linux_dsm_epyc7002/drivers/gpu/drm/msm/adreno/a6xx_gpu.c

884 lines
27 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0
/* Copyright (c) 2017-2018 The Linux Foundation. All rights reserved. */
#include "msm_gem.h"
#include "msm_mmu.h"
#include "msm_gpu_trace.h"
#include "a6xx_gpu.h"
#include "a6xx_gmu.xml.h"
#include <linux/devfreq.h>
#define GPU_PAS_ID 13
static inline bool _a6xx_check_idle(struct msm_gpu *gpu)
{
struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
/* Check that the GMU is idle */
if (!a6xx_gmu_isidle(&a6xx_gpu->gmu))
return false;
/* Check tha the CX master is idle */
if (gpu_read(gpu, REG_A6XX_RBBM_STATUS) &
~A6XX_RBBM_STATUS_CP_AHB_BUSY_CX_MASTER)
return false;
return !(gpu_read(gpu, REG_A6XX_RBBM_INT_0_STATUS) &
A6XX_RBBM_INT_0_MASK_RBBM_HANG_DETECT);
}
bool a6xx_idle(struct msm_gpu *gpu, struct msm_ringbuffer *ring)
{
/* wait for CP to drain ringbuffer: */
if (!adreno_idle(gpu, ring))
return false;
if (spin_until(_a6xx_check_idle(gpu))) {
DRM_ERROR("%s: %ps: timeout waiting for GPU to idle: status %8.8X irq %8.8X rptr/wptr %d/%d\n",
gpu->name, __builtin_return_address(0),
gpu_read(gpu, REG_A6XX_RBBM_STATUS),
gpu_read(gpu, REG_A6XX_RBBM_INT_0_STATUS),
gpu_read(gpu, REG_A6XX_CP_RB_RPTR),
gpu_read(gpu, REG_A6XX_CP_RB_WPTR));
return false;
}
return true;
}
static void a6xx_flush(struct msm_gpu *gpu, struct msm_ringbuffer *ring)
{
uint32_t wptr;
unsigned long flags;
spin_lock_irqsave(&ring->lock, flags);
/* Copy the shadow to the actual register */
ring->cur = ring->next;
/* Make sure to wrap wptr if we need to */
wptr = get_wptr(ring);
spin_unlock_irqrestore(&ring->lock, flags);
/* Make sure everything is posted before making a decision */
mb();
gpu_write(gpu, REG_A6XX_CP_RB_WPTR, wptr);
}
static void get_stats_counter(struct msm_ringbuffer *ring, u32 counter,
u64 iova)
{
OUT_PKT7(ring, CP_REG_TO_MEM, 3);
OUT_RING(ring, counter | (1 << 30) | (2 << 18));
OUT_RING(ring, lower_32_bits(iova));
OUT_RING(ring, upper_32_bits(iova));
}
static void a6xx_submit(struct msm_gpu *gpu, struct msm_gem_submit *submit,
struct msm_file_private *ctx)
{
unsigned int index = submit->seqno % MSM_GPU_SUBMIT_STATS_COUNT;
struct msm_drm_private *priv = gpu->dev->dev_private;
struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
struct msm_ringbuffer *ring = submit->ring;
unsigned int i;
get_stats_counter(ring, REG_A6XX_RBBM_PERFCTR_CP_0_LO,
rbmemptr_stats(ring, index, cpcycles_start));
/*
* For PM4 the GMU register offsets are calculated from the base of the
* GPU registers so we need to add 0x1a800 to the register value on A630
* to get the right value from PM4.
*/
get_stats_counter(ring, REG_A6XX_GMU_ALWAYS_ON_COUNTER_L + 0x1a800,
rbmemptr_stats(ring, index, alwayson_start));
/* Invalidate CCU depth and color */
OUT_PKT7(ring, CP_EVENT_WRITE, 1);
OUT_RING(ring, PC_CCU_INVALIDATE_DEPTH);
OUT_PKT7(ring, CP_EVENT_WRITE, 1);
OUT_RING(ring, PC_CCU_INVALIDATE_COLOR);
/* Submit the commands */
for (i = 0; i < submit->nr_cmds; i++) {
switch (submit->cmd[i].type) {
