linux_dsm_epyc7002/include/asm-ia64/pal.h

1773 lines
52 KiB
C
Raw Normal View History

#ifndef _ASM_IA64_PAL_H
#define _ASM_IA64_PAL_H
/*
* Processor Abstraction Layer definitions.
*
* This is based on Intel IA-64 Architecture Software Developer's Manual rev 1.0
* chapter 11 IA-64 Processor Abstraction Layer
*
* Copyright (C) 1998-2001 Hewlett-Packard Co
* David Mosberger-Tang <davidm@hpl.hp.com>
* Stephane Eranian <eranian@hpl.hp.com>
* Copyright (C) 1999 VA Linux Systems
* Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
* Copyright (C) 1999 Srinivasa Prasad Thirumalachar <sprasad@sprasad.engr.sgi.com>
*
* 99/10/01 davidm Make sure we pass zero for reserved parameters.
* 00/03/07 davidm Updated pal_cache_flush() to be in sync with PAL v2.6.
* 00/03/23 cfleck Modified processor min-state save area to match updated PAL & SAL info
* 00/05/24 eranian Updated to latest PAL spec, fix structures bugs, added
* 00/05/25 eranian Support for stack calls, and static physical calls
* 00/06/18 eranian Support for stacked physical calls
* 06/10/26 rja Support for Intel Itanium Architecture Software Developer's
* Manual Rev 2.2 (Jan 2006)
*/
/*
* Note that some of these calls use a static-register only calling
* convention which has nothing to do with the regular calling
* convention.
*/
#define PAL_CACHE_FLUSH 1 /* flush i/d cache */
#define PAL_CACHE_INFO 2 /* get detailed i/d cache info */
#define PAL_CACHE_INIT 3 /* initialize i/d cache */
#define PAL_CACHE_SUMMARY 4 /* get summary of cache hierarchy */
#define PAL_MEM_ATTRIB 5 /* list supported memory attributes */
#define PAL_PTCE_INFO 6 /* purge TLB info */
#define PAL_VM_INFO 7 /* return supported virtual memory features */
#define PAL_VM_SUMMARY 8 /* return summary on supported vm features */
#define PAL_BUS_GET_FEATURES 9 /* return processor bus interface features settings */
#define PAL_BUS_SET_FEATURES 10 /* set processor bus features */
#define PAL_DEBUG_INFO 11 /* get number of debug registers */
#define PAL_FIXED_ADDR 12 /* get fixed component of processors's directed address */
#define PAL_FREQ_BASE 13 /* base frequency of the platform */
#define PAL_FREQ_RATIOS 14 /* ratio of processor, bus and ITC frequency */
#define PAL_PERF_MON_INFO 15 /* return performance monitor info */
#define PAL_PLATFORM_ADDR 16 /* set processor interrupt block and IO port space addr */
#define PAL_PROC_GET_FEATURES 17 /* get configurable processor features & settings */
#define PAL_PROC_SET_FEATURES 18 /* enable/disable configurable processor features */
#define PAL_RSE_INFO 19 /* return rse information */
#define PAL_VERSION 20 /* return version of PAL code */
#define PAL_MC_CLEAR_LOG 21 /* clear all processor log info */
#define PAL_MC_DRAIN 22 /* drain operations which could result in an MCA */
#define PAL_MC_EXPECTED 23 /* set/reset expected MCA indicator */
#define PAL_MC_DYNAMIC_STATE 24 /* get processor dynamic state */
#define PAL_MC_ERROR_INFO 25 /* get processor MCA info and static state */
#define PAL_MC_RESUME 26 /* Return to interrupted process */
#define PAL_MC_REGISTER_MEM 27 /* Register memory for PAL to use during MCAs and inits */
#define PAL_HALT 28 /* enter the low power HALT state */
#define PAL_HALT_LIGHT 29 /* enter the low power light halt state*/
#define PAL_COPY_INFO 30 /* returns info needed to relocate PAL */
#define PAL_CACHE_LINE_INIT 31 /* init tags & data of cache line */
#define PAL_PMI_ENTRYPOINT 32 /* register PMI memory entry points with the processor */
#define PAL_ENTER_IA_32_ENV 33 /* enter IA-32 system environment */
#define PAL_VM_PAGE_SIZE 34 /* return vm TC and page walker page sizes */
#define PAL_MEM_FOR_TEST 37 /* get amount of memory needed for late processor test */
#define PAL_CACHE_PROT_INFO 38 /* get i/d cache protection info */
#define PAL_REGISTER_INFO 39 /* return AR and CR register information*/
#define PAL_SHUTDOWN 40 /* enter processor shutdown state */
#define PAL_PREFETCH_VISIBILITY 41 /* Make Processor Prefetches Visible */
#define PAL_LOGICAL_TO_PHYSICAL 42 /* returns information on logical to physical processor mapping */
#define PAL_CACHE_SHARED_INFO 43 /* returns information on caches shared by logical processor */
#define PAL_GET_HW_POLICY 48 /* Get current hardware resource sharing policy */
#define PAL_SET_HW_POLICY 49 /* Set current hardware resource sharing policy */
#define PAL_COPY_PAL 256 /* relocate PAL procedures and PAL PMI */
#define PAL_HALT_INFO 257 /* return the low power capabilities of processor */
#define PAL_TEST_PROC 258 /* perform late processor self-test */
#define PAL_CACHE_READ 259 /* read tag & data of cacheline for diagnostic testing */
#define PAL_CACHE_WRITE 260 /* write tag & data of cacheline for diagnostic testing */
#define PAL_VM_TR_READ 261 /* read contents of translation register */
#define PAL_GET_PSTATE 262 /* get the current P-state */
#define PAL_SET_PSTATE 263 /* set the P-state */
#define PAL_BRAND_INFO 274 /* Processor branding information */
#define PAL_GET_PSTATE_TYPE_LASTSET 0
#define PAL_GET_PSTATE_TYPE_AVGANDRESET 1
#define PAL_GET_PSTATE_TYPE_AVGNORESET 2
#define PAL_GET_PSTATE_TYPE_INSTANT 3
#define PAL_MC_ERROR_INJECT 276 /* Injects processor error or returns injection capabilities */
#ifndef __ASSEMBLY__
#include <linux/types.h>
#include <asm/fpu.h>
/*
* Data types needed to pass information into PAL procedures and
* interpret information returned by them.
*/
/* Return status from the PAL procedure */
typedef s64 pal_status_t;
#define PAL_STATUS_SUCCESS 0 /* No error */
#define PAL_STATUS_UNIMPLEMENTED (-1) /* Unimplemented procedure */
#define PAL_STATUS_EINVAL (-2) /* Invalid argument */
#define PAL_STATUS_ERROR (-3) /* Error */
#define PAL_STATUS_CACHE_INIT_FAIL (-4) /* Could not initialize the
* specified level and type of
* cache without sideeffects
* and "restrict" was 1
*/
#define PAL_STATUS_REQUIRES_MEMORY (-9) /* Call requires PAL memory buffer */
/* Processor cache level in the hierarchy */
typedef u64 pal_cache_level_t;
#define PAL_CACHE_LEVEL_L0 0 /* L0 */
#define PAL_CACHE_LEVEL_L1 1 /* L1 */
#define PAL_CACHE_LEVEL_L2 2 /* L2 */
/* Processor cache type at a particular level in the hierarchy */
typedef u64 pal_cache_type_t;
#define PAL_CACHE_TYPE_INSTRUCTION 1 /* Instruction cache */
#define PAL_CACHE_TYPE_DATA 2 /* Data or unified cache */
#define PAL_CACHE_TYPE_INSTRUCTION_DATA 3 /* Both Data & Instruction */
#define PAL_CACHE_FLUSH_INVALIDATE 1 /* Invalidate clean lines */
#define PAL_CACHE_FLUSH_CHK_INTRS 2 /* check for interrupts/mc while flushing */
/* Processor cache line size in bytes */
typedef int pal_cache_line_size_t;
/* Processor cache line state */
typedef u64 pal_cache_line_state_t;
#define PAL_CACHE_LINE_STATE_INVALID 0 /* Invalid */
#define PAL_CACHE_LINE_STATE_SHARED 1 /* Shared */
#define PAL_CACHE_LINE_STATE_EXCLUSIVE 2 /* Exclusive */
#define PAL_CACHE_LINE_STATE_MODIFIED 3 /* Modified */
typedef struct pal_freq_ratio {
u32 den, num; /* numerator & denominator */
} itc_ratio, proc_ratio;
typedef union pal_cache_config_info_1_s {
struct {
u64 u : 1, /* 0 Unified cache ? */
at : 2, /* 2-1 Cache mem attr*/
reserved : 5, /* 7-3 Reserved */
associativity : 8, /* 16-8 Associativity*/
line_size : 8, /* 23-17 Line size */
stride : 8, /* 31-24 Stride */
store_latency : 8, /*39-32 Store latency*/
load_latency : 8, /* 47-40 Load latency*/
store_hints : 8, /* 55-48 Store hints*/
load_hints : 8; /* 63-56 Load hints */
} pcci1_bits;
u64 pcci1_data;
} pal_cache_config_info_1_t;
typedef union pal_cache_config_info_2_s {
struct {
u32 cache_size; /*cache size in bytes*/
u32 alias_boundary : 8, /* 39-32 aliased addr
* separation for max
* performance.
