linux_dsm_epyc7002/drivers/ata/ahci_tegra.c

597 lines
18 KiB
C
Raw Normal View History

/*
* drivers/ata/ahci_tegra.c
*
* Copyright (c) 2014, NVIDIA CORPORATION. All rights reserved.
*
* Author:
* Mikko Perttunen <mperttunen@nvidia.com>
*
* This software is licensed under the terms of the GNU General Public
* License version 2, as published by the Free Software Foundation, and
* may be copied, distributed, and modified under those terms.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include <linux/ahci_platform.h>
#include <linux/errno.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <linux/regulator/consumer.h>
#include <linux/reset.h>
#include <soc/tegra/fuse.h>
#include <soc/tegra/pmc.h>
#include "ahci.h"
#define DRV_NAME "tegra-ahci"
#define SATA_CONFIGURATION_0 0x180
#define SATA_CONFIGURATION_0_EN_FPCI BIT(0)
#define SATA_CONFIGURATION_0_CLK_OVERRIDE BIT(31)
#define SCFG_OFFSET 0x1000
#define T_SATA0_CFG_1 0x04
#define T_SATA0_CFG_1_IO_SPACE BIT(0)
#define T_SATA0_CFG_1_MEMORY_SPACE BIT(1)
#define T_SATA0_CFG_1_BUS_MASTER BIT(2)
#define T_SATA0_CFG_1_SERR BIT(8)
#define T_SATA0_CFG_9 0x24
#define T_SATA0_CFG_9_BASE_ADDRESS 0x40020000
#define SATA_FPCI_BAR5 0x94
#define SATA_FPCI_BAR5_START_MASK (0xfffffff << 4)
#define SATA_FPCI_BAR5_START (0x0040020 << 4)
#define SATA_FPCI_BAR5_ACCESS_TYPE (0x1)
#define SATA_INTR_MASK 0x188
#define SATA_INTR_MASK_IP_INT_MASK BIT(16)
#define T_SATA0_CFG_35 0x94
#define T_SATA0_CFG_35_IDP_INDEX_MASK (0x7ff << 2)
#define T_SATA0_CFG_35_IDP_INDEX (0x2a << 2)
#define T_SATA0_AHCI_IDP1 0x98
#define T_SATA0_AHCI_IDP1_DATA (0x400040)
#define T_SATA0_CFG_PHY_1 0x12c
#define T_SATA0_CFG_PHY_1_PADS_IDDQ_EN BIT(23)
#define T_SATA0_CFG_PHY_1_PAD_PLL_IDDQ_EN BIT(22)
#define T_SATA0_NVOOB 0x114
#define T_SATA0_NVOOB_COMMA_CNT_MASK (0xff << 16)
#define T_SATA0_NVOOB_COMMA_CNT (0x07 << 16)
#define T_SATA0_NVOOB_SQUELCH_FILTER_MODE_MASK (0x3 << 24)
#define T_SATA0_NVOOB_SQUELCH_FILTER_MODE (0x1 << 24)
#define T_SATA0_NVOOB_SQUELCH_FILTER_LENGTH_MASK (0x3 << 26)
#define T_SATA0_NVOOB_SQUELCH_FILTER_LENGTH (0x3 << 26)
#define T_SATA_CFG_PHY_0 0x120
#define T_SATA_CFG_PHY_0_USE_7BIT_ALIGN_DET_FOR_SPD BIT(11)
#define T_SATA_CFG_PHY_0_MASK_SQUELCH BIT(24)
#define T_SATA0_CFG2NVOOB_2 0x134
#define T_SATA0_CFG2NVOOB_2_COMWAKE_IDLE_CNT_LOW_MASK (0x1ff << 18)
#define T_SATA0_CFG2NVOOB_2_COMWAKE_IDLE_CNT_LOW (0xc << 18)
#define T_SATA0_AHCI_HBA_CAP_BKDR 0x300
#define T_SATA0_AHCI_HBA_CAP_BKDR_PARTIAL_ST_CAP BIT(13)
#define T_SATA0_AHCI_HBA_CAP_BKDR_SLUMBER_ST_CAP BIT(14)
