linux_dsm_epyc7002/drivers/clk/clk-stm32h7.c

1397 lines
36 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) STMicroelectronics 2017
* Author: Gabriel Fernandez <gabriel.fernandez@st.com> for STMicroelectronics.
*/
#include <linux/clk.h>
#include <linux/clk-provider.h>
#include <linux/err.h>
#include <linux/io.h>
#include <linux/mfd/syscon.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/regmap.h>
#include <dt-bindings/clock/stm32h7-clks.h>
/* Reset Clock Control Registers */
#define RCC_CR 0x00
#define RCC_CFGR 0x10
#define RCC_D1CFGR 0x18
#define RCC_D2CFGR 0x1C
#define RCC_D3CFGR 0x20
#define RCC_PLLCKSELR 0x28
#define RCC_PLLCFGR 0x2C
#define RCC_PLL1DIVR 0x30
#define RCC_PLL1FRACR 0x34
#define RCC_PLL2DIVR 0x38
#define RCC_PLL2FRACR 0x3C
#define RCC_PLL3DIVR 0x40
#define RCC_PLL3FRACR 0x44
#define RCC_D1CCIPR 0x4C
#define RCC_D2CCIP1R 0x50
#define RCC_D2CCIP2R 0x54
#define RCC_D3CCIPR 0x58
#define RCC_BDCR 0x70
#define RCC_CSR 0x74
#define RCC_AHB3ENR 0xD4
#define RCC_AHB1ENR 0xD8
#define RCC_AHB2ENR 0xDC
#define RCC_AHB4ENR 0xE0
#define RCC_APB3ENR 0xE4
#define RCC_APB1LENR 0xE8
#define RCC_APB1HENR 0xEC
#define RCC_APB2ENR 0xF0
#define RCC_APB4ENR 0xF4
static DEFINE_SPINLOCK(stm32rcc_lock);
static void __iomem *base;
static struct clk_hw **hws;
/* System clock parent */
static const char * const sys_src[] = {
"hsi_ck", "csi_ck", "hse_ck", "pll1_p" };
static const char * const tracein_src[] = {
"hsi_ck", "csi_ck", "hse_ck", "pll1_r" };
static const char * const per_src[] = {
"hsi_ker", "csi_ker", "hse_ck", "disabled" };
static const char * const pll_src[] = {
"hsi_ck", "csi_ck", "hse_ck", "no clock" };
static const char * const sdmmc_src[] = { "pll1_q", "pll2_r" };
static const char * const dsi_src[] = { "ck_dsi_phy", "pll2_q" };
static const char * const qspi_src[] = {
"hclk", "pll1_q", "pll2_r", "per_ck" };
static const char * const fmc_src[] = {
"hclk", "pll1_q", "pll2_r", "per_ck" };
/* Kernel clock parent */
static const char * const swp_src[] = { "pclk1", "hsi_ker" };
static const char * const fdcan_src[] = { "hse_ck", "pll1_q", "pll2_q" };
static const char * const dfsdm1_src[] = { "pclk2", "sys_ck" };
static const char * const spdifrx_src[] = {
"pll1_q", "pll2_r", "pll3_r", "hsi_ker" };
static const char *spi_src1[5] = {
"pll1_q", "pll2_p", "pll3_p", NULL, "per_ck" };
static const char * const spi_src2[] = {
"pclk2", "pll2_q", "pll3_q", "hsi_ker", "csi_ker", "hse_ck" };
static const char * const spi_src3[] = {
"pclk4", "pll2_q", "pll3_q", "hsi_ker", "csi_ker", "hse_ck" };
static const char * const lptim_src1[] = {
"pclk1", "pll2_p", "pll3_r", "lse_ck", "lsi_ck", "per_ck" };
static const char * const lptim_src2[] = {
"pclk4", "pll2_p", "pll3_r", "lse_ck", "lsi_ck", "per_ck" };
static const char * const cec_src[] = {"lse_ck", "lsi_ck", "csi_ker_div122" };
static const char * const usbotg_src[] = {"pll1_q", "pll3_q", "rc48_ck" };
/* i2c 1,2,3 src */
static const char * const i2c_src1[] = {
"pclk1", "pll3_r", "hsi_ker", "csi_ker" };
static const char * const i2c_src2[] = {
"pclk4", "pll3_r", "hsi_ker", "csi_ker" };
static const char * const rng_src[] = {
"rc48_ck", "pll1_q", "lse_ck", "lsi_ck" };
/* usart 1,6 src */
static const char * const usart_src1[] = {
"pclk2", "pll2_q", "pll3_q", "hsi_ker", "csi_ker", "lse_ck" };
/* usart 2,3,4,5,7,8 src */
static const char * const usart_src2[] = {
"pclk1", "pll2_q", "pll3_q", "hsi_ker", "csi_ker", "lse_ck" };
static const char *sai_src[5] = {
"pll1_q", "pll2_p", "pll3_p", NULL, "per_ck" };
static const char * const adc_src[] = { "pll2_p", "pll3_r", "per_ck" };
/* lptim 2,3,4,5 src */
static const char * const lpuart1_src[] = {
"pclk3", "pll2_q", "pll3_q", "csi_ker", "lse_ck" };
static const char * const hrtim_src[] = { "tim2_ker", "d1cpre" };
/* RTC clock parent */
static const char * const rtc_src[] = { "off", "lse_ck", "lsi_ck", "hse_1M" };
/* Micro-controller output clock parent */
static const char * const mco_src1[] = {
"hsi_ck", "lse_ck", "hse_ck", "pll1_q", "rc48_ck" };
static const char * const mco_src2[] = {
"sys_ck", "pll2_p", "hse_ck", "pll1_p", "csi_ck", "lsi_ck" };
/* LCD clock */
static const char * const ltdc_src[] = {"pll3_r"};
/* Gate clock with ready bit and backup domain management */
struct stm32_ready_gate {
struct clk_gate gate;
u8 bit_rdy;
};
#define to_ready_gate_clk(_rgate) container_of(_rgate, struct stm32_ready_gate,\
gate)
#define RGATE_TIMEOUT 10000
static int ready_gate_clk_enable(struct clk_hw *hw)
{
struct clk_gate *gate = to_clk_gate(hw);
struct stm32_ready_gate *rgate = to_ready_gate_clk(gate);
int bit_status;
unsigned int timeout = RGATE_TIMEOUT;
if (clk_gate_ops.is_enabled(hw))
return 0;
clk_gate_ops.enable(hw);
/* We can't use readl_poll_timeout() because we can blocked if
* someone enables this clock before clocksource changes.
* Only jiffies counter is available. Jiffies are incremented by
* interruptions and enable op does not allow to be interrupted.