*/
tag_ls_bit : 8, /* 47-40 LSb of addr*/
tag_ms_bit : 8, /* 55-48 MSb of addr*/
reserved : 8; /* 63-56 Reserved */
} pcci2_bits;
u64 pcci2_data;
} pal_cache_config_info_2_t;
typedef struct pal_cache_config_info_s {
pal_status_t pcci_status;
pal_cache_config_info_1_t pcci_info_1;
pal_cache_config_info_2_t pcci_info_2;
u64 pcci_reserved;
} pal_cache_config_info_t;
#define pcci_ld_hints pcci_info_1.pcci1_bits.load_hints
#define pcci_st_hints pcci_info_1.pcci1_bits.store_hints
#define pcci_ld_latency pcci_info_1.pcci1_bits.load_latency
#define pcci_st_latency pcci_info_1.pcci1_bits.store_latency
#define pcci_stride pcci_info_1.pcci1_bits.stride
#define pcci_line_size pcci_info_1.pcci1_bits.line_size
#define pcci_assoc pcci_info_1.pcci1_bits.associativity
#define pcci_cache_attr pcci_info_1.pcci1_bits.at
#define pcci_unified pcci_info_1.pcci1_bits.u
#define pcci_tag_msb pcci_info_2.pcci2_bits.tag_ms_bit
#define pcci_tag_lsb pcci_info_2.pcci2_bits.tag_ls_bit
#define pcci_alias_boundary pcci_info_2.pcci2_bits.alias_boundary
#define pcci_cache_size pcci_info_2.pcci2_bits.cache_size
/* Possible values for cache attributes */
#define PAL_CACHE_ATTR_WT 0 /* Write through cache */
#define PAL_CACHE_ATTR_WB 1 /* Write back cache */
#define PAL_CACHE_ATTR_WT_OR_WB 2 /* Either write thru or write
* back depending on TLB
* memory attributes
*/
/* Possible values for cache hints */
#define PAL_CACHE_HINT_TEMP_1 0 /* Temporal level 1 */
#define PAL_CACHE_HINT_NTEMP_1 1 /* Non-temporal level 1 */
#define PAL_CACHE_HINT_NTEMP_ALL 3 /* Non-temporal all levels */
/* Processor cache protection information */
typedef union pal_cache_protection_element_u {
u32 pcpi_data;
struct {
u32 data_bits : 8, /* # data bits covered by
* each unit of protection
*/
tagprot_lsb : 6, /* Least -do- */
tagprot_msb : 6, /* Most Sig. tag address
* bit that this
* protection covers.
*/
prot_bits : 6, /* # of protection bits */
method : 4, /* Protection method */
t_d : 2; /* Indicates which part
* of the cache this
* protection encoding
* applies.
*/
} pcp_info;
} pal_cache_protection_element_t;
#define pcpi_cache_prot_part pcp_info.t_d
#define pcpi_prot_method pcp_info.method
#define pcpi_prot_bits pcp_info.prot_bits
#define pcpi_tagprot_msb pcp_info.tagprot_msb
#define pcpi_tagprot_lsb pcp_info.tagprot_lsb
#define pcpi_data_bits pcp_info.data_bits
/* Processor cache part encodings */
#define PAL_CACHE_PROT_PART_DATA 0 /* Data protection */
#define PAL_CACHE_PROT_PART_TAG 1 /* Tag protection */
#define PAL_CACHE_PROT_PART_TAG_DATA 2 /* Tag+data protection (tag is
* more significant )
*/
#define PAL_CACHE_PROT_PART_DATA_TAG 3 /* Data+tag protection (data is
* more significant )
*/
#define PAL_CACHE_PROT_PART_MAX 6
typedef struct pal_cache_protection_info_s {
pal_status_t pcpi_status;
pal_cache_protection_element_t pcp_info[PAL_CACHE_PROT_PART_MAX];
} pal_cache_protection_info_t;
/* Processor cache protection method encodings */
#define PAL_CACHE_PROT_METHOD_NONE 0 /* No protection */
#define PAL_CACHE_PROT_METHOD_ODD_PARITY 1 /* Odd parity */
#define PAL_CACHE_PROT_METHOD_EVEN_PARITY 2 /* Even parity */
#define PAL_CACHE_PROT_METHOD_ECC 3 /* ECC protection */
/* Processor cache line identification in the hierarchy */
typedef union pal_cache_line_id_u {
u64 pclid_data;
struct {
u64 cache_type : 8, /* 7-0 cache type */
level : 8, /* 15-8 level of the
* cache in the
* hierarchy.
*/
way : 8, /* 23-16 way in the set
*/
part : 8, /* 31-24 part of the
* cache
*/
reserved : 32; /* 63-32 is reserved*/
} pclid_info_read;
struct {
u64 cache_type : 8, /* 7-0 cache type */
level : 8, /* 15-8 level of the
* cache in the
* hierarchy.
*/
way : 8, /* 23-16 way in the set
*/
part : 8, /* 31-24 part of the
* cache
*/
mesi : 8, /* 39-32 cache line
* state
*/
start : 8, /* 47-40 lsb of data to
* invert
*/
length : 8, /* 55-48 #bits to
* invert
*/
trigger : 8; /* 63-56 Trigger error
* by doing a load
* after the write
*/
} pclid_info_write;
} pal_cache_line_id_u_t;
#define pclid_read_part pclid_info_read.part
#define pclid_read_way pclid_info_read.way
#define pclid_read_level pclid_info_read.level
#define pclid_read_cache_type pclid_info_read.cache_type
#define pclid_write_trigger pclid_info_write.trigger
#define pclid_write_length pclid_info_write.length
#define pclid_write_start pclid_info_write.start
#define pclid_write_mesi pclid_info_write.mesi
#define pclid_write_part pclid_info_write.part
#define pclid_write_way pclid_info_write.way
#define pclid_write_level pclid_info_write.level
#define pclid_write_cache_type pclid_info_write.cache_type
/* Processor cache line part encodings */
#define PAL_CACHE_LINE_ID_PART_DATA 0 /* Data */
#define PAL_CACHE_LINE_ID_PART_TAG 1 /* Tag */
#define PAL_CACHE_LINE_ID_PART_DATA_PROT 2 /* Data protection */
#define PAL_CACHE_LINE_ID_PART_TAG_PROT 3 /* Tag protection */
#define PAL_CACHE_LINE_ID_PART_DATA_TAG_PROT 4 /* Data+tag
* protection
*/
typedef struct pal_cache_line_info_s {
pal_status_t pcli_status; /* Return status of the read cache line
* info call.
