linux_dsm_epyc7002/arch/s390/kvm/kvm-s390.h

333 lines
10 KiB
C
Raw Normal View History

/*
* definition for kvm on s390
*
* Copyright IBM Corp. 2008, 2009
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License (version 2 only)
* as published by the Free Software Foundation.
*
* Author(s): Carsten Otte <cotte@de.ibm.com>
* Christian Borntraeger <borntraeger@de.ibm.com>
* Christian Ehrhardt <ehrhardt@de.ibm.com>
*/
#ifndef ARCH_S390_KVM_S390_H
#define ARCH_S390_KVM_S390_H
#include <linux/hrtimer.h>
KVM: s390: interrupt subsystem, cpu timer, waitpsw This patch contains the s390 interrupt subsystem (similar to in kernel apic) including timer interrupts (similar to in-kernel-pit) and enabled wait (similar to in kernel hlt). In order to achieve that, this patch also introduces intercept handling for instruction intercepts, and it implements load control instructions. This patch introduces an ioctl KVM_S390_INTERRUPT which is valid for both the vm file descriptors and the vcpu file descriptors. In case this ioctl is issued against a vm file descriptor, the interrupt is considered floating. Floating interrupts may be delivered to any virtual cpu in the configuration. The following interrupts are supported: SIGP STOP - interprocessor signal that stops a remote cpu SIGP SET PREFIX - interprocessor signal that sets the prefix register of a (stopped) remote cpu INT EMERGENCY - interprocessor interrupt, usually used to signal need_reshed and for smp_call_function() in the guest. PROGRAM INT - exception during program execution such as page fault, illegal instruction and friends RESTART - interprocessor signal that starts a stopped cpu INT VIRTIO - floating interrupt for virtio signalisation INT SERVICE - floating interrupt for signalisations from the system service processor struct kvm_s390_interrupt, which is submitted as ioctl parameter when injecting an interrupt, also carrys parameter data for interrupts along with the interrupt type. Interrupts on s390 usually have a state that represents the current operation, or identifies which device has caused the interruption on s390. kvm_s390_handle_wait() does handle waitpsw in two flavors: in case of a disabled wait (that is, disabled for interrupts), we exit to userspace. In case of an enabled wait we set up a timer that equals the cpu clock comparator value and sleep on a wait queue. [christian: change virtio interrupt to 0x2603] Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com> Signed-off-by: Carsten Otte <cotte@de.ibm.com> Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com> Signed-off-by: Avi Kivity <avi@qumranet.com>
2008-03-26 00:47:26 +07:00
#include <linux/kvm.h>
#include <linux/kvm_host.h>
#include <asm/facility.h>
typedef int (*intercept_handler_t)(struct kvm_vcpu *vcpu);
/* Transactional Memory Execution related macros */
#define IS_TE_ENABLED(vcpu) ((vcpu->arch.sie_block->ecb & 0x10))
#define TDB_FORMAT1 1
#define IS_ITDB_VALID(vcpu) ((*(char *)vcpu->arch.sie_block->itdba == TDB_FORMAT1))
extern debug_info_t *kvm_s390_dbf;
#define KVM_EVENT(d_loglevel, d_string, d_args...)\
do { \
debug_sprintf_event(kvm_s390_dbf, d_loglevel, d_string "\n", \
d_args); \
} while (0)
#define VM_EVENT(d_kvm, d_loglevel, d_string, d_args...)\
do { \
debug_sprintf_event(d_kvm->arch.dbf, d_loglevel, d_string "\n", \
d_args); \
} while (0)
#define VCPU_EVENT(d_vcpu, d_loglevel, d_string, d_args...)\
do { \
debug_sprintf_event(d_vcpu->kvm->arch.dbf, d_loglevel, \
"%02d[%016lx-%016lx]: " d_string "\n", d_vcpu->vcpu_id, \