*/
do {
bit_status = !(readl(gate->reg) & BIT(rgate->bit_rdy));
if (bit_status)
udelay(100);
} while (bit_status && --timeout);
return bit_status;
}
static void ready_gate_clk_disable(struct clk_hw *hw)
{
struct clk_gate *gate = to_clk_gate(hw);
struct stm32_ready_gate *rgate = to_ready_gate_clk(gate);
int bit_status;
unsigned int timeout = RGATE_TIMEOUT;
if (!clk_gate_ops.is_enabled(hw))
return;
clk_gate_ops.disable(hw);
do {
bit_status = !!(readl(gate->reg) & BIT(rgate->bit_rdy));
if (bit_status)
udelay(100);
} while (bit_status && --timeout);
}
static const struct clk_ops ready_gate_clk_ops = {
.enable = ready_gate_clk_enable,
.disable = ready_gate_clk_disable,
.is_enabled = clk_gate_is_enabled,
};
static struct clk_hw *clk_register_ready_gate(struct device *dev,
const char *name, const char *parent_name,
void __iomem *reg, u8 bit_idx, u8 bit_rdy,
unsigned long flags, spinlock_t *lock)
{
struct stm32_ready_gate *rgate;
struct clk_init_data init = { NULL };
struct clk_hw *hw;
int ret;
rgate = kzalloc(sizeof(*rgate), GFP_KERNEL);
if (!rgate)
return ERR_PTR(-ENOMEM);
init.name = name;
init.ops = &ready_gate_clk_ops;
init.flags = flags;
init.parent_names = &parent_name;
init.num_parents = 1;
rgate->bit_rdy = bit_rdy;
rgate->gate.lock = lock;
rgate->gate.reg = reg;
rgate->gate.bit_idx = bit_idx;
rgate->gate.hw.init = &init;
hw = &rgate->gate.hw;
ret = clk_hw_register(dev, hw);
if (ret) {
kfree(rgate);
hw = ERR_PTR(ret);
}
return hw;
}
struct gate_cfg {
u32 offset;
u8 bit_idx;
};
struct muxdiv_cfg {
u32 offset;
u8 shift;
u8 width;
};
struct composite_clk_cfg {
struct gate_cfg *gate;
struct muxdiv_cfg *mux;
struct muxdiv_cfg *div;
const char *name;
const char * const *parent_name;
int num_parents;
u32 flags;
};
struct composite_clk_gcfg_t {
u8 flags;
const struct clk_ops *ops;
};
/*
* General config definition of a composite clock (only clock diviser for rate)
*/
struct composite_clk_gcfg {
struct composite_clk_gcfg_t *mux;
struct composite_clk_gcfg_t *div;
struct composite_clk_gcfg_t *gate;
};
#define M_CFG_MUX(_mux_ops, _mux_flags)\
.mux = &(struct composite_clk_gcfg_t) { _mux_flags, _mux_ops}
#define M_CFG_DIV(_rate_ops, _rate_flags)\
.div = &(struct composite_clk_gcfg_t) {_rate_flags, _rate_ops}
#define M_CFG_GATE(_gate_ops, _gate_flags)\
.gate = &(struct composite_clk_gcfg_t) { _gate_flags, _gate_ops}
static struct clk_mux *_get_cmux(void __iomem *reg, u8 shift, u8 width,
u32 flags, spinlock_t *lock)
{
struct clk_mux *mux;
mux = kzalloc(sizeof(*mux), GFP_KERNEL);
if (!mux)
return ERR_PTR(-ENOMEM);
mux->reg = reg;
mux->shift = shift;
mux->mask = (1 << width) - 1;
mux->flags = flags;
mux->lock = lock;
return mux;
}
static struct clk_divider *_get_cdiv(void __iomem *reg, u8 shift, u8 width,
u32 flags, spinlock_t *lock)
{
struct clk_divider *div;
div = kzalloc(sizeof(*div), GFP_KERNEL);
if (!div)
return ERR_PTR(-ENOMEM);
div->reg = reg;
div->shift = shift;
div->width = width;
div->flags = flags;
div->lock = lock;
return div;
}
static struct clk_gate *_get_cgate(void __iomem *reg, u8 bit_idx, u32 flags,
spinlock_t *lock)
{
struct clk_gate *gate;
gate = kzalloc(sizeof(*gate), GFP_KERNEL);
if (!gate)
return ERR_PTR(-ENOMEM);
gate->reg = reg;
gate->bit_idx = bit_idx;
gate->flags = flags;
gate->lock = lock;
return gate;
}
struct composite_cfg {
struct clk_hw *mux_hw;
struct clk_hw *div_hw;
struct clk_hw *gate_hw;
const struct clk_ops *mux_ops;
const struct clk_ops *div_ops;
const struct clk_ops *gate_ops;
};
static void get_cfg_composite_div(const struct composite_clk_gcfg *gcfg,
const struct composite_clk_cfg *cfg,
struct composite_cfg *composite, spinlock_t *lock)
{
struct clk_mux *mux = NULL;
struct clk_divider *div = NULL;
struct clk_gate *gate = NULL;
const struct clk_ops *mux_ops, *div_ops, *gate_ops;
struct clk_hw *mux_hw;
struct clk_hw *div_hw;
struct clk_hw *gate_hw;
mux_ops = div_ops = gate_ops = NULL;
mux_hw = div_hw = gate_hw = NULL;
if (gcfg->mux && cfg->mux) {
mux = _get_cmux(base + cfg->mux->offset,
cfg->mux->shift,
cfg->mux->width,
gcfg->mux->flags, lock);
if (!IS_ERR(mux)) {
mux_hw = &mux->hw;
mux_ops = gcfg->mux->ops ?
gcfg->mux->ops : &clk_mux_ops;
}
}
if (gcfg->div && cfg->div) {
div = _get_cdiv(base + cfg->div->offset,
cfg->div->shift,
cfg->div->width,
gcfg->div->flags, lock);
if (!IS_ERR(div)) {
div_hw = &div->hw;
div_ops = gcfg->div->ops ?
gcfg->div->ops : &clk_divider_ops;
}
}
if (gcfg->gate && cfg->gate) {
gate = _get_cgate(base + cfg->gate->offset,
cfg->gate->bit_idx,
gcfg->gate->flags, lock);
if (!IS_ERR(gate)) {
gate_hw = &gate->hw;
gate_ops = gcfg->gate->ops ?