*/
u64 pcli_data; /* 64-bit data, tag, protection bits .. */
u64 pcli_data_len; /* data length in bits */
pal_cache_line_state_t pcli_cache_line_state; /* mesi state */
} pal_cache_line_info_t;
/* Machine Check related crap */
/* Pending event status bits */
typedef u64 pal_mc_pending_events_t;
#define PAL_MC_PENDING_MCA (1 << 0)
#define PAL_MC_PENDING_INIT (1 << 1)
/* Error information type */
typedef u64 pal_mc_info_index_t;
#define PAL_MC_INFO_PROCESSOR 0 /* Processor */
#define PAL_MC_INFO_CACHE_CHECK 1 /* Cache check */
#define PAL_MC_INFO_TLB_CHECK 2 /* Tlb check */
#define PAL_MC_INFO_BUS_CHECK 3 /* Bus check */
#define PAL_MC_INFO_REQ_ADDR 4 /* Requestor address */
#define PAL_MC_INFO_RESP_ADDR 5 /* Responder address */
#define PAL_MC_INFO_TARGET_ADDR 6 /* Target address */
#define PAL_MC_INFO_IMPL_DEP 7 /* Implementation
* dependent
*/
#define PAL_TLB_CHECK_OP_PURGE 8
typedef struct pal_process_state_info_s {
u64 reserved1 : 2,
rz : 1, /* PAL_CHECK processor
* rendezvous
* successful.
*/
ra : 1, /* PAL_CHECK attempted
* a rendezvous.
*/
me : 1, /* Distinct multiple
* errors occurred
*/
mn : 1, /* Min. state save
* area has been
* registered with PAL
*/
sy : 1, /* Storage integrity
* synched
*/
co : 1, /* Continuable */
ci : 1, /* MC isolated */
us : 1, /* Uncontained storage
* damage.
*/
hd : 1, /* Non-essential hw
* lost (no loss of
* functionality)
* causing the
* processor to run in
* degraded mode.
*/
tl : 1, /* 1 => MC occurred
* after an instr was
* executed but before
* the trap that
* resulted from instr
* execution was
* generated.
* (Trap Lost )
*/
mi : 1, /* More information available
* call PAL_MC_ERROR_INFO
*/
pi : 1, /* Precise instruction pointer */
pm : 1, /* Precise min-state save area */
dy : 1, /* Processor dynamic
* state valid
*/
in : 1, /* 0 = MC, 1 = INIT */
rs : 1, /* RSE valid */
cm : 1, /* MC corrected */
ex : 1, /* MC is expected */
cr : 1, /* Control regs valid*/
pc : 1, /* Perf cntrs valid */
dr : 1, /* Debug regs valid */
tr : 1, /* Translation regs
* valid
*/
rr : 1, /* Region regs valid */
ar : 1, /* App regs valid */
br : 1, /* Branch regs valid */
pr : 1, /* Predicate registers
* valid
*/
fp : 1, /* fp registers valid*/
b1 : 1, /* Preserved bank one
* general registers
* are valid
*/
b0 : 1, /* Preserved bank zero
* general registers
* are valid
*/
gr : 1, /* General registers
* are valid
* (excl. banked regs)
*/
dsize : 16, /* size of dynamic
* state returned
* by the processor
*/
se : 1, /* Shared error. MCA in a
shared structure */
reserved2 : 10,
cc : 1, /* Cache check */
tc : 1, /* TLB check */
bc : 1, /* Bus check */
rc : 1, /* Register file check */
uc : 1; /* Uarch check */
} pal_processor_state_info_t;
typedef struct pal_cache_check_info_s {
u64 op : 4, /* Type of cache
* operation that
* caused the machine
* check.
*/
level : 2, /* Cache level */
reserved1 : 2,
dl : 1, /* Failure in data part
* of cache line
*/
tl : 1, /* Failure in tag part
* of cache line
*/
dc : 1, /* Failure in dcache */
ic : 1, /* Failure in icache */
mesi : 3, /* Cache line state */
mv : 1, /* mesi valid */
way : 5, /* Way in which the
* error occurred
*/
wiv : 1, /* Way field valid */
reserved2 : 1,
dp : 1, /* Data poisoned on MBE */
reserved3 : 8,
index : 20, /* Cache line index */
reserved4 : 2,
is : 1, /* instruction set (1 == ia32) */
iv : 1, /* instruction set field valid */
pl : 2, /* privilege level */
pv : 1, /* privilege level field valid */
mcc : 1, /* Machine check corrected */
tv : 1, /* Target address
* structure is valid
*/
rq : 1, /* Requester identifier
* structure is valid
*/
rp : 1, /* Responder identifier
* structure is valid
*/
pi : 1; /* Precise instruction pointer
* structure is valid
*/
} pal_cache_check_info_t;
typedef struct pal_tlb_check_info_s {
u64 tr_slot : 8, /* Slot# of TR where
* error occurred
*/
trv : 1, /* tr_slot field is valid */
reserved1 : 1,
level : 2, /* TLB level where failure occurred */
reserved2 : 4,
dtr : 1, /* Fail in data TR */
itr : 1, /* Fail in inst TR */
dtc : 1, /* Fail in data TC */
itc : 1, /* Fail in inst. TC */
op : 4, /* Cache operation */
reserved3 : 30,
is : 1, /* instruction set (1 == ia32) */
iv : 1, /* instruction set field valid */
pl : 2, /* privilege level */
pv : 1, /* privilege level field valid */
mcc : 1, /* Machine check corrected */
tv : 1, /* Target address
* structure is valid
*/
rq : 1, /* Requester identifier
* structure is valid
*/
rp : 1, /* Responder identifier
* structure is valid
*/
pi : 1; /* Precise instruction pointer
* structure is valid
*/
} pal_tlb_check_info_t;
typedef struct pal_bus_check_info_s {
u64 size : 5, /* Xaction size */
ib : 1, /* Internal bus error */
eb : 1, /* External bus error */
cc : 1, /* Error occurred
* during cache-cache
* transfer.
*/
type : 8, /* Bus xaction type*/
sev : 5, /* Bus error severity*/
hier : 2, /* Bus hierarchy level */
dp : 1, /* Data poisoned on MBE */
bsi : 8, /* Bus error status
* info
*/
reserved2 : 22,
is : 1, /* instruction set (1 == ia32) */
iv : 1, /* instruction set field valid */
pl : 2, /* privilege level */
pv : 1, /* privilege level field valid */
mcc : 1, /* Machine check corrected */
tv : 1, /* Target address
* structure is valid
*/
rq : 1, /* Requester identifier
* structure is valid
*/
rp : 1, /* Responder identifier
* structure is valid
*/
pi : 1; /* Precise instruction pointer
* structure is valid
*/
} pal_bus_check_info_t;
typedef struct pal_reg_file_check_info_s {
u64 id : 4, /* Register file identifier */
op : 4, /* Type of register
* operation that
* caused the machine
* check.
*/
reg_num : 7, /* Register number */
rnv : 1, /* reg_num valid */
reserved2 : 38,
is : 1, /* instruction set (1 == ia32) */
iv : 1, /* instruction set field valid */
pl : 2, /* privilege level */
pv : 1, /* privilege level field valid */
mcc : 1, /* Machine check corrected */
reserved3 : 3,
pi : 1; /* Precise instruction pointer
* structure is valid
*/
} pal_reg_file_check_info_t;
typedef struct pal_uarch_check_info_s {
u64 sid : 5, /* Structure identification */
level : 3, /* Level of failure */
array_id : 4, /* Array identification */
op : 4, /* Type of
* operation that
* caused the machine
* check.
*/
way : 6, /* Way of structure */
wv : 1, /* way valid */
xv : 1, /* index valid */
reserved1 : 8,
index : 8, /* Index or set of the uarch
* structure that failed.