d_vcpu->arch.sie_block->gpsw.mask, d_vcpu->arch.sie_block->gpsw.addr,\
d_args); \
} while (0)
KVM: s390: interrupt subsystem, cpu timer, waitpsw This patch contains the s390 interrupt subsystem (similar to in kernel apic) including timer interrupts (similar to in-kernel-pit) and enabled wait (similar to in kernel hlt). In order to achieve that, this patch also introduces intercept handling for instruction intercepts, and it implements load control instructions. This patch introduces an ioctl KVM_S390_INTERRUPT which is valid for both the vm file descriptors and the vcpu file descriptors. In case this ioctl is issued against a vm file descriptor, the interrupt is considered floating. Floating interrupts may be delivered to any virtual cpu in the configuration. The following interrupts are supported: SIGP STOP - interprocessor signal that stops a remote cpu SIGP SET PREFIX - interprocessor signal that sets the prefix register of a (stopped) remote cpu INT EMERGENCY - interprocessor interrupt, usually used to signal need_reshed and for smp_call_function() in the guest. PROGRAM INT - exception during program execution such as page fault, illegal instruction and friends RESTART - interprocessor signal that starts a stopped cpu INT VIRTIO - floating interrupt for virtio signalisation INT SERVICE - floating interrupt for signalisations from the system service processor struct kvm_s390_interrupt, which is submitted as ioctl parameter when injecting an interrupt, also carrys parameter data for interrupts along with the interrupt type. Interrupts on s390 usually have a state that represents the current operation, or identifies which device has caused the interruption on s390. kvm_s390_handle_wait() does handle waitpsw in two flavors: in case of a disabled wait (that is, disabled for interrupts), we exit to userspace. In case of an enabled wait we set up a timer that equals the cpu clock comparator value and sleep on a wait queue. [christian: change virtio interrupt to 0x2603] Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com> Signed-off-by: Carsten Otte <cotte@de.ibm.com> Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com> Signed-off-by: Avi Kivity <avi@qumranet.com>
2008-03-26 00:47:26 +07:00
static inline int is_vcpu_stopped(struct kvm_vcpu *vcpu)
KVM: s390: interrupt subsystem, cpu timer, waitpsw This patch contains the s390 interrupt subsystem (similar to in kernel apic) including timer interrupts (similar to in-kernel-pit) and enabled wait (similar to in kernel hlt). In order to achieve that, this patch also introduces intercept handling for instruction intercepts, and it implements load control instructions. This patch introduces an ioctl KVM_S390_INTERRUPT which is valid for both the vm file descriptors and the vcpu file descriptors. In case this ioctl is issued against a vm file descriptor, the interrupt is considered floating. Floating interrupts may be delivered to any virtual cpu in the configuration. The following interrupts are supported: SIGP STOP - interprocessor signal that stops a remote cpu SIGP SET PREFIX - interprocessor signal that sets the prefix register of a (stopped) remote cpu INT EMERGENCY - interprocessor interrupt, usually used to signal need_reshed and for smp_call_function() in the guest. PROGRAM INT - exception during program execution such as page fault, illegal instruction and friends RESTART - interprocessor signal that starts a stopped cpu INT VIRTIO - floating interrupt for virtio signalisation INT SERVICE - floating