linux_dsm_epyc7002/include/linux/memblock.h

590 lines
19 KiB
C
Raw Normal View History

#ifndef _LINUX_MEMBLOCK_H
#define _LINUX_MEMBLOCK_H
#ifdef __KERNEL__
/*
* Logical memory blocks.
*
* Copyright (C) 2001 Peter Bergner, IBM Corp.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#include <linux/init.h>
#include <linux/mm.h>
mm: remove include/linux/bootmem.h Move remaining definitions and declarations from include/linux/bootmem.h into include/linux/memblock.h and remove the redundant header. The includes were replaced with the semantic patch below and then semi-automated removal of duplicated '#include <linux/memblock.h> @@ @@ - #include <linux/bootmem.h> + #include <linux/memblock.h> [sfr@canb.auug.org.au: dma-direct: fix up for the removal of linux/bootmem.h] Link: http://lkml.kernel.org/r/20181002185342.133d1680@canb.auug.org.au [sfr@canb.auug.org.au: powerpc: fix up for removal of linux/bootmem.h] Link: http://lkml.kernel.org/r/20181005161406.73ef8727@canb.auug.org.au [sfr@canb.auug.org.au: x86/kaslr, ACPI/NUMA: fix for linux/bootmem.h removal] Link: http://lkml.kernel.org/r/20181008190341.5e396491@canb.auug.org.au Link: http://lkml.kernel.org/r/1536927045-23536-30-git-send-email-rppt@linux.vnet.ibm.com Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com> Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Chris Zankel <chris@zankel.net> Cc: "David S. Miller" <davem@davemloft.net> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Greentime Hu <green.hu@gmail.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Guan Xuetao <gxt@pku.edu.cn> Cc: Ingo Molnar <mingo@redhat.com> Cc: "James E.J. Bottomley" <jejb@parisc-linux.org> Cc: Jonas Bonn <jonas@southpole.se> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ley Foon Tan <lftan@altera.com> Cc: Mark Salter <msalter@redhat.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Matt Turner <mattst88@gmail.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Michal Simek <monstr@monstr.eu> Cc: Palmer Dabbelt <palmer@sifive.com> Cc: Paul Burton <paul.burton@mips.com> Cc: Richard Kuo <rkuo@codeaurora.org> Cc: Richard Weinberger <richard@nod.at> Cc: Rich Felker <dalias@libc.org> Cc: Russell King <linux@armlinux.org.uk> Cc: Serge Semin <fancer.lancer@gmail.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Tony Luck <tony.luck@intel.com> Cc: Vineet Gupta <vgupta@synopsys.com> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-31 05:09:49 +07:00
#include <asm/dma.h>
extern unsigned long max_low_pfn;
extern unsigned long min_low_pfn;
/*
* highest page
*/
extern unsigned long max_pfn;
/*
* highest possible page
*/
extern unsigned long long max_possible_pfn;
#define INIT_MEMBLOCK_REGIONS 128
#define INIT_PHYSMEM_REGIONS 4
/**
* enum memblock_flags - definition of memory region attributes
* @MEMBLOCK_NONE: no special request
* @MEMBLOCK_HOTPLUG: hotpluggable region
* @MEMBLOCK_MIRROR: mirrored region
* @MEMBLOCK_NOMAP: don't add to kernel direct mapping
*/
enum memblock_flags {
mm/memblock: add extra "flags" to memblock to allow selection of memory based on attribute Some high end Intel Xeon systems report uncorrectable memory errors as a recoverable machine check. Linux has included code for some time to process these and just signal the affected processes (or even recover completely if the error was in a read only page that can be replaced by reading from disk). But we have no recovery path for errors encountered during kernel code execution. Except for some very specific cases were are unlikely to ever be able to recover. Enter memory mirroring. Actually 3rd generation of memory mirroing. Gen1: All memory is mirrored Pro: No s/w enabling - h/w just gets good data from other side of the mirror Con: Halves effective memory capacity available to OS/applications Gen2: Partial memory mirror - just mirror memory begind some memory controllers Pro: Keep more of the capacity Con: Nightmare to enable. Have to choose between allocating from mirrored memory for safety vs. NUMA local memory for performance Gen3: Address range partial memory mirror - some mirror on each memory controller Pro: Can tune the amount of mirror and keep NUMA performance Con: I have to write memory management code to implement The current plan is just to use mirrored memory for kernel allocations. This has been broken into two phases: 1) This patch series - find the mirrored memory, use it for boot time allocations 2) Wade into mm/page_alloc.c and define a ZONE_MIRROR to pick up the unused mirrored memory from mm/memblock.c and only give it out to select kernel allocations (this is still being scoped because page_alloc.c is scary). This patch (of 3): Add extra "flags" to memblock to allow selection of memory based on attribute. No functional changes Signed-off-by: Tony Luck <tony.luck@intel.com> Cc: Xishi Qiu <qiuxishi@huawei.com> Cc: Hanjun Guo <guohanjun@huawei.com> Cc: Xiexiuqi <xiexiuqi@huawei.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Yinghai Lu <yinghai@kernel.org> Cc: Naoya Horiguchi <nao.horiguchi@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-06-25 06:58:09 +07:00
MEMBLOCK_NONE = 0x0, /* No special request */
MEMBLOCK_HOTPLUG = 0x1, /* hotpluggable region */
MEMBLOCK_MIRROR = 0x2, /* mirrored region */
MEMBLOCK_NOMAP = 0x4, /* don't add to kernel direct mapping */
mm/memblock: add extra "flags" to memblock to allow selection of memory based on attribute Some high end Intel Xeon systems report uncorrectable memory errors as a recoverable machine check. Linux has included code for some time to process these and just signal the affected processes (or even recover completely if the error was in a read only page that can be replaced by reading from disk). But we have no recovery path for errors encountered during kernel code execution. Except for some very specific cases were are unlikely to ever be able to recover. Enter memory mirroring. Actually 3rd generation of memory mirroing. Gen1: All memory is mirrored Pro: No s/w enabling - h/w just gets good data from other side of the mirror Con: Halves effective memory capacity available to OS/applications Gen2: Partial memory mirror - just mirror memory begind some memory controllers Pro: Keep more of the capacity Con: Nightmare to enable. Have to choose between allocating from mirrored memory for safety vs. NUMA local memory for performance Gen3: Address range partial memory mirror - some mirror on each memory controller Pro: Can tune the amount of mirror and keep NUMA performance Con: I have to write memory management code to implement The current plan is just to use mirrored memory for kernel allocations. This has been broken into two phases: 1) This patch series - find the mirrored memory, use it for boot time allocations 2) Wade into mm/page_alloc.c and define a ZONE_MIRROR to pick up the unused mirrored memory from mm/memblock.c and only give it out to select kernel allocations (this is still being scoped because page_alloc.c is scary). This patch (of 3): Add extra "flags" to memblock to allow selection of memory based on attribute. No functional changes Signed-off-by: Tony Luck <tony.luck@intel.com> Cc: Xishi Qiu <qiuxishi@huawei.com> Cc: Hanjun Guo <guohanjun@huawei.com> Cc: Xiexiuqi <xiexiuqi@huawei.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Yinghai Lu <yinghai@kernel.org> Cc: Naoya Horiguchi <nao.horiguchi@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-06-25 06:58:09 +07:00
};
memblock, mem_hotplug: introduce MEMBLOCK_HOTPLUG flag to mark hotpluggable regions In find_hotpluggable_memory, once we find out a memory region which is hotpluggable, we want to mark them in memblock.memory. So that we could control memblock allocator not to allocte hotpluggable memory for the kernel later. To achieve this goal, we introduce MEMBLOCK_HOTPLUG flag to indicate the hotpluggable memory regions in memblock and a function memblock_mark_hotplug() to mark hotpluggable memory if we find one. [akpm@linux-foundation.org: coding-style fixes] Signed-off-by: Tang Chen <tangchen@cn.fujitsu.com> Reviewed-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: "Rafael J . Wysocki" <rjw@sisk.pl> Cc: Chen Tang <imtangchen@gmail.com> Cc: Gong Chen <gong.chen@linux.intel.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Jiang Liu <jiang.liu@huawei.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Lai Jiangshan <laijs@cn.fujitsu.com> Cc: Larry Woodman <lwoodman@redhat.com> Cc: Len Brown <lenb@kernel.org> Cc: Liu Jiang <jiang.liu@huawei.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Michal Nazarewicz <mina86@mina86.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Prarit Bhargava <prarit@redhat.com> Cc: Rik van Riel <riel@redhat.com> Cc: Taku Izumi <izumi.taku@jp.fujitsu.com> Cc: Tejun Heo <tj@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Thomas Renninger <trenn@suse.de> Cc: Toshi Kani <toshi.kani@hp.com> Cc: Vasilis Liaskovitis <vasilis.liaskovitis@profitbricks.com> Cc: Wanpeng Li <liwanp@linux.vnet.ibm.com> Cc: Wen Congyang <wency@cn.fujitsu.com> Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Cc: Yinghai Lu <yinghai@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-22 06:49:23 +07:00
/**
* struct memblock_region - represents a memory region
* @base: physical address of the region
* @size: size of the region
* @flags: memory region attributes
* @nid: NUMA node id
*/
struct memblock_region {
phys_addr_t base;
phys_addr_t size;
enum memblock_flags flags;
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
int nid;
#endif
};
/**
* struct memblock_type - collection of memory regions of certain type
* @cnt: number of regions
* @max: size of the allocated array
* @total_size: size of all regions
* @regions: array of regions
* @name: the memory type symbolic name
*/
struct memblock_type {
unsigned long cnt;
unsigned long max;
phys_addr_t total_size;
struct memblock_region *regions;
char *name;
};
/**
* struct memblock - memblock allocator metadata
* @bottom_up: is bottom up direction?