*/
reserved2 : 24,
is : 1, /* instruction set (1 == ia32) */
iv : 1, /* instruction set field valid */
pl : 2, /* privilege level */
pv : 1, /* privilege level field valid */
mcc : 1, /* Machine check corrected */
tv : 1, /* Target address
* structure is valid
*/
rq : 1, /* Requester identifier
* structure is valid
*/
rp : 1, /* Responder identifier
* structure is valid
*/
pi : 1; /* Precise instruction pointer
* structure is valid
*/
} pal_uarch_check_info_t;
typedef union pal_mc_error_info_u {
u64 pmei_data;
pal_processor_state_info_t pme_processor;
pal_cache_check_info_t pme_cache;
pal_tlb_check_info_t pme_tlb;
pal_bus_check_info_t pme_bus;
pal_reg_file_check_info_t pme_reg_file;
pal_uarch_check_info_t pme_uarch;
} pal_mc_error_info_t;
#define pmci_proc_unknown_check pme_processor.uc
#define pmci_proc_bus_check pme_processor.bc
#define pmci_proc_tlb_check pme_processor.tc
#define pmci_proc_cache_check pme_processor.cc
#define pmci_proc_dynamic_state_size pme_processor.dsize
#define pmci_proc_gpr_valid pme_processor.gr
#define pmci_proc_preserved_bank0_gpr_valid pme_processor.b0
#define pmci_proc_preserved_bank1_gpr_valid pme_processor.b1
#define pmci_proc_fp_valid pme_processor.fp
#define pmci_proc_predicate_regs_valid pme_processor.pr
#define pmci_proc_branch_regs_valid pme_processor.br
#define pmci_proc_app_regs_valid pme_processor.ar
#define pmci_proc_region_regs_valid pme_processor.rr
#define pmci_proc_translation_regs_valid pme_processor.tr
#define pmci_proc_debug_regs_valid pme_processor.dr
#define pmci_proc_perf_counters_valid pme_processor.pc
#define pmci_proc_control_regs_valid pme_processor.cr
#define pmci_proc_machine_check_expected pme_processor.ex
#define pmci_proc_machine_check_corrected pme_processor.cm
#define pmci_proc_rse_valid pme_processor.rs
#define pmci_proc_machine_check_or_init pme_processor.in
#define pmci_proc_dynamic_state_valid pme_processor.dy
#define pmci_proc_operation pme_processor.op
#define pmci_proc_trap_lost pme_processor.tl
#define pmci_proc_hardware_damage pme_processor.hd
#define pmci_proc_uncontained_storage_damage pme_processor.us
#define pmci_proc_machine_check_isolated pme_processor.ci
#define pmci_proc_continuable pme_processor.co
#define pmci_proc_storage_intergrity_synced pme_processor.sy
#define pmci_proc_min_state_save_area_regd pme_processor.mn
#define pmci_proc_distinct_multiple_errors pme_processor.me
#define pmci_proc_pal_attempted_rendezvous pme_processor.ra
#define pmci_proc_pal_rendezvous_complete pme_processor.rz
#define pmci_cache_level pme_cache.level
#define pmci_cache_line_state pme_cache.mesi
#define pmci_cache_line_state_valid pme_cache.mv
#define pmci_cache_line_index pme_cache.index
#define pmci_cache_instr_cache_fail pme_cache.ic
#define pmci_cache_data_cache_fail pme_cache.dc
#define pmci_cache_line_tag_fail pme_cache.tl
#define pmci_cache_line_data_fail pme_cache.dl
#define pmci_cache_operation pme_cache.op
#define pmci_cache_way_valid pme_cache.wv
#define pmci_cache_target_address_valid pme_cache.tv
#define pmci_cache_way pme_cache.way
#define pmci_cache_mc pme_cache.mc
#define pmci_tlb_instr_translation_cache_fail pme_tlb.itc
#define pmci_tlb_data_translation_cache_fail pme_tlb.dtc
#define pmci_tlb_instr_translation_reg_fail pme_tlb.itr
#define pmci_tlb_data_translation_reg_fail pme_tlb.dtr
#define pmci_tlb_translation_reg_slot pme_tlb.tr_slot
#define pmci_tlb_mc pme_tlb.mc
#define pmci_bus_status_info pme_bus.bsi
#define pmci_bus_req_address_valid pme_bus.rq
#define pmci_bus_resp_address_valid pme_bus.rp
#define pmci_bus_target_address_valid pme_bus.tv
#define pmci_bus_error_severity pme_bus.sev
#define pmci_bus_transaction_type pme_bus.type
#define pmci_bus_cache_cache_transfer pme_bus.cc
#define pmci_bus_transaction_size pme_bus.size
#define pmci_bus_internal_error pme_bus.ib
#define pmci_bus_external_error pme_bus.eb
#define pmci_bus_mc pme_bus.mc
/*
* NOTE: this min_state_save area struct only includes the 1KB
* architectural state save area. The other 3 KB is scratch space
* for PAL.
*/
typedef struct pal_min_state_area_s {
u64 pmsa_nat_bits; /* nat bits for saved GRs */
u64 pmsa_gr[15]; /* GR1 - GR15 */
u64 pmsa_bank0_gr[16]; /* GR16 - GR31 */
u64 pmsa_bank1_gr[16]; /* GR16 - GR31 */
u64 pmsa_pr; /* predicate registers */
u64 pmsa_br0; /* branch register 0 */
u64 pmsa_rsc; /* ar.rsc */
u64 pmsa_iip; /* cr.iip */
u64 pmsa_ipsr; /* cr.ipsr */
u64 pmsa_ifs; /* cr.ifs */
u64 pmsa_xip; /* previous iip */
u64 pmsa_xpsr; /* previous psr */
u64 pmsa_xfs; /* previous ifs */
u64 pmsa_br1; /* branch register 1 */
u64 pmsa_reserved[70]; /* pal_min_state_area should total to 1KB */
} pal_min_state_area_t;
struct ia64_pal_retval {
/*
* A zero status value indicates call completed without error.
* A negative status value indicates reason of call failure.
* A positive status value indicates success but an
* informational value should be printed (e.g., "reboot for
* change to take effect").
*/
s64 status;
u64 v0;
u64 v1;
u64 v2;
};
/*
* Note: Currently unused PAL arguments are generally labeled
* "reserved" so the value specified in the PAL documentation
* (generally 0) MUST be passed. Reserved parameters are not optional
* parameters.