interrupt for signalisations from the system service processor struct kvm_s390_interrupt, which is submitted as ioctl parameter when injecting an interrupt, also carrys parameter data for interrupts along with the interrupt type. Interrupts on s390 usually have a state that represents the current operation, or identifies which device has caused the interruption on s390. kvm_s390_handle_wait() does handle waitpsw in two flavors: in case of a disabled wait (that is, disabled for interrupts), we exit to userspace. In case of an enabled wait we set up a timer that equals the cpu clock comparator value and sleep on a wait queue. [christian: change virtio interrupt to 0x2603] Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com> Signed-off-by: Carsten Otte <cotte@de.ibm.com> Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com> Signed-off-by: Avi Kivity <avi@qumranet.com>
2008-03-26 00:47:26 +07:00
{
return atomic_read(&vcpu->arch.sie_block->cpuflags) & CPUSTAT_STOPPED;
KVM: s390: interrupt subsystem, cpu timer, waitpsw This patch contains the s390 interrupt subsystem (similar to in kernel apic) including timer interrupts (similar to in-kernel-pit) and enabled wait (similar to in kernel hlt). In order to achieve that, this patch also introduces intercept handling for instruction intercepts, and it implements load control instructions. This patch introduces an ioctl KVM_S390_INTERRUPT which is valid for both the vm file descriptors and the vcpu file descriptors. In case this ioctl is issued against a vm file descriptor, the interrupt is considered floating. Floating interrupts may be delivered to any virtual cpu in the configuration. The following interrupts are supported: SIGP STOP - interprocessor signal that stops a remote cpu SIGP SET PREFIX - interprocessor signal that sets the prefix register of a (stopped) remote cpu INT EMERGENCY - interprocessor interrupt, usually used to signal need_reshed and for smp_call_function() in the guest. PROGRAM INT - exception during program execution such as page fault, illegal instruction and friends RESTART - interprocessor signal that starts a stopped cpu INT VIRTIO - floating interrupt for virtio signalisation INT SERVICE - floating interrupt for signalisations from the system service processor struct kvm_s390_interrupt, which is submitted as ioctl parameter when injecting an interrupt, also carrys parameter data for interrupts along with the interrupt type. Interrupts on s390 usually have a state that represents the current operation, or identifies which device has caused the interruption on s390. kvm_s390_handle_wait() does handle waitpsw in two flavors: in case of a disabled wait (that is, disabled for interrupts), we exit to userspace. In case of an enabled wait we set up a timer that equals the cpu clock comparator value and sleep on a wait queue. [christian: change virtio interrupt to 0x2603] Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com> Signed-off-by: Carsten Otte <cotte@de.ibm.com> Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com> Signed-off-by: Avi Kivity <avi@qumranet.com>
2008-03-26 00:47:26 +07:00
}
static inline int kvm_is_ucontrol(struct kvm *kvm)
{
#ifdef CONFIG_KVM_S390_UCONTROL
if (kvm->arch.gmap)
return 0;
return 1;
#else
return 0;
#endif
}
#define GUEST_PREFIX_SHIFT 13
static inline u32 kvm_s390_get_prefix(struct kvm_vcpu *vcpu)
{
return vcpu->arch.sie_block->prefix << GUEST_PREFIX_SHIFT;
}
static inline void kvm_s390_set_prefix(struct kvm_vcpu *vcpu, u32 prefix)
{