#define T_SATA0_AHCI_HBA_CAP_BKDR_SALP BIT(26)
#define T_SATA0_AHCI_HBA_CAP_BKDR_SUPP_PM BIT(17)
#define T_SATA0_AHCI_HBA_CAP_BKDR_SNCQ BIT(30)
#define T_SATA0_BKDOOR_CC 0x4a4
#define T_SATA0_BKDOOR_CC_CLASS_CODE_MASK (0xffff << 16)
#define T_SATA0_BKDOOR_CC_CLASS_CODE (0x0106 << 16)
#define T_SATA0_BKDOOR_CC_PROG_IF_MASK (0xff << 8)
#define T_SATA0_BKDOOR_CC_PROG_IF (0x01 << 8)
#define T_SATA0_CFG_SATA 0x54c
#define T_SATA0_CFG_SATA_BACKDOOR_PROG_IF_EN BIT(12)
#define T_SATA0_CFG_MISC 0x550
#define T_SATA0_INDEX 0x680
#define T_SATA0_CHX_PHY_CTRL1_GEN1 0x690
#define T_SATA0_CHX_PHY_CTRL1_GEN1_TX_AMP_MASK 0xff
#define T_SATA0_CHX_PHY_CTRL1_GEN1_TX_AMP_SHIFT 0
#define T_SATA0_CHX_PHY_CTRL1_GEN1_TX_PEAK_MASK (0xff << 8)
#define T_SATA0_CHX_PHY_CTRL1_GEN1_TX_PEAK_SHIFT 8
#define T_SATA0_CHX_PHY_CTRL1_GEN2 0x694
#define T_SATA0_CHX_PHY_CTRL1_GEN2_TX_AMP_MASK 0xff
#define T_SATA0_CHX_PHY_CTRL1_GEN2_TX_AMP_SHIFT 0
#define T_SATA0_CHX_PHY_CTRL1_GEN2_TX_PEAK_MASK (0xff << 12)
#define T_SATA0_CHX_PHY_CTRL1_GEN2_TX_PEAK_SHIFT 12
#define T_SATA0_CHX_PHY_CTRL2 0x69c
#define T_SATA0_CHX_PHY_CTRL2_CDR_CNTL_GEN1 0x23
#define T_SATA0_CHX_PHY_CTRL11 0x6d0
#define T_SATA0_CHX_PHY_CTRL11_GEN2_RX_EQ (0x2800 << 16)
#define T_SATA0_CHX_PHY_CTRL17_0 0x6e8
#define T_SATA0_CHX_PHY_CTRL17_0_RX_EQ_CTRL_L_GEN1 0x55010000
#define T_SATA0_CHX_PHY_CTRL18_0 0x6ec
#define T_SATA0_CHX_PHY_CTRL18_0_RX_EQ_CTRL_L_GEN2 0x55010000
#define T_SATA0_CHX_PHY_CTRL20_0 0x6f4
#define T_SATA0_CHX_PHY_CTRL20_0_RX_EQ_CTRL_H_GEN1 0x1
#define T_SATA0_CHX_PHY_CTRL21_0 0x6f8
#define T_SATA0_CHX_PHY_CTRL21_0_RX_EQ_CTRL_H_GEN2 0x1
/* AUX Registers */
#define SATA_AUX_MISC_CNTL_1_0 0x8
#define SATA_AUX_MISC_CNTL_1_0_DEVSLP_OVERRIDE BIT(17)
#define SATA_AUX_MISC_CNTL_1_0_SDS_SUPPORT BIT(13)
#define SATA_AUX_MISC_CNTL_1_0_DESO_SUPPORT BIT(15)
#define SATA_AUX_RX_STAT_INT_0 0xc
#define SATA_AUX_RX_STAT_INT_0_SATA_DEVSLP BIT(7)
#define SATA_AUX_SPARE_CFG0_0 0x18
#define SATA_AUX_SPARE_CFG0_0_MDAT_TIMER_AFTER_PG_VALID BIT(14)
#define FUSE_SATA_CALIB 0x124
#define FUSE_SATA_CALIB_MASK 0x3
struct sata_pad_calibration {
u8 gen1_tx_amp;
u8 gen1_tx_peak;
u8 gen2_tx_amp;
u8 gen2_tx_peak;
};
static const struct sata_pad_calibration tegra124_pad_calibration[] = {
{0x18, 0x04, 0x18, 0x0a},
{0x0e, 0x04, 0x14, 0x0a},
{0x0e, 0x07, 0x1a, 0x0e},
{0x14, 0x0e, 0x1a, 0x0e},
};
struct tegra_ahci_ops {
int (*init)(struct ahci_host_priv *hpriv);
};
struct tegra_ahci_soc {
const char *const *supply_names;
u32 num_supplies;
bool supports_devslp;
const struct tegra_ahci_ops *ops;
};
struct tegra_ahci_priv {