*/
extern struct ia64_pal_retval ia64_pal_call_static (u64, u64, u64, u64);
extern struct ia64_pal_retval ia64_pal_call_stacked (u64, u64, u64, u64);
extern struct ia64_pal_retval ia64_pal_call_phys_static (u64, u64, u64, u64);
extern struct ia64_pal_retval ia64_pal_call_phys_stacked (u64, u64, u64, u64);
extern void ia64_save_scratch_fpregs (struct ia64_fpreg *);
extern void ia64_load_scratch_fpregs (struct ia64_fpreg *);
#define PAL_CALL(iprv,a0,a1,a2,a3) do { \
struct ia64_fpreg fr[6]; \
ia64_save_scratch_fpregs(fr); \
iprv = ia64_pal_call_static(a0, a1, a2, a3); \
ia64_load_scratch_fpregs(fr); \
} while (0)
#define PAL_CALL_STK(iprv,a0,a1,a2,a3) do { \
struct ia64_fpreg fr[6]; \
ia64_save_scratch_fpregs(fr); \
iprv = ia64_pal_call_stacked(a0, a1, a2, a3); \
ia64_load_scratch_fpregs(fr); \
} while (0)
#define PAL_CALL_PHYS(iprv,a0,a1,a2,a3) do { \
struct ia64_fpreg fr[6]; \
ia64_save_scratch_fpregs(fr); \
iprv = ia64_pal_call_phys_static(a0, a1, a2, a3); \
ia64_load_scratch_fpregs(fr); \
} while (0)
#define PAL_CALL_PHYS_STK(iprv,a0,a1,a2,a3) do { \
struct ia64_fpreg fr[6]; \
ia64_save_scratch_fpregs(fr); \
iprv = ia64_pal_call_phys_stacked(a0, a1, a2, a3); \
ia64_load_scratch_fpregs(fr); \
} while (0)
typedef int (*ia64_pal_handler) (u64, ...);
extern ia64_pal_handler ia64_pal;
extern void ia64_pal_handler_init (void *);
extern ia64_pal_handler ia64_pal;
extern pal_cache_config_info_t l0d_cache_config_info;
extern pal_cache_config_info_t l0i_cache_config_info;
extern pal_cache_config_info_t l1_cache_config_info;
extern pal_cache_config_info_t l2_cache_config_info;
extern pal_cache_protection_info_t l0d_cache_protection_info;
extern pal_cache_protection_info_t l0i_cache_protection_info;
extern pal_cache_protection_info_t l1_cache_protection_info;
extern pal_cache_protection_info_t l2_cache_protection_info;
extern pal_cache_config_info_t pal_cache_config_info_get(pal_cache_level_t,
pal_cache_type_t);
extern pal_cache_protection_info_t pal_cache_protection_info_get(pal_cache_level_t,
pal_cache_type_t);
extern void pal_error(int);
/* Useful wrappers for the current list of pal procedures */
typedef union pal_bus_features_u {
u64 pal_bus_features_val;
struct {
u64 pbf_reserved1 : 29;
u64 pbf_req_bus_parking : 1;
u64 pbf_bus_lock_mask : 1;
u64 pbf_enable_half_xfer_rate : 1;
u64 pbf_reserved2 : 20;
u64 pbf_enable_shared_line_replace : 1;
u64 pbf_enable_exclusive_line_replace : 1;
u64 pbf_disable_xaction_queueing : 1;
u64 pbf_disable_resp_err_check : 1;
u64 pbf_disable_berr_check : 1;
u64 pbf_disable_bus_req_internal_err_signal : 1;
u64 pbf_disable_bus_req_berr_signal : 1;
u64 pbf_disable_bus_init_event_check : 1;
u64 pbf_disable_bus_init_event_signal : 1;
u64 pbf_disable_bus_addr_err_check : 1;
u64 pbf_disable_bus_addr_err_signal : 1;
u64 pbf_disable_bus_data_err_check : 1;
} pal_bus_features_s;
} pal_bus_features_u_t;
extern void pal_bus_features_print (u64);
/* Provide information about configurable processor bus features */
static inline s64
ia64_pal_bus_get_features (pal_bus_features_u_t *features_avail,
pal_bus_features_u_t *features_status,
pal_bus_features_u_t *features_control)
{
struct ia64_pal_retval iprv;
PAL_CALL_PHYS(iprv, PAL_BUS_GET_FEATURES, 0, 0, 0);
if (features_avail)
features_avail->pal_bus_features_val = iprv.v0;
if (features_status)
features_status->pal_bus_features_val = iprv.v1;
if (features_control)
features_control->pal_bus_features_val = iprv.v2;
return iprv.status;
}
/* Enables/disables specific processor bus features */
static inline s64
ia64_pal_bus_set_features (pal_bus_features_u_t feature_select)
{
struct ia64_pal_retval iprv;
PAL_CALL_PHYS(iprv, PAL_BUS_SET_FEATURES, feature_select.pal_bus_features_val, 0, 0);
return iprv.status;
}
/* Get detailed cache information */
static inline s64
ia64_pal_cache_config_info (u64 cache_level, u64 cache_type, pal_cache_config_info_t *conf)
{
struct ia64_pal_retval iprv;
PAL_CALL(iprv, PAL_CACHE_INFO, cache_level, cache_type, 0);
if (iprv.status == 0) {
conf->pcci_status = iprv.status;
conf->pcci_info_1.pcci1_data = iprv.v0;
conf->pcci_info_2.pcci2_data = iprv.v1;
conf->pcci_reserved = iprv.v2;
}
return iprv.status;
}
/* Get detailed cche protection information */
static inline s64
ia64_pal_cache_prot_info (u64 cache_level, u64 cache_type, pal_cache_protection_info_t *prot)
{
struct ia64_pal_retval iprv;
PAL_CALL(iprv, PAL_CACHE_PROT_INFO, cache_level, cache_type, 0);
if (iprv.status == 0) {
prot->pcpi_status = iprv.status;
prot->pcp_info[0].pcpi_data = iprv.v0 & 0xffffffff;
prot->pcp_info[1].pcpi_data = iprv.v0 >> 32;
prot->pcp_info[2].pcpi_data = iprv.v1 & 0xffffffff;
prot->pcp_info[3].pcpi_data = iprv.v1 >> 32;
prot->pcp_info[4].pcpi_data = iprv.v2 & 0xffffffff;
prot->pcp_info[5].pcpi_data = iprv.v2 >> 32;
}
return iprv.status;
}
/*
* Flush the processor instruction or data caches. *PROGRESS must be
* initialized to zero before calling this for the first time..
*/
static inline s64
ia64_pal_cache_flush (u64 cache_type, u64 invalidate, u64 *progress, u64 *vector)
{
struct ia64_pal_retval iprv;
PAL_CALL(iprv, PAL_CACHE_FLUSH, cache_type, invalidate, *progress);
if (vector)
*vector = iprv.v0;
*progress = iprv.v1;
return iprv.status;
}
/* Initialize the processor controlled caches */
static inline s64
ia64_pal_cache_init (u64 level, u64 cache_type, u64 rest)
{
struct ia64_pal_retval iprv;
PAL_CALL(iprv, PAL_CACHE_INIT, level, cache_type, rest);
return iprv.status;
}
/* Initialize the tags and data of a data or unified cache line of
* processor controlled cache to known values without the availability
* of backing memory.