VCPU_EVENT(vcpu, 3, "set prefix of cpu %03u to 0x%x", vcpu->vcpu_id,
prefix);
vcpu->arch.sie_block->prefix = prefix >> GUEST_PREFIX_SHIFT;
kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
kvm_make_request(KVM_REQ_MMU_RELOAD, vcpu);
}
typedef u8 __bitwise ar_t;
static inline u64 kvm_s390_get_base_disp_s(struct kvm_vcpu *vcpu, ar_t *ar)
{
u32 base2 = vcpu->arch.sie_block->ipb >> 28;
u32 disp2 = ((vcpu->arch.sie_block->ipb & 0x0fff0000) >> 16);
if (ar)
*ar = base2;
return (base2 ? vcpu->run->s.regs.gprs[base2] : 0) + disp2;
}
static inline void kvm_s390_get_base_disp_sse(struct kvm_vcpu *vcpu,
u64 *address1, u64 *address2,
ar_t *ar_b1, ar_t *ar_b2)
{
u32 base1 = (vcpu->arch.sie_block->ipb & 0xf0000000) >> 28;
u32 disp1 = (vcpu->arch.sie_block->ipb & 0x0fff0000) >> 16;
u32 base2 = (vcpu->arch.sie_block->ipb & 0xf000) >> 12;
u32 disp2 = vcpu->arch.sie_block->ipb & 0x0fff;
*address1 = (base1 ? vcpu->run->s.regs.gprs[base1] : 0) + disp1;
*address2 = (base2 ? vcpu->run->s.regs.gprs[base2] : 0) + disp2;
if (ar_b1)
*ar_b1 = base1;
if (ar_b2)
*ar_b2 = base2;
}
static inline void kvm_s390_get_regs_rre(struct kvm_vcpu *vcpu, int *r1, int *r2)
{
if (r1)
*r1 = (vcpu->arch.sie_block->ipb & 0x00f00000) >> 20;
if (r2)
*r2 = (vcpu->arch.sie_block->ipb & 0x000f0000) >> 16;
}
static inline u64 kvm_s390_get_base_disp_rsy(struct kvm_vcpu *vcpu, ar_t *ar)
{
u32 base2 = vcpu->arch.sie_block->ipb >> 28;
u32 disp2 = ((vcpu->arch.sie_block->ipb & 0x0fff0000) >> 16) +
((vcpu->arch.sie_block->ipb & 0xff00) << 4);
/* The displacement is a 20bit _SIGNED_ value */
if (disp2 & 0x80000)
disp2+=0xfff00000;
if (ar)
*ar = base2;
return (base2 ? vcpu->run->s.regs.gprs[base2] : 0) + (long)(int)disp2;
}
static inline u64 kvm_s390_get_base_disp_rs(struct kvm_vcpu *vcpu, ar_t *ar)
{
u32 base2 = vcpu->arch.sie_block->ipb >> 28;
u32 disp2 = ((vcpu->arch.sie_block->ipb & 0x0fff0000) >> 16);
if (ar)
*ar = base2;
return (base2 ? vcpu->run->s.regs.gprs[base2] : 0) + disp2;
}
/* Set the condition code in the guest program status word */
static inline void kvm_s390_set_psw_cc(struct kvm_vcpu *vcpu, unsigned long cc)
{
vcpu->arch.sie_block->gpsw.mask &= ~(3UL << 44);
vcpu->arch.sie_block->gpsw.mask |= cc << 44;
}
/* test availability of facility in a kvm instance */
static inline int test_kvm_facility(struct kvm *kvm, unsigned long nr)
{
return __test_facility(nr, kvm->arch.model.fac->mask) &&
__test_facility(nr, kvm->arch.model.fac->list);
}
static inline int set_kvm_facility(u64 *fac_list, unsigned long nr)
{
unsigned char *ptr;
if (nr >= MAX_FACILITY_BIT)
return -EINVAL;
ptr = (unsigned char *) fac_list + (nr >> 3);
*ptr |= (0x80UL >> (nr & 7));
return 0;
}
/* are cpu states controlled by user space */
static inline int kvm_s390_user_cpu_state_ctrl(struct kvm *kvm)
{
return kvm->arch.user_cpu_state_ctrl != 0;
}
/* implemented in interrupt.c */
KVM: s390: interrupt subsystem, cpu timer, waitpsw This patch contains the s390 interrupt subsystem (similar to in kernel apic) including timer interrupts (similar to in-kernel-pit) and enabled wait (similar to in kernel hlt). In order to achieve that, this patch also introduces intercept handling for instruction intercepts, and it implements load control instructions. This patch introduces an ioctl KVM_S390_INTERRUPT which is valid for both the vm file descriptors and the vcpu file descriptors. In case this ioctl is issued against a vm file descriptor, the interrupt is considered floating. Floating interrupts may be delivered to any virtual cpu in the configuration. The