irq context and task context constellations, running arbitrary combinations of all the existing locking scenarios. In a typical system this means millions of separate scenarios. This is why we call it a "locking correctness" validator - for all rules that are observed the lock validator proves it with mathematical certainty that a deadlock could not occur (assuming that the lock validator implementation itself is correct and its internal data structures are not corrupted by some other kernel subsystem). [see more details and conditionals of this statement in include/linux/lockdep.h and Documentation/lockdep-design.txt] Furthermore, this "all possible scenarios" property of the validator also enables the finding of complex, highly unlikely multi-CPU multi-context races via single single-context rules, increasing the likelyhood of finding bugs drastically. In practical terms: the lock validator already found a bug in the upstream kernel that could only occur on systems with 3 or more CPUs, and which needed 3 very unlikely code sequences to occur at once on the 3 CPUs. That bug was found and reported on a single-CPU system (!). So in essence a race will be found "piecemail-wise", triggering all the necessary components for the race, without having to reproduce the race scenario itself! In its short existence the lock validator found and reported many bugs before they actually caused a real deadlock. To further increase the efficiency of the validator, the mapping is not per "lock instance", but per "lock-class". For example, all struct inode objects in the kernel have inode->inotify_mutex. If there are 10,000 inodes cached, then there are 10,000 lock objects. But ->inotify_mutex is a single "lock type", and all locking activities that occur against ->inotify_mutex are "unified" into this single lock-class. The advantage of the lock-class approach is that all historical ->inotify_mutex uses are mapped into a single (and as narrow as possible) set of locking rules - regardless of how many different tasks or inode structures it took to build this set of rules. The set of rules persist during the lifetime of the kernel. To see the rough magnitude of checking that the lock validator does, here's a portion of /proc/lockdep_stats, fresh after bootup: lock-classes: 694 [max: 2048] direct dependencies: 1598 [max: 8192] indirect dependencies: 17896 all direct dependencies: 16206 dependency chains: 1910 [max: 8192] in-hardirq chains: 17 in-softirq chains: 105 in-process chains: 1065 stack-trace entries: 38761 [max: 131072] combined max dependencies: 2033928 hardirq-safe locks: 24 hardirq-unsafe locks: 176 softirq-safe locks: 53 softirq-unsafe locks: 137 irq-safe locks: 59 irq-unsafe locks: 176 The lock validator has observed 1598 actual single-thread locking patterns, and has validated all possible 2033928 distinct locking scenarios. More details about the design of the lock validator can be found in Documentation/lockdep-design.txt, which can also found at: http://redhat.com/~mingo/lockdep-patches/lockdep-design.txt [bunk@stusta.de: cleanups] Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Arjan van de Ven <arjan@linux.intel.com> Signed-off-by: Adrian Bunk <bunk@stusta.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-07-03 14:24:50 +07:00
#ifdef CONFIG_LOCKDEP
/*
* Lockdep wants atomic interrupt handlers:
*/
irqflags |= IRQF_DISABLED;
[PATCH] lockdep: core Do 'make oldconfig' and accept all the defaults for new config options - reboot into the kernel and if everything goes well it should boot up fine and you should have /proc/lockdep and /proc/lockdep_stats files. Typically if the lock validator finds some problem it will print out voluminous debug output that begins with "BUG: ..." and which syslog output can be used by kernel developers to figure out the precise locking scenario. What does the lock validator do? It "observes" and maps all locking rules as they occur dynamically (as triggered by the kernel's natural use of spinlocks, rwlocks, mutexes and rwsems). Whenever the lock validator subsystem detects a new locking scenario, it validates this new rule against the existing set of rules. If this new rule is consistent with the existing set of rules then the new rule is added transparently and the kernel continues as normal. If