case MSM_SUBMIT_CMD_IB_TARGET_BUF:
break;
case MSM_SUBMIT_CMD_CTX_RESTORE_BUF:
if (priv->lastctx == ctx)
break;
/* fall-thru */
case MSM_SUBMIT_CMD_BUF:
OUT_PKT7(ring, CP_INDIRECT_BUFFER_PFE, 3);
OUT_RING(ring, lower_32_bits(submit->cmd[i].iova));
OUT_RING(ring, upper_32_bits(submit->cmd[i].iova));
OUT_RING(ring, submit->cmd[i].size);
break;
}
}
get_stats_counter(ring, REG_A6XX_RBBM_PERFCTR_CP_0_LO,
rbmemptr_stats(ring, index, cpcycles_end));
get_stats_counter(ring, REG_A6XX_GMU_ALWAYS_ON_COUNTER_L + 0x1a800,
rbmemptr_stats(ring, index, alwayson_end));
/* Write the fence to the scratch register */
OUT_PKT4(ring, REG_A6XX_CP_SCRATCH_REG(2), 1);
OUT_RING(ring, submit->seqno);
/*
* Execute a CACHE_FLUSH_TS event. This will ensure that the
* timestamp is written to the memory and then triggers the interrupt
*/
OUT_PKT7(ring, CP_EVENT_WRITE, 4);
OUT_RING(ring, CACHE_FLUSH_TS | (1 << 31));
OUT_RING(ring, lower_32_bits(rbmemptr(ring, fence)));
OUT_RING(ring, upper_32_bits(rbmemptr(ring, fence)));
OUT_RING(ring, submit->seqno);
trace_msm_gpu_submit_flush(submit,
gmu_read64(&a6xx_gpu->gmu, REG_A6XX_GMU_ALWAYS_ON_COUNTER_L,
REG_A6XX_GMU_ALWAYS_ON_COUNTER_H));
a6xx_flush(gpu, ring);
}
static const struct {
u32 offset;
u32 value;
} a6xx_hwcg[] = {
{REG_A6XX_RBBM_CLOCK_CNTL_SP0, 0x22222222},
{REG_A6XX_RBBM_CLOCK_CNTL_SP1, 0x22222222},
{REG_A6XX_RBBM_CLOCK_CNTL_SP2, 0x22222222},
{REG_A6XX_RBBM_CLOCK_CNTL_SP3, 0x22222222},
{REG_A6XX_RBBM_CLOCK_CNTL2_SP0, 0x02022220},
{REG_A6XX_RBBM_CLOCK_CNTL2_SP1, 0x02022220},
{REG_A6XX_RBBM_CLOCK_CNTL2_SP2, 0x02022220},
{REG_A6XX_RBBM_CLOCK_CNTL2_SP3, 0x02022220},
{REG_A6XX_RBBM_CLOCK_DELAY_SP0, 0x00000080},
{REG_A6XX_RBBM_CLOCK_DELAY_SP1, 0x00000080},
{REG_A6XX_RBBM_CLOCK_DELAY_SP2, 0x00000080},
{REG_A6XX_RBBM_CLOCK_DELAY_SP3, 0x00000080},
{REG_A6XX_RBBM_CLOCK_HYST_SP0, 0x0000f3cf},
{REG_A6XX_RBBM_CLOCK_HYST_SP1, 0x0000f3cf},
{REG_A6XX_RBBM_CLOCK_HYST_SP2, 0x0000f3cf},
{REG_A6XX_RBBM_CLOCK_HYST_SP3, 0x0000f3cf},
{REG_A6XX_RBBM_CLOCK_CNTL_TP0, 0x02222222},
{REG_A6XX_RBBM_CLOCK_CNTL_TP1, 0x02222222},
{REG_A6XX_RBBM_CLOCK_CNTL_TP2, 0x02222222},
{REG_A6XX_RBBM_CLOCK_CNTL_TP3, 0x02222222},
{REG_A6XX_RBBM_CLOCK_CNTL2_TP0, 0x22222222},
{REG_A6XX_RBBM_CLOCK_CNTL2_TP1, 0x22222222},
{REG_A6XX_RBBM_CLOCK_CNTL2_TP2, 0x22222222},
{REG_A6XX_RBBM_CLOCK_CNTL2_TP3, 0x22222222},
{REG_A6XX_RBBM_CLOCK_CNTL3_TP0, 0x22222222},
{REG_A6XX_RBBM_CLOCK_CNTL3_TP1, 0x22222222},
{REG_A6XX_RBBM_CLOCK_CNTL3_TP2, 0x22222222},
{REG_A6XX_RBBM_CLOCK_CNTL3_TP3, 0x22222222},
{REG_A6XX_RBBM_CLOCK_CNTL4_TP0, 0x00022222},
{REG_A6XX_RBBM_CLOCK_CNTL4_TP1, 0x00022222},
{REG_A6XX_RBBM_CLOCK_CNTL4_TP2, 0x00022222},
{REG_A6XX_RBBM_CLOCK_CNTL4_TP3, 0x00022222},
{REG_A6XX_RBBM_CLOCK_HYST_TP0, 0x77777777},
{REG_A6XX_RBBM_CLOCK_HYST_TP1, 0x77777777},
{REG_A6XX_RBBM_CLOCK_HYST_TP2, 0x77777777},
{REG_A6XX_RBBM_CLOCK_HYST_TP3, 0x77777777},
{REG_A6XX_RBBM_CLOCK_HYST2_TP0, 0x77777777},
{REG_A6XX_RBBM_CLOCK_HYST2_TP1, 0x77777777},
{REG_A6XX_RBBM_CLOCK_HYST2_TP2, 0x77777777},
{REG_A6XX_RBBM_CLOCK_HYST2_TP3, 0x77777777},
{REG_A6XX_RBBM_CLOCK_HYST3_TP0, 0x77777777},
{REG_A6XX_RBBM_CLOCK_HYST3_TP1, 0x77777777},
{REG_A6XX_RBBM_CLOCK_HYST3_TP2, 0x77777777},
{REG_A6XX_RBBM_CLOCK_HYST3_TP3, 0x77777777},
{REG_A6XX_RBBM_CLOCK_HYST4_TP0, 0x00077777},
{REG_A6XX_RBBM_CLOCK_HYST4_TP1, 0x00077777},
{REG_A6XX_RBBM_CLOCK_HYST4_TP2, 0x00077777},
{REG_A6XX_RBBM_CLOCK_HYST4_TP3, 0x00077777},
{REG_A6XX_RBBM_CLOCK_DELAY_TP0, 0x11111111},
{REG_A6XX_RBBM_CLOCK_DELAY_TP1, 0x11111111},
{REG_A6XX_RBBM_CLOCK_DELAY_TP2, 0x11111111},
{REG_A6XX_RBBM_CLOCK_DELAY_TP3, 0x11111111},
{REG_A6XX_RBBM_CLOCK_DELAY2_TP0, 0x11111111},
{REG_A6XX_RBBM_CLOCK_DELAY2_TP1, 0x11111111},
{REG_A6XX_RBBM_CLOCK_DELAY2_TP2, 0x11111111},
{REG_A6XX_RBBM_CLOCK_DELAY2_TP3, 0x11111111},
{REG_A6XX_RBBM_CLOCK_DELAY3_TP0, 0x11111111},
{REG_A6XX_RBBM_CLOCK_DELAY3_TP1, 0x11111111},
{REG_A6XX_RBBM_CLOCK_DELAY3_TP2, 0x11111111},
{REG_A6XX_RBBM_CLOCK_DELAY3_TP3, 0x11111111},
{REG_A6XX_RBBM_CLOCK_DELAY4_TP0, 0x00011111},
{REG_A6XX_RBBM_CLOCK_DELAY4_TP1, 0x00011111},
{REG_A6XX_RBBM_CLOCK_DELAY4_TP2, 0x00011111},
{REG_A6XX_RBBM_CLOCK_DELAY4_TP3, 0x00011111},
{REG_A6XX_RBBM_CLOCK_CNTL_UCHE, 0x22222222},
{REG_A6XX_RBBM_CLOCK_CNTL2_UCHE, 0x22222222},
{REG_A6XX_RBBM_CLOCK_CNTL3_UCHE, 0x22222222},
{REG_A6XX_RBBM_CLOCK_CNTL4_UCHE, 0x00222222},
{REG_A6XX_RBBM_CLOCK_HYST_UCHE, 0x00000004},
{REG_A6XX_RBBM_CLOCK_DELAY_UCHE, 0x00000002},
{REG_A6XX_RBBM_CLOCK_CNTL_RB0, 0x22222222},
{REG_A6XX_RBBM_CLOCK_CNTL_RB1, 0x22222222},
{REG_A6XX_RBBM_CLOCK_CNTL_RB2, 0x22222222},
{REG_A6XX_RBBM_CLOCK_CNTL_RB3, 0x22222222},
{REG_A6XX_RBBM_CLOCK_CNTL2_RB0, 0x00002222},
{REG_A6XX_RBBM_CLOCK_CNTL2_RB1, 0x00002222},
{REG_A6XX_RBBM_CLOCK_CNTL2_RB2, 0x00002222},
{REG_A6XX_RBBM_CLOCK_CNTL2_RB3, 0x00002222},
{REG_A6XX_RBBM_CLOCK_CNTL_CCU0, 0x00002220},
{REG_A6XX_RBBM_CLOCK_CNTL_CCU1, 0x00002220},
{REG_A6XX_RBBM_CLOCK_CNTL_CCU2, 0x00002220},
{REG_A6XX_RBBM_CLOCK_CNTL_CCU3, 0x00002220},
{REG_A6XX_RBBM_CLOCK_HYST_RB_CCU0, 0x00040f00},
{REG_A6XX_RBBM_CLOCK_HYST_RB_CCU1, 0x00040f00},
{REG_A6XX_RBBM_CLOCK_HYST_RB_CCU2, 0x00040f00},
{REG_A6XX_RBBM_CLOCK_HYST_RB_CCU3, 0x00040f00},
{REG_A6XX_RBBM_CLOCK_CNTL_RAC, 0x05022022},
{REG_A6XX_RBBM_CLOCK_CNTL2_RAC, 0x00005555},
{REG_A6XX_RBBM_CLOCK_DELAY_RAC, 0x00000011},
{REG_A6XX_RBBM_CLOCK_HYST_RAC, 0x00445044},
{REG_A6XX_RBBM_CLOCK_CNTL_TSE_RAS_RBBM, 0x04222222},
{REG_A6XX_RBBM_CLOCK_MODE_GPC, 0x00222222},
{REG_A6XX_RBBM_CLOCK_MODE_VFD, 0x00002222},
{REG_A6XX_RBBM_CLOCK_HYST_TSE_RAS_RBBM, 0x00000000},
{REG_A6XX_RBBM_CLOCK_HYST_GPC, 0x04104004},
{REG_A6XX_RBBM_CLOCK_HYST_VFD, 0x00000000},
{REG_A6XX_RBBM_CLOCK_DELAY_HLSQ, 0x00000000},
{REG_A6XX_RBBM_CLOCK_DELAY_TSE_RAS_RBBM, 0x00004000},
{REG_A6XX_RBBM_CLOCK_DELAY_GPC, 0x00000200},
{REG_A6XX_RBBM_CLOCK_DELAY_VFD, 0x00002222},
{REG_A6XX_RBBM_CLOCK_DELAY_HLSQ_2, 0x00000002},
{REG_A6XX_RBBM_CLOCK_MODE_HLSQ, 0x00002222},
{REG_A6XX_RBBM_CLOCK_CNTL_GMU_GX, 0x00000222},
{REG_A6XX_RBBM_CLOCK_DELAY_GMU_GX, 0x00000111},
{REG_A6XX_RBBM_CLOCK_HYST_GMU_GX, 0x00000555}
};
static void a6xx_set_hwcg(struct msm_gpu *gpu, bool state)
{
struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
struct a6xx_gmu *gmu = &a6xx_gpu->gmu;
unsigned int i;
u32 val;
val = gpu_read(gpu, REG_A6XX_RBBM_CLOCK_CNTL);
/* Don't re-program the registers if they are already correct */
if ((!state && !val) || (state && (val == 0x8aa8aa02)))
return;
/* Disable SP clock before programming HWCG registers */
gmu_rmw(gmu, REG_A6XX_GPU_GMU_GX_SPTPRAC_CLOCK_CONTROL, 1, 0);
for (i = 0; i < ARRAY_SIZE(a6xx_hwcg); i++)
gpu_write(gpu, a6xx_hwcg[i].offset,
state ? a6xx_hwcg[i].value : 0);
/* Enable SP clock */
gmu_rmw(gmu, REG_A6XX_GPU_GMU_GX_SPTPRAC_CLOCK_CONTROL, 0, 1);
gpu_write(gpu, REG_A6XX_RBBM_CLOCK_CNTL, state ? 0x8aa8aa02 : 0);
}
static int a6xx_cp_init(struct msm_gpu *gpu)
{
struct msm_ringbuffer *ring = gpu->rb[0];
OUT_PKT7(ring, CP_ME_INIT, 8);
OUT_RING(ring, 0x0000002f);
/* Enable multiple hardware contexts */
OUT_RING(ring, 0x00000003);
/* Enable error detection */
OUT_RING(ring, 0x20000000);
/* Don't enable header dump */
OUT_RING(ring, 0x00000000);
OUT_RING(ring, 0x00000000);
/* No workarounds enabled */
OUT_RING(ring, 0x00000000);
/* Pad rest of the cmds with 0's */
OUT_RING(ring, 0x00000000);
OUT_RING(ring, 0x00000000);
a6xx_flush(gpu, ring);
return a6xx_idle(gpu, ring) ? 0 : -EINVAL;
}
static int a6xx_ucode_init(struct msm_gpu *gpu)
{
struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
if (!a6xx_gpu->sqe_bo) {
a6xx_gpu->sqe_bo = adreno_fw_create_bo(gpu,
adreno_gpu->fw[ADRENO_FW_SQE], &a6xx_gpu->sqe_iova);
if (IS_ERR(a6xx_gpu->sqe_bo)) {
int ret = PTR_ERR(a6xx_gpu->sqe_bo);
a6xx_gpu->sqe_bo = NULL;
DRM_DEV_ERROR(&gpu->pdev->dev,
"Could not allocate SQE ucode: %d\n", ret);
return ret;
}
msm_gem_object_set_name(a6xx_gpu->sqe_bo, "sqefw");
}
gpu_write64(gpu, REG_A6XX_CP_SQE_INSTR_BASE_LO,
REG_A6XX_CP_SQE_INSTR_BASE_HI, a6xx_gpu->sqe_iova);
return 0;
}
static int a6xx_zap_shader_init(struct msm_gpu *gpu)
{
static bool loaded;
int ret;
if (loaded)
return 0;
ret = adreno_zap_shader_load(gpu, GPU_PAS_ID);
loaded = !ret;
return ret;
}
#define A6XX_INT_MASK (A6XX_RBBM_INT_0_MASK_CP_AHB_ERROR | \
A6XX_RBBM_INT_0_MASK_RBBM_ATB_ASYNCFIFO_OVERFLOW | \
A6XX_RBBM_INT_0_MASK_CP_HW_ERROR | \
A6XX_RBBM_INT_0_MASK_CP_IB2 | \
A6XX_RBBM_INT_0_MASK_CP_IB1 | \
A6XX_RBBM_INT_0_MASK_CP_RB | \
A6XX_RBBM_INT_0_MASK_CP_CACHE_FLUSH_TS | \
A6XX_RBBM_INT_0_MASK_RBBM_ATB_BUS_OVERFLOW | \
A6XX_RBBM_INT_0_MASK_RBBM_HANG_DETECT | \
A6XX_RBBM_INT_0_MASK_UCHE_OOB_ACCESS | \
A6XX_RBBM_INT_0_MASK_UCHE_TRAP_INTR)
static int a6xx_hw_init(struct msm_gpu *gpu)
{
struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
int ret;
/* Make sure the GMU keeps the GPU on while we set it up */
a6xx_gmu_set_oob(&a6xx_gpu->gmu, GMU_OOB_GPU_SET);
gpu_write(gpu, REG_A6XX_RBBM_SECVID_TSB_CNTL, 0);
/*
* Disable the trusted memory range - we don't actually supported secure
* memory rendering at this point in time and we don't want to block off
* part of the virtual memory space.
*/
gpu_write64(gpu, REG_A6XX_RBBM_SECVID_TSB_TRUSTED_BASE_LO,
REG_A6XX_RBBM_SECVID_TSB_TRUSTED_BASE_HI, 0x00000000);
gpu_write(gpu, REG_A6XX_RBBM_SECVID_TSB_TRUSTED_SIZE, 0x00000000);
/* Turn on 64 bit addressing for all blocks */
gpu_write(gpu, REG_A6XX_CP_ADDR_MODE_CNTL, 0x1);
gpu_write(gpu, REG_A6XX_VSC_ADDR_MODE_CNTL, 0x1);
gpu_write(gpu, REG_A6XX_GRAS_ADDR_MODE_CNTL, 0x1);
gpu_write(gpu, REG_A6XX_RB_ADDR_MODE_CNTL, 0x1);
gpu_write(gpu, REG_A6XX_PC_ADDR_MODE_CNTL, 0x1);
gpu_write(gpu, REG_A6XX_HLSQ_ADDR_MODE_CNTL, 0x1);
gpu_write(gpu, REG_A6XX_VFD_ADDR_MODE_CNTL, 0x1);
gpu_write(gpu, REG_A6XX_VPC_ADDR_MODE_CNTL, 0x1);
gpu_write(gpu, REG_A6XX_UCHE_ADDR_MODE_CNTL, 0x1);
gpu_write(gpu, REG_A6XX_SP_ADDR_MODE_CNTL, 0x1);
gpu_write(gpu, REG_A6XX_TPL1_ADDR_MODE_CNTL, 0x1);
gpu_write(gpu, REG_A6XX_RBBM_SECVID_TSB_ADDR_MODE_CNTL, 0x1);
/* enable hardware clockgating */
a6xx_set_hwcg(gpu, true);
/* VBIF start */
gpu_write(gpu, REG_A6XX_VBIF_GATE_OFF_WRREQ_EN, 0x00000009);
gpu_write(gpu, REG_A6XX_RBBM_VBIF_CLIENT_QOS_CNTL, 0x3);
/* Make all blocks contribute to the GPU BUSY perf counter */
gpu_write(gpu, REG_A6XX_RBBM_PERFCTR_GPU_BUSY_MASKED, 0xffffffff);
/* Disable L2 bypass in the UCHE */
gpu_write(gpu, REG_A6XX_UCHE_WRITE_RANGE_MAX_LO, 0xffffffc0);
gpu_write(gpu, REG_A6XX_UCHE_WRITE_RANGE_MAX_HI, 0x0001ffff);
gpu_write(gpu, REG_A6XX_UCHE_TRAP_BASE_LO, 0xfffff000);
gpu_write(gpu, REG_A6XX_UCHE_TRAP_BASE_HI, 0x0001ffff);
gpu_write(gpu, REG_A6XX_UCHE_WRITE_THRU_BASE_LO, 0xfffff000);
gpu_write(gpu, REG_A6XX_UCHE_WRITE_THRU_BASE_HI, 0x0001ffff);
/* Set the GMEM VA range [0x100000:0x100000 + gpu->gmem - 1] */
gpu_write64(gpu, REG_A6XX_UCHE_GMEM_RANGE_MIN_LO,
REG_A6XX_UCHE_GMEM_RANGE_MIN_HI, 0x00100000);
gpu_write64(gpu, REG_A6XX_UCHE_GMEM_RANGE_MAX_LO,
REG_A6XX_UCHE_GMEM_RANGE_MAX_HI,
0x00100000 + adreno_gpu->gmem - 1);
gpu_write(gpu, REG_A6XX_UCHE_FILTER_CNTL, 0x804);
gpu_write(gpu, REG_A6XX_UCHE_CACHE_WAYS, 0x4);
gpu_write(gpu, REG_A6XX_CP_ROQ_THRESHOLDS_2, 0x010000c0);
gpu_write(gpu, REG_A6XX_CP_ROQ_THRESHOLDS_1, 0x8040362c);
/* Setting the mem pool size */
gpu_write(gpu, REG_A6XX_CP_MEM_POOL_SIZE, 128);
/* Setting the primFifo thresholds default values */
gpu_write(gpu, REG_A6XX_PC_DBG_ECO_CNTL, (0x300 << 11));
/* Set the AHB default slave response to "ERROR" */
gpu_write(gpu, REG_A6XX_CP_AHB_CNTL, 0x1);
/* Turn on performance counters */
gpu_write(gpu, REG_A6XX_RBBM_PERFCTR_CNTL, 0x1);
/* Select CP0 to always count cycles */
gpu_write(gpu, REG_A6XX_CP_PERFCTR_CP_SEL_0, PERF_CP_ALWAYS_COUNT);
gpu_write(gpu, REG_A6XX_RB_NC_MODE_CNTL, 2 << 1);
gpu_write(gpu, REG_A6XX_TPL1_NC_MODE_CNTL, 2 << 1);
gpu_write(gpu, REG_A6XX_SP_NC_MODE_CNTL, 2 << 1);
gpu_write(gpu, REG_A6XX_UCHE_MODE_CNTL, 2 << 21);
/* Enable fault detection */
gpu_write(gpu, REG_A6XX_RBBM_INTERFACE_HANG_INT_CNTL,
(1 << 30) | 0x1fffff);
gpu_write(gpu, REG_A6XX_UCHE_CLIENT_PF, 1);
/* Protect registers from the CP */
gpu_write(gpu, REG_A6XX_CP_PROTECT_CNTL, 0x00000003);
gpu_write(gpu, REG_A6XX_CP_PROTECT(0),
A6XX_PROTECT_RDONLY(0x600, 0x51));
gpu_write(gpu, REG_A6XX_CP_PROTECT(1), A6XX_PROTECT_RW(0xae50, 0x2));
gpu_write(gpu, REG_A6XX_CP_PROTECT(2), A6XX_PROTECT_RW(0x9624, 0x13));
gpu_write(gpu, REG_A6XX_CP_PROTECT(3), A6XX_PROTECT_RW(0x8630, 0x8));
gpu_write(gpu, REG_A6XX_CP_PROTECT(4), A6XX_PROTECT_RW(0x9e70, 0x1));
gpu_write(gpu, REG_A6XX_CP_PROTECT(5), A6XX_PROTECT_RW(0x9e78, 0x187));
gpu_write(gpu, REG_A6XX_CP_PROTECT(6), A6XX_PROTECT_RW(0xf000, 0x810));
gpu_write(gpu, REG_A6XX_CP_PROTECT(7),
A6XX_PROTECT_RDONLY(0xfc00, 0x3));
gpu_write(gpu, REG_A6XX_CP_PROTECT(8), A6XX_PROTECT_RW(0x50e, 0x0));
gpu_write(gpu, REG_A6XX_CP_PROTECT(9), A6XX_PROTECT_RDONLY(0x50f, 0x0));
gpu_write(gpu, REG_A6XX_CP_PROTECT(10), A6XX_PROTECT_RW(0x510, 0x0));
gpu_write(gpu, REG_A6XX_CP_PROTECT(11),
A6XX_PROTECT_RDONLY(0x0, 0x4f9));
gpu_write(gpu, REG_A6XX_CP_PROTECT(12),
A6XX_PROTECT_RDONLY(0x501, 0xa));
gpu_write(gpu, REG_A6XX_CP_PROTECT(13),
A6XX_PROTECT_RDONLY(0x511, 0x44));
gpu_write(gpu, REG_A6XX_CP_PROTECT(14), A6XX_PROTECT_RW(0xe00, 0xe));
gpu_write(gpu, REG_A6XX_CP_PROTECT(15), A6XX_PROTECT_RW(0x8e00, 0x0));
gpu_write(gpu, REG_A6XX_CP_PROTECT(16), A6XX_PROTECT_RW(0x8e50, 0xf));
gpu_write(gpu, REG_A6XX_CP_PROTECT(17), A6XX_PROTECT_RW(0xbe02, 0x0));
gpu_write(gpu, REG_A6XX_CP_PROTECT(18),
A6XX_PROTECT_RW(0xbe20, 0x11f3));
gpu_write(gpu, REG_A6XX_CP_PROTECT(19), A6XX_PROTECT_RW(0x800, 0x82));
gpu_write(gpu, REG_A6XX_CP_PROTECT(20), A6XX_PROTECT_RW(0x8a0, 0x8));
gpu_write(gpu, REG_A6XX_CP_PROTECT(21), A6XX_PROTECT_RW(0x8ab, 0x19));
gpu_write(gpu, REG_A6XX_CP_PROTECT(22), A6XX_PROTECT_RW(0x900, 0x4d));
gpu_write(gpu, REG_A6XX_CP_PROTECT(23), A6XX_PROTECT_RW(0x98d, 0x76));
gpu_write(gpu, REG_A6XX_CP_PROTECT(24),
A6XX_PROTECT_RDONLY(0x980, 0x4));
gpu_write(gpu, REG_A6XX_CP_PROTECT(25), A6XX_PROTECT_RW(0xa630, 0x0));
/* Enable interrupts */
gpu_write(gpu, REG_A6XX_RBBM_INT_0_MASK, A6XX_INT_MASK);
ret = adreno_hw_init(gpu);
if (ret)
goto out;
ret = a6xx_ucode_init(gpu);
if (ret)
goto out;
/* Always come up on rb 0 */
a6xx_gpu->cur_ring = gpu->rb[0];
/* Enable the SQE_to start the CP engine */
gpu_write(gpu, REG_A6XX_CP_SQE_CNTL, 1);
ret = a6xx_cp_init(gpu);
if (ret)
goto out;
/*
* Try to load a zap shader into the secure world. If successful
* we can use the CP to switch out of secure mode. If not then we
* have no resource but to try to switch ourselves out manually. If we
* guessed wrong then access to the RBBM_SECVID_TRUST_CNTL register will
* be blocked and a permissions violation will soon follow.
*/
ret = a6xx_zap_shader_init(gpu);
if (!ret) {
OUT_PKT7(gpu->rb[0], CP_SET_SECURE_MODE, 1);
OUT_RING(gpu->rb[0], 0x00000000);
a6xx_flush(gpu, gpu->rb[0]);
if (!a6xx_idle(gpu, gpu->rb[0]))
return -EINVAL;
} else {
/* Print a warning so if we die, we know why */
dev_warn_once(gpu->dev->dev,
"Zap shader not enabled - using SECVID_TRUST_CNTL instead\n");
gpu_write(gpu, REG_A6XX_RBBM_SECVID_TRUST_CNTL, 0x0);
ret = 0;
}
out:
/*
* Tell the GMU that we are done touching the GPU and it can start power
* management
*/
a6xx_gmu_clear_oob(&a6xx_gpu->gmu, GMU_OOB_GPU_SET);
/* Take the GMU out of its special boot mode */
a6xx_gmu_clear_oob(&a6xx_gpu->gmu, GMU_OOB_BOOT_SLUMBER);
return ret;
}
static void a6xx_dump(struct msm_gpu *gpu)
{
DRM_DEV_INFO(&gpu->pdev->dev, "status: %08x\n",
gpu_read(gpu, REG_A6XX_RBBM_STATUS));
adreno_dump(gpu);
}
#define VBIF_RESET_ACK_TIMEOUT 100
#define VBIF_RESET_ACK_MASK 0x00f0
static void a6xx_recover(struct msm_gpu *gpu)
{
struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
int i;
adreno_dump_info(gpu);
for (i = 0; i < 8; i++)
DRM_DEV_INFO(&gpu->pdev->dev, "CP_SCRATCH_REG%d: %u\n", i,
gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(i)));
if (hang_debug)
a6xx_dump(gpu);
/*
* Turn off keep alive that might have been enabled by the hang
* interrupt
*/
gmu_write(&a6xx_gpu->gmu, REG_A6XX_GMU_GMU_PWR_COL_KEEPALIVE, 0);
gpu->funcs->pm_suspend(gpu);
gpu->funcs->pm_resume(gpu);
msm_gpu_hw_init(gpu);
}
static int a6xx_fault_handler(void *arg, unsigned long iova, int flags)
{
struct msm_gpu *gpu = arg;
pr_warn_ratelimited("*** gpu fault: iova=%08lx, flags=%d (%u,%u,%u,%u)\n",
iova, flags,
gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(4)),
gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(5)),
gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(6)),
gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(7)));
return -EFAULT;
}
static void a6xx_cp_hw_err_irq(struct msm_gpu *gpu)
{
u32 status = gpu_read(gpu, REG_A6XX_CP_INTERRUPT_STATUS);
if (status & A6XX_CP_INT_CP_OPCODE_ERROR) {
u32 val;
gpu_write(gpu, REG_A6XX_CP_SQE_STAT_ADDR, 1);
val = gpu_read(gpu, REG_A6XX_CP_SQE_STAT_DATA);
dev_err_ratelimited(&gpu->pdev->dev,
"CP | opcode error | possible opcode=0x%8.8X\n",
val);
}
if (status & A6XX_CP_INT_CP_UCODE_ERROR)
dev_err_ratelimited(&gpu->pdev->dev,
"CP ucode error interrupt\n");
if (status & A6XX_CP_INT_CP_HW_FAULT_ERROR)
dev_err_ratelimited(&gpu->pdev->dev, "CP | HW fault | status=0x%8.8X\n",
gpu_read(gpu, REG_A6XX_CP_HW_FAULT));
if (status & A6XX_CP_INT_CP_REGISTER_PROTECTION_ERROR) {
u32 val = gpu_read(gpu, REG_A6XX_CP_PROTECT_STATUS);
dev_err_ratelimited(&gpu->pdev->dev,
"CP | protected mode error | %s | addr=0x%8.8X | status=0x%8.8X\n",
val & (1 << 20) ? "READ" : "WRITE",
(val & 0x3ffff), val);
}
if (status & A6XX_CP_INT_CP_AHB_ERROR)
dev_err_ratelimited(&gpu->pdev->dev, "CP AHB error interrupt\n");
if (status & A6XX_CP_INT_CP_VSD_PARITY_ERROR)
dev_err_ratelimited(&gpu->pdev->dev, "CP VSD decoder parity error\n");
if (status & A6XX_CP_INT_CP_ILLEGAL_INSTR_ERROR)
dev_err_ratelimited(&gpu->pdev->dev, "CP illegal instruction error\n");
}
static void a6xx_fault_detect_irq(struct msm_gpu *gpu)
{
struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
struct drm_device *dev = gpu->dev;
struct msm_drm_private *priv = dev->dev_private;
struct msm_ringbuffer *ring = gpu->funcs->active_ring(gpu);
/*
* Force the GPU to stay on until after we finish
* collecting information
*/
gmu_write(&a6xx_gpu->gmu, REG_A6XX_GMU_GMU_PWR_COL_KEEPALIVE, 1);
DRM_DEV_ERROR(&gpu->pdev->dev,
"gpu fault ring %d fence %x status %8.8X rb %4.4x/%4.4x ib1 %16.16llX/%4.4x ib2 %16.16llX/%4.4x\n",
ring ? ring->id : -1, ring ? ring->seqno : 0,
gpu_read(gpu, REG_A6XX_RBBM_STATUS),
gpu_read(gpu, REG_A6XX_CP_RB_RPTR),
gpu_read(gpu, REG_A6XX_CP_RB_WPTR),
gpu_read64(gpu, REG_A6XX_CP_IB1_BASE, REG_A6XX_CP_IB1_BASE_HI),
gpu_read(gpu, REG_A6XX_CP_IB1_REM_SIZE),
gpu_read64(gpu, REG_A6XX_CP_IB2_BASE, REG_A6XX_CP_IB2_BASE_HI),
gpu_read(gpu, REG_A6XX_CP_IB2_REM_SIZE));
/* Turn off the hangcheck timer to keep it from bothering us */
del_timer(&gpu->hangcheck_timer);
queue_work(priv->wq, &gpu->recover_work);
}
static irqreturn_t a6xx_irq(struct msm_gpu *gpu)
{
u32 status = gpu_read(gpu, REG_A6XX_RBBM_INT_0_STATUS);
gpu_write(gpu, REG_A6XX_RBBM_INT_CLEAR_CMD, status);
if (status & A6XX_RBBM_INT_0_MASK_RBBM_HANG_DETECT)
a6xx_fault_detect_irq(gpu);
if (status & A6XX_RBBM_INT_0_MASK_CP_AHB_ERROR)
dev_err_ratelimited(&gpu->pdev->dev, "CP | AHB bus error\n");
if (status & A6XX_RBBM_INT_0_MASK_CP_HW_ERROR)
a6xx_cp_hw_err_irq(gpu);
if (status & A6XX_RBBM_INT_0_MASK_RBBM_ATB_ASYNCFIFO_OVERFLOW)
dev_err_ratelimited(&gpu->pdev->dev, "RBBM | ATB ASYNC overflow\n");
if (status & A6XX_RBBM_INT_0_MASK_RBBM_ATB_BUS_OVERFLOW)
dev_err_ratelimited(&gpu->pdev->dev, "RBBM | ATB bus overflow\n");
if (status & A6XX_RBBM_INT_0_MASK_UCHE_OOB_ACCESS)
dev_err_ratelimited(&gpu->pdev->dev, "UCHE | Out of bounds access\n");
if (status & A6XX_RBBM_INT_0_MASK_CP_CACHE_FLUSH_TS)
msm_gpu_retire(gpu);
return IRQ_HANDLED;
}
static const u32 a6xx_register_offsets[REG_ADRENO_REGISTER_MAX] = {
REG_ADRENO_DEFINE(REG_ADRENO_CP_RB_BASE, REG_A6XX_CP_RB_BASE),
REG_ADRENO_DEFINE(REG_ADRENO_CP_RB_BASE_HI, REG_A6XX_CP_RB_BASE_HI),
REG_ADRENO_DEFINE(REG_ADRENO_CP_RB_RPTR_ADDR,
REG_A6XX_CP_RB_RPTR_ADDR_LO),
REG_ADRENO_DEFINE(REG_ADRENO_CP_RB_RPTR_ADDR_HI,
REG_A6XX_CP_RB_RPTR_ADDR_HI),
REG_ADRENO_DEFINE(REG_ADRENO_CP_RB_RPTR, REG_A6XX_CP_RB_RPTR),
REG_ADRENO_DEFINE(REG_ADRENO_CP_RB_WPTR, REG_A6XX_CP_RB_WPTR),
REG_ADRENO_DEFINE(REG_ADRENO_CP_RB_CNTL, REG_A6XX_CP_RB_CNTL),
};
static int a6xx_pm_resume(struct msm_gpu *gpu)
{
struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
int ret;
gpu->needs_hw_init = true;
ret = a6xx_gmu_resume(a6xx_gpu);
if (ret)
return ret;
msm_gpu_resume_devfreq(gpu);
return 0;
}
static int a6xx_pm_suspend(struct msm_gpu *gpu)
{
struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
devfreq_suspend_device(gpu->devfreq.devfreq);
return a6xx_gmu_stop(a6xx_gpu);
}
static int a6xx_get_timestamp(struct msm_gpu *gpu, uint64_t *value)
{
struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
/* Force the GPU power on so we can read this register */
a6xx_gmu_set_oob(&a6xx_gpu->gmu, GMU_OOB_GPU_SET);
*value = gpu_read64(gpu, REG_A6XX_RBBM_PERFCTR_CP_0_LO,
REG_A6XX_RBBM_PERFCTR_CP_0_HI);
a6xx_gmu_clear_oob(&a6xx_gpu->gmu, GMU_OOB_GPU_SET);
return 0;
}
static struct msm_ringbuffer *a6xx_active_ring(struct msm_gpu *gpu)
{
struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
return a6xx_gpu->cur_ring;
}
static void a6xx_destroy(struct msm_gpu *gpu)
{
struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
if (a6xx_gpu->sqe_bo) {
msm_gem_unpin_iova(a6xx_gpu->sqe_bo, gpu->aspace);
drm_gem_object_put_unlocked(a6xx_gpu->sqe_bo);
}
a6xx_gmu_remove(a6xx_gpu);
adreno_gpu_cleanup(adreno_gpu);
kfree(a6xx_gpu);
}
static unsigned long a6xx_gpu_busy(struct msm_gpu *gpu)
{
struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
u64 busy_cycles, busy_time;
busy_cycles = gmu_read64(&a6xx_gpu->gmu,
REG_A6XX_GMU_CX_GMU_POWER_COUNTER_XOCLK_0_L,
REG_A6XX_GMU_CX_GMU_POWER_COUNTER_XOCLK_0_H);
busy_time = (busy_cycles - gpu->devfreq.busy_cycles) * 10;
do_div(busy_time, 192);
gpu->devfreq.busy_cycles = busy_cycles;
if (WARN_ON(busy_time > ~0LU))
return ~0LU;
return (unsigned long)busy_time;
}
static const struct adreno_gpu_funcs funcs = {
.base = {
.get_param = adreno_get_param,
.hw_init = a6xx_hw_init,
.pm_suspend = a6xx_pm_suspend,
.pm_resume = a6xx_pm_resume,
.recover = a6xx_recover,
.submit = a6xx_submit,
.flush = a6xx_flush,
.active_ring = a6xx_active_ring,
.irq = a6xx_irq,
.destroy = a6xx_destroy,
#if defined(CONFIG_DRM_MSM_GPU_STATE)
.show = a6xx_show,
#endif
.gpu_busy = a6xx_gpu_busy,
.gpu_get_freq = a6xx_gmu_get_freq,
.gpu_set_freq = a6xx_gmu_set_freq,
#if defined(CONFIG_DRM_MSM_GPU_STATE)
.gpu_state_get = a6xx_gpu_state_get,
.gpu_state_put = a6xx_gpu_state_put,
#endif
},
.get_timestamp = a6xx_get_timestamp,
};
struct msm_gpu *a6xx_gpu_init(struct drm_device *dev)
{
struct msm_drm_private *priv = dev->dev_private;
struct platform_device *pdev = priv->gpu_pdev;
struct device_node *node;
struct a6xx_gpu *a6xx_gpu;
struct adreno_gpu *adreno_gpu;
struct msm_gpu *gpu;
int ret;
a6xx_gpu = kzalloc(sizeof(*a6xx_gpu), GFP_KERNEL);
if (!a6xx_gpu)
return ERR_PTR(-ENOMEM);
adreno_gpu = &a6xx_gpu->base;
gpu = &adreno_gpu->base;
adreno_gpu->registers = NULL;
adreno_gpu->reg_offsets = a6xx_register_offsets;
ret = adreno_gpu_init(dev, pdev, adreno_gpu, &funcs, 1);
if (ret) {
a6xx_destroy(&(a6xx_gpu->base.base));
return ERR_PTR(ret);
}
/* Check if there is a GMU phandle and set it up */
node = of_parse_phandle(pdev->dev.of_node, "qcom,gmu", 0);
/* FIXME: How do we gracefully handle this? */
BUG_ON(!node);
ret = a6xx_gmu_init(a6xx_gpu, node);
if (ret) {
a6xx_destroy(&(a6xx_gpu->base.base));
return ERR_PTR(ret);
}
if (gpu->aspace)
msm_mmu_set_fault_handler(gpu->aspace->mmu, gpu,
a6xx_fault_handler);
return gpu;
}