linux_dsm_epyc7002/Documentation/i2c/i2c-topology.rst

397 lines
16 KiB
ReStructuredText
Raw Normal View History

================================
I2C muxes and complex topologies
================================
There are a couple of reasons for building more complex I2C topologies
than a straight-forward I2C bus with one adapter and one or more devices.
1. A mux may be needed on the bus to prevent address collisions.
2. The bus may be accessible from some external bus master, and arbitration
may be needed to determine if it is ok to access the bus.
3. A device (particularly RF tuners) may want to avoid the digital noise
from the I2C bus, at least most of the time, and sits behind a gate
that has to be operated before the device can be accessed.
Etc
===
These constructs are represented as I2C adapter trees by Linux, where
each adapter has a parent adapter (except the root adapter) and zero or
more child adapters. The root adapter is the actual adapter that issues
I2C transfers, and all adapters with a parent are part of an "i2c-mux"
object (quoted, since it can also be an arbitrator or a gate).
Depending of the particular mux driver, something happens when there is
an I2C transfer on one of its child adapters. The mux driver can
obviously operate a mux, but it can also do arbitration with an external
bus master or open a gate. The mux driver has two operations for this,
select and deselect. select is called before the transfer and (the
optional) deselect is called after the transfer.
Locking
=======
There are two variants of locking available to I2C muxes, they can be
mux-locked or parent-locked muxes. As is evident from below, it can be
useful to know if a mux is mux-locked or if it is parent-locked. The
following list was correct at the time of writing:
In drivers/i2c/muxes/:
====================== =============================================
i2c-arb-gpio-challenge Parent-locked
i2c-mux-gpio Normally parent-locked, mux-locked iff
all involved gpio pins are controlled by the
same I2C root adapter that they mux.
i2c-mux-gpmux Normally parent-locked, mux-locked iff
specified in device-tree.
i2c-mux-ltc4306 Mux-locked
i2c-mux-mlxcpld Parent-locked
i2c-mux-pca9541 Parent-locked
i2c-mux-pca954x Parent-locked
i2c-mux-pinctrl Normally parent-locked, mux-locked iff
all involved pinctrl devices are controlled
by the same I2C root adapter that they mux.
i2c-mux-reg Parent-locked
====================== =============================================
In drivers/iio/:
====================== =============================================
gyro/mpu3050 Mux-locked
iio: imu: inv_mpu6050: change the i2c gate to be mux-locked The root i2c adapter lock is then no longer held by the i2c mux during accesses behind the i2c gate, and such accesses need to take that lock just like any other ordinary i2c accesses do. So, declare the i2c gate mux-locked, and zap the code that makes the unlocked i2c accesses and just use ordinary regmap_write accesses. This also happens to fix the deadlock described in http://patchwork.ozlabs.org/patch/584776/ authored by Adriana Reus <adriana.reus@intel.com> and submitted by Daniel Baluta <daniel.baluta@intel.com> ----------8<---------- iio: imu: inv_mpu6050: Fix deadlock between i2c adapter lock and mpu lock This deadlock occurs if the accel/gyro and the sensor on the auxiliary I2C (in my setup it's an ak8975) are working at the same time. Scenario: T1 T2 ==== ==== inv_mpu6050_read_fifo aux sensor op (eg. ak8975_read_raw) | | mutex_lock(&indio_dev->mlock) i2c_transfer | | i2c transaction i2c adapter lock | | i2c adapter lock i2c_mux_master_xfer | inv_mpu6050_select_bypass | mutex_lock(&indio_dev->mlock) When we operate on an mpu sensor the order of locking is mpu lock followed by the i2c adapter lock. However, when we operate the auxiliary sensor the order of locking is the other way around. ... ----------8<---------- The reason this patch fixes the deadlock is that T2 does not grab the i2c adapter lock until the very end (and grabs the newfangled i2c mux lock where it previously grabbed the i2c adapter lock). Acked-by: Jonathan Cameron <jic23@kernel.org> Acked-by: Daniel Baluta <daniel.baluta@intel.com> Tested-by: Crestez Dan Leonard <leonard.crestez@intel.com> Signed-off-by: Peter Rosin <peda@axentia.se> Signed-off-by: Wolfram Sang <wsa@the-dreams.de>
2016-05-05 03:15:31 +07:00
imu/inv_mpu6050/ Mux-locked
====================== =============================================
In drivers/media/:
======================= =============================================
dvb-frontends/lgdt3306a Mux-locked
dvb-frontends/m88ds3103 Parent-locked
dvb-frontends/rtl2830 Parent-locked
dvb-frontends/rtl2832 Mux-locked
dvb-frontends/si2168 Mux-locked
usb/cx231xx/ Parent-locked
======================= =============================================
Mux-locked muxes
----------------
Mux-locked muxes does not lock the entire parent adapter during the
full select-transfer-deselect transaction, only the muxes on the parent
adapter are locked. Mux-locked muxes are mostly interesting if the
select and/or deselect operations must use I2C transfers to complete
their tasks. Since the parent adapter is not fully locked during the
full transaction, unrelated I2C transfers may interleave the different
stages of the transaction. This has the benefit that the mux driver
may be easier and cleaner to implement, but it has some caveats.