struct platform_device *pdev;
void __iomem *sata_regs;
void __iomem *sata_aux_regs;
struct reset_control *sata_rst;
struct reset_control *sata_oob_rst;
struct reset_control *sata_cold_rst;
/* Needs special handling, cannot use ahci_platform */
struct clk *sata_clk;
struct regulator_bulk_data *supplies;
const struct tegra_ahci_soc *soc;
};
static void tegra_ahci_handle_quirks(struct ahci_host_priv *hpriv)
{
struct tegra_ahci_priv *tegra = hpriv->plat_data;
u32 val;
if (tegra->sata_aux_regs && !tegra->soc->supports_devslp) {
val = readl(tegra->sata_aux_regs + SATA_AUX_MISC_CNTL_1_0);
val &= ~SATA_AUX_MISC_CNTL_1_0_SDS_SUPPORT;
writel(val, tegra->sata_aux_regs + SATA_AUX_MISC_CNTL_1_0);
}
}
static int tegra124_ahci_init(struct ahci_host_priv *hpriv)
{
struct tegra_ahci_priv *tegra = hpriv->plat_data;
struct sata_pad_calibration calib;
int ret;
u32 val;
/* Pad calibration */
ret = tegra_fuse_readl(FUSE_SATA_CALIB, &val);
if (ret)
return ret;
calib = tegra124_pad_calibration[val & FUSE_SATA_CALIB_MASK];
writel(BIT(0), tegra->sata_regs + SCFG_OFFSET + T_SATA0_INDEX);
val = readl(tegra->sata_regs +
SCFG_OFFSET + T_SATA0_CHX_PHY_CTRL1_GEN1);
val &= ~T_SATA0_CHX_PHY_CTRL1_GEN1_TX_AMP_MASK;
val &= ~T_SATA0_CHX_PHY_CTRL1_GEN1_TX_PEAK_MASK;
val |= calib.gen1_tx_amp << T_SATA0_CHX_PHY_CTRL1_GEN1_TX_AMP_SHIFT;
val |= calib.gen1_tx_peak << T_SATA0_CHX_PHY_CTRL1_GEN1_TX_PEAK_SHIFT;
writel(val, tegra->sata_regs + SCFG_OFFSET +
T_SATA0_CHX_PHY_CTRL1_GEN1);
val = readl(tegra->sata_regs +
SCFG_OFFSET + T_SATA0_CHX_PHY_CTRL1_GEN2);
val &= ~T_SATA0_CHX_PHY_CTRL1_GEN2_TX_AMP_MASK;
val &= ~T_SATA0_CHX_PHY_CTRL1_GEN2_TX_PEAK_MASK;
val |= calib.gen2_tx_amp << T_SATA0_CHX_PHY_CTRL1_GEN1_TX_AMP_SHIFT;
val |= calib.gen2_tx_peak << T_SATA0_CHX_PHY_CTRL1_GEN1_TX_PEAK_SHIFT;
writel(val, tegra->sata_regs + SCFG_OFFSET +
T_SATA0_CHX_PHY_CTRL1_GEN2);
writel(T_SATA0_CHX_PHY_CTRL11_GEN2_RX_EQ,
tegra->sata_regs + SCFG_OFFSET + T_SATA0_CHX_PHY_CTRL11);
writel(T_SATA0_CHX_PHY_CTRL2_CDR_CNTL_GEN1,
tegra->sata_regs + SCFG_OFFSET + T_SATA0_CHX_PHY_CTRL2);
writel(0, tegra->sata_regs + SCFG_OFFSET + T_SATA0_INDEX);
return 0;
}
static int tegra_ahci_power_on(struct ahci_host_priv *hpriv)
{
struct tegra_ahci_priv *tegra = hpriv->plat_data;
int ret;
ret = regulator_bulk_enable(tegra->soc->num_supplies,
tegra->supplies);
if (ret)
return ret;
ret = tegra_powergate_sequence_power_up(TEGRA_POWERGATE_SATA,
tegra->sata_clk,
tegra->sata_rst);
if (ret)
goto disable_regulators;
reset_control_assert(tegra->sata_oob_rst);
reset_control_assert(tegra->sata_cold_rst);