gcfg->gate->ops : &clk_gate_ops;
}
}
composite->mux_hw = mux_hw;
composite->mux_ops = mux_ops;
composite->div_hw = div_hw;
composite->div_ops = div_ops;
composite->gate_hw = gate_hw;
composite->gate_ops = gate_ops;
}
/* Kernel Timer */
struct timer_ker {
u8 dppre_shift;
struct clk_hw hw;
spinlock_t *lock;
};
#define to_timer_ker(_hw) container_of(_hw, struct timer_ker, hw)
static unsigned long timer_ker_recalc_rate(struct clk_hw *hw,
unsigned long parent_rate)
{
struct timer_ker *clk_elem = to_timer_ker(hw);
u32 timpre;
u32 dppre_shift = clk_elem->dppre_shift;
u32 prescaler;
u32 mul;
timpre = (readl(base + RCC_CFGR) >> 15) & 0x01;
prescaler = (readl(base + RCC_D2CFGR) >> dppre_shift) & 0x03;
mul = 2;
if (prescaler < 4)
mul = 1;
else if (timpre && prescaler > 4)
mul = 4;
return parent_rate * mul;
}
static const struct clk_ops timer_ker_ops = {
.recalc_rate = timer_ker_recalc_rate,
};
static struct clk_hw *clk_register_stm32_timer_ker(struct device *dev,
const char *name, const char *parent_name,
unsigned long flags,
u8 dppre_shift,
spinlock_t *lock)
{
struct timer_ker *element;
struct clk_init_data init;
struct clk_hw *hw;
int err;
element = kzalloc(sizeof(*element), GFP_KERNEL);
if (!element)
return ERR_PTR(-ENOMEM);
init.name = name;
init.ops = &timer_ker_ops;
init.flags = flags;
init.parent_names = &parent_name;
init.num_parents = 1;
element->hw.init = &init;
element->lock = lock;
element->dppre_shift = dppre_shift;
hw = &element->hw;
err = clk_hw_register(dev, hw);
if (err) {
kfree(element);
return ERR_PTR(err);
}
return hw;
}
static const struct clk_div_table d1cpre_div_table[] = {
{ 0, 1 }, { 1, 1 }, { 2, 1 }, { 3, 1},
{ 4, 1 }, { 5, 1 }, { 6, 1 }, { 7, 1},
{ 8, 2 }, { 9, 4 }, { 10, 8 }, { 11, 16 },
{ 12, 64 }, { 13, 128 }, { 14, 256 },
{ 15, 512 },
{ 0 },
};
static const struct clk_div_table ppre_div_table[] = {
{ 0, 1 }, { 1, 1 }, { 2, 1 }, { 3, 1},
{ 4, 2 }, { 5, 4 }, { 6, 8 }, { 7, 16 },
{ 0 },
};
static void register_core_and_bus_clocks(void)
{
/* CORE AND BUS */
hws[SYS_D1CPRE] = clk_hw_register_divider_table(NULL, "d1cpre",
"sys_ck", CLK_IGNORE_UNUSED, base + RCC_D1CFGR, 8, 4, 0,
d1cpre_div_table, &stm32rcc_lock);
hws[HCLK] = clk_hw_register_divider_table(NULL, "hclk", "d1cpre",
CLK_IGNORE_UNUSED, base + RCC_D1CFGR, 0, 4, 0,
d1cpre_div_table, &stm32rcc_lock);
/* D1 DOMAIN */
/* * CPU Systick */
hws[CPU_SYSTICK] = clk_hw_register_fixed_factor(NULL, "systick",
"d1cpre", 0, 1, 8);
/* * APB3 peripheral */
hws[PCLK3] = clk_hw_register_divider_table(NULL, "pclk3", "hclk", 0,
base + RCC_D1CFGR, 4, 3, 0,
ppre_div_table, &stm32rcc_lock);
/* D2 DOMAIN */
/* * APB1 peripheral */
hws[PCLK1] = clk_hw_register_divider_table(NULL, "pclk1", "hclk", 0,
base + RCC_D2CFGR, 4, 3, 0,
ppre_div_table, &stm32rcc_lock);
/* Timers prescaler clocks */
clk_register_stm32_timer_ker(NULL, "tim1_ker", "pclk1", 0,
4, &stm32rcc_lock);
/* * APB2 peripheral */
hws[PCLK2] = clk_hw_register_divider_table(NULL, "pclk2", "hclk", 0,
base + RCC_D2CFGR, 8, 3, 0, ppre_div_table,
&stm32rcc_lock);
clk_register_stm32_timer_ker(NULL, "tim2_ker", "pclk2", 0, 8,
&stm32rcc_lock);
/* D3 DOMAIN */
/* * APB4 peripheral */
hws[PCLK4] = clk_hw_register_divider_table(NULL, "pclk4", "hclk", 0,
base + RCC_D3CFGR, 4, 3, 0,
ppre_div_table, &stm32rcc_lock);
}
/* MUX clock configuration */
struct stm32_mux_clk {
const char *name;
const char * const *parents;
u8 num_parents;
u32 offset;
u8 shift;
u8 width;
u32 flags;
};
#define M_MCLOCF(_name, _parents, _mux_offset, _mux_shift, _mux_width, _flags)\
{\
.name = _name,\
.parents = _parents,\
.num_parents = ARRAY_SIZE(_parents),\
.offset = _mux_offset,\
.shift = _mux_shift,\
.width = _mux_width,\
.flags = _flags,\
}
#define M_MCLOC(_name, _parents, _mux_offset, _mux_shift, _mux_width)\
M_MCLOCF(_name, _parents, _mux_offset, _mux_shift, _mux_width, 0)\
static const struct stm32_mux_clk stm32_mclk[] __initconst = {
M_MCLOC("per_ck", per_src, RCC_D1CCIPR, 28, 3),
M_MCLOC("pllsrc", pll_src, RCC_PLLCKSELR, 0, 3),
M_MCLOC("sys_ck", sys_src, RCC_CFGR, 0, 3),
M_MCLOC("tracein_ck", tracein_src, RCC_CFGR, 0, 3),
};
/* Oscillary clock configuration */
struct stm32_osc_clk {
const char *name;
const char *parent;
u32 gate_offset;
u8 bit_idx;
u8 bit_rdy;
u32 flags;
};
#define OSC_CLKF(_name, _parent, _gate_offset, _bit_idx, _bit_rdy, _flags)\
{\
.name = _name,\
.parent = _parent,\
.gate_offset = _gate_offset,\
.bit_idx = _bit_idx,\
.bit_rdy = _bit_rdy,\
.flags = _flags,\
}
#define OSC_CLK(_name, _parent, _gate_offset, _bit_idx, _bit_rdy)\
OSC_CLKF(_name, _parent, _gate_offset, _bit_idx, _bit_rdy, 0)
static const struct stm32_osc_clk stm32_oclk[] __initconst = {
OSC_CLKF("hsi_ck", "hsidiv", RCC_CR, 0, 2, CLK_IGNORE_UNUSED),