==== =====================================================================
ML1. If you build a topology with a mux-locked mux being the parent
of a parent-locked mux, this might break the expectation from the
parent-locked mux that the root adapter is locked during the
transaction.
ML2. It is not safe to build arbitrary topologies with two (or more)
mux-locked muxes that are not siblings, when there are address
collisions between the devices on the child adapters of these
non-sibling muxes.
I.e. the select-transfer-deselect transaction targeting e.g. device
address 0x42 behind mux-one may be interleaved with a similar
operation targeting device address 0x42 behind mux-two. The
intension with such a topology would in this hypothetical example
be that mux-one and mux-two should not be selected simultaneously,
but mux-locked muxes do not guarantee that in all topologies.
ML3. A mux-locked mux cannot be used by a driver for auto-closing
gates/muxes, i.e. something that closes automatically after a given
number (one, in most cases) of I2C transfers. Unrelated I2C transfers
may creep in and close prematurely.
ML4. If any non-I2C operation in the mux driver changes the I2C mux state,
the driver has to lock the root adapter during that operation.
Otherwise garbage may appear on the bus as seen from devices
behind the mux, when an unrelated I2C transfer is in flight during
the non-I2C mux-changing operation.
==== =====================================================================
Mux-locked Example
------------------
::
.----------. .--------.
.--------. | mux- |-----| dev D1 |
| root |--+--| locked | '--------'
'--------' | | mux M1 |--. .--------.
| '----------' '--| dev D2 |
| .--------. '--------'
'--| dev D3 |
'--------'
When there is an access to D1, this happens:
1. Someone issues an I2C transfer to D1.
2. M1 locks muxes on its parent (the root adapter in this case).
3. M1 calls ->select to ready the mux.
4. M1 (presumably) does some I2C transfers as part of its select.
These transfers are normal I2C transfers that locks the parent
adapter.
5. M1 feeds the I2C transfer from step 1 to its parent adapter as a
normal I2C transfer that locks the parent adapter.
6. M1 calls ->deselect, if it has one.
7. Same rules as in step 4, but for ->deselect.
8. M1 unlocks muxes on its parent.
This means that accesses to D2 are lockout out for the full duration
of the entire operation. But accesses to D3 are possibly interleaved
at any point.
Parent-locked muxes
-------------------
Parent-locked muxes lock the parent adapter during the full select-
transfer-deselect transaction. The implication is that the mux driver
has to ensure that any and all I2C transfers through that parent
adapter during the transaction are unlocked I2C transfers (using e.g.
__i2c_transfer), or a deadlock will follow. There are a couple of
caveats.
==== ====================================================================
PL1. If you build a topology with a parent-locked mux being the child
of another mux, this might break a possible assumption from the
child mux that the root adapter is unused between its select op
and the actual transfer (e.g. if the child mux is auto-closing
and the parent mux issues I2C transfers as part of its select).
This is especially the case if the parent mux is mux-locked, but
it may also happen if the parent mux is parent-locked.
PL2. If select/deselect calls out to other subsystems such as gpio,
pinctrl, regmap or iio, it is essential that any I2C transfers
caused by these subsystems are unlocked. This can be convoluted to
accomplish, maybe even impossible if an acceptably clean solution
is sought.
==== ====================================================================
Parent-locked Example
---------------------
::
.----------. .--------.
.--------. | parent- |-----| dev D1 |
| root |--+--| locked | '--------'
'--------' | | mux M1 |--. .--------.
| '----------' '--| dev D2 |
| .--------. '--------'
'--| dev D3 |
'--------'
When there is an access to D1, this happens:
1. Someone issues an I2C transfer to D1.
2. M1 locks muxes on its parent (the root adapter in this case).
3. M1 locks its parent adapter.
4. M1 calls ->select to ready the mux.
5. If M1 does any I2C transfers (on this root adapter) as part of
its select, those transfers must be unlocked I2C transfers so
that they do not deadlock the root adapter.
6. M1 feeds the I2C transfer from step 1 to the root adapter as an
unlocked I2C transfer, so that it does not deadlock the parent
adapter.
7. M1 calls ->deselect, if it has one.
8. Same rules as in step 5, but for ->deselect.
9. M1 unlocks its parent adapter.
10. M1 unlocks muxes on its parent.
This means that accesses to both D2 and D3 are locked out for the full
duration of the entire operation.
Complex Examples
================
Parent-locked mux as parent of parent-locked mux
------------------------------------------------
This is a useful topology, but it can be bad::
.----------. .----------. .--------.
.--------. | parent- |-----| parent- |-----| dev D1 |
| root |--+--| locked | | locked | '--------'
'--------' | | mux M1 |--. | mux M2 |--. .--------.
| '----------' | '----------' '--| dev D2 |
| .--------. | .--------. '--------'
'--| dev D4 | '--| dev D3 |
'--------' '--------'
When any device is accessed, all other devices are locked out for
the full duration of the operation (both muxes lock their parent,
and specifically when M2 requests its parent to lock, M1 passes
the buck to the root adapter).