*/
static inline s64
ia64_pal_cache_line_init (u64 physical_addr, u64 data_value)
{
struct ia64_pal_retval iprv;
PAL_CALL(iprv, PAL_CACHE_LINE_INIT, physical_addr, data_value, 0);
return iprv.status;
}
/* Read the data and tag of a processor controlled cache line for diags */
static inline s64
ia64_pal_cache_read (pal_cache_line_id_u_t line_id, u64 physical_addr)
{
struct ia64_pal_retval iprv;
PAL_CALL_PHYS_STK(iprv, PAL_CACHE_READ, line_id.pclid_data,
physical_addr, 0);
return iprv.status;
}
/* Return summary information about the hierarchy of caches controlled by the processor */
static inline s64
ia64_pal_cache_summary (u64 *cache_levels, u64 *unique_caches)
{
struct ia64_pal_retval iprv;
PAL_CALL(iprv, PAL_CACHE_SUMMARY, 0, 0, 0);
if (cache_levels)
*cache_levels = iprv.v0;
if (unique_caches)
*unique_caches = iprv.v1;
return iprv.status;
}
/* Write the data and tag of a processor-controlled cache line for diags */
static inline s64
ia64_pal_cache_write (pal_cache_line_id_u_t line_id, u64 physical_addr, u64 data)
{
struct ia64_pal_retval iprv;
PAL_CALL_PHYS_STK(iprv, PAL_CACHE_WRITE, line_id.pclid_data,
physical_addr, data);
return iprv.status;
}
/* Return the parameters needed to copy relocatable PAL procedures from ROM to memory */
static inline s64
ia64_pal_copy_info (u64 copy_type, u64 num_procs, u64 num_iopics,
u64 *buffer_size, u64 *buffer_align)
{
struct ia64_pal_retval iprv;
PAL_CALL(iprv, PAL_COPY_INFO, copy_type, num_procs, num_iopics);
if (buffer_size)
*buffer_size = iprv.v0;
if (buffer_align)
*buffer_align = iprv.v1;
return iprv.status;
}
/* Copy relocatable PAL procedures from ROM to memory */
static inline s64
ia64_pal_copy_pal (u64 target_addr, u64 alloc_size, u64 processor, u64 *pal_proc_offset)
{
struct ia64_pal_retval iprv;
PAL_CALL(iprv, PAL_COPY_PAL, target_addr, alloc_size, processor);
if (pal_proc_offset)
*pal_proc_offset = iprv.v0;
return iprv.status;
}
/* Return the number of instruction and data debug register pairs */
static inline s64
ia64_pal_debug_info (u64 *inst_regs, u64 *data_regs)
{
struct ia64_pal_retval iprv;
PAL_CALL(iprv, PAL_DEBUG_INFO, 0, 0, 0);
if (inst_regs)
*inst_regs = iprv.v0;
if (data_regs)
*data_regs = iprv.v1;
return iprv.status;
}
#ifdef TBD
/* Switch from IA64-system environment to IA-32 system environment */
static inline s64
ia64_pal_enter_ia32_env (ia32_env1, ia32_env2, ia32_env3)
{
struct ia64_pal_retval iprv;
PAL_CALL(iprv, PAL_ENTER_IA_32_ENV, ia32_env1, ia32_env2, ia32_env3);
return iprv.status;
}
#endif
/* Get unique geographical address of this processor on its bus */
static inline s64
ia64_pal_fixed_addr (u64 *global_unique_addr)
{
struct ia64_pal_retval iprv;
PAL_CALL(iprv, PAL_FIXED_ADDR, 0, 0, 0);
if (global_unique_addr)
*global_unique_addr = iprv.v0;
return iprv.status;
}
/* Get base frequency of the platform if generated by the processor */
static inline s64
ia64_pal_freq_base (u64 *platform_base_freq)
{
struct ia64_pal_retval iprv;
PAL_CALL(iprv, PAL_FREQ_BASE, 0, 0, 0);
if (platform_base_freq)
*platform_base_freq = iprv.v0;
return iprv.status;
}
/*
* Get the ratios for processor frequency, bus frequency and interval timer to
* to base frequency of the platform
*/
static inline s64
ia64_pal_freq_ratios (struct pal_freq_ratio *proc_ratio, struct pal_freq_ratio *bus_ratio,
struct pal_freq_ratio *itc_ratio)
{
struct ia64_pal_retval iprv;
PAL_CALL(iprv, PAL_FREQ_RATIOS, 0, 0, 0);
if (proc_ratio)
*(u64 *)proc_ratio = iprv.v0;
if (bus_ratio)
*(u64 *)bus_ratio = iprv.v1;
if (itc_ratio)
*(u64 *)itc_ratio = iprv.v2;
return iprv.status;
}
/*
* Get the current hardware resource sharing policy of the processor
*/
static inline s64
ia64_pal_get_hw_policy (u64 proc_num, u64 *cur_policy, u64 *num_impacted,
u64 *la)
{
struct ia64_pal_retval iprv;
PAL_CALL(iprv, PAL_GET_HW_POLICY, proc_num, 0, 0);
if (cur_policy)
*cur_policy = iprv.v0;
if (num_impacted)
*num_impacted = iprv.v1;
if (la)
*la = iprv.v2;
return iprv.status;
}
/* Make the processor enter HALT or one of the implementation dependent low
* power states where prefetching and execution are suspended and cache and
* TLB coherency is not maintained.
*/
static inline s64
ia64_pal_halt (u64 halt_state)
{
struct ia64_pal_retval iprv;
PAL_CALL(iprv, PAL_HALT, halt_state, 0, 0);
return iprv.status;
}
typedef union pal_power_mgmt_info_u {
u64 ppmi_data;
struct {
u64 exit_latency : 16,
entry_latency : 16,
power_consumption : 28,
im : 1,
co : 1,
reserved : 2;
} pal_power_mgmt_info_s;
} pal_power_mgmt_info_u_t;
/* Return information about processor's optional power management capabilities. */
static inline s64
ia64_pal_halt_info (pal_power_mgmt_info_u_t *power_buf)
{
struct ia64_pal_retval iprv;
PAL_CALL_STK(iprv, PAL_HALT_INFO, (unsigned long) power_buf, 0, 0);
return iprv.status;
}
/* Get the current P-state information */
static inline s64
ia64_pal_get_pstate (u64 *pstate_index, unsigned long type)
{
struct ia64_pal_retval iprv;
PAL_CALL_STK(iprv, PAL_GET_PSTATE, type, 0, 0);
*pstate_index = iprv.v0;
return iprv.status;
}
/* Set the P-state */
static inline s64
ia64_pal_set_pstate (u64 pstate_index)
{
struct ia64_pal_retval iprv;
PAL_CALL_STK(iprv, PAL_SET_PSTATE, pstate_index, 0, 0);
return iprv.status;
}
/* Processor branding information*/
static inline s64
ia64_pal_get_brand_info (char *brand_info)
{
struct ia64_pal_retval iprv;
PAL_CALL_STK(iprv, PAL_BRAND_INFO, 0, (u64)brand_info, 0);
return iprv.status;
}
/* Cause the processor to enter LIGHT HALT state, where prefetching and execution are
* suspended, but cache and TLB coherency is maintained.
*/
static inline s64
ia64_pal_halt_light (void)
{
struct ia64_pal_retval iprv;
PAL_CALL(iprv, PAL_HALT_LIGHT, 0, 0, 0);
return iprv.status;
}
/* Clear all the processor error logging registers and reset the indicator that allows
* the error logging registers to be written. This procedure also checks the pending
* machine check bit and pending INIT bit and reports their states.
*/
static inline s64
ia64_pal_mc_clear_log (u64 *pending_vector)
{
struct ia64_pal_retval iprv;
PAL_CALL(iprv, PAL_MC_CLEAR_LOG, 0, 0, 0);
if (pending_vector)
*pending_vector = iprv.v0;
return iprv.status;
}
/* Ensure that all outstanding transactions in a processor are completed or that any
* MCA due to thes outstanding transaction is taken.
*/
static inline s64
ia64_pal_mc_drain (void)
{
struct ia64_pal_retval iprv;
PAL_CALL(iprv, PAL_MC_DRAIN, 0, 0, 0);
return iprv.status;
}
/* Return the machine check dynamic processor state */
static inline s64
ia64_pal_mc_dynamic_state (u64 offset, u64 *size, u64 *pds)
{
struct ia64_pal_retval iprv;
PAL_CALL(iprv, PAL_MC_DYNAMIC_STATE, offset, 0, 0);
if (size)
*size = iprv.v0;
if (pds)
*pds = iprv.v1;
return iprv.status;
}
/* Return processor machine check information */
static inline s64
ia64_pal_mc_error_info (u64 info_index, u64 type_index, u64 *size, u64 *error_info)
{
struct ia64_pal_retval iprv;
PAL_CALL(iprv, PAL_MC_ERROR_INFO, info_index, type_index, 0);
if (size)
*size = iprv.v0;
if (error_info)
*error_info = iprv.v1;
return iprv.status;
}
/* Injects the requested processor error or returns info on
* supported injection capabilities for current processor implementation
*/
static inline s64
ia64_pal_mc_error_inject_phys (u64 err_type_info, u64 err_struct_info,
u64 err_data_buffer, u64 *capabilities, u64 *resources)
{
struct ia64_pal_retval iprv;
PAL_CALL_PHYS_STK(iprv, PAL_MC_ERROR_INJECT, err_type_info,
err_struct_info, err_data_buffer);
if (capabilities)
*capabilities= iprv.v0;
if (resources)
*resources= iprv.v1;
return iprv.status;
}
static inline s64
ia64_pal_mc_error_inject_virt (u64 err_type_info, u64 err_struct_info,
u64 err_data_buffer, u64 *capabilities, u64 *resources)
{
struct ia64_pal_retval iprv;
PAL_CALL_STK(iprv, PAL_MC_ERROR_INJECT, err_type_info,
err_struct_info, err_data_buffer);
if (capabilities)
*capabilities= iprv.v0;
if (resources)
*resources= iprv.v1;
return iprv.status;
}
/* Inform PALE_CHECK whether a machine check is expected so that PALE_CHECK willnot
* attempt to correct any expected machine checks.