following interrupts are supported: SIGP STOP - interprocessor signal that stops a remote cpu SIGP SET PREFIX - interprocessor signal that sets the prefix register of a (stopped) remote cpu INT EMERGENCY - interprocessor interrupt, usually used to signal need_reshed and for smp_call_function() in the guest. PROGRAM INT - exception during program execution such as page fault, illegal instruction and friends RESTART - interprocessor signal that starts a stopped cpu INT VIRTIO - floating interrupt for virtio signalisation INT SERVICE - floating interrupt for signalisations from the system service processor struct kvm_s390_interrupt, which is submitted as ioctl parameter when injecting an interrupt, also carrys parameter data for interrupts along with the interrupt type. Interrupts on s390 usually have a state that represents the current operation, or identifies which device has caused the interruption on s390. kvm_s390_handle_wait() does handle waitpsw in two flavors: in case of a disabled wait (that is, disabled for interrupts), we exit to userspace. In case of an enabled wait we set up a timer that equals the cpu clock comparator value and sleep on a wait queue. [christian: change virtio interrupt to 0x2603] Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com> Signed-off-by: Carsten Otte <cotte@de.ibm.com> Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com> Signed-off-by: Avi Kivity <avi@qumranet.com>
2008-03-26 00:47:26 +07:00
int kvm_s390_handle_wait(struct kvm_vcpu *vcpu);
void kvm_s390_vcpu_wakeup(struct kvm_vcpu *vcpu);
enum hrtimer_restart kvm_s390_idle_wakeup(struct hrtimer *timer);
int __must_check kvm_s390_deliver_pending_interrupts(struct kvm_vcpu *vcpu);
void kvm_s390_clear_local_irqs(struct kvm_vcpu *vcpu);
void kvm_s390_clear_float_irqs(struct kvm *kvm);
int __must_check kvm_s390_inject_vm(struct kvm *kvm,
struct kvm_s390_interrupt *s390int);
int __must_check kvm_s390_inject_vcpu(struct kvm_vcpu *vcpu,
struct kvm_s390_irq *irq);
static inline int kvm_s390_inject_prog_irq(struct kvm_vcpu *vcpu,
struct kvm_s390_pgm_info *pgm_info)
{
struct kvm_s390_irq irq = {
.type = KVM_S390_PROGRAM_INT,
.u.pgm = *pgm_info,
};
return kvm_s390_inject_vcpu(vcpu, &irq);
}
static inline int kvm_s390_inject_program_int(struct kvm_vcpu *vcpu, u16 code)
{
struct kvm_s390_irq irq = {
.type = KVM_S390_PROGRAM_INT,
.u.pgm.code = code,
};
return kvm_s390_inject_vcpu(vcpu, &irq);
}
struct kvm_s390_interrupt_info *kvm_s390_get_io_int(struct kvm *kvm,
u64 isc_mask, u32 schid);
int kvm_s390_reinject_io_int(struct kvm *kvm,
struct kvm_s390_interrupt_info *inti);
int kvm_s390_mask_adapter(struct kvm *kvm, unsigned int id, bool masked);
/* implemented in intercept.c */
void kvm_s390_rewind_psw(struct kvm_vcpu *vcpu, int ilc);
int kvm_handle_sie_intercept(struct kvm_vcpu *vcpu);
/* implemented in priv.c */
int is_valid_psw(psw_t *psw);
int kvm_s390_handle_b2(struct kvm_vcpu *vcpu);
int kvm_s390_handle_e5(struct kvm_vcpu *vcpu);
int kvm_s390_handle_01(struct kvm_vcpu *vcpu);
int kvm_s390_handle_b9(struct kvm_vcpu *vcpu);
int kvm_s390_handle_lpsw(struct kvm_vcpu *vcpu);
int kvm_s390_handle_stctl(struct kvm_vcpu *vcpu);
int kvm_s390_handle_lctl(struct kvm_vcpu *vcpu);
int kvm_s390_handle_eb(struct kvm_vcpu *vcpu);
/* implemented in sigp.c */
int kvm_s390_handle_sigp(struct kvm_vcpu *vcpu);
int kvm_s390_handle_sigp_pei(struct kvm_vcpu *vcpu);
/* implemented in kvm-s390.c */
long kvm_arch_fault_in_page(struct kvm_vcpu *vcpu, gpa_t gpa, int writable);