ret = ahci_platform_enable_resources(hpriv);
if (ret)
goto disable_power;
reset_control_deassert(tegra->sata_cold_rst);
reset_control_deassert(tegra->sata_oob_rst);
return 0;
disable_power:
clk_disable_unprepare(tegra->sata_clk);
tegra_powergate_power_off(TEGRA_POWERGATE_SATA);
disable_regulators:
regulator_bulk_disable(tegra->soc->num_supplies, tegra->supplies);
return ret;
}
static void tegra_ahci_power_off(struct ahci_host_priv *hpriv)
{
struct tegra_ahci_priv *tegra = hpriv->plat_data;
ahci_platform_disable_resources(hpriv);
reset_control_assert(tegra->sata_rst);
reset_control_assert(tegra->sata_oob_rst);
reset_control_assert(tegra->sata_cold_rst);
clk_disable_unprepare(tegra->sata_clk);
tegra_powergate_power_off(TEGRA_POWERGATE_SATA);
regulator_bulk_disable(tegra->soc->num_supplies, tegra->supplies);
}
static int tegra_ahci_controller_init(struct ahci_host_priv *hpriv)
{
struct tegra_ahci_priv *tegra = hpriv->plat_data;
int ret;
u32 val;
ret = tegra_ahci_power_on(hpriv);
if (ret) {
dev_err(&tegra->pdev->dev,
"failed to power on AHCI controller: %d\n", ret);
return ret;
}
/*
* Program the following SATA IPFS registers to allow SW accesses to
* SATA's MMIO register range.
*/
val = readl(tegra->sata_regs + SATA_FPCI_BAR5);
val &= ~(SATA_FPCI_BAR5_START_MASK | SATA_FPCI_BAR5_ACCESS_TYPE);
val |= SATA_FPCI_BAR5_START | SATA_FPCI_BAR5_ACCESS_TYPE;
writel(val, tegra->sata_regs + SATA_FPCI_BAR5);
/* Program the following SATA IPFS register to enable the SATA */
val = readl(tegra->sata_regs + SATA_CONFIGURATION_0);
val |= SATA_CONFIGURATION_0_EN_FPCI;
writel(val, tegra->sata_regs + SATA_CONFIGURATION_0);
/* Electrical settings for better link stability */
val = T_SATA0_CHX_PHY_CTRL17_0_RX_EQ_CTRL_L_GEN1;
writel(val, tegra->sata_regs + SCFG_OFFSET + T_SATA0_CHX_PHY_CTRL17_0);
val = T_SATA0_CHX_PHY_CTRL18_0_RX_EQ_CTRL_L_GEN2;
writel(val, tegra->sata_regs + SCFG_OFFSET + T_SATA0_CHX_PHY_CTRL18_0);
val = T_SATA0_CHX_PHY_CTRL20_0_RX_EQ_CTRL_H_GEN1;
writel(val, tegra->sata_regs + SCFG_OFFSET + T_SATA0_CHX_PHY_CTRL20_0);
val = T_SATA0_CHX_PHY_CTRL21_0_RX_EQ_CTRL_H_GEN2;
writel(val, tegra->sata_regs + SCFG_OFFSET + T_SATA0_CHX_PHY_CTRL21_0);
/* For SQUELCH Filter & Gen3 drive getting detected as Gen1 drive */
val = readl(tegra->sata_regs + SCFG_OFFSET + T_SATA_CFG_PHY_0);
val |= T_SATA_CFG_PHY_0_MASK_SQUELCH;
val &= ~T_SATA_CFG_PHY_0_USE_7BIT_ALIGN_DET_FOR_SPD;
writel(val, tegra->sata_regs + SCFG_OFFSET + T_SATA_CFG_PHY_0);
val = readl(tegra->sata_regs + SCFG_OFFSET + T_SATA0_NVOOB);
val &= ~(T_SATA0_NVOOB_COMMA_CNT_MASK |