*/
static inline s64
ia64_pal_mc_expected (u64 expected, u64 *previous)
{
struct ia64_pal_retval iprv;
PAL_CALL(iprv, PAL_MC_EXPECTED, expected, 0, 0);
if (previous)
*previous = iprv.v0;
return iprv.status;
}
/* Register a platform dependent location with PAL to which it can save
* minimal processor state in the event of a machine check or initialization
* event.
*/
static inline s64
ia64_pal_mc_register_mem (u64 physical_addr)
{
struct ia64_pal_retval iprv;
PAL_CALL(iprv, PAL_MC_REGISTER_MEM, physical_addr, 0, 0);
return iprv.status;
}
/* Restore minimal architectural processor state, set CMC interrupt if necessary
* and resume execution
*/
static inline s64
ia64_pal_mc_resume (u64 set_cmci, u64 save_ptr)
{
struct ia64_pal_retval iprv;
PAL_CALL(iprv, PAL_MC_RESUME, set_cmci, save_ptr, 0);
return iprv.status;
}
/* Return the memory attributes implemented by the processor */
static inline s64
ia64_pal_mem_attrib (u64 *mem_attrib)
{
struct ia64_pal_retval iprv;
PAL_CALL(iprv, PAL_MEM_ATTRIB, 0, 0, 0);
if (mem_attrib)
*mem_attrib = iprv.v0 & 0xff;
return iprv.status;
}
/* Return the amount of memory needed for second phase of processor
* self-test and the required alignment of memory.
*/
static inline s64
ia64_pal_mem_for_test (u64 *bytes_needed, u64 *alignment)
{
struct ia64_pal_retval iprv;
PAL_CALL(iprv, PAL_MEM_FOR_TEST, 0, 0, 0);
if (bytes_needed)
*bytes_needed = iprv.v0;
if (alignment)
*alignment = iprv.v1;
return iprv.status;
}
typedef union pal_perf_mon_info_u {
u64 ppmi_data;
struct {
u64 generic : 8,
width : 8,
cycles : 8,
retired : 8,
reserved : 32;
} pal_perf_mon_info_s;
} pal_perf_mon_info_u_t;
/* Return the performance monitor information about what can be counted
* and how to configure the monitors to count the desired events.
*/
static inline s64
ia64_pal_perf_mon_info (u64 *pm_buffer, pal_perf_mon_info_u_t *pm_info)
{
struct ia64_pal_retval iprv;
PAL_CALL(iprv, PAL_PERF_MON_INFO, (unsigned long) pm_buffer, 0, 0);
if (pm_info)
pm_info->ppmi_data = iprv.v0;
return iprv.status;
}
/* Specifies the physical address of the processor interrupt block
* and I/O port space.
*/
static inline s64
ia64_pal_platform_addr (u64 type, u64 physical_addr)
{
struct ia64_pal_retval iprv;
PAL_CALL(iprv, PAL_PLATFORM_ADDR, type, physical_addr, 0);
return iprv.status;
}
/* Set the SAL PMI entrypoint in memory */
static inline s64
ia64_pal_pmi_entrypoint (u64 sal_pmi_entry_addr)
{
struct ia64_pal_retval iprv;
PAL_CALL(iprv, PAL_PMI_ENTRYPOINT, sal_pmi_entry_addr, 0, 0);
return iprv.status;
}
struct pal_features_s;
/* Provide information about configurable processor features */
static inline s64
ia64_pal_proc_get_features (u64 *features_avail,
u64 *features_status,
u64 *features_control)
{
struct ia64_pal_retval iprv;
PAL_CALL_PHYS(iprv, PAL_PROC_GET_FEATURES, 0, 0, 0);
if (iprv.status == 0) {
*features_avail = iprv.v0;
*features_status = iprv.v1;
*features_control = iprv.v2;
}
return iprv.status;
}
/* Enable/disable processor dependent features */
static inline s64
ia64_pal_proc_set_features (u64 feature_select)
{
struct ia64_pal_retval iprv;
PAL_CALL_PHYS(iprv, PAL_PROC_SET_FEATURES, feature_select, 0, 0);
return iprv.status;
}
/*
* Put everything in a struct so we avoid the global offset table whenever
* possible.
*/
typedef struct ia64_ptce_info_s {
u64 base;
u32 count[2];
u32 stride[2];
} ia64_ptce_info_t;
/* Return the information required for the architected loop used to purge
* (initialize) the entire TC
*/
static inline s64
ia64_get_ptce (ia64_ptce_info_t *ptce)
{
struct ia64_pal_retval iprv;
if (!ptce)
return -1;
PAL_CALL(iprv, PAL_PTCE_INFO, 0, 0, 0);
if (iprv.status == 0) {
ptce->base = iprv.v0;
ptce->count[0] = iprv.v1 >> 32;
ptce->count[1] = iprv.v1 & 0xffffffff;
ptce->stride[0] = iprv.v2 >> 32;
ptce->stride[1] = iprv.v2 & 0xffffffff;
}
return iprv.status;
}
/* Return info about implemented application and control registers. */
static inline s64
ia64_pal_register_info (u64 info_request, u64 *reg_info_1, u64 *reg_info_2)
{
struct ia64_pal_retval iprv;
PAL_CALL(iprv, PAL_REGISTER_INFO, info_request, 0, 0);
if (reg_info_1)
*reg_info_1 = iprv.v0;
if (reg_info_2)
*reg_info_2 = iprv.v1;
return iprv.status;
}
typedef union pal_hints_u {
u64 ph_data;
struct {
u64 si : 1,
li : 1,
reserved : 62;
} pal_hints_s;
} pal_hints_u_t;
/* Return information about the register stack and RSE for this processor
* implementation.
*/
static inline s64
ia64_pal_rse_info (u64 *num_phys_stacked, pal_hints_u_t *hints)
{
struct ia64_pal_retval iprv;
PAL_CALL(iprv, PAL_RSE_INFO, 0, 0, 0);
if (num_phys_stacked)
*num_phys_stacked = iprv.v0;
if (hints)
hints->ph_data = iprv.v1;
return iprv.status;
}
/*
* Set the current hardware resource sharing policy of the processor
*/
static inline s64
ia64_pal_set_hw_policy (u64 policy)
{
struct ia64_pal_retval iprv;
PAL_CALL(iprv, PAL_SET_HW_POLICY, policy, 0, 0);
return iprv.status;
}
/* Cause the processor to enter SHUTDOWN state, where prefetching and execution are
* suspended, but cause cache and TLB coherency to be maintained.
* This is usually called in IA-32 mode.
*/
static inline s64
ia64_pal_shutdown (void)
{
struct ia64_pal_retval iprv;
PAL_CALL(iprv, PAL_SHUTDOWN, 0, 0, 0);
return iprv.status;
}
/* Perform the second phase of processor self-test. */
static inline s64
ia64_pal_test_proc (u64 test_addr, u64 test_size, u64 attributes, u64 *self_test_state)
{
struct ia64_pal_retval iprv;
PAL_CALL(iprv, PAL_TEST_PROC, test_addr, test_size, attributes);
if (self_test_state)
*self_test_state = iprv.v0;
return iprv.status;
}
typedef union pal_version_u {
u64 pal_version_val;
struct {
u64 pv_pal_b_rev : 8;
u64 pv_pal_b_model : 8;
u64 pv_reserved1 : 8;
u64 pv_pal_vendor : 8;
u64 pv_pal_a_rev : 8;
u64 pv_pal_a_model : 8;
u64 pv_reserved2 : 16;
} pal_version_s;
} pal_version_u_t;
/*
* Return PAL version information. While the documentation states that
* PAL_VERSION can be called in either physical or virtual mode, some
* implementations only allow physical calls. We don't call it very often,
* so the overhead isn't worth eliminating.