OSC_CLKF("hsi_ker", "hsidiv", RCC_CR, 1, 2, CLK_IGNORE_UNUSED),
OSC_CLKF("csi_ck", "clk-csi", RCC_CR, 7, 8, CLK_IGNORE_UNUSED),
OSC_CLKF("csi_ker", "clk-csi", RCC_CR, 9, 8, CLK_IGNORE_UNUSED),
OSC_CLKF("rc48_ck", "clk-rc48", RCC_CR, 12, 13, CLK_IGNORE_UNUSED),
OSC_CLKF("lsi_ck", "clk-lsi", RCC_CSR, 0, 1, CLK_IGNORE_UNUSED),
};
/* PLL configuration */
struct st32h7_pll_cfg {
u8 bit_idx;
u32 offset_divr;
u8 bit_frac_en;
u32 offset_frac;
u8 divm;
};
struct stm32_pll_data {
const char *name;
const char *parent_name;
unsigned long flags;
const struct st32h7_pll_cfg *cfg;
};
static const struct st32h7_pll_cfg stm32h7_pll1 = {
.bit_idx = 24,
.offset_divr = RCC_PLL1DIVR,
.bit_frac_en = 0,
.offset_frac = RCC_PLL1FRACR,
.divm = 4,
};
static const struct st32h7_pll_cfg stm32h7_pll2 = {
.bit_idx = 26,
.offset_divr = RCC_PLL2DIVR,
.bit_frac_en = 4,
.offset_frac = RCC_PLL2FRACR,
.divm = 12,
};
static const struct st32h7_pll_cfg stm32h7_pll3 = {
.bit_idx = 28,
.offset_divr = RCC_PLL3DIVR,
.bit_frac_en = 8,
.offset_frac = RCC_PLL3FRACR,
.divm = 20,
};
static const struct stm32_pll_data stm32_pll[] = {
{ "vco1", "pllsrc", CLK_IGNORE_UNUSED, &stm32h7_pll1 },
{ "vco2", "pllsrc", 0, &stm32h7_pll2 },
{ "vco3", "pllsrc", 0, &stm32h7_pll3 },
};
struct stm32_fractional_divider {
void __iomem *mreg;
u8 mshift;
u8 mwidth;
u32 mmask;
void __iomem *nreg;
u8 nshift;
u8 nwidth;
void __iomem *freg_status;
u8 freg_bit;
void __iomem *freg_value;
u8 fshift;
u8 fwidth;
u8 flags;
struct clk_hw hw;
spinlock_t *lock;
};
struct stm32_pll_obj {
spinlock_t *lock;
struct stm32_fractional_divider div;
struct stm32_ready_gate rgate;
struct clk_hw hw;
};
#define to_pll(_hw) container_of(_hw, struct stm32_pll_obj, hw)
static int pll_is_enabled(struct clk_hw *hw)
{
struct stm32_pll_obj *clk_elem = to_pll(hw);
struct clk_hw *_hw = &clk_elem->rgate.gate.hw;
__clk_hw_set_clk(_hw, hw);
return ready_gate_clk_ops.is_enabled(_hw);
}
static int pll_enable(struct clk_hw *hw)
{
struct stm32_pll_obj *clk_elem = to_pll(hw);
struct clk_hw *_hw = &clk_elem->rgate.gate.hw;
__clk_hw_set_clk(_hw, hw);
return ready_gate_clk_ops.enable(_hw);
}
static void pll_disable(struct clk_hw *hw)
{
struct stm32_pll_obj *clk_elem = to_pll(hw);
struct clk_hw *_hw = &clk_elem->rgate.gate.hw;
__clk_hw_set_clk(_hw, hw);
ready_gate_clk_ops.disable(_hw);
}
static int pll_frac_is_enabled(struct clk_hw *hw)
{
struct stm32_pll_obj *clk_elem = to_pll(hw);
struct stm32_fractional_divider *fd = &clk_elem->div;
return (readl(fd->freg_status) >> fd->freg_bit) & 0x01;
}
static unsigned long pll_read_frac(struct clk_hw *hw)
{
struct stm32_pll_obj *clk_elem = to_pll(hw);
struct stm32_fractional_divider *fd = &clk_elem->div;
return (readl(fd->freg_value) >> fd->fshift) &
GENMASK(fd->fwidth - 1, 0);
}
static unsigned long pll_fd_recalc_rate(struct clk_hw *hw,
unsigned long parent_rate)
{
struct stm32_pll_obj *clk_elem = to_pll(hw);
struct stm32_fractional_divider *fd = &clk_elem->div;
unsigned long m, n;
u32 val, mask;
u64 rate, rate1 = 0;
val = readl(fd->mreg);
mask = GENMASK(fd->mwidth - 1, 0) << fd->mshift;
m = (val & mask) >> fd->mshift;
val = readl(fd->nreg);
mask = GENMASK(fd->nwidth - 1, 0) << fd->nshift;
n = ((val & mask) >> fd->nshift) + 1;
if (!n || !m)
return parent_rate;
rate = (u64)parent_rate * n;
do_div(rate, m);
if (pll_frac_is_enabled(hw)) {
val = pll_read_frac(hw);
rate1 = (u64)parent_rate * (u64)val;
do_div(rate1, (m * 8191));
}
return rate + rate1;
}
static const struct clk_ops pll_ops = {
.enable = pll_enable,
.disable = pll_disable,
.is_enabled = pll_is_enabled,
.recalc_rate = pll_fd_recalc_rate,
};
static struct clk_hw *clk_register_stm32_pll(struct device *dev,
const char *name,
const char *parent,
unsigned long flags,
const struct st32h7_pll_cfg *cfg,
spinlock_t *lock)
{
struct stm32_pll_obj *pll;
struct clk_init_data init = { NULL };
struct clk_hw *hw;
int ret;
struct stm32_fractional_divider *div = NULL;
struct stm32_ready_gate *rgate;
pll = kzalloc(sizeof(*pll), GFP_KERNEL);
if (!pll)
return ERR_PTR(-ENOMEM);
init.name = name;
init.ops = &pll_ops;
init.flags = flags;
init.parent_names = &parent;
init.num_parents = 1;
pll->hw.init = &init;
hw = &pll->hw;
rgate = &pll->rgate;
rgate->bit_rdy = cfg->bit_idx + 1;
rgate->gate.lock = lock;
rgate->gate.reg = base + RCC_CR;
rgate->gate.bit_idx = cfg->bit_idx;
div = &pll->div;
div->flags = 0;
div->mreg = base + RCC_PLLCKSELR;
div->mshift = cfg->divm;
div->mwidth = 6;
div->nreg = base + cfg->offset_divr;
div->nshift = 0;
div->nwidth = 9;
div->freg_status = base + RCC_PLLCFGR;
div->freg_bit = cfg->bit_frac_en;
div->freg_value = base + cfg->offset_frac;
div->fshift = 3;
div->fwidth = 13;
div->lock = lock;
ret = clk_hw_register(dev, hw);
if (ret) {