int kvm_s390_store_status_unloaded(struct kvm_vcpu *vcpu, unsigned long addr);
int kvm_s390_store_adtl_status_unloaded(struct kvm_vcpu *vcpu,
unsigned long addr);
int kvm_s390_vcpu_store_status(struct kvm_vcpu *vcpu, unsigned long addr);
int kvm_s390_vcpu_store_adtl_status(struct kvm_vcpu *vcpu, unsigned long addr);
void kvm_s390_vcpu_start(struct kvm_vcpu *vcpu);
void kvm_s390_vcpu_stop(struct kvm_vcpu *vcpu);
void kvm_s390_vcpu_block(struct kvm_vcpu *vcpu);
void kvm_s390_vcpu_unblock(struct kvm_vcpu *vcpu);
void exit_sie(struct kvm_vcpu *vcpu);
void kvm_s390_sync_request(int req, struct kvm_vcpu *vcpu);
int kvm_s390_vcpu_setup_cmma(struct kvm_vcpu *vcpu);
void kvm_s390_vcpu_unsetup_cmma(struct kvm_vcpu *vcpu);
unsigned long kvm_s390_fac_list_mask_size(void);
extern unsigned long kvm_s390_fac_list_mask[];
/* implemented in diag.c */
int kvm_s390_handle_diag(struct kvm_vcpu *vcpu);
static inline void kvm_s390_vcpu_block_all(struct kvm *kvm)
{
int i;
struct kvm_vcpu *vcpu;
WARN_ON(!mutex_is_locked(&kvm->lock));
kvm_for_each_vcpu(i, vcpu, kvm)
kvm_s390_vcpu_block(vcpu);
}
static inline void kvm_s390_vcpu_unblock_all(struct kvm *kvm)
{
int i;
struct kvm_vcpu *vcpu;
kvm_for_each_vcpu(i, vcpu, kvm)
kvm_s390_vcpu_unblock(vcpu);
}
/**
* kvm_s390_inject_prog_cond - conditionally inject a program check
* @vcpu: virtual cpu
* @rc: original return/error code
*
* This function is supposed to be used after regular guest access functions
* failed, to conditionally inject a program check to a vcpu. The typical
* pattern would look like
*
* rc = write_guest(vcpu, addr, data, len);
* if (rc)
* return kvm_s390_inject_prog_cond(vcpu, rc);
*
* A negative return code from guest access functions implies an internal error
* like e.g. out of memory. In these cases no program check should be injected
* to the guest.
* A positive value implies that an exception happened while accessing a guest's
* memory. In this case all data belonging to the corresponding program check
* has been stored in vcpu->arch.pgm and can be injected with
* kvm_s390_inject_prog_irq().
*
* Returns: - the original @rc value if @rc was negative (internal error)
* - zero if @rc was already zero
* - zero or error code from injecting if @rc was positive
* (program check injected to @vcpu)
*/
static inline int kvm_s390_inject_prog_cond(struct kvm_vcpu *vcpu, int rc)
{
if (rc <= 0)
return rc;
return kvm_s390_inject_prog_irq(vcpu, &vcpu->arch.pgm);
}
int s390int_to_s390irq(struct kvm_s390_interrupt *s390int,
struct kvm_s390_irq *s390irq);
/* implemented in interrupt.c */
int kvm_s390_vcpu_has_irq(struct kvm_vcpu *vcpu, int exclude_stop);
int psw_extint_disabled(struct kvm_vcpu *vcpu);
void kvm_s390_destroy_adapters(struct kvm *kvm);
int kvm_s390_ext_call_pending(struct kvm_vcpu *vcpu);
extern struct kvm_device_ops kvm_flic_ops;
int kvm_s390_is_stop_irq_pending(struct kvm_vcpu *vcpu);
void kvm_s390_clear_stop_irq(struct kvm_vcpu *vcpu);
int kvm_s390_set_irq_state(struct kvm_vcpu *vcpu,
void __user *buf, int len);
int kvm_s390_get_irq_state(struct kvm_vcpu *vcpu,
__u8 __user *buf, int len);
/* implemented in guestdbg.c */
void kvm_s390_backup_guest_per_regs(struct kvm_vcpu *vcpu);
void kvm_s390_restore_guest_per_regs(struct kvm_vcpu *vcpu);
void kvm_s390_patch_guest_per_regs(struct kvm_vcpu *vcpu);
int kvm_s390_import_bp_data(struct kvm_vcpu *vcpu,
struct kvm_guest_debug *dbg);
void kvm_s390_clear_bp_data(struct kvm_vcpu *vcpu);
void kvm_s390_prepare_debug_exit(struct kvm_vcpu *vcpu);
void kvm_s390_handle_per_event(struct kvm_vcpu *vcpu);
#endif