* @current_limit: physical address of the current allocation limit
* @memory: usabe memory regions
* @reserved: reserved memory regions
* @physmem: all physical memory
*/
struct memblock {
mm/memblock.c: introduce bottom-up allocation mode The Linux kernel cannot migrate pages used by the kernel. As a result, kernel pages cannot be hot-removed. So we cannot allocate hotpluggable memory for the kernel. ACPI SRAT (System Resource Affinity Table) contains the memory hotplug info. But before SRAT is parsed, memblock has already started to allocate memory for the kernel. So we need to prevent memblock from doing this. In a memory hotplug system, any numa node the kernel resides in should be unhotpluggable. And for a modern server, each node could have at least 16GB memory. So memory around the kernel image is highly likely unhotpluggable. So the basic idea is: Allocate memory from the end of the kernel image and to the higher memory. Since memory allocation before SRAT is parsed won't be too much, it could highly likely be in the same node with kernel image. The current memblock can only allocate memory top-down. So this patch introduces a new bottom-up allocation mode to allocate memory bottom-up. And later when we use this allocation direction to allocate memory, we will limit the start address above the kernel. Signed-off-by: Tang Chen <tangchen@cn.fujitsu.com> Signed-off-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com> Acked-by: Toshi Kani <toshi.kani@hp.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@elte.hu> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Tejun Heo <tj@kernel.org> Cc: Wanpeng Li <liwanp@linux.vnet.ibm.com> Cc: Thomas Renninger <trenn@suse.de> Cc: Yinghai Lu <yinghai@kernel.org> Cc: Jiang Liu <jiang.liu@huawei.com> Cc: Wen Congyang <wency@cn.fujitsu.com> Cc: Lai Jiangshan <laijs@cn.fujitsu.com> Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Cc: Taku Izumi <izumi.taku@jp.fujitsu.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Michal Nazarewicz <mina86@mina86.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-11-13 06:07:59 +07:00
bool bottom_up; /* is bottom up direction? */
phys_addr_t current_limit;
struct memblock_type memory;
struct memblock_type reserved;
#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
struct memblock_type physmem;
#endif
};
extern struct memblock memblock;
extern int memblock_debug;
#ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
#define __init_memblock __meminit
#define __initdata_memblock __meminitdata
mm: discard memblock data later There is existing use after free bug when deferred struct pages are enabled: The memblock_add() allocates memory for the memory array if more than 128 entries are needed. See comment in e820__memblock_setup(): * The bootstrap memblock region count maximum is 128 entries * (INIT_MEMBLOCK_REGIONS), but EFI might pass us more E820 entries * than that - so allow memblock resizing. This memblock memory is freed here: free_low_memory_core_early() We access the freed memblock.memory later in boot when deferred pages are initialized in this path: deferred_init_memmap() for_each_mem_pfn_range() __next_mem_pfn_range() type = &memblock.memory; One possible explanation for why this use-after-free hasn't been hit before is that the limit of INIT_MEMBLOCK_REGIONS has never been exceeded at least on systems where deferred struct pages were enabled. Tested by reducing INIT_MEMBLOCK_REGIONS down to 4 from the current 128, and verifying in qemu that this code is getting excuted and that the freed pages are sane. Link: http://lkml.kernel.org/r/1502485554-318703-2-git-send-email-pasha.tatashin@oracle.com Fixes: 7e18adb4f80b ("mm: meminit: initialise remaining struct pages in parallel with kswapd") Signed-off-by: Pavel Tatashin <pasha.tatashin@oracle.com> Reviewed-by: Steven Sistare <steven.sistare@oracle.com> Reviewed-by: Daniel Jordan <daniel.m.jordan@oracle.com> Reviewed-by: Bob Picco <bob.picco@oracle.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-08-19 05:16:05 +07:00
void memblock_discard(void);
#else
#define __init_memblock
#define __initdata_memblock
#endif
#define memblock_dbg(fmt, ...) \
if (memblock_debug) printk(KERN_INFO pr_fmt(fmt), ##__VA_ARGS__)
phys_addr_t memblock_find_in_range_node(phys_addr_t size, phys_addr_t align,
phys_addr_t start, phys_addr_t end,
int nid, enum memblock_flags flags);
phys_addr_t memblock_find_in_range(phys_addr_t start, phys_addr_t end,
phys_addr_t size, phys_addr_t align);
memblock: s/memblock_analyze()/memblock_allow_resize()/ and update users The only function of memblock_analyze() is now allowing resize of memblock region arrays. Rename it to memblock_allow_resize() and update its users. * The following users remain the same other than renaming. arm/mm/init.c::arm_memblock_init() microblaze/kernel/prom.c::early_init_devtree() powerpc/kernel/prom.c::early_init_devtree() openrisc/kernel/prom.c::early_init_devtree() sh/mm/init.c::paging_init() sparc/mm/init_64.c::paging_init() unicore32/mm/init.c::uc32_memblock_init() * In the following users, analyze was used to update total size which is no longer necessary. powerpc/kernel/machine_kexec.c::reserve_crashkernel() powerpc/kernel/prom.c::early_init_devtree() powerpc/mm/init_32.c::MMU_init() powerpc/mm/tlb_nohash.c::__early_init_mmu() powerpc/platforms/ps3/mm.c::ps3_mm_add_memory() powerpc/platforms/embedded6xx/wii.c::wii_memory_fixups() sh/kernel/machine_kexec.c::reserve_crashkernel() * x86/kernel/e820.c::memblock_x86_fill() was directly setting memblock_can_resize before populating memblock and calling analyze afterwards. Call memblock_allow_resize() before start populating. memblock_can_resize is now static inside memblock.c. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Yinghai Lu <yinghai@kernel.org> Cc: Russell King <linux@arm.linux.org.uk> Cc: Michal Simek <monstr@monstr.eu> Cc: Paul Mundt <lethal@linux-sh.org> Cc: "David S. Miller" <davem@davemloft.net> Cc: Guan Xuetao <gxt@mprc.pku.edu.cn> Cc: "H. Peter Anvin" <hpa@zytor.com>
2011-12-09 01:22:08 +07:00
void memblock_allow_resize(void);
int memblock_add_node(phys_addr_t base, phys_addr_t size, int nid);
int memblock_add(phys_addr_t base, phys_addr_t size);
int memblock_remove(phys_addr_t base, phys_addr_t size);
int memblock_free(phys_addr_t base, phys_addr_t size);
int memblock_reserve(phys_addr_t base, phys_addr_t size);
void memblock_trim_memory(phys_addr_t align);
mem-hotplug: handle node hole when initializing numa_meminfo. When parsing SRAT, all memory ranges are added into numa_meminfo. In numa_init(), before entering numa_cleanup_meminfo(), all possible memory ranges are in numa_meminfo. And numa_cleanup_meminfo() removes all ranges over max_pfn or empty. But, this only works if the nodes are continuous. Let's have a look at the following example: We have an SRAT like this: SRAT: Node 0 PXM 0 [mem 0x00000000-0x5fffffff] SRAT: Node 0 PXM 0 [mem 0x100000000-0x1ffffffffff] SRAT: Node 1 PXM 1 [mem 0x20000000000-0x3ffffffffff] SRAT: Node 4 PXM 2 [mem 0x40000000000-0x5ffffffffff] hotplug SRAT: Node 5 PXM 3 [mem 0x60000000000-0x7ffffffffff] hotplug SRAT: Node 2 PXM 4 [mem 0x80000000000-0x9ffffffffff] hotplug SRAT: Node 3 PXM 5 [mem 0xa0000000000-0xbffffffffff] hotplug SRAT: Node 6 PXM 6 [mem 0xc0000000000-0xdffffffffff] hotplug SRAT: Node 7 PXM 7 [mem 0xe0000000000-0xfffffffffff] hotplug On boot, only node 0,1,2,3 exist. And the numa_meminfo will look like this: numa_meminfo.nr_blks = 9 1. on node 0: [0, 60000000] 2. on node 0: [100000000, 20000000000] 3. on node 1: [20000000000, 40000000000] 4. on node 4: [40000000000, 60000000000] 5. on node 5: [60000000000, 80000000000] 6. on node 2: [80000000000, a0000000000] 7. on node 3: [a0000000000, a0800000000] 8. on node 6: [c0000000000, a0800000000] 9. on node 7: [e0000000000, a0800000000] And numa_cleanup_meminfo() will merge 1 and 2, and remove 8,9 because the end address is over max_pfn, which is a0800000000. But 4 and 5 are not removed because their end addresses are less then max_pfn. But in fact, node 4 and 5 don't exist. In a word, numa_cleanup_meminfo() is not able to handle holes between nodes. Since memory ranges in node 4 and 5 are in numa_meminfo, in numa_register_memblks(), node 4 and 5 will be mistakenly set to online. If you run lscpu, it will show: NUMA node0 CPU(s): 0-14,128-142 NUMA node1 CPU(s): 15-29,143-157 NUMA node2 CPU(s): NUMA node3 CPU(s): NUMA node4 CPU(s): 62-76,190-204 NUMA node5 CPU(s): 78-92,206-220 In this patch, we use memblock_overlaps_region() to check if ranges in numa_meminfo overlap with ranges in memory_block. Since memory_block contains all available memory at boot time, if they overlap, it means the ranges exist. If not, then remove them from numa_meminfo. After this patch, lscpu will show: NUMA node0 CPU(s): 0-14,128-142 NUMA node1 CPU(s): 15-29,143-157 NUMA node4 CPU(s): 62-76,190-204 NUMA node5 CPU(s): 78-92,206-220 Signed-off-by: Tang Chen <tangchen@cn.fujitsu.com> Reviewed-by: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Tejun Heo <tj@kernel.org> Cc: Luiz Capitulino <lcapitulino@redhat.com> Cc: Xishi Qiu <qiuxishi@huawei.com> Cc: Will Deacon <will.deacon@arm.com> Cc: Vladimir Murzin <vladimir.murzin@arm.com> Cc: Fabian Frederick <fabf@skynet.be> Cc: Alexander Kuleshov <kuleshovmail@gmail.com> Cc: Baoquan He <bhe@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-09-09 05:02:03 +07:00
bool memblock_overlaps_region(struct memblock_type *type,
phys_addr_t base, phys_addr_t size);
memblock, mem_hotplug: introduce MEMBLOCK_HOTPLUG flag to mark hotpluggable regions In find_hotpluggable_memory, once we find out a memory region which is hotpluggable, we want to mark them in memblock.memory. So that we could control memblock allocator not to allocte hotpluggable memory for the kernel later. To achieve this goal, we introduce MEMBLOCK_HOTPLUG flag to indicate the hotpluggable memory regions in memblock and a function memblock_mark_hotplug() to mark hotpluggable memory if we find one. [akpm@linux-foundation.org: coding-style fixes] Signed-off-by: Tang Chen <tangchen@cn.fujitsu.com> Reviewed-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: "Rafael J . Wysocki" <rjw@sisk.pl> Cc: Chen Tang <imtangchen@gmail.com> Cc: Gong Chen <gong.chen@linux.intel.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Jiang Liu <jiang.liu@huawei.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Lai Jiangshan <laijs@cn.fujitsu.com> Cc: Larry Woodman <lwoodman@redhat.com> Cc: Len Brown <lenb@kernel.org> Cc: Liu Jiang <jiang.liu@huawei.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Michal Nazarewicz <mina86@mina86.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Prarit Bhargava <prarit@redhat.com> Cc: Rik van Riel <riel@redhat.com> Cc: Taku Izumi <izumi.taku@jp.fujitsu.com> Cc: Tejun Heo <tj@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Thomas Renninger <trenn@suse.de> Cc: Toshi Kani <toshi.kani@hp.com> Cc: Vasilis Liaskovitis <vasilis.liaskovitis@profitbricks.com> Cc: Wanpeng Li <liwanp@linux.vnet.ibm.com> Cc: Wen Congyang <wency@cn.fujitsu.com> Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Cc: Yinghai Lu <yinghai@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-22 06:49:23 +07:00