kfree(pll);
hw = ERR_PTR(ret);
}
return hw;
}
/* ODF CLOCKS */
static unsigned long odf_divider_recalc_rate(struct clk_hw *hw,
unsigned long parent_rate)
{
return clk_divider_ops.recalc_rate(hw, parent_rate);
}
static long odf_divider_round_rate(struct clk_hw *hw, unsigned long rate,
unsigned long *prate)
{
return clk_divider_ops.round_rate(hw, rate, prate);
}
static int odf_divider_set_rate(struct clk_hw *hw, unsigned long rate,
unsigned long parent_rate)
{
struct clk_hw *hwp;
int pll_status;
int ret;
hwp = clk_hw_get_parent(hw);
pll_status = pll_is_enabled(hwp);
if (pll_status)
pll_disable(hwp);
ret = clk_divider_ops.set_rate(hw, rate, parent_rate);
if (pll_status)
pll_enable(hwp);
return ret;
}
static const struct clk_ops odf_divider_ops = {
.recalc_rate = odf_divider_recalc_rate,
.round_rate = odf_divider_round_rate,
.set_rate = odf_divider_set_rate,
};
static int odf_gate_enable(struct clk_hw *hw)
{
struct clk_hw *hwp;
int pll_status;
int ret;
if (clk_gate_ops.is_enabled(hw))
return 0;
hwp = clk_hw_get_parent(hw);
pll_status = pll_is_enabled(hwp);
if (pll_status)
pll_disable(hwp);
ret = clk_gate_ops.enable(hw);
if (pll_status)
pll_enable(hwp);
return ret;
}
static void odf_gate_disable(struct clk_hw *hw)
{
struct clk_hw *hwp;
int pll_status;
if (!clk_gate_ops.is_enabled(hw))
return;
hwp = clk_hw_get_parent(hw);
pll_status = pll_is_enabled(hwp);
if (pll_status)
pll_disable(hwp);
clk_gate_ops.disable(hw);
if (pll_status)
pll_enable(hwp);
}
static const struct clk_ops odf_gate_ops = {
.enable = odf_gate_enable,
.disable = odf_gate_disable,
.is_enabled = clk_gate_is_enabled,
};
static struct composite_clk_gcfg odf_clk_gcfg = {
M_CFG_DIV(&odf_divider_ops, 0),
M_CFG_GATE(&odf_gate_ops, 0),
};
#define M_ODF_F(_name, _parent, _gate_offset, _bit_idx, _rate_offset,\
_rate_shift, _rate_width, _flags)\
{\
.mux = NULL,\
.div = &(struct muxdiv_cfg) {_rate_offset, _rate_shift, _rate_width},\
.gate = &(struct gate_cfg) {_gate_offset, _bit_idx },\
.name = _name,\
.parent_name = &(const char *) {_parent},\
.num_parents = 1,\
.flags = _flags,\
}
#define M_ODF(_name, _parent, _gate_offset, _bit_idx, _rate_offset,\
_rate_shift, _rate_width)\
M_ODF_F(_name, _parent, _gate_offset, _bit_idx, _rate_offset,\
_rate_shift, _rate_width, 0)\
static const struct composite_clk_cfg stm32_odf[3][3] = {
{
M_ODF_F("pll1_p", "vco1", RCC_PLLCFGR, 16, RCC_PLL1DIVR, 9, 7,
CLK_IGNORE_UNUSED),
M_ODF_F("pll1_q", "vco1", RCC_PLLCFGR, 17, RCC_PLL1DIVR, 16, 7,
CLK_IGNORE_UNUSED),
M_ODF_F("pll1_r", "vco1", RCC_PLLCFGR, 18, RCC_PLL1DIVR, 24, 7,
CLK_IGNORE_UNUSED),
},
{
M_ODF("pll2_p", "vco2", RCC_PLLCFGR, 19, RCC_PLL2DIVR, 9, 7),
M_ODF("pll2_q", "vco2", RCC_PLLCFGR, 20, RCC_PLL2DIVR, 16, 7),
M_ODF("pll2_r", "vco2", RCC_PLLCFGR, 21, RCC_PLL2DIVR, 24, 7),
},
{
M_ODF("pll3_p", "vco3", RCC_PLLCFGR, 22, RCC_PLL3DIVR, 9, 7),
M_ODF("pll3_q", "vco3", RCC_PLLCFGR, 23, RCC_PLL3DIVR, 16, 7),
M_ODF("pll3_r", "vco3", RCC_PLLCFGR, 24, RCC_PLL3DIVR, 24, 7),
}
};
/* PERIF CLOCKS */
struct pclk_t {
u32 gate_offset;
u8 bit_idx;
const char *name;
const char *parent;
u32 flags;
};
#define PER_CLKF(_gate_offset, _bit_idx, _name, _parent, _flags)\
{\
.gate_offset = _gate_offset,\
.bit_idx = _bit_idx,\
.name = _name,\
.parent = _parent,\
.flags = _flags,\
}
#define PER_CLK(_gate_offset, _bit_idx, _name, _parent)\
PER_CLKF(_gate_offset, _bit_idx, _name, _parent, 0)
static const struct pclk_t pclk[] = {
PER_CLK(RCC_AHB3ENR, 31, "d1sram1", "hclk"),
PER_CLK(RCC_AHB3ENR, 30, "itcm", "hclk"),
PER_CLK(RCC_AHB3ENR, 29, "dtcm2", "hclk"),
PER_CLK(RCC_AHB3ENR, 28, "dtcm1", "hclk"),
PER_CLK(RCC_AHB3ENR, 8, "flitf", "hclk"),
PER_CLK(RCC_AHB3ENR, 5, "jpgdec", "hclk"),
PER_CLK(RCC_AHB3ENR, 4, "dma2d", "hclk"),
PER_CLK(RCC_AHB3ENR, 0, "mdma", "hclk"),
PER_CLK(RCC_AHB1ENR, 28, "usb2ulpi", "hclk"),
PER_CLK(RCC_AHB1ENR, 26, "usb1ulpi", "hclk"),
PER_CLK(RCC_AHB1ENR, 17, "eth1rx", "hclk"),
PER_CLK(RCC_AHB1ENR, 16, "eth1tx", "hclk"),
PER_CLK(RCC_AHB1ENR, 15, "eth1mac", "hclk"),
PER_CLK(RCC_AHB1ENR, 14, "art", "hclk"),
PER_CLK(RCC_AHB1ENR, 1, "dma2", "hclk"),
PER_CLK(RCC_AHB1ENR, 0, "dma1", "hclk"),
PER_CLK(RCC_AHB2ENR, 31, "d2sram3", "hclk"),
PER_CLK(RCC_AHB2ENR, 30, "d2sram2", "hclk"),
PER_CLK(RCC_AHB2ENR, 29, "d2sram1", "hclk"),
PER_CLK(RCC_AHB2ENR, 5, "hash", "hclk"),
PER_CLK(RCC_AHB2ENR, 4, "crypt", "hclk"),
PER_CLK(RCC_AHB2ENR, 0, "camitf", "hclk"),
PER_CLK(RCC_AHB4ENR, 28, "bkpram", "hclk"),
PER_CLK(RCC_AHB4ENR, 25, "hsem", "hclk"),
PER_CLK(RCC_AHB4ENR, 21, "bdma", "hclk"),
PER_CLK(RCC_AHB4ENR, 19, "crc", "hclk"),
PER_CLK(RCC_AHB4ENR, 10, "gpiok", "hclk"),
PER_CLK(RCC_AHB4ENR, 9, "gpioj", "hclk"),
PER_CLK(RCC_AHB4ENR, 8, "gpioi", "hclk"),
PER_CLK(RCC_AHB4ENR, 7, "gpioh", "hclk"),