*/
static inline s64
ia64_pal_version (pal_version_u_t *pal_min_version, pal_version_u_t *pal_cur_version)
{
struct ia64_pal_retval iprv;
PAL_CALL_PHYS(iprv, PAL_VERSION, 0, 0, 0);
if (pal_min_version)
pal_min_version->pal_version_val = iprv.v0;
if (pal_cur_version)
pal_cur_version->pal_version_val = iprv.v1;
return iprv.status;
}
typedef union pal_tc_info_u {
u64 pti_val;
struct {
u64 num_sets : 8,
associativity : 8,
num_entries : 16,
pf : 1,
unified : 1,
reduce_tr : 1,
reserved : 29;
} pal_tc_info_s;
} pal_tc_info_u_t;
#define tc_reduce_tr pal_tc_info_s.reduce_tr
#define tc_unified pal_tc_info_s.unified
#define tc_pf pal_tc_info_s.pf
#define tc_num_entries pal_tc_info_s.num_entries
#define tc_associativity pal_tc_info_s.associativity
#define tc_num_sets pal_tc_info_s.num_sets
/* Return information about the virtual memory characteristics of the processor
* implementation.
*/
static inline s64
ia64_pal_vm_info (u64 tc_level, u64 tc_type, pal_tc_info_u_t *tc_info, u64 *tc_pages)
{
struct ia64_pal_retval iprv;
PAL_CALL(iprv, PAL_VM_INFO, tc_level, tc_type, 0);
if (tc_info)
tc_info->pti_val = iprv.v0;
if (tc_pages)
*tc_pages = iprv.v1;
return iprv.status;
}
/* Get page size information about the virtual memory characteristics of the processor
* implementation.
*/
static inline s64
ia64_pal_vm_page_size (u64 *tr_pages, u64 *vw_pages)
{
struct ia64_pal_retval iprv;
PAL_CALL(iprv, PAL_VM_PAGE_SIZE, 0, 0, 0);
if (tr_pages)
*tr_pages = iprv.v0;
if (vw_pages)
*vw_pages = iprv.v1;
return iprv.status;
}
typedef union pal_vm_info_1_u {
u64 pvi1_val;
struct {
u64 vw : 1,
phys_add_size : 7,
key_size : 8,
max_pkr : 8,
hash_tag_id : 8,
max_dtr_entry : 8,
max_itr_entry : 8,
max_unique_tcs : 8,
num_tc_levels : 8;
} pal_vm_info_1_s;
} pal_vm_info_1_u_t;
#define PAL_MAX_PURGES 0xFFFF /* all ones is means unlimited */
typedef union pal_vm_info_2_u {
u64 pvi2_val;
struct {
u64 impl_va_msb : 8,
rid_size : 8,
max_purges : 16,
reserved : 32;
} pal_vm_info_2_s;
} pal_vm_info_2_u_t;
/* Get summary information about the virtual memory characteristics of the processor
* implementation.
*/
static inline s64
ia64_pal_vm_summary (pal_vm_info_1_u_t *vm_info_1, pal_vm_info_2_u_t *vm_info_2)
{
struct ia64_pal_retval iprv;
PAL_CALL(iprv, PAL_VM_SUMMARY, 0, 0, 0);
if (vm_info_1)
vm_info_1->pvi1_val = iprv.v0;
if (vm_info_2)
vm_info_2->pvi2_val = iprv.v1;
return iprv.status;
}
typedef union pal_itr_valid_u {
u64 piv_val;
struct {
u64 access_rights_valid : 1,
priv_level_valid : 1,
dirty_bit_valid : 1,
mem_attr_valid : 1,
reserved : 60;
} pal_tr_valid_s;
} pal_tr_valid_u_t;
/* Read a translation register */
static inline s64
ia64_pal_tr_read (u64 reg_num, u64 tr_type, u64 *tr_buffer, pal_tr_valid_u_t *tr_valid)
{
struct ia64_pal_retval iprv;
PAL_CALL_PHYS_STK(iprv, PAL_VM_TR_READ, reg_num, tr_type,(u64)ia64_tpa(tr_buffer));
if (tr_valid)
tr_valid->piv_val = iprv.v0;
return iprv.status;
}
/*
* PAL_PREFETCH_VISIBILITY transaction types
*/
#define PAL_VISIBILITY_VIRTUAL 0
#define PAL_VISIBILITY_PHYSICAL 1
/*
* PAL_PREFETCH_VISIBILITY return codes
*/
#define PAL_VISIBILITY_OK 1
#define PAL_VISIBILITY_OK_REMOTE_NEEDED 0
#define PAL_VISIBILITY_INVAL_ARG -2
#define PAL_VISIBILITY_ERROR -3
static inline s64
ia64_pal_prefetch_visibility (s64 trans_type)
{
struct ia64_pal_retval iprv;
PAL_CALL(iprv, PAL_PREFETCH_VISIBILITY, trans_type, 0, 0);
return iprv.status;
}
/* data structure for getting information on logical to physical mappings */
typedef union pal_log_overview_u {
struct {
u64 num_log :16, /* Total number of logical
* processors on this die
*/
tpc :8, /* Threads per core */
reserved3 :8, /* Reserved */
cpp :8, /* Cores per processor */
reserved2 :8, /* Reserved */
ppid :8, /* Physical processor ID */
reserved1 :8; /* Reserved */
} overview_bits;
u64 overview_data;
} pal_log_overview_t;
typedef union pal_proc_n_log_info1_u{
struct {
u64 tid :16, /* Thread id */
reserved2 :16, /* Reserved */
cid :16, /* Core id */
reserved1 :16; /* Reserved */
} ppli1_bits;
u64 ppli1_data;
} pal_proc_n_log_info1_t;
typedef union pal_proc_n_log_info2_u {
struct {
u64 la :16, /* Logical address */
reserved :48; /* Reserved */
} ppli2_bits;
u64 ppli2_data;
} pal_proc_n_log_info2_t;
typedef struct pal_logical_to_physical_s
{
pal_log_overview_t overview;
pal_proc_n_log_info1_t ppli1;
pal_proc_n_log_info2_t ppli2;
} pal_logical_to_physical_t;
#define overview_num_log overview.overview_bits.num_log
#define overview_tpc overview.overview_bits.tpc
#define overview_cpp overview.overview_bits.cpp
#define overview_ppid overview.overview_bits.ppid
#define log1_tid ppli1.ppli1_bits.tid
#define log1_cid ppli1.ppli1_bits.cid
#define log2_la ppli2.ppli2_bits.la
/* Get information on logical to physical processor mappings. */
static inline s64
ia64_pal_logical_to_phys(u64 proc_number, pal_logical_to_physical_t *mapping)
{
struct ia64_pal_retval iprv;
PAL_CALL(iprv, PAL_LOGICAL_TO_PHYSICAL, proc_number, 0, 0);
if (iprv.status == PAL_STATUS_SUCCESS)
{
mapping->overview.overview_data = iprv.v0;
mapping->ppli1.ppli1_data = iprv.v1;
mapping->ppli2.ppli2_data = iprv.v2;
}
return iprv.status;
}
typedef struct pal_cache_shared_info_s
{
u64 num_shared;
pal_proc_n_log_info1_t ppli1;
pal_proc_n_log_info2_t ppli2;
} pal_cache_shared_info_t;
/* Get information on logical to physical processor mappings. */
static inline s64
ia64_pal_cache_shared_info(u64 level,
u64 type,
u64 proc_number,
pal_cache_shared_info_t *info)
{
struct ia64_pal_retval iprv;
PAL_CALL(iprv, PAL_CACHE_SHARED_INFO, level, type, proc_number);
if (iprv.status == PAL_STATUS_SUCCESS) {
info->num_shared = iprv.v0;
info->ppli1.ppli1_data = iprv.v1;
info->ppli2.ppli2_data = iprv.v2;
}
return iprv.status;
}
#endif /* __ASSEMBLY__ */
#endif /* _ASM_IA64_PAL_H */