This topology is bad if M2 is an auto-closing mux and M1->select
issues any unlocked I2C transfers on the root adapter that may leak
through and be seen by the M2 adapter, thus closing M2 prematurely.
Mux-locked mux as parent of mux-locked mux
------------------------------------------
This is a good topology::
.----------. .----------. .--------.
.--------. | mux- |-----| mux- |-----| dev D1 |
| root |--+--| locked | | locked | '--------'
'--------' | | mux M1 |--. | mux M2 |--. .--------.
| '----------' | '----------' '--| dev D2 |
| .--------. | .--------. '--------'
'--| dev D4 | '--| dev D3 |
'--------' '--------'
When device D1 is accessed, accesses to D2 are locked out for the
full duration of the operation (muxes on the top child adapter of M1
are locked). But accesses to D3 and D4 are possibly interleaved at
any point. Accesses to D3 locks out D1 and D2, but accesses to D4
are still possibly interleaved.
Mux-locked mux as parent of parent-locked mux
---------------------------------------------
This is probably a bad topology::
.----------. .----------. .--------.
.--------. | mux- |-----| parent- |-----| dev D1 |
| root |--+--| locked | | locked | '--------'
'--------' | | mux M1 |--. | mux M2 |--. .--------.
| '----------' | '----------' '--| dev D2 |
| .--------. | .--------. '--------'
'--| dev D4 | '--| dev D3 |
'--------' '--------'
When device D1 is accessed, accesses to D2 and D3 are locked out
for the full duration of the operation (M1 locks child muxes on the
root adapter). But accesses to D4 are possibly interleaved at any
point.
This kind of topology is generally not suitable and should probably
be avoided. The reason is that M2 probably assumes that there will
be no I2C transfers during its calls to ->select and ->deselect, and
if there are, any such transfers might appear on the slave side of M2
as partial I2C transfers, i.e. garbage or worse. This might cause
device lockups and/or other problems.
The topology is especially troublesome if M2 is an auto-closing
mux. In that case, any interleaved accesses to D4 might close M2
prematurely, as might any I2C transfers part of M1->select.
But if M2 is not making the above stated assumption, and if M2 is not
auto-closing, the topology is fine.
Parent-locked mux as parent of mux-locked mux
---------------------------------------------
This is a good topology::
.----------. .----------. .--------.
.--------. | parent- |-----| mux- |-----| dev D1 |
| root |--+--| locked | | locked | '--------'
'--------' | | mux M1 |--. | mux M2 |--. .--------.
| '----------' | '----------' '--| dev D2 |
| .--------. | .--------. '--------'
'--| dev D4 | '--| dev D3 |
'--------' '--------'
When D1 is accessed, accesses to D2 are locked out for the full
duration of the operation (muxes on the top child adapter of M1
are locked). Accesses to D3 and D4 are possibly interleaved at
any point, just as is expected for mux-locked muxes.
When D3 or D4 are accessed, everything else is locked out. For D3
accesses, M1 locks the root adapter. For D4 accesses, the root
adapter is locked directly.
Two mux-locked sibling muxes
----------------------------
This is a good topology::
.--------.
.----------. .--| dev D1 |
| mux- |--' '--------'
.--| locked | .--------.
| | mux M1 |-----| dev D2 |
| '----------' '--------'
| .----------. .--------.
.--------. | | mux- |-----| dev D3 |
| root |--+--| locked | '--------'
'--------' | | mux M2 |--. .--------.
| '----------' '--| dev D4 |
| .--------. '--------'
'--| dev D5 |
'--------'
When D1 is accessed, accesses to D2, D3 and D4 are locked out. But
accesses to D5 may be interleaved at any time.
Two parent-locked sibling muxes
-------------------------------
This is a good topology::
.--------.
.----------. .--| dev D1 |
| parent- |--' '--------'
.--| locked | .--------.
| | mux M1 |-----| dev D2 |
| '----------' '--------'
| .----------. .--------.
.--------. | | parent- |-----| dev D3 |
| root |--+--| locked | '--------'
'--------' | | mux M2 |--. .--------.
| '----------' '--| dev D4 |
| .--------. '--------'
'--| dev D5 |
'--------'
When any device is accessed, accesses to all other devices are locked
out.
Mux-locked and parent-locked sibling muxes
------------------------------------------
This is a good topology::
.--------.
.----------. .--| dev D1 |
| mux- |--' '--------'
.--| locked | .--------.
| | mux M1 |-----| dev D2 |
| '----------' '--------'
| .----------. .--------.
.--------. | | parent- |-----| dev D3 |
| root |--+--| locked | '--------'
'--------' | | mux M2 |--. .--------.
| '----------' '--| dev D4 |
| .--------. '--------'
'--| dev D5 |
'--------'
When D1 or D2 are accessed, accesses to D3 and D4 are locked out while
accesses to D5 may interleave. When D3 or D4 are accessed, accesses to
all other devices are locked out.