int memblock_mark_hotplug(phys_addr_t base, phys_addr_t size);
int memblock_clear_hotplug(phys_addr_t base, phys_addr_t size);
int memblock_mark_mirror(phys_addr_t base, phys_addr_t size);
int memblock_mark_nomap(phys_addr_t base, phys_addr_t size);
int memblock_clear_nomap(phys_addr_t base, phys_addr_t size);
enum memblock_flags choose_memblock_flags(void);
mm: remove include/linux/bootmem.h Move remaining definitions and declarations from include/linux/bootmem.h into include/linux/memblock.h and remove the redundant header. The includes were replaced with the semantic patch below and then semi-automated removal of duplicated '#include <linux/memblock.h> @@ @@ - #include <linux/bootmem.h> + #include <linux/memblock.h> [sfr@canb.auug.org.au: dma-direct: fix up for the removal of linux/bootmem.h] Link: http://lkml.kernel.org/r/20181002185342.133d1680@canb.auug.org.au [sfr@canb.auug.org.au: powerpc: fix up for removal of linux/bootmem.h] Link: http://lkml.kernel.org/r/20181005161406.73ef8727@canb.auug.org.au [sfr@canb.auug.org.au: x86/kaslr, ACPI/NUMA: fix for linux/bootmem.h removal] Link: http://lkml.kernel.org/r/20181008190341.5e396491@canb.auug.org.au Link: http://lkml.kernel.org/r/1536927045-23536-30-git-send-email-rppt@linux.vnet.ibm.com Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com> Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Chris Zankel <chris@zankel.net> Cc: "David S. Miller" <davem@davemloft.net> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Greentime Hu <green.hu@gmail.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Guan Xuetao <gxt@pku.edu.cn> Cc: Ingo Molnar <mingo@redhat.com> Cc: "James E.J. Bottomley" <jejb@parisc-linux.org> Cc: Jonas Bonn <jonas@southpole.se> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ley Foon Tan <lftan@altera.com> Cc: Mark Salter <msalter@redhat.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Matt Turner <mattst88@gmail.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Michal Simek <monstr@monstr.eu> Cc: Palmer Dabbelt <palmer@sifive.com> Cc: Paul Burton <paul.burton@mips.com> Cc: Richard Kuo <rkuo@codeaurora.org> Cc: Richard Weinberger <richard@nod.at> Cc: Rich Felker <dalias@libc.org> Cc: Russell King <linux@armlinux.org.uk> Cc: Serge Semin <fancer.lancer@gmail.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Tony Luck <tony.luck@intel.com> Cc: Vineet Gupta <vgupta@synopsys.com> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-31 05:09:49 +07:00
unsigned long memblock_free_all(void);
void reset_node_managed_pages(pg_data_t *pgdat);
void reset_all_zones_managed_pages(void);
/* Low level functions */
int memblock_add_range(struct memblock_type *type,
phys_addr_t base, phys_addr_t size,
int nid, enum memblock_flags flags);
void __next_mem_range(u64 *idx, int nid, enum memblock_flags flags,
mm/memblock: add extra "flags" to memblock to allow selection of memory based on attribute Some high end Intel Xeon systems report uncorrectable memory errors as a recoverable machine check. Linux has included code for some time to process these and just signal the affected processes (or even recover completely if the error was in a read only page that can be replaced by reading from disk). But we have no recovery path for errors encountered during kernel code execution. Except for some very specific cases were are unlikely to ever be able to recover. Enter memory mirroring. Actually 3rd generation of memory mirroing. Gen1: All memory is mirrored Pro: No s/w enabling - h/w just gets good data from other side of the mirror Con: Halves effective memory capacity available to OS/applications Gen2: Partial memory mirror - just mirror memory begind some memory controllers Pro: Keep more of the capacity Con: Nightmare to enable. Have to choose between allocating from mirrored memory for safety vs. NUMA local memory for performance Gen3: Address range partial memory mirror - some mirror on each memory controller Pro: Can tune the amount of mirror and keep NUMA performance Con: I have to write memory management code to implement The current plan is just to use mirrored memory for kernel allocations. This has been broken into two phases: 1) This patch series - find the mirrored memory, use it for boot time allocations 2) Wade into mm/page_alloc.c and define a ZONE_MIRROR to pick up the unused mirrored memory from mm/memblock.c and only give it out to select kernel allocations (this is still being scoped because page_alloc.c is scary). This patch (of 3): Add extra "flags" to memblock to allow selection of memory based on attribute. No functional changes Signed-off-by: Tony Luck <tony.luck@intel.com> Cc: Xishi Qiu <qiuxishi@huawei.com> Cc: Hanjun Guo <guohanjun@huawei.com> Cc: Xiexiuqi <xiexiuqi@huawei.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Yinghai Lu <yinghai@kernel.org> Cc: Naoya Horiguchi <nao.horiguchi@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-06-25 06:58:09 +07:00
struct memblock_type *type_a,
struct memblock_type *type_b, phys_addr_t *out_start,
phys_addr_t *out_end, int *out_nid);
void __next_mem_range_rev(u64 *idx, int nid, enum memblock_flags flags,
mm/memblock: add extra "flags" to memblock to allow selection of memory based on attribute Some high end Intel Xeon systems report uncorrectable memory errors as a recoverable machine check. Linux has included code for some time to process these and just signal the affected processes (or even recover completely if the error was in a read only page that can be replaced by reading from disk). But we have no recovery path for errors encountered during kernel code execution. Except for some very specific cases were are unlikely to ever be able to recover. Enter memory mirroring. Actually 3rd generation of memory mirroing. Gen1: All memory is mirrored Pro: No s/w enabling - h/w just gets good data from other side of the mirror Con: Halves effective memory capacity available to OS/applications Gen2: Partial memory mirror - just mirror memory begind some memory controllers Pro: Keep more of the capacity Con: Nightmare to enable. Have to choose between allocating from mirrored memory for safety vs. NUMA local memory for performance Gen3: Address range partial memory mirror - some mirror on each memory controller Pro: Can tune the amount of mirror and keep NUMA performance Con: I have to write memory management code to implement The current plan is just to use mirrored memory for kernel allocations. This has been broken into two phases: 1) This patch series - find the mirrored memory, use it for boot time allocations 2) Wade into mm/page_alloc.c and define a ZONE_MIRROR to pick up the unused mirrored memory from mm/memblock.c and only give it out to select kernel allocations (this is still being scoped because page_alloc.c is scary). This patch (of 3): Add extra "flags" to memblock to allow selection of memory based on attribute. No functional changes Signed-off-by: Tony Luck <tony.luck@intel.com> Cc: Xishi Qiu <qiuxishi@huawei.com> Cc: Hanjun Guo <guohanjun@huawei.com> Cc: Xiexiuqi <xiexiuqi@huawei.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Yinghai Lu <yinghai@kernel.org> Cc: Naoya Horiguchi <nao.horiguchi@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-06-25 06:58:09 +07:00
struct memblock_type *type_a,
struct memblock_type *type_b, phys_addr_t *out_start,
phys_addr_t *out_end, int *out_nid);
memblock: introduce a for_each_reserved_mem_region iterator Struct page initialisation had been identified as one of the reasons why large machines take a long time to boot. Patches were posted a long time ago to defer initialisation until they were first used. This was rejected on the grounds it should not be necessary to hurt the fast paths. This series reuses much of the work from that time but defers the initialisation of memory to kswapd so that one thread per node initialises memory local to that node. After applying the series and setting the appropriate Kconfig variable I see this in the boot log on a 64G machine [ 7.383764] kswapd 0 initialised deferred memory in 188ms [ 7.404253] kswapd 1 initialised deferred memory in 208ms [ 7.411044] kswapd 3 initialised deferred memory in 216ms [ 7.411551] kswapd 2 initialised deferred memory in 216ms On a 1TB machine, I see [ 8.406511] kswapd 3 initialised deferred memory in 1116ms [ 8.428518] kswapd 1 initialised deferred memory in 1140ms [ 8.435977] kswapd 0 initialised deferred memory in 1148ms [ 8.437416] kswapd 2 initialised deferred memory in 1148ms Once booted the machine appears to work as normal. Boot times were measured from the time shutdown was called until ssh was available again. In the 64G case, the boot time savings are negligible. On the 1TB machine, the savings were 16 seconds. Nate Zimmer said: : On an older 8 TB box with lots and lots of cpus the boot time, as : measure from grub to login prompt, the boot time improved from 1484 : seconds to exactly 1000 seconds. Waiman Long said: : I ran a bootup timing test on a 12-TB 16-socket IvyBridge-EX system. From : grub menu to ssh login, the bootup time was 453s before the patch and 265s : after the patch - a saving of 188s (42%). Daniel Blueman said: : On a 7TB, 1728-core NumaConnect system with 108 NUMA nodes, we're seeing : stock 4.0 boot in 7136s. This drops to 2159s, or a 70% reduction with : this patchset. Non-temporal PMD init (https://lkml.org/lkml/2015/4/23/350) : drops this to 1045s. This patch (of 13): As part of initializing struct page's in 2MiB chunks, we noticed that at the end of free_all_bootmem(), there was nothing which had forced the reserved/allocated 4KiB pages to be initialized. This helper function will be used for that expansion. Signed-off-by: Robin Holt <holt@sgi.com> Signed-off-by: Nate Zimmer <nzimmer@sgi.com> Signed-off-by: Mel Gorman <mgorman@suse.de> Tested-by: Nate Zimmer <nzimmer@sgi.com> Tested-by: Waiman Long <waiman.long@hp.com> Tested-by: Daniel J Blueman <daniel@numascale.com> Acked-by: Pekka Enberg <penberg@kernel.org> Cc: Robin Holt <robinmholt@gmail.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Waiman Long <waiman.long@hp.com> Cc: Scott Norton <scott.norton@hp.com> Cc: "Luck, Tony" <tony.luck@intel.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-07-01 04:56:41 +07:00
void __next_reserved_mem_region(u64 *idx, phys_addr_t *out_start,
phys_addr_t *out_end);