PER_CLK(RCC_AHB4ENR, 6, "gpiog", "hclk"),
PER_CLK(RCC_AHB4ENR, 5, "gpiof", "hclk"),
PER_CLK(RCC_AHB4ENR, 4, "gpioe", "hclk"),
PER_CLK(RCC_AHB4ENR, 3, "gpiod", "hclk"),
PER_CLK(RCC_AHB4ENR, 2, "gpioc", "hclk"),
PER_CLK(RCC_AHB4ENR, 1, "gpiob", "hclk"),
PER_CLK(RCC_AHB4ENR, 0, "gpioa", "hclk"),
PER_CLK(RCC_APB3ENR, 6, "wwdg1", "pclk3"),
PER_CLK(RCC_APB1LENR, 29, "dac12", "pclk1"),
PER_CLK(RCC_APB1LENR, 11, "wwdg2", "pclk1"),
PER_CLK(RCC_APB1LENR, 8, "tim14", "tim1_ker"),
PER_CLK(RCC_APB1LENR, 7, "tim13", "tim1_ker"),
PER_CLK(RCC_APB1LENR, 6, "tim12", "tim1_ker"),
PER_CLK(RCC_APB1LENR, 5, "tim7", "tim1_ker"),
PER_CLK(RCC_APB1LENR, 4, "tim6", "tim1_ker"),
PER_CLK(RCC_APB1LENR, 3, "tim5", "tim1_ker"),
PER_CLK(RCC_APB1LENR, 2, "tim4", "tim1_ker"),
PER_CLK(RCC_APB1LENR, 1, "tim3", "tim1_ker"),
PER_CLK(RCC_APB1LENR, 0, "tim2", "tim1_ker"),
PER_CLK(RCC_APB1HENR, 5, "mdios", "pclk1"),
PER_CLK(RCC_APB1HENR, 4, "opamp", "pclk1"),
PER_CLK(RCC_APB1HENR, 1, "crs", "pclk1"),
PER_CLK(RCC_APB2ENR, 18, "tim17", "tim2_ker"),
PER_CLK(RCC_APB2ENR, 17, "tim16", "tim2_ker"),
PER_CLK(RCC_APB2ENR, 16, "tim15", "tim2_ker"),
PER_CLK(RCC_APB2ENR, 1, "tim8", "tim2_ker"),
PER_CLK(RCC_APB2ENR, 0, "tim1", "tim2_ker"),
PER_CLK(RCC_APB4ENR, 26, "tmpsens", "pclk4"),
PER_CLK(RCC_APB4ENR, 16, "rtcapb", "pclk4"),
PER_CLK(RCC_APB4ENR, 15, "vref", "pclk4"),
PER_CLK(RCC_APB4ENR, 14, "comp12", "pclk4"),
PER_CLK(RCC_APB4ENR, 1, "syscfg", "pclk4"),
};
/* KERNEL CLOCKS */
#define KER_CLKF(_gate_offset, _bit_idx,\
_mux_offset, _mux_shift, _mux_width,\
_name, _parent_name,\
_flags) \
{ \
.gate = &(struct gate_cfg) {_gate_offset, _bit_idx},\
.mux = &(struct muxdiv_cfg) {_mux_offset, _mux_shift, _mux_width },\
.name = _name, \
.parent_name = _parent_name, \
.num_parents = ARRAY_SIZE(_parent_name),\
.flags = _flags,\
}
#define KER_CLK(_gate_offset, _bit_idx, _mux_offset, _mux_shift, _mux_width,\
_name, _parent_name) \
KER_CLKF(_gate_offset, _bit_idx, _mux_offset, _mux_shift, _mux_width,\
_name, _parent_name, 0)\
#define KER_CLKF_NOMUX(_gate_offset, _bit_idx,\
_name, _parent_name,\
_flags) \
{ \
.gate = &(struct gate_cfg) {_gate_offset, _bit_idx},\
.mux = NULL,\
.name = _name, \
.parent_name = _parent_name, \
.num_parents = 1,\
.flags = _flags,\
}
static const struct composite_clk_cfg kclk[] = {
KER_CLK(RCC_AHB3ENR, 16, RCC_D1CCIPR, 16, 1, "sdmmc1", sdmmc_src),
KER_CLKF(RCC_AHB3ENR, 14, RCC_D1CCIPR, 4, 2, "quadspi", qspi_src,
CLK_IGNORE_UNUSED),
KER_CLKF(RCC_AHB3ENR, 12, RCC_D1CCIPR, 0, 2, "fmc", fmc_src,
CLK_IGNORE_UNUSED),
KER_CLK(RCC_AHB1ENR, 27, RCC_D2CCIP2R, 20, 2, "usb2otg", usbotg_src),
KER_CLK(RCC_AHB1ENR, 25, RCC_D2CCIP2R, 20, 2, "usb1otg", usbotg_src),
KER_CLK(RCC_AHB1ENR, 5, RCC_D3CCIPR, 16, 2, "adc12", adc_src),
KER_CLK(RCC_AHB2ENR, 9, RCC_D1CCIPR, 16, 1, "sdmmc2", sdmmc_src),
KER_CLK(RCC_AHB2ENR, 6, RCC_D2CCIP2R, 8, 2, "rng", rng_src),
KER_CLK(RCC_AHB4ENR, 24, RCC_D3CCIPR, 16, 2, "adc3", adc_src),
KER_CLKF(RCC_APB3ENR, 4, RCC_D1CCIPR, 8, 1, "dsi", dsi_src,
CLK_SET_RATE_PARENT),
KER_CLKF_NOMUX(RCC_APB3ENR, 3, "ltdc", ltdc_src, CLK_SET_RATE_PARENT),
KER_CLK(RCC_APB1LENR, 31, RCC_D2CCIP2R, 0, 3, "usart8", usart_src2),
KER_CLK(RCC_APB1LENR, 30, RCC_D2CCIP2R, 0, 3, "usart7", usart_src2),
KER_CLK(RCC_APB1LENR, 27, RCC_D2CCIP2R, 22, 2, "hdmicec", cec_src),
KER_CLK(RCC_APB1LENR, 23, RCC_D2CCIP2R, 12, 2, "i2c3", i2c_src1),
KER_CLK(RCC_APB1LENR, 22, RCC_D2CCIP2R, 12, 2, "i2c2", i2c_src1),
KER_CLK(RCC_APB1LENR, 21, RCC_D2CCIP2R, 12, 2, "i2c1", i2c_src1),
KER_CLK(RCC_APB1LENR, 20, RCC_D2CCIP2R, 0, 3, "uart5", usart_src2),
KER_CLK(RCC_APB1LENR, 19, RCC_D2CCIP2R, 0, 3, "uart4", usart_src2),
KER_CLK(RCC_APB1LENR, 18, RCC_D2CCIP2R, 0, 3, "usart3", usart_src2),
KER_CLK(RCC_APB1LENR, 17, RCC_D2CCIP2R, 0, 3, "usart2", usart_src2),
KER_CLK(RCC_APB1LENR, 16, RCC_D2CCIP1R, 20, 2, "spdifrx", spdifrx_src),
KER_CLK(RCC_APB1LENR, 15, RCC_D2CCIP1R, 16, 3, "spi3", spi_src1),
KER_CLK(RCC_APB1LENR, 14, RCC_D2CCIP1R, 16, 3, "spi2", spi_src1),
KER_CLK(RCC_APB1LENR, 9, RCC_D2CCIP2R, 28, 3, "lptim1", lptim_src1),
KER_CLK(RCC_APB1HENR, 8, RCC_D2CCIP1R, 28, 2, "fdcan", fdcan_src),
KER_CLK(RCC_APB1HENR, 2, RCC_D2CCIP1R, 31, 1, "swp", swp_src),
KER_CLK(RCC_APB2ENR, 29, RCC_CFGR, 14, 1, "hrtim", hrtim_src),
KER_CLK(RCC_APB2ENR, 28, RCC_D2CCIP1R, 24, 1, "dfsdm1", dfsdm1_src),
KER_CLKF(RCC_APB2ENR, 24, RCC_D2CCIP1R, 6, 3, "sai3", sai_src,
CLK_SET_RATE_PARENT | CLK_SET_RATE_NO_REPARENT),
KER_CLKF(RCC_APB2ENR, 23, RCC_D2CCIP1R, 6, 3, "sai2", sai_src,
CLK_SET_RATE_PARENT | CLK_SET_RATE_NO_REPARENT),
KER_CLKF(RCC_APB2ENR, 22, RCC_D2CCIP1R, 0, 3, "sai1", sai_src,
CLK_SET_RATE_PARENT | CLK_SET_RATE_NO_REPARENT),
KER_CLK(RCC_APB2ENR, 20, RCC_D2CCIP1R, 16, 3, "spi5", spi_src2),
KER_CLK(RCC_APB2ENR, 13, RCC_D2CCIP1R, 16, 3, "spi4", spi_src2),