the new rule could create a deadlock scenario then this condition is printed out. When determining validity of locking, all possible "deadlock scenarios" are considered: assuming arbitrary number of CPUs, arbitrary irq context and task context constellations, running arbitrary combinations of all the existing locking scenarios. In a typical system this means millions of separate scenarios. This is why we call it a "locking correctness" validator - for all rules that are observed the lock validator proves it with mathematical certainty that a deadlock could not occur (assuming that the lock validator implementation itself is correct and its internal data structures are not corrupted by some other kernel subsystem). [see more details and conditionals of this statement in include/linux/lockdep.h and Documentation/lockdep-design.txt] Furthermore, this "all possible scenarios" property of the validator also enables the finding of complex, highly unlikely multi-CPU multi-context races via single single-context rules, increasing the likelyhood of finding bugs drastically. In practical terms: the lock validator already found a bug in the upstream kernel that could only occur on systems with 3 or more CPUs, and which needed 3 very unlikely code sequences to occur at once on the 3 CPUs. That bug was found and reported on a single-CPU system (!). So in essence a race will be found "piecemail-wise", triggering all the necessary components for the race, without having to reproduce the race scenario itself! In its short existence the lock validator found and reported many bugs before they actually caused a real deadlock. To further increase the efficiency of the validator, the mapping is not per "lock instance", but per "lock-class". For example, all struct inode objects in the kernel have inode->inotify_mutex. If there are 10,000 inodes cached, then there are 10,000 lock objects. But ->inotify_mutex is a single "lock type", and all locking activities that occur against ->inotify_mutex are "unified" into this single lock-class. The advantage of the lock-class approach is that all historical ->inotify_mutex uses are mapped into a single (and as narrow as possible) set of locking rules - regardless of how many different tasks or inode structures it took to build this set of rules. The set of rules persist during the lifetime of the kernel. To see the rough magnitude of checking that the lock validator does, here's a portion of /proc/lockdep_stats, fresh after bootup: lock-classes: 694 [max: 2048] direct dependencies: 1598 [max: 8192] indirect dependencies: 17896 all direct dependencies: 16206 dependency chains: 1910 [max: 8192] in-hardirq chains: 17 in-softirq chains: 105 in-process chains: 1065 stack-trace entries: 38761 [max: 131072] combined max dependencies: 2033928 hardirq-safe locks: 24 hardirq-unsafe locks: 176 softirq-safe locks: 53 softirq-unsafe locks: 137 irq-safe locks: 59 irq-unsafe locks: 176 The lock validator has observed 1598 actual single-thread locking patterns, and has validated all possible 2033928 distinct locking scenarios. More details about the design of the lock validator can be found in Documentation/lockdep-design.txt, which can also found at: http://redhat.com/~mingo/lockdep-patches/lockdep-design.txt [bunk@stusta.de: cleanups] Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Arjan van de Ven <arjan@linux.intel.com> Signed-off-by: Adrian Bunk <bunk@stusta.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-07-03 14:24:50 +07:00
#endif
/*
* Sanity-check: shared interrupts must pass in a real dev-ID,
* otherwise we'll have trouble later trying to figure out
* which interrupt is which (messes up the interrupt freeing
* logic etc).
*/
if ((irqflags & IRQF_SHARED) && !dev_id)
return -EINVAL;
if (irq >= NR_IRQS)
return -EINVAL;
if (irq_desc[irq].status & IRQ_NOREQUEST)
return -EINVAL;
if (!handler)
return -EINVAL;
action = kmalloc(sizeof(struct irqaction), GFP_ATOMIC);
if (!action)
return -ENOMEM;
action->handler = handler;
action->flags = irqflags;
cpus_clear(action->mask);
action->name = devname;
action->next = NULL;
action->dev_id = dev_id;
#ifdef CONFIG_DEBUG_SHIRQ
if (irqflags & IRQF_SHARED) {
/*
* It's a shared IRQ -- the driver ought to be prepared for it
* to happen immediately, so let's make sure....
* We do this before actually registering it, to make sure that
* a 'real' IRQ doesn't run in parallel with our fake
*/
request_irq: fix DEBUG_SHIRQ handling Mariusz Kozlowski reported lockdep's warning: > ================================= > [ INFO: inconsistent lock state ] > 2.6.23-rc2-mm1 #7 > --------------------------------- > inconsistent {in-hardirq-W} -> {hardirq-on-W} usage. > ifconfig/5492 [HC0[0]:SC0[0]:HE1:SE1] takes: > (&tp->lock){+...}, at: [<de8706e0>] rtl8139_interrupt+0x27/0x46b [8139too] > {in-hardirq-W} state was registered at: > [<c0138eeb>] __lock_acquire+0x949/0x11ac > [<c01397e7>] lock_acquire+0x99/0xb2 > [<c0452ff3>] _spin_lock+0x35/0x42 > [<de8706e0>] rtl8139_interrupt+0x27/0x46b [8139too] > [<c0147a5d>] handle_IRQ_event+0x28/0x59 > [<c01493ca>] handle_level_irq+0xad/0x10b > [<c0105a13>] do_IRQ+0x93/0xd0 > [<c010441e>] common_interrupt+0x2e/0x34 ... > other info that might help us debug this: > 1 lock held by ifconfig/5492: > #0: (rtnl_mutex){--..}, at: [<c0451778>] mutex_lock+0x1c/0x1f > > stack backtrace: ... > [<c0452ff3>] _spin_lock+0x35/0x42 > [<de8706e0>] rtl8139_interrupt+0x27/0x46b [8139too] > [<c01480fd>] free_irq+0x11b/0x146 > [<de871d59>] rtl8139_close+0x8a/0x14a [8139too] > [<c03bde63>] dev_close+0x57/0x74 ... This shows that a driver's irq handler was running both in hard interrupt and process contexts with irqs enabled. The latter was done during free_irq() call and was possible only with CONFIG_DEBUG_SHIRQ enabled. This was fixed by another patch. But similar problem is possible with request_irq(): any locks taken from irq handler could be vulnerable - especially with soft interrupts. This patch fixes it by disabling local interrupts during handler's run. (It seems, disabling softirqs should be enough, but it needs more checking on possible races or other special cases). Reported-by: Mariusz Kozlowski <m.kozlowski@tuxland.pl> Signed-off-by: Jarek Poplawski <jarkao2@o2.pl> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-08-31 13:56:34 +07:00
unsigned long flags;
request_irq: fix DEBUG_SHIRQ handling Mariusz Kozlowski reported lockdep's warning: > ================================= > [ INFO: inconsistent lock state ] > 2.6.23-rc2-mm1 #7 > --------------------------------- > inconsistent {in-hardirq-W} -> {hardirq-on-W} usage. > ifconfig/5492 [HC0[0]:SC0[0]:HE1:SE1] takes: > (&tp->lock){+...}, at: [<de8706e0>] rtl8139_interrupt+0x27/0x46b [8139too] > {in-hardirq-W} state was registered at: > [<c0138eeb>] __lock_acquire+0x949/0x11ac > [<c01397e7>] lock_acquire+0x99/0xb2 > [<c0452ff3>] _spin_lock+0x35/0x42 > [<de8706e0>] rtl8139_interrupt+0x27/0x46b [8139too] > [<c0147a5d>] handle_IRQ_event+0x28/0x59 > [<c01493ca>] handle_level_irq+0xad/0x10b > [<c0105a13>] do_IRQ+0x93/0xd0 > [<c010441e>] common_interrupt+0x2e/0x34 ... > other info that might help us debug this: > 1 lock held by ifconfig/5492: > #0: (rtnl_mutex){--..}, at: [<c0451778>] mutex_lock+0x1c/0x1f > > stack backtrace: ... > [<c0452ff3>] _spin_lock+0x35/0x42 > [<de8706e0>] rtl8139_interrupt+0x27/0x46b [8139too] > [<c01480fd>] free_irq+0x11b/0x146 > [<de871d59>] rtl8139_close+0x8a/0x14a [8139too] > [<c03bde63>] dev_close+0x57/0x74 ... This shows that a driver's irq handler was running both in hard interrupt and process contexts with irqs enabled. The latter was done during free_irq() call and was possible only with CONFIG_DEBUG_SHIRQ enabled. This was fixed by another patch. But similar problem is possible with request_irq(): any locks taken from irq handler could be vulnerable - especially with soft interrupts. This patch fixes it by disabling local interrupts during handler's run. (It seems, disabling softirqs should be enough, but it needs more checking on possible races or other special cases). Reported-by: Mariusz Kozlowski <m.kozlowski@tuxland.pl> Signed-off-by: Jarek Poplawski <jarkao2@o2.pl> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-08-31 13:56:34 +07:00
local_irq_save(flags);
handler(irq, dev_id);
local_irq_restore(flags);
}
#endif
retval = setup_irq(irq, action);
if (retval)
kfree(action);
return retval;
}
EXPORT_SYMBOL(request_irq);