memblock: introduce a for_each_reserved_mem_region iterator Struct page initialisation had been identified as one of the reasons why large machines take a long time to boot. Patches were posted a long time ago to defer initialisation until they were first used. This was rejected on the grounds it should not be necessary to hurt the fast paths. This series reuses much of the work from that time but defers the initialisation of memory to kswapd so that one thread per node initialises memory local to that node. After applying the series and setting the appropriate Kconfig variable I see this in the boot log on a 64G machine [ 7.383764] kswapd 0 initialised deferred memory in 188ms [ 7.404253] kswapd 1 initialised deferred memory in 208ms [ 7.411044] kswapd 3 initialised deferred memory in 216ms [ 7.411551] kswapd 2 initialised deferred memory in 216ms On a 1TB machine, I see [ 8.406511] kswapd 3 initialised deferred memory in 1116ms [ 8.428518] kswapd 1 initialised deferred memory in 1140ms [ 8.435977] kswapd 0 initialised deferred memory in 1148ms [ 8.437416] kswapd 2 initialised deferred memory in 1148ms Once booted the machine appears to work as normal. Boot times were measured from the time shutdown was called until ssh was available again. In the 64G case, the boot time savings are negligible. On the 1TB machine, the savings were 16 seconds. Nate Zimmer said: : On an older 8 TB box with lots and lots of cpus the boot time, as : measure from grub to login prompt, the boot time improved from 1484 : seconds to exactly 1000 seconds. Waiman Long said: : I ran a bootup timing test on a 12-TB 16-socket IvyBridge-EX system. From : grub menu to ssh login, the bootup time was 453s before the patch and 265s : after the patch - a saving of 188s (42%). Daniel Blueman said: : On a 7TB, 1728-core NumaConnect system with 108 NUMA nodes, we're seeing : stock 4.0 boot in 7136s. This drops to 2159s, or a 70% reduction with : this patchset. Non-temporal PMD init (https://lkml.org/lkml/2015/4/23/350) : drops this to 1045s. This patch (of 13): As part of initializing struct page's in 2MiB chunks, we noticed that at the end of free_all_bootmem(), there was nothing which had forced the reserved/allocated 4KiB pages to be initialized. This helper function will be used for that expansion. Signed-off-by: Robin Holt <holt@sgi.com> Signed-off-by: Nate Zimmer <nzimmer@sgi.com> Signed-off-by: Mel Gorman <mgorman@suse.de> Tested-by: Nate Zimmer <nzimmer@sgi.com> Tested-by: Waiman Long <waiman.long@hp.com> Tested-by: Daniel J Blueman <daniel@numascale.com> Acked-by: Pekka Enberg <penberg@kernel.org> Cc: Robin Holt <robinmholt@gmail.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Waiman Long <waiman.long@hp.com> Cc: Scott Norton <scott.norton@hp.com> Cc: "Luck, Tony" <tony.luck@intel.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-07-01 04:56:41 +07:00
mm: discard memblock data later There is existing use after free bug when deferred struct pages are enabled: The memblock_add() allocates memory for the memory array if more than 128 entries are needed. See comment in e820__memblock_setup(): * The bootstrap memblock region count maximum is 128 entries * (INIT_MEMBLOCK_REGIONS), but EFI might pass us more E820 entries * than that - so allow memblock resizing. This memblock memory is freed here: free_low_memory_core_early() We access the freed memblock.memory later in boot when deferred pages are initialized in this path: deferred_init_memmap() for_each_mem_pfn_range() __next_mem_pfn_range() type = &memblock.memory; One possible explanation for why this use-after-free hasn't been hit before is that the limit of INIT_MEMBLOCK_REGIONS has never been exceeded at least on systems where deferred struct pages were enabled. Tested by reducing INIT_MEMBLOCK_REGIONS down to 4 from the current 128, and verifying in qemu that this code is getting excuted and that the freed pages are sane. Link: http://lkml.kernel.org/r/1502485554-318703-2-git-send-email-pasha.tatashin@oracle.com Fixes: 7e18adb4f80b ("mm: meminit: initialise remaining struct pages in parallel with kswapd") Signed-off-by: Pavel Tatashin <pasha.tatashin@oracle.com> Reviewed-by: Steven Sistare <steven.sistare@oracle.com> Reviewed-by: Daniel Jordan <daniel.m.jordan@oracle.com> Reviewed-by: Bob Picco <bob.picco@oracle.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-08-19 05:16:05 +07:00
void __memblock_free_late(phys_addr_t base, phys_addr_t size);
/**
* for_each_mem_range - iterate through memblock areas from type_a and not
* included in type_b. Or just type_a if type_b is NULL.
* @i: u64 used as loop variable
* @type_a: ptr to memblock_type to iterate
* @type_b: ptr to memblock_type which excludes from the iteration
* @nid: node selector, %NUMA_NO_NODE for all nodes
mm/memblock: add extra "flags" to memblock to allow selection of memory based on attribute Some high end Intel Xeon systems report uncorrectable memory errors as a recoverable machine check. Linux has included code for some time to process these and just signal the affected processes (or even recover completely if the error was in a read only page that can be replaced by reading from disk). But we have no recovery path for errors encountered during kernel code execution. Except for some very specific cases were are unlikely to ever be able to recover. Enter memory mirroring. Actually 3rd generation of memory mirroing. Gen1: All memory is mirrored Pro: No s/w enabling - h/w just gets good data from other side of the mirror Con: Halves effective memory capacity available to OS/applications Gen2: Partial memory mirror - just mirror memory begind some memory controllers Pro: Keep more of the capacity Con: Nightmare to enable. Have to choose between allocating from mirrored memory for safety vs. NUMA local memory for performance Gen3: Address range partial memory mirror - some mirror on each memory controller Pro: Can tune the amount of mirror and keep NUMA performance Con: I have to write memory management code to implement The current plan is just to use mirrored memory for kernel allocations. This has been broken into two phases: 1) This patch series - find the mirrored memory, use it for boot time allocations 2) Wade into mm/page_alloc.c and define a ZONE_MIRROR to pick up the unused mirrored memory from mm/memblock.c and only give it out to select kernel allocations (this is still being scoped because page_alloc.c is scary). This patch (of 3): Add extra "flags" to memblock to allow selection of memory based on attribute. No functional changes Signed-off-by: Tony Luck <tony.luck@intel.com> Cc: Xishi Qiu <qiuxishi@huawei.com> Cc: Hanjun Guo <guohanjun@huawei.com> Cc: Xiexiuqi <xiexiuqi@huawei.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Yinghai Lu <yinghai@kernel.org> Cc: Naoya Horiguchi <nao.horiguchi@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-06-25 06:58:09 +07:00
* @flags: pick from blocks based on memory attributes
* @p_start: ptr to phys_addr_t for start address of the range, can be %NULL
* @p_end: ptr to phys_addr_t for end address of the range, can be %NULL
* @p_nid: ptr to int for nid of the range, can be %NULL
*/
mm/memblock: add extra "flags" to memblock to allow selection of memory based on attribute Some high end Intel Xeon systems report uncorrectable memory errors as a recoverable machine check. Linux has included code for some time to process these and just signal the affected processes (or even recover completely if the error was in a read only page that can be replaced by reading from disk). But we have no recovery path for errors encountered during kernel code execution. Except for some very specific cases were are unlikely to ever be able to recover. Enter memory mirroring. Actually 3rd generation of memory mirroing. Gen1: All memory is mirrored Pro: No s/w enabling - h/w just gets good data from other side of the mirror Con: Halves effective memory capacity available to OS/applications Gen2: Partial memory mirror - just mirror memory begind some memory controllers Pro: Keep more of the capacity Con: Nightmare to enable. Have to choose between allocating from mirrored memory for safety vs. NUMA local memory for performance Gen3: Address range partial memory mirror - some mirror on each memory controller Pro: Can tune the amount of mirror and keep NUMA performance Con: I have to write memory management code to implement The current plan is just to use mirrored memory for kernel allocations. This has been broken into two phases: 1) This patch series - find the mirrored memory, use it for boot time allocations 2) Wade into mm/page_alloc.c and define a ZONE_MIRROR to pick up the unused mirrored memory from mm/memblock.c and only give it out to select kernel allocations (this is still being scoped because page_alloc.c is scary). This patch (of 3): Add extra "flags" to memblock to allow selection of memory based on attribute. No functional changes Signed-off-by: Tony Luck <tony.luck@intel.com> Cc: Xishi Qiu <qiuxishi@huawei.com> Cc: Hanjun Guo <guohanjun@huawei.com> Cc: Xiexiuqi <xiexiuqi@huawei.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Yinghai Lu <yinghai@kernel.org> Cc: Naoya Horiguchi <nao.horiguchi@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-06-25 06:58:09 +07:00
#define for_each_mem_range(i, type_a, type_b, nid, flags, \
p_start, p_end, p_nid) \
mm/memblock: add extra "flags" to memblock to allow selection of memory based on attribute Some high end Intel Xeon systems report uncorrectable memory errors as a recoverable machine check. Linux has included code for some time to process these and just signal the affected processes (or even recover completely if the error was in a read only page that can be replaced by reading from disk). But we have no recovery path for errors encountered during kernel code execution. Except for some very specific cases were are unlikely to ever be able to recover. Enter memory mirroring. Actually 3rd generation of memory mirroing. Gen1: All memory is mirrored Pro: No s/w enabling - h/w just gets good data from other side of the mirror Con: Halves effective memory capacity available to OS/applications Gen2: Partial memory mirror - just mirror memory begind some memory controllers Pro: Keep more of the capacity Con: Nightmare to enable. Have to choose between allocating from mirrored memory for safety vs. NUMA local memory for performance Gen3: Address range partial memory mirror - some mirror on each memory controller Pro: Can tune the amount of mirror and keep NUMA performance Con: I have to write memory management code to implement The current plan is just to use mirrored memory for kernel allocations. This has been broken into two phases: 1) This patch series - find the mirrored memory, use it for boot time allocations 2) Wade into mm/page_alloc.c and define a ZONE_MIRROR to pick up the unused mirrored memory from mm/memblock.c and only give it out to select kernel allocations (this is still being scoped because page_alloc.c is scary). This patch (of 3): Add extra "flags" to memblock to allow selection of memory based on attribute. No functional changes Signed-off-by: Tony Luck <tony.luck@intel.com> Cc: Xishi Qiu <qiuxishi@huawei.com> Cc: Hanjun Guo <guohanjun@huawei.com> Cc: Xiexiuqi <xiexiuqi@huawei.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Yinghai Lu <yinghai@kernel.org> Cc: Naoya Horiguchi <nao.horiguchi@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-06-25 06:58:09 +07:00