KER_CLK(RCC_APB2ENR, 12, RCC_D2CCIP1R, 16, 3, "spi1", spi_src1),
KER_CLK(RCC_APB2ENR, 5, RCC_D2CCIP2R, 3, 3, "usart6", usart_src1),
KER_CLK(RCC_APB2ENR, 4, RCC_D2CCIP2R, 3, 3, "usart1", usart_src1),
KER_CLK(RCC_APB4ENR, 21, RCC_D3CCIPR, 24, 3, "sai4b", sai_src),
KER_CLK(RCC_APB4ENR, 21, RCC_D3CCIPR, 21, 3, "sai4a", sai_src),
KER_CLK(RCC_APB4ENR, 12, RCC_D3CCIPR, 13, 3, "lptim5", lptim_src2),
KER_CLK(RCC_APB4ENR, 11, RCC_D3CCIPR, 13, 3, "lptim4", lptim_src2),
KER_CLK(RCC_APB4ENR, 10, RCC_D3CCIPR, 13, 3, "lptim3", lptim_src2),
KER_CLK(RCC_APB4ENR, 9, RCC_D3CCIPR, 10, 3, "lptim2", lptim_src2),
KER_CLK(RCC_APB4ENR, 7, RCC_D3CCIPR, 8, 2, "i2c4", i2c_src2),
KER_CLK(RCC_APB4ENR, 5, RCC_D3CCIPR, 28, 3, "spi6", spi_src3),
KER_CLK(RCC_APB4ENR, 3, RCC_D3CCIPR, 0, 3, "lpuart1", lpuart1_src),
};
static struct composite_clk_gcfg kernel_clk_cfg = {
M_CFG_MUX(NULL, 0),
M_CFG_GATE(NULL, 0),
};
/* RTC clock */
/*
* RTC & LSE registers are protected against parasitic write access.
* PWR_CR_DBP bit must be set to enable write access to RTC registers.
*/
/* STM32_PWR_CR */
#define PWR_CR 0x00
/* STM32_PWR_CR bit field */
#define PWR_CR_DBP BIT(8)
static struct composite_clk_gcfg rtc_clk_cfg = {
M_CFG_MUX(NULL, 0),
M_CFG_GATE(NULL, 0),
};
static const struct composite_clk_cfg rtc_clk =
KER_CLK(RCC_BDCR, 15, RCC_BDCR, 8, 2, "rtc_ck", rtc_src);
/* Micro-controller output clock */
static struct composite_clk_gcfg mco_clk_cfg = {
M_CFG_MUX(NULL, 0),
M_CFG_DIV(NULL, CLK_DIVIDER_ONE_BASED | CLK_DIVIDER_ALLOW_ZERO),
};
#define M_MCO_F(_name, _parents, _mux_offset, _mux_shift, _mux_width,\
_rate_offset, _rate_shift, _rate_width,\
_flags)\
{\
.mux = &(struct muxdiv_cfg) {_mux_offset, _mux_shift, _mux_width },\
.div = &(struct muxdiv_cfg) {_rate_offset, _rate_shift, _rate_width},\
.gate = NULL,\
.name = _name,\
.parent_name = _parents,\
.num_parents = ARRAY_SIZE(_parents),\
.flags = _flags,\
}
static const struct composite_clk_cfg mco_clk[] = {
M_MCO_F("mco1", mco_src1, RCC_CFGR, 22, 4, RCC_CFGR, 18, 4, 0),
M_MCO_F("mco2", mco_src2, RCC_CFGR, 29, 3, RCC_CFGR, 25, 4, 0),
};
static void __init stm32h7_rcc_init(struct device_node *np)
{
struct clk_hw_onecell_data *clk_data;
struct composite_cfg c_cfg;
int n;
const char *hse_clk, *lse_clk, *i2s_clk;
struct regmap *pdrm;
treewide: Use struct_size() for kmalloc()-family One of the more common cases of allocation size calculations is finding the size of a structure that has a zero-sized array at the end, along with memory for some number of elements for that array. For example: struct foo { int stuff; void *entry[]; }; instance = kmalloc(sizeof(struct foo) + sizeof(void *) * count, GFP_KERNEL); Instead of leaving these open-coded and prone to type mistakes, we can now use the new struct_size() helper: instance = kmalloc(struct_size(instance, entry, count), GFP_KERNEL); This patch makes the changes for kmalloc()-family (and kvmalloc()-family) uses. It was done via automatic conversion with manual review for the "CHECKME" non-standard cases noted below, using the following Coccinelle script: // pkey_cache = kmalloc(sizeof *pkey_cache + tprops->pkey_tbl_len * // sizeof *pkey_cache->table, GFP_KERNEL); @@ identifier alloc =~ "kmalloc|kzalloc|kvmalloc|kvzalloc"; expression GFP; identifier VAR, ELEMENT; expression COUNT; @@ - alloc(sizeof(*VAR) + COUNT * sizeof(*VAR->ELEMENT), GFP) + alloc(struct_size(VAR, ELEMENT, COUNT), GFP) // mr = kzalloc(sizeof(*mr) + m * sizeof(mr->map[0]), GFP_KERNEL); @@ identifier alloc =~ "kmalloc|kzalloc|kvmalloc|kvzalloc"; expression GFP; identifier VAR, ELEMENT; expression COUNT; @@ - alloc(sizeof(*VAR) + COUNT * sizeof(VAR->ELEMENT[0]), GFP) + alloc(struct_size(VAR, ELEMENT, COUNT), GFP) // Same pattern, but can't trivially locate the trailing element name, // or variable name. @@ identifier alloc =~ "kmalloc|kzalloc|kvmalloc|kvzalloc"; expression GFP; expression SOMETHING, COUNT, ELEMENT; @@ - alloc(sizeof(SOMETHING) + COUNT * sizeof(ELEMENT), GFP) + alloc(CHECKME_struct_size(&SOMETHING, ELEMENT, COUNT), GFP) Signed-off-by: Kees Cook <keescook@chromium.org>
2018-05-09 03:45:50 +07:00
clk_data = kzalloc(struct_size(clk_data, hws, STM32H7_MAX_CLKS),
GFP_KERNEL);
if (!clk_data)
return;
clk_data->num = STM32H7_MAX_CLKS;
hws = clk_data->hws;
for (n = 0; n < STM32H7_MAX_CLKS; n++)
hws[n] = ERR_PTR(-ENOENT);
/* get RCC base @ from DT */
base = of_iomap(np, 0);
if (!base) {
pr_err("%s: unable to map resource", np->name);
goto err_free_clks;
}
pdrm = syscon_regmap_lookup_by_phandle(np, "st,syscfg");
if (IS_ERR(pdrm))
pr_warn("%s: Unable to get syscfg\n", __func__);
else
/* In any case disable backup domain write protection
* and will never be enabled.