T_SATA0_NVOOB_SQUELCH_FILTER_LENGTH_MASK |
T_SATA0_NVOOB_SQUELCH_FILTER_MODE_MASK);
val |= (T_SATA0_NVOOB_COMMA_CNT |
T_SATA0_NVOOB_SQUELCH_FILTER_LENGTH |
T_SATA0_NVOOB_SQUELCH_FILTER_MODE);
writel(val, tegra->sata_regs + SCFG_OFFSET + T_SATA0_NVOOB);
/*
* Change CFG2NVOOB_2_COMWAKE_IDLE_CNT_LOW from 83.3 ns to 58.8ns
*/
val = readl(tegra->sata_regs + SCFG_OFFSET + T_SATA0_CFG2NVOOB_2);
val &= ~T_SATA0_CFG2NVOOB_2_COMWAKE_IDLE_CNT_LOW_MASK;
val |= T_SATA0_CFG2NVOOB_2_COMWAKE_IDLE_CNT_LOW;
writel(val, tegra->sata_regs + SCFG_OFFSET + T_SATA0_CFG2NVOOB_2);
if (tegra->soc->ops && tegra->soc->ops->init)
tegra->soc->ops->init(hpriv);
/*
* Program the following SATA configuration registers to
* initialize SATA
*/
val = readl(tegra->sata_regs + SCFG_OFFSET + T_SATA0_CFG_1);
val |= (T_SATA0_CFG_1_IO_SPACE | T_SATA0_CFG_1_MEMORY_SPACE |
T_SATA0_CFG_1_BUS_MASTER | T_SATA0_CFG_1_SERR);
writel(val, tegra->sata_regs + SCFG_OFFSET + T_SATA0_CFG_1);
val = T_SATA0_CFG_9_BASE_ADDRESS;
writel(val, tegra->sata_regs + SCFG_OFFSET + T_SATA0_CFG_9);
/* Program Class Code and Programming interface for SATA */
val = readl(tegra->sata_regs + SCFG_OFFSET + T_SATA0_CFG_SATA);
val |= T_SATA0_CFG_SATA_BACKDOOR_PROG_IF_EN;
writel(val, tegra->sata_regs + SCFG_OFFSET + T_SATA0_CFG_SATA);
val = readl(tegra->sata_regs + SCFG_OFFSET + T_SATA0_BKDOOR_CC);
val &=
~(T_SATA0_BKDOOR_CC_CLASS_CODE_MASK |
T_SATA0_BKDOOR_CC_PROG_IF_MASK);
val |= T_SATA0_BKDOOR_CC_CLASS_CODE | T_SATA0_BKDOOR_CC_PROG_IF;
writel(val, tegra->sata_regs + SCFG_OFFSET + T_SATA0_BKDOOR_CC);
val = readl(tegra->sata_regs + SCFG_OFFSET + T_SATA0_CFG_SATA);
val &= ~T_SATA0_CFG_SATA_BACKDOOR_PROG_IF_EN;
writel(val, tegra->sata_regs + SCFG_OFFSET + T_SATA0_CFG_SATA);
/* Enabling LPM capabilities through Backdoor Programming */
val = readl(tegra->sata_regs + SCFG_OFFSET + T_SATA0_AHCI_HBA_CAP_BKDR);
val |= (T_SATA0_AHCI_HBA_CAP_BKDR_PARTIAL_ST_CAP |
T_SATA0_AHCI_HBA_CAP_BKDR_SLUMBER_ST_CAP |
T_SATA0_AHCI_HBA_CAP_BKDR_SALP |
T_SATA0_AHCI_HBA_CAP_BKDR_SUPP_PM);
writel(val, tegra->sata_regs + SCFG_OFFSET + T_SATA0_AHCI_HBA_CAP_BKDR);
/* SATA Second Level Clock Gating configuration
* Enabling Gating of Tx/Rx clocks and driving Pad IDDQ and Lane
* IDDQ Signals
*/
val = readl(tegra->sata_regs + SCFG_OFFSET + T_SATA0_CFG_35);
val &= ~T_SATA0_CFG_35_IDP_INDEX_MASK;
val |= T_SATA0_CFG_35_IDP_INDEX;
writel(val, tegra->sata_regs + SCFG_OFFSET + T_SATA0_CFG_35);
val = T_SATA0_AHCI_IDP1_DATA;
writel(val, tegra->sata_regs + SCFG_OFFSET + T_SATA0_AHCI_IDP1);
val = readl(tegra->sata_regs + SCFG_OFFSET + T_SATA0_CFG_PHY_1);