for (i = 0, __next_mem_range(&i, nid, flags, type_a, type_b, \
p_start, p_end, p_nid); \
i != (u64)ULLONG_MAX; \
mm/memblock: add extra "flags" to memblock to allow selection of memory based on attribute Some high end Intel Xeon systems report uncorrectable memory errors as a recoverable machine check. Linux has included code for some time to process these and just signal the affected processes (or even recover completely if the error was in a read only page that can be replaced by reading from disk). But we have no recovery path for errors encountered during kernel code execution. Except for some very specific cases were are unlikely to ever be able to recover. Enter memory mirroring. Actually 3rd generation of memory mirroing. Gen1: All memory is mirrored Pro: No s/w enabling - h/w just gets good data from other side of the mirror Con: Halves effective memory capacity available to OS/applications Gen2: Partial memory mirror - just mirror memory begind some memory controllers Pro: Keep more of the capacity Con: Nightmare to enable. Have to choose between allocating from mirrored memory for safety vs. NUMA local memory for performance Gen3: Address range partial memory mirror - some mirror on each memory controller Pro: Can tune the amount of mirror and keep NUMA performance Con: I have to write memory management code to implement The current plan is just to use mirrored memory for kernel allocations. This has been broken into two phases: 1) This patch series - find the mirrored memory, use it for boot time allocations 2) Wade into mm/page_alloc.c and define a ZONE_MIRROR to pick up the unused mirrored memory from mm/memblock.c and only give it out to select kernel allocations (this is still being scoped because page_alloc.c is scary). This patch (of 3): Add extra "flags" to memblock to allow selection of memory based on attribute. No functional changes Signed-off-by: Tony Luck <tony.luck@intel.com> Cc: Xishi Qiu <qiuxishi@huawei.com> Cc: Hanjun Guo <guohanjun@huawei.com> Cc: Xiexiuqi <xiexiuqi@huawei.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Yinghai Lu <yinghai@kernel.org> Cc: Naoya Horiguchi <nao.horiguchi@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-06-25 06:58:09 +07:00
__next_mem_range(&i, nid, flags, type_a, type_b, \
p_start, p_end, p_nid))
/**
* for_each_mem_range_rev - reverse iterate through memblock areas from
* type_a and not included in type_b. Or just type_a if type_b is NULL.
* @i: u64 used as loop variable
* @type_a: ptr to memblock_type to iterate
* @type_b: ptr to memblock_type which excludes from the iteration
* @nid: node selector, %NUMA_NO_NODE for all nodes
mm/memblock: add extra "flags" to memblock to allow selection of memory based on attribute Some high end Intel Xeon systems report uncorrectable memory errors as a recoverable machine check. Linux has included code for some time to process these and just signal the affected processes (or even recover completely if the error was in a read only page that can be replaced by reading from disk). But we have no recovery path for errors encountered during kernel code execution. Except for some very specific cases were are unlikely to ever be able to recover. Enter memory mirroring. Actually 3rd generation of memory mirroing. Gen1: All memory is mirrored Pro: No s/w enabling - h/w just gets good data from other side of the mirror Con: Halves effective memory capacity available to OS/applications Gen2: Partial memory mirror - just mirror memory begind some memory controllers Pro: Keep more of the capacity Con: Nightmare to enable. Have to choose between allocating from mirrored memory for safety vs. NUMA local memory for performance Gen3: Address range partial memory mirror - some mirror on each memory controller Pro: Can tune the amount of mirror and keep NUMA performance Con: I have to write memory management code to implement The current plan is just to use mirrored memory for kernel allocations. This has been broken into two phases: 1) This patch series - find the mirrored memory, use it for boot time allocations 2) Wade into mm/page_alloc.c and define a ZONE_MIRROR to pick up the unused mirrored memory from mm/memblock.c and only give it out to select kernel allocations (this is still being scoped because page_alloc.c is scary). This patch (of 3): Add extra "flags" to memblock to allow selection of memory based on attribute. No functional changes Signed-off-by: Tony Luck <tony.luck@intel.com> Cc: Xishi Qiu <qiuxishi@huawei.com> Cc: Hanjun Guo <guohanjun@huawei.com> Cc: Xiexiuqi <xiexiuqi@huawei.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Yinghai Lu <yinghai@kernel.org> Cc: Naoya Horiguchi <nao.horiguchi@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-06-25 06:58:09 +07:00
* @flags: pick from blocks based on memory attributes
* @p_start: ptr to phys_addr_t for start address of the range, can be %NULL
* @p_end: ptr to phys_addr_t for end address of the range, can be %NULL
* @p_nid: ptr to int for nid of the range, can be %NULL
*/
mm/memblock: add extra "flags" to memblock to allow selection of memory based on attribute Some high end Intel Xeon systems report uncorrectable memory errors as a recoverable machine check. Linux has included code for some time to process these and just signal the affected processes (or even recover completely if the error was in a read only page that can be replaced by reading from disk). But we have no recovery path for errors encountered during kernel code execution. Except for some very specific cases were are unlikely to ever be able to recover. Enter memory mirroring. Actually 3rd generation of memory mirroing. Gen1: All memory is mirrored Pro: No s/w enabling - h/w just gets good data from other side of the mirror Con: Halves effective memory capacity available to OS/applications Gen2: Partial memory mirror - just mirror memory begind some memory controllers Pro: Keep more of the capacity Con: Nightmare to enable. Have to choose between allocating from mirrored memory for safety vs. NUMA local memory for performance Gen3: Address range partial memory mirror - some mirror on each memory controller Pro: Can tune the amount of mirror and keep NUMA performance Con: I have to write memory management code to implement The current plan is just to use mirrored memory for kernel allocations. This has been broken into two phases: 1) This patch series - find the mirrored memory, use it for boot time allocations 2) Wade into mm/page_alloc.c and define a ZONE_MIRROR to pick up the unused mirrored memory from mm/memblock.c and only give it out to select kernel allocations (this is still being scoped because page_alloc.c is scary). This patch (of 3): Add extra "flags" to memblock to allow selection of memory based on attribute. No functional changes Signed-off-by: Tony Luck <tony.luck@intel.com> Cc: Xishi Qiu <qiuxishi@huawei.com> Cc: Hanjun Guo <guohanjun@huawei.com> Cc: Xiexiuqi <xiexiuqi@huawei.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Yinghai Lu <yinghai@kernel.org> Cc: Naoya Horiguchi <nao.horiguchi@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-06-25 06:58:09 +07:00
#define for_each_mem_range_rev(i, type_a, type_b, nid, flags, \
p_start, p_end, p_nid) \
for (i = (u64)ULLONG_MAX, \
mm/memblock: add extra "flags" to memblock to allow selection of memory based on attribute Some high end Intel Xeon systems report uncorrectable memory errors as a recoverable machine check. Linux has included code for some time to process these and just signal the affected processes (or even recover completely if the error was in a read only page that can be replaced by reading from disk). But we have no recovery path for errors encountered during kernel code execution. Except for some very specific cases were are unlikely to ever be able to recover. Enter memory mirroring. Actually 3rd generation of memory mirroing. Gen1: All memory is mirrored Pro: No s/w enabling - h/w just gets good data from other side of the mirror Con: Halves effective memory capacity available to OS/applications Gen2: Partial memory mirror - just mirror memory begind some memory controllers Pro: Keep more of the capacity Con: Nightmare to enable. Have to choose between allocating from mirrored memory for safety vs. NUMA local memory for performance Gen3: Address range partial memory mirror - some mirror on each memory controller Pro: Can tune the amount of mirror and keep NUMA performance Con: I have to write memory management code to implement The current plan is just to use mirrored memory for kernel allocations. This has been broken into two phases: 1) This patch series - find the mirrored memory, use it for boot time allocations 2) Wade into mm/page_alloc.c and define a ZONE_MIRROR to pick up the unused mirrored memory from mm/memblock.c and only give it out to select kernel allocations (this is still being scoped because page_alloc.c is scary). This patch (of 3): Add extra "flags" to memblock to allow selection of memory based on attribute. No functional changes Signed-off-by: Tony Luck <tony.luck@intel.com> Cc: Xishi Qiu <qiuxishi@huawei.com> Cc: Hanjun Guo <guohanjun@huawei.com> Cc: Xiexiuqi <xiexiuqi@huawei.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Yinghai Lu <yinghai@kernel.org> Cc: Naoya Horiguchi <nao.horiguchi@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-06-25 06:58:09 +07:00
__next_mem_range_rev(&i, nid, flags, type_a, type_b,\
p_start, p_end, p_nid); \
i != (u64)ULLONG_MAX; \