* Needed by LSE & RTC clocks.
*/
regmap_update_bits(pdrm, PWR_CR, PWR_CR_DBP, PWR_CR_DBP);
/* Put parent names from DT */
hse_clk = of_clk_get_parent_name(np, 0);
lse_clk = of_clk_get_parent_name(np, 1);
i2s_clk = of_clk_get_parent_name(np, 2);
sai_src[3] = i2s_clk;
spi_src1[3] = i2s_clk;
/* Register Internal oscillators */
clk_hw_register_fixed_rate(NULL, "clk-hsi", NULL, 0, 64000000);
clk_hw_register_fixed_rate(NULL, "clk-csi", NULL, 0, 4000000);
clk_hw_register_fixed_rate(NULL, "clk-lsi", NULL, 0, 32000);
clk_hw_register_fixed_rate(NULL, "clk-rc48", NULL, 0, 48000);
/* This clock is coming from outside. Frequencies unknown */
hws[CK_DSI_PHY] = clk_hw_register_fixed_rate(NULL, "ck_dsi_phy", NULL,
0, 0);
hws[HSI_DIV] = clk_hw_register_divider(NULL, "hsidiv", "clk-hsi", 0,
base + RCC_CR, 3, 2, CLK_DIVIDER_POWER_OF_TWO,
&stm32rcc_lock);
hws[HSE_1M] = clk_hw_register_divider(NULL, "hse_1M", "hse_ck", 0,
base + RCC_CFGR, 8, 6, CLK_DIVIDER_ONE_BASED |
CLK_DIVIDER_ALLOW_ZERO,
&stm32rcc_lock);
/* Mux system clocks */
for (n = 0; n < ARRAY_SIZE(stm32_mclk); n++)
hws[MCLK_BANK + n] = clk_hw_register_mux(NULL,
stm32_mclk[n].name,
stm32_mclk[n].parents,
stm32_mclk[n].num_parents,
stm32_mclk[n].flags,
stm32_mclk[n].offset + base,
stm32_mclk[n].shift,
stm32_mclk[n].width,
0,
&stm32rcc_lock);
register_core_and_bus_clocks();
/* Oscillary clocks */
for (n = 0; n < ARRAY_SIZE(stm32_oclk); n++)
hws[OSC_BANK + n] = clk_register_ready_gate(NULL,
stm32_oclk[n].name,
stm32_oclk[n].parent,
stm32_oclk[n].gate_offset + base,
stm32_oclk[n].bit_idx,
stm32_oclk[n].bit_rdy,
stm32_oclk[n].flags,
&stm32rcc_lock);
hws[HSE_CK] = clk_register_ready_gate(NULL,
"hse_ck",
hse_clk,
RCC_CR + base,
16, 17,
0,
&stm32rcc_lock);
hws[LSE_CK] = clk_register_ready_gate(NULL,
"lse_ck",
lse_clk,
RCC_BDCR + base,
0, 1,
0,
&stm32rcc_lock);
hws[CSI_KER_DIV122 + n] = clk_hw_register_fixed_factor(NULL,
"csi_ker_div122", "csi_ker", 0, 1, 122);
/* PLLs */
for (n = 0; n < ARRAY_SIZE(stm32_pll); n++) {
int odf;
/* Register the VCO */
clk_register_stm32_pll(NULL, stm32_pll[n].name,
stm32_pll[n].parent_name, stm32_pll[n].flags,
stm32_pll[n].cfg,
&stm32rcc_lock);
/* Register the 3 output dividers */
for (odf = 0; odf < 3; odf++) {
int idx = n * 3 + odf;
get_cfg_composite_div(&odf_clk_gcfg, &stm32_odf[n][odf],
&c_cfg, &stm32rcc_lock);
hws[ODF_BANK + idx] = clk_hw_register_composite(NULL,
stm32_odf[n][odf].name,
stm32_odf[n][odf].parent_name,
stm32_odf[n][odf].num_parents,
c_cfg.mux_hw, c_cfg.mux_ops,
c_cfg.div_hw, c_cfg.div_ops,
c_cfg.gate_hw, c_cfg.gate_ops,
stm32_odf[n][odf].flags);
}
}
/* Peripheral clocks */
for (n = 0; n < ARRAY_SIZE(pclk); n++)
hws[PERIF_BANK + n] = clk_hw_register_gate(NULL, pclk[n].name,
pclk[n].parent,
pclk[n].flags, base + pclk[n].gate_offset,
pclk[n].bit_idx, pclk[n].flags, &stm32rcc_lock);
/* Kernel clocks */
for (n = 0; n < ARRAY_SIZE(kclk); n++) {
get_cfg_composite_div(&kernel_clk_cfg, &kclk[n], &c_cfg,
&stm32rcc_lock);
hws[KERN_BANK + n] = clk_hw_register_composite(NULL,
kclk[n].name,
kclk[n].parent_name,
kclk[n].num_parents,
c_cfg.mux_hw, c_cfg.mux_ops,
c_cfg.div_hw, c_cfg.div_ops,
c_cfg.gate_hw, c_cfg.gate_ops,
kclk[n].flags);
}
/* RTC clock (default state is off) */
clk_hw_register_fixed_rate(NULL, "off", NULL, 0, 0);
get_cfg_composite_div(&rtc_clk_cfg, &rtc_clk, &c_cfg, &stm32rcc_lock);
hws[RTC_CK] = clk_hw_register_composite(NULL,
rtc_clk.name,
rtc_clk.parent_name,
rtc_clk.num_parents,
c_cfg.mux_hw, c_cfg.mux_ops,
c_cfg.div_hw, c_cfg.div_ops,
c_cfg.gate_hw, c_cfg.gate_ops,
rtc_clk.flags);
/* Micro-controller clocks */
for (n = 0; n < ARRAY_SIZE(mco_clk); n++) {
get_cfg_composite_div(&mco_clk_cfg, &mco_clk[n], &c_cfg,
&stm32rcc_lock);
hws[MCO_BANK + n] = clk_hw_register_composite(NULL,
mco_clk[n].name,
mco_clk[n].parent_name,
mco_clk[n].num_parents,
c_cfg.mux_hw, c_cfg.mux_ops,
c_cfg.div_hw, c_cfg.div_ops,
c_cfg.gate_hw, c_cfg.gate_ops,
mco_clk[n].flags);
}
of_clk_add_hw_provider(np, of_clk_hw_onecell_get, clk_data);
return;
err_free_clks:
kfree(clk_data);
}
/* The RCC node is a clock and reset controller, and these
* functionalities are supported by different drivers that
* matches the same compatible strings.
*/
CLK_OF_DECLARE_DRIVER(stm32h7_rcc, "st,stm32h743-rcc", stm32h7_rcc_init);