val |= (T_SATA0_CFG_PHY_1_PADS_IDDQ_EN |
T_SATA0_CFG_PHY_1_PAD_PLL_IDDQ_EN);
writel(val, tegra->sata_regs + SCFG_OFFSET + T_SATA0_CFG_PHY_1);
/* Enabling IPFS Clock Gating */
val = readl(tegra->sata_regs + SATA_CONFIGURATION_0);
val &= ~SATA_CONFIGURATION_0_CLK_OVERRIDE;
writel(val, tegra->sata_regs + SATA_CONFIGURATION_0);
tegra_ahci_handle_quirks(hpriv);
/* Unmask SATA interrupts */
val = readl(tegra->sata_regs + SATA_INTR_MASK);
val |= SATA_INTR_MASK_IP_INT_MASK;
writel(val, tegra->sata_regs + SATA_INTR_MASK);
return 0;
}
static void tegra_ahci_controller_deinit(struct ahci_host_priv *hpriv)
{
tegra_ahci_power_off(hpriv);
}
static void tegra_ahci_host_stop(struct ata_host *host)
{
struct ahci_host_priv *hpriv = host->private_data;
tegra_ahci_controller_deinit(hpriv);
}
static struct ata_port_operations ahci_tegra_port_ops = {
.inherits = &ahci_ops,
.host_stop = tegra_ahci_host_stop,
};
static const struct ata_port_info ahci_tegra_port_info = {
.flags = AHCI_FLAG_COMMON | ATA_FLAG_NO_DIPM,
.pio_mask = ATA_PIO4,
.udma_mask = ATA_UDMA6,
.port_ops = &ahci_tegra_port_ops,
};
static const char *const tegra124_supply_names[] = {
"avdd", "hvdd", "vddio", "target-5v", "target-12v"
};
static const struct tegra_ahci_ops tegra124_ahci_ops = {
.init = tegra124_ahci_init,
};
static const struct tegra_ahci_soc tegra124_ahci_soc = {
.supply_names = tegra124_supply_names,
.num_supplies = ARRAY_SIZE(tegra124_supply_names),
.supports_devslp = false,
.ops = &tegra124_ahci_ops,
};
static const struct tegra_ahci_soc tegra210_ahci_soc = {
.supports_devslp = false,
};
static const struct of_device_id tegra_ahci_of_match[] = {
{
.compatible = "nvidia,tegra124-ahci",
.data = &tegra124_ahci_soc
},
{
.compatible = "nvidia,tegra210-ahci",
.data = &tegra210_ahci_soc
},
{}
};
MODULE_DEVICE_TABLE(of, tegra_ahci_of_match);
static struct scsi_host_template ahci_platform_sht = {
AHCI_SHT(DRV_NAME),
};
static int tegra_ahci_probe(struct platform_device *pdev)
{
struct ahci_host_priv *hpriv;
struct tegra_ahci_priv *tegra;
struct resource *res;
int ret;
unsigned int i;
hpriv = ahci_platform_get_resources(pdev, 0);
if (IS_ERR(hpriv))
return PTR_ERR(hpriv);
tegra = devm_kzalloc(&pdev->dev, sizeof(*tegra), GFP_KERNEL);
if (!tegra)
return -ENOMEM;
hpriv->plat_data = tegra;
tegra->pdev = pdev;
tegra->soc = of_device_get_match_data(&pdev->dev);
res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
tegra->sata_regs = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(tegra->sata_regs))
return PTR_ERR(tegra->sata_regs);
/*
* AUX registers is optional.
*/
res = platform_get_resource(pdev, IORESOURCE_MEM, 2);
if (res) {
tegra->sata_aux_regs = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(tegra->sata_aux_regs))
return PTR_ERR(tegra->sata_aux_regs);
}
tegra->sata_rst = devm_reset_control_get(&pdev->dev, "sata");
if (IS_ERR(tegra->sata_rst)) {
dev_err(&pdev->dev, "Failed to get sata reset\n");
return PTR_ERR(tegra->sata_rst);
}
tegra->sata_oob_rst = devm_reset_control_get(&pdev->dev, "sata-oob");
if (IS_ERR(tegra->sata_oob_rst)) {
dev_err(&pdev->dev, "Failed to get sata-oob reset\n");
return PTR_ERR(tegra->sata_oob_rst);
}
tegra->sata_cold_rst = devm_reset_control_get(&pdev->dev, "sata-cold");
if (IS_ERR(tegra->sata_cold_rst)) {
dev_err(&pdev->dev, "Failed to get sata-cold reset\n");
return PTR_ERR(tegra->sata_cold_rst);
}
tegra->sata_clk = devm_clk_get(&pdev->dev, "sata");
if (IS_ERR(tegra->sata_clk)) {
dev_err(&pdev->dev, "Failed to get sata clock\n");
return PTR_ERR(tegra->sata_clk);
}
tegra->supplies = devm_kcalloc(&pdev->dev,
tegra->soc->num_supplies,
sizeof(*tegra->supplies), GFP_KERNEL);
if (!tegra->supplies)
return -ENOMEM;
for (i = 0; i < tegra->soc->num_supplies; i++)
tegra->supplies[i].supply = tegra->soc->supply_names[i];
ret = devm_regulator_bulk_get(&pdev->dev,
tegra->soc->num_supplies,
tegra->supplies);
if (ret) {
dev_err(&pdev->dev, "Failed to get regulators\n");
return ret;
}
ret = tegra_ahci_controller_init(hpriv);
if (ret)
return ret;
ret = ahci_platform_init_host(pdev, hpriv, &ahci_tegra_port_info,
&ahci_platform_sht);
if (ret)
goto deinit_controller;
return 0;
deinit_controller:
tegra_ahci_controller_deinit(hpriv);
return ret;
};
static struct platform_driver tegra_ahci_driver = {
.probe = tegra_ahci_probe,
.remove = ata_platform_remove_one,
.driver = {
.name = DRV_NAME,
.of_match_table = tegra_ahci_of_match,
},
/* LP0 suspend support not implemented */
};
module_platform_driver(tegra_ahci_driver);
MODULE_AUTHOR("Mikko Perttunen <mperttunen@nvidia.com>");
MODULE_DESCRIPTION("Tegra AHCI SATA driver");
MODULE_LICENSE("GPL v2");