mm/memblock: add extra "flags" to memblock to allow selection of memory based on attribute Some high end Intel Xeon systems report uncorrectable memory errors as a recoverable machine check. Linux has included code for some time to process these and just signal the affected processes (or even recover completely if the error was in a read only page that can be replaced by reading from disk). But we have no recovery path for errors encountered during kernel code execution. Except for some very specific cases were are unlikely to ever be able to recover. Enter memory mirroring. Actually 3rd generation of memory mirroing. Gen1: All memory is mirrored Pro: No s/w enabling - h/w just gets good data from other side of the mirror Con: Halves effective memory capacity available to OS/applications Gen2: Partial memory mirror - just mirror memory begind some memory controllers Pro: Keep more of the capacity Con: Nightmare to enable. Have to choose between allocating from mirrored memory for safety vs. NUMA local memory for performance Gen3: Address range partial memory mirror - some mirror on each memory controller Pro: Can tune the amount of mirror and keep NUMA performance Con: I have to write memory management code to implement The current plan is just to use mirrored memory for kernel allocations. This has been broken into two phases: 1) This patch series - find the mirrored memory, use it for boot time allocations 2) Wade into mm/page_alloc.c and define a ZONE_MIRROR to pick up the unused mirrored memory from mm/memblock.c and only give it out to select kernel allocations (this is still being scoped because page_alloc.c is scary). This patch (of 3): Add extra "flags" to memblock to allow selection of memory based on attribute. No functional changes Signed-off-by: Tony Luck <tony.luck@intel.com> Cc: Xishi Qiu <qiuxishi@huawei.com> Cc: Hanjun Guo <guohanjun@huawei.com> Cc: Xiexiuqi <xiexiuqi@huawei.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Yinghai Lu <yinghai@kernel.org> Cc: Naoya Horiguchi <nao.horiguchi@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-06-25 06:58:09 +07:00
__next_mem_range_rev(&i, nid, flags, type_a, type_b, \
p_start, p_end, p_nid))
memblock: introduce a for_each_reserved_mem_region iterator Struct page initialisation had been identified as one of the reasons why large machines take a long time to boot. Patches were posted a long time ago to defer initialisation until they were first used. This was rejected on the grounds it should not be necessary to hurt the fast paths. This series reuses much of the work from that time but defers the initialisation of memory to kswapd so that one thread per node initialises memory local to that node. After applying the series and setting the appropriate Kconfig variable I see this in the boot log on a 64G machine [ 7.383764] kswapd 0 initialised deferred memory in 188ms [ 7.404253] kswapd 1 initialised deferred memory in 208ms [ 7.411044] kswapd 3 initialised deferred memory in 216ms [ 7.411551] kswapd 2 initialised deferred memory in 216ms On a 1TB machine, I see [ 8.406511] kswapd 3 initialised deferred memory in 1116ms [ 8.428518] kswapd 1 initialised deferred memory in 1140ms [ 8.435977] kswapd 0 initialised deferred memory in 1148ms [ 8.437416] kswapd 2 initialised deferred memory in 1148ms Once booted the machine appears to work as normal. Boot times were measured from the time shutdown was called until ssh was available again. In the 64G case, the boot time savings are negligible. On the 1TB machine, the savings were 16 seconds. Nate Zimmer said: : On an older 8 TB box with lots and lots of cpus the boot time, as : measure from grub to login prompt, the boot time improved from 1484 : seconds to exactly 1000 seconds. Waiman Long said: : I ran a bootup timing test on a 12-TB 16-socket IvyBridge-EX system. From : grub menu to ssh login, the bootup time was 453s before the patch and 265s : after the patch - a saving of 188s (42%). Daniel Blueman said: : On a 7TB, 1728-core NumaConnect system with 108 NUMA nodes, we're seeing : stock 4.0 boot in 7136s. This drops to 2159s, or a 70% reduction with : this patchset. Non-temporal PMD init (https://lkml.org/lkml/2015/4/23/350) : drops this to 1045s. This patch (of 13): As part of initializing struct page's in 2MiB chunks, we noticed that at the end of free_all_bootmem(), there was nothing which had forced the reserved/allocated 4KiB pages to be initialized. This helper function will be used for that expansion. Signed-off-by: Robin Holt <holt@sgi.com> Signed-off-by: Nate Zimmer <nzimmer@sgi.com> Signed-off-by: Mel Gorman <mgorman@suse.de> Tested-by: Nate Zimmer <nzimmer@sgi.com> Tested-by: Waiman Long <waiman.long@hp.com> Tested-by: Daniel J Blueman <daniel@numascale.com> Acked-by: Pekka Enberg <penberg@kernel.org> Cc: Robin Holt <robinmholt@gmail.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Waiman Long <waiman.long@hp.com> Cc: Scott Norton <scott.norton@hp.com> Cc: "Luck, Tony" <tony.luck@intel.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-07-01 04:56:41 +07:00
/**
* for_each_reserved_mem_region - iterate over all reserved memblock areas
* @i: u64 used as loop variable
* @p_start: ptr to phys_addr_t for start address of the range, can be %NULL
* @p_end: ptr to phys_addr_t for end address of the range, can be %NULL
*
* Walks over reserved areas of memblock. Available as soon as memblock
* is initialized.
*/
#define for_each_reserved_mem_region(i, p_start, p_end) \
for (i = 0UL, __next_reserved_mem_region(&i, p_start, p_end); \
memblock: introduce a for_each_reserved_mem_region iterator Struct page initialisation had been identified as one of the reasons why large machines take a long time to boot. Patches were posted a long time ago to defer initialisation until they were first used. This was rejected on the grounds it should not be necessary to hurt the fast paths. This series reuses much of the work from that time but defers the initialisation of memory to kswapd so that one thread per node initialises memory local to that node. After applying the series and setting the appropriate Kconfig variable I see this in the boot log on a 64G machine [ 7.383764] kswapd 0 initialised deferred memory in 188ms [ 7.404253] kswapd 1 initialised deferred memory in 208ms [ 7.411044] kswapd 3 initialised deferred memory in 216ms [ 7.411551] kswapd 2 initialised deferred memory in 216ms On a 1TB machine, I see [ 8.406511] kswapd 3 initialised deferred memory in 1116ms [ 8.428518] kswapd 1 initialised deferred memory in 1140ms [ 8.435977] kswapd 0 initialised deferred memory in 1148ms [ 8.437416] kswapd 2 initialised deferred memory in 1148ms Once booted the machine appears to work as normal. Boot times were measured from the time shutdown was called until ssh was available again. In the 64G case, the boot time savings are negligible. On the 1TB machine, the savings were 16 seconds. Nate Zimmer said: : On an older 8 TB box with lots and lots of cpus the boot time, as : measure from grub to login prompt, the boot time improved from 1484 : seconds to exactly 1000 seconds. Waiman Long said: : I ran a bootup timing test on a 12-TB 16-socket IvyBridge-EX system. From : grub menu to ssh login, the bootup time was 453s before the patch and 265s : after the patch - a saving of 188s (42%). Daniel Blueman said: : On a 7TB, 1728-core NumaConnect system with 108 NUMA nodes, we're seeing : stock 4.0 boot in 7136s. This drops to 2159s, or a 70% reduction with : this patchset. Non-temporal PMD init (https://lkml.org/lkml/2015/4/23/350) : drops this to 1045s. This patch (of 13): As part of initializing struct page's in 2MiB chunks, we noticed that at the end of free_all_bootmem(), there was nothing which had forced the reserved/allocated 4KiB pages to be initialized. This helper function will be used for that expansion. Signed-off-by: Robin Holt <holt@sgi.com> Signed-off-by: Nate Zimmer <nzimmer@sgi.com> Signed-off-by: Mel Gorman <mgorman@suse.de> Tested-by: Nate Zimmer <nzimmer@sgi.com> Tested-by: Waiman Long <waiman.long@hp.com> Tested-by: Daniel J Blueman <daniel@numascale.com> Acked-by: Pekka Enberg <penberg@kernel.org> Cc: Robin Holt <robinmholt@gmail.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Waiman Long <waiman.long@hp.com> Cc: Scott Norton <scott.norton@hp.com> Cc: "Luck, Tony" <tony.luck@intel.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-07-01 04:56:41 +07:00
i != (u64)ULLONG_MAX; \
__next_reserved_mem_region(&i, p_start, p_end))
memblock, mem_hotplug: make memblock skip hotpluggable regions if needed Linux kernel cannot migrate pages used by the kernel. As a result, hotpluggable memory used by the kernel won't be able to be hot-removed. To solve this problem, the basic idea is to prevent memblock from allocating hotpluggable memory for the kernel at early time, and arrange all hotpluggable memory in ACPI SRAT(System Resource Affinity Table) as ZONE_MOVABLE when initializing zones. In the previous patches, we have marked hotpluggable memory regions with MEMBLOCK_HOTPLUG flag in memblock.memory. In this patch, we make memblock skip these hotpluggable memory regions in the default top-down allocation function if movable_node boot option is specified. [akpm@linux-foundation.org: coding-style fixes] Signed-off-by: Tang Chen <tangchen@cn.fujitsu.com> Signed-off-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: "Rafael J . Wysocki" <rjw@sisk.pl> Cc: Chen Tang <imtangchen@gmail.com> Cc: Gong Chen <gong.chen@linux.intel.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Jiang Liu <jiang.liu@huawei.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Lai Jiangshan <laijs@cn.fujitsu.com> Cc: Larry Woodman <lwoodman@redhat.com> Cc: Len Brown <lenb@kernel.org> Cc: Liu Jiang <jiang.liu@huawei.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Michal Nazarewicz <mina86@mina86.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Prarit Bhargava <prarit@redhat.com> Cc: Rik van Riel <riel@redhat.com> Cc: Taku Izumi <izumi.taku@jp.fujitsu.com> Cc: Tejun Heo <tj@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Thomas Renninger <trenn@suse.de> Cc: Toshi Kani <toshi.kani@hp.com> Cc: Vasilis Liaskovitis <vasilis.liaskovitis@profitbricks.com> Cc: Wanpeng Li <liwanp@linux.vnet.ibm.com> Cc: Wen Congyang <wency@cn.fujitsu.com> Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Cc: Yinghai Lu <yinghai@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-22 06:49:35 +07:00
static inline bool memblock_is_hotpluggable(struct memblock_region *m)
{
return m->flags & MEMBLOCK_HOTPLUG;
}
static inline bool memblock_is_mirror(struct memblock_region *m)
{
return m->flags & MEMBLOCK_MIRROR;
}
static inline bool memblock_is_nomap(struct memblock_region *m)
{
return m->flags & MEMBLOCK_NOMAP;
}
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
int memblock_search_pfn_nid(unsigned long pfn, unsigned long *start_pfn,
unsigned long *end_pfn);
void __next_mem_pfn_range(int *idx, int nid, unsigned long *out_start_pfn,
unsigned long *out_end_pfn, int *out_nid);
/**
* for_each_mem_pfn_range - early memory pfn range iterator
* @i: an integer used as loop variable
* @nid: node selector, %MAX_NUMNODES for all nodes
* @p_start: ptr to ulong for start pfn of the range, can be %NULL
* @p_end: ptr to ulong for end pfn of the range, can be %NULL
* @p_nid: ptr to int for nid of the range, can be %NULL
*
* Walks over configured memory ranges.
*/
#define for_each_mem_pfn_range(i, nid, p_start, p_end, p_nid) \
for (i = -1, __next_mem_pfn_range(&i, nid, p_start, p_end, p_nid); \
i >= 0; __next_mem_pfn_range(&i, nid, p_start, p_end, p_nid))
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
/**
* for_each_free_mem_range - iterate through free memblock areas
* @i: u64 used as loop variable
* @nid: node selector, %NUMA_NO_NODE for all nodes
* @flags: pick from blocks based on memory attributes
* @p_start: ptr to phys_addr_t for start address of the range, can be %NULL
* @p_end: ptr to phys_addr_t for end address of the range, can be %NULL
* @p_nid: ptr to int for nid of the range, can be %NULL
*
* Walks over free (memory && !reserved) areas of memblock. Available as
* soon as memblock is initialized.
*/
mm/memblock: add extra "flags" to memblock to allow selection of memory based on attribute Some high end Intel Xeon systems report uncorrectable memory errors as a recoverable machine check. Linux has included code for some time to process these and just signal the affected processes (or even recover completely if the error was in a read only page that can be replaced by reading from disk). But we have no recovery path for errors encountered during kernel code execution. Except for some very specific cases were are unlikely to ever be able to recover. Enter memory mirroring. Actually 3rd generation of memory mirroing. Gen1: All memory is mirrored Pro: No s/w enabling - h/w just gets good data from other side of the mirror Con: Halves effective memory capacity available to OS/applications Gen2: Partial memory mirror - just mirror memory begind some memory controllers Pro: Keep more of the capacity Con: Nightmare to enable. Have to choose between allocating from mirrored memory for safety vs. NUMA local memory for performance Gen3: Address range partial memory mirror - some mirror on each memory controller Pro: Can tune the amount of mirror and keep NUMA performance Con: I have to write memory management code to implement The current plan is just to use mirrored memory for kernel allocations. This has been broken into two phases: 1) This patch series - find the mirrored memory, use it for boot time allocations 2) Wade into mm/page_alloc.c and define a ZONE_MIRROR to pick up the unused mirrored memory from mm/memblock.c and only give it out to select kernel allocations (this is still being scoped because page_alloc.c is scary). This patch (of 3): Add extra "flags" to memblock to allow selection of memory based on attribute. No functional changes Signed-off-by: Tony Luck <tony.luck@intel.com> Cc: Xishi Qiu <qiuxishi@huawei.com> Cc: Hanjun Guo <guohanjun@huawei.com> Cc: Xiexiuqi <xiexiuqi@huawei.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Yinghai Lu <yinghai@kernel.org> Cc: Naoya Horiguchi <nao.horiguchi@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-06-25 06:58:09 +07:00
#define for_each_free_mem_range(i, nid, flags, p_start, p_end, p_nid) \
for_each_mem_range(i, &memblock.memory, &memblock.reserved, \
mm/memblock: add extra "flags" to memblock to allow selection of memory based on attribute Some high end Intel Xeon systems report uncorrectable memory errors as a recoverable machine check. Linux has included code for some time to process these and just signal the affected processes (or even recover completely if the error was in a read only page that can be replaced by reading from disk). But we have no recovery path for errors encountered during kernel code execution. Except for some very specific cases were are unlikely to ever be able to recover. Enter memory mirroring. Actually 3rd generation of memory mirroing. Gen1: All memory is mirrored Pro: No s/w enabling - h/w just gets good data from other side of the mirror Con: Halves effective memory capacity available to OS/applications Gen2: Partial memory mirror - just mirror memory begind some memory controllers Pro: Keep more of the capacity Con: Nightmare to enable. Have to choose between allocating from mirrored memory for safety vs. NUMA local memory for performance Gen3: Address range partial memory mirror - some mirror on each memory controller Pro: Can tune the amount of mirror and keep NUMA performance Con: I have to write memory management code to implement The current plan is just to use mirrored memory for kernel allocations. This has been broken into two phases: 1) This patch series - find the mirrored memory, use it for boot time allocations 2) Wade into mm/page_alloc.c and define a ZONE_MIRROR to pick up the unused mirrored memory from mm/memblock.c and only give it out to select kernel allocations (this is still being scoped because page_alloc.c is scary). This patch (of 3): Add extra "flags" to memblock to allow selection of memory based on attribute. No functional changes Signed-off-by: Tony Luck <tony.luck@intel.com> Cc: Xishi Qiu <qiuxishi@huawei.com> Cc: Hanjun Guo <guohanjun@huawei.com> Cc: Xiexiuqi <xiexiuqi@huawei.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Yinghai Lu <yinghai@kernel.org> Cc: Naoya Horiguchi <nao.horiguchi@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-06-25 06:58:09 +07:00
nid, flags, p_start, p_end, p_nid)
/**
* for_each_free_mem_range_reverse - rev-iterate through free memblock areas
* @i: u64 used as loop variable
* @nid: node selector, %NUMA_NO_NODE for all nodes
* @flags: pick from blocks based on memory attributes
* @p_start: ptr to phys_addr_t for start address of the range, can be %NULL
* @p_end: ptr to phys_addr_t for end address of the range, can be %NULL
* @p_nid: ptr to int for nid of the range, can be %NULL
*
* Walks over free (memory && !reserved) areas of memblock in reverse
* order. Available as soon as memblock is initialized.
*/
mm/memblock: add extra "flags" to memblock to allow selection of memory based on attribute Some high end Intel Xeon systems report uncorrectable memory errors as a recoverable machine check. Linux has included code for some time to process these and just signal the affected processes (or even recover completely if the error was in a read only page that can be replaced by reading from disk). But we have no recovery path for errors encountered during kernel code execution. Except for some very specific cases were are unlikely to ever be able to recover. Enter memory mirroring. Actually 3rd generation of memory mirroing. Gen1: All memory is mirrored Pro: No s/w enabling - h/w just gets good data from other side of the mirror Con: Halves effective memory capacity available to OS/applications Gen2: Partial memory mirror - just mirror memory begind some memory controllers Pro: Keep more of the capacity Con: Nightmare to enable. Have to choose between allocating from mirrored memory for safety vs. NUMA local memory for performance Gen3: Address range partial memory mirror - some mirror on each memory controller Pro: Can tune the amount of mirror and keep NUMA performance Con: I have to write memory management code to implement The current plan is just to use mirrored memory for kernel allocations. This has been broken into two phases: 1) This patch series - find the mirrored memory, use it for boot time allocations 2) Wade into mm/page_alloc.c and define a ZONE_MIRROR to pick up the unused mirrored memory from mm/memblock.c and only give it out to select kernel allocations (this is still being scoped because page_alloc.c is scary). This patch (of 3): Add extra "flags" to memblock to allow selection of memory based on attribute. No functional changes Signed-off-by: Tony Luck <tony.luck@intel.com> Cc: Xishi Qiu <qiuxishi@huawei.com> Cc: Hanjun Guo <guohanjun@huawei.com> Cc: Xiexiuqi <xiexiuqi@huawei.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Yinghai Lu <yinghai@kernel.org> Cc: Naoya Horiguchi <nao.horiguchi@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-06-25 06:58:09 +07:00
#define for_each_free_mem_range_reverse(i, nid, flags, p_start, p_end, \
p_nid) \
for_each_mem_range_rev(i, &memblock.memory, &memblock.reserved, \
mm/memblock: add extra "flags" to memblock to allow selection of memory based on attribute Some high end Intel Xeon systems report uncorrectable memory errors as a recoverable machine check. Linux has included code for some time to process these and just signal the affected processes (or even recover completely if the error was in a read only page that can be replaced by reading from disk). But we have no recovery path for errors encountered during kernel code execution. Except for some very specific cases were are unlikely to ever be able to recover. Enter memory mirroring. Actually 3rd generation of memory mirroing. Gen1: All memory is mirrored Pro: No s/w enabling - h/w just gets good data from other side of the mirror Con: Halves effective memory capacity available to OS/applications Gen2: Partial memory mirror - just mirror memory begind some memory controllers Pro: Keep more of the capacity Con: Nightmare to enable. Have to choose between allocating from mirrored memory for safety vs. NUMA local memory for performance Gen3: Address range partial memory mirror - some mirror on each memory controller Pro: Can tune the amount of mirror and keep NUMA performance Con: I have to write memory management code to implement The current plan is just to use mirrored memory for kernel allocations. This has been broken into two phases: 1) This patch series - find the mirrored memory, use it for boot time allocations 2) Wade into mm/page_alloc.c and define a ZONE_MIRROR to pick up the unused mirrored memory from mm/memblock.c and only give it out to select kernel allocations (this is still being scoped because page_alloc.c is scary). This patch (of 3): Add extra "flags" to memblock to allow selection of memory based on attribute. No functional changes Signed-off-by: Tony Luck <tony.luck@intel.com> Cc: Xishi Qiu <qiuxishi@huawei.com> Cc: Hanjun Guo <guohanjun@huawei.com> Cc: Xiexiuqi <xiexiuqi@huawei.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Yinghai Lu <yinghai@kernel.org> Cc: Naoya Horiguchi <nao.horiguchi@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-06-25 06:58:09 +07:00
nid, flags, p_start, p_end, p_nid)
memblock, mem_hotplug: introduce MEMBLOCK_HOTPLUG flag to mark hotpluggable regions In find_hotpluggable_memory, once we find out a memory region which is hotpluggable, we want to mark them in memblock.memory. So that we could control memblock allocator not to allocte hotpluggable memory for the kernel later. To achieve this goal, we introduce MEMBLOCK_HOTPLUG flag to indicate the hotpluggable memory regions in memblock and a function memblock_mark_hotplug() to mark hotpluggable memory if we find one. [akpm@linux-foundation.org: coding-style fixes] Signed-off-by: Tang Chen <tangchen@cn.fujitsu.com> Reviewed-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: "Rafael J . Wysocki" <rjw@sisk.pl> Cc: Chen Tang <imtangchen@gmail.com> Cc: Gong Chen <gong.chen@linux.intel.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Jiang Liu <jiang.liu@huawei.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Lai Jiangshan <laijs@cn.fujitsu.com> Cc: Larry Woodman <lwoodman@redhat.com> Cc: Len Brown <lenb@kernel.org> Cc: Liu Jiang <jiang.liu@huawei.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Michal Nazarewicz <mina86@mina86.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Prarit Bhargava <prarit@redhat.com> Cc: Rik van Riel <riel@redhat.com> Cc: Taku Izumi <izumi.taku@jp.fujitsu.com> Cc: Tejun Heo <tj@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Thomas Renninger <trenn@suse.de> Cc: Toshi Kani <toshi.kani@hp.com> Cc: Vasilis Liaskovitis <vasilis.liaskovitis@profitbricks.com> Cc: Wanpeng Li <liwanp@linux.vnet.ibm.com> Cc: Wen Congyang <wency@cn.fujitsu.com> Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Cc: Yinghai Lu <yinghai@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-22 06:49:23 +07:00
static inline void memblock_set_region_flags(struct memblock_region *r,
enum memblock_flags flags)
memblock, mem_hotplug: introduce MEMBLOCK_HOTPLUG flag to mark hotpluggable regions In find_hotpluggable_memory, once we find out a memory region which is hotpluggable, we want to mark them in memblock.memory. So that we could control memblock allocator not to allocte hotpluggable memory for the kernel later. To achieve this goal, we introduce MEMBLOCK_HOTPLUG flag to indicate the hotpluggable memory regions in memblock and a function memblock_mark_hotplug() to mark hotpluggable memory if we find one. [akpm@linux-foundation.org: coding-style fixes] Signed-off-by: Tang Chen <tangchen@cn.fujitsu.com> Reviewed-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: "Rafael J . Wysocki" <rjw@sisk.pl> Cc: Chen Tang <imtangchen@gmail.com> Cc: Gong Chen <gong.chen@linux.intel.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Jiang Liu <jiang.liu@huawei.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Lai Jiangshan <laijs@cn.fujitsu.com> Cc: Larry Woodman <lwoodman@redhat.com> Cc: Len Brown <lenb@kernel.org> Cc: Liu Jiang <jiang.liu@huawei.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Michal Nazarewicz <mina86@mina86.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Prarit Bhargava <prarit@redhat.com> Cc: Rik van Riel <riel@redhat.com> Cc: Taku Izumi <izumi.taku@jp.fujitsu.com> Cc: Tejun Heo <tj@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Thomas Renninger <trenn@suse.de> Cc: Toshi Kani <toshi.kani@hp.com> Cc: Vasilis Liaskovitis <vasilis.liaskovitis@profitbricks.com> Cc: Wanpeng Li <liwanp@linux.vnet.ibm.com> Cc: Wen Congyang <wency@cn.fujitsu.com> Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Cc: Yinghai Lu <yinghai@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-22 06:49:23 +07:00
{
r->flags |= flags;
}
static inline void memblock_clear_region_flags(struct memblock_region *r,
enum memblock_flags flags)
memblock, mem_hotplug: introduce MEMBLOCK_HOTPLUG flag to mark hotpluggable regions In find_hotpluggable_memory, once we find out a memory region which is hotpluggable, we want to mark them in memblock.memory. So that we could control memblock allocator not to allocte hotpluggable memory for the kernel later. To achieve this goal, we introduce MEMBLOCK_HOTPLUG flag to indicate the hotpluggable memory regions in memblock and a function memblock_mark_hotplug() to mark hotpluggable memory if we find one. [akpm@linux-foundation.org: coding-style fixes] Signed-off-by: Tang Chen <tangchen@cn.fujitsu.com> Reviewed-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: "Rafael J . Wysocki" <rjw@sisk.pl> Cc: Chen Tang <imtangchen@gmail.com> Cc: Gong Chen <gong.chen@linux.intel.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Jiang Liu <jiang.liu@huawei.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Lai Jiangshan <laijs@cn.fujitsu.com> Cc: Larry Woodman <lwoodman@redhat.com> Cc: Len Brown <lenb@kernel.org> Cc: Liu Jiang <jiang.liu@huawei.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Michal Nazarewicz <mina86@mina86.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Prarit Bhargava <prarit@redhat.com> Cc: Rik van Riel <riel@redhat.com> Cc: Taku Izumi <izumi.taku@jp.fujitsu.com> Cc: Tejun Heo <tj@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Thomas Renninger <trenn@suse.de> Cc: Toshi Kani <toshi.kani@hp.com> Cc: Vasilis Liaskovitis <vasilis.liaskovitis@profitbricks.com> Cc: Wanpeng Li <liwanp@linux.vnet.ibm.com> Cc: Wen Congyang <wency@cn.fujitsu.com> Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Cc: Yinghai Lu <yinghai@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-22 06:49:23 +07:00
{
r->flags &= ~flags;
}
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
int memblock_set_node(phys_addr_t base, phys_addr_t size,
struct memblock_type *type, int nid);
static inline void memblock_set_region_node(struct memblock_region *r, int nid)
{
r->nid = nid;
}
static inline int memblock_get_region_node(const struct memblock_region *r)
{
return r->nid;
}
#else
static inline void memblock_set_region_node(struct memblock_region *r, int nid)
{
}
static inline int memblock_get_region_node(const struct memblock_region *r)
{
return 0;
}
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
mm: remove include/linux/bootmem.h Move remaining definitions and declarations from include/linux/bootmem.h into include/linux/memblock.h and remove the redundant header. The includes were replaced with the semantic patch below and then semi-automated removal of duplicated '#include <linux/memblock.h> @@ @@ - #include <linux/bootmem.h> + #include <linux/memblock.h> [sfr@canb.auug.org.au: dma-direct: fix up for the removal of linux/bootmem.h] Link: http://lkml.kernel.org/r/20181002185342.133d1680@canb.auug.org.au [sfr@canb.auug.org.au: powerpc: fix up for removal of linux/bootmem.h] Link: http://lkml.kernel.org/r/20181005161406.73ef8727@canb.auug.org.au [sfr@canb.auug.org.au: x86/kaslr, ACPI/NUMA: fix for linux/bootmem.h removal] Link: http://lkml.kernel.org/r/20181008190341.5e396491@canb.auug.org.au Link: http://lkml.kernel.org/r/1536927045-23536-30-git-send-email-rppt@linux.vnet.ibm.com Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com> Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Chris Zankel <chris@zankel.net> Cc: "David S. Miller" <davem@davemloft.net> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Greentime Hu <green.hu@gmail.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Guan Xuetao <gxt@pku.edu.cn> Cc: Ingo Molnar <mingo@redhat.com> Cc: "James E.J. Bottomley" <jejb@parisc-linux.org> Cc: Jonas Bonn <jonas@southpole.se> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ley Foon Tan <lftan@altera.com> Cc: Mark Salter <msalter@redhat.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Matt Turner <mattst88@gmail.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Michal Simek <monstr@monstr.eu> Cc: Palmer Dabbelt <palmer@sifive.com> Cc: Paul Burton <paul.burton@mips.com> Cc: Richard Kuo <rkuo@codeaurora.org> Cc: Richard Weinberger <richard@nod.at> Cc: Rich Felker <dalias@libc.org> Cc: Russell King <linux@armlinux.org.uk> Cc: Serge Semin <fancer.lancer@gmail.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Tony Luck <tony.luck@intel.com> Cc: Vineet Gupta <vgupta@synopsys.com> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-31 05:09:49 +07:00
/* Flags for memblock allocation APIs */
#define MEMBLOCK_ALLOC_ANYWHERE (~(phys_addr_t)0)
#define MEMBLOCK_ALLOC_ACCESSIBLE 0
mm/memblock.c: skip kmemleak for kasan_init() Kmemleak does not play well with KASAN (tested on both HPE Apollo 70 and Huawei TaiShan 2280 aarch64 servers). After calling start_kernel()->setup_arch()->kasan_init(), kmemleak early log buffer went from something like 280 to 260000 which caused kmemleak disabled and crash dump memory reservation failed. The multitude of kmemleak_alloc() calls is from nested loops while KASAN is setting up full memory mappings, so let early kmemleak allocations skip those memblock_alloc_internal() calls came from kasan_init() given that those early KASAN memory mappings should not reference to other memory. Hence, no kmemleak false positives. kasan_init kasan_map_populate [1] kasan_pgd_populate [2] kasan_pud_populate [3] kasan_pmd_populate [4] kasan_pte_populate [5] kasan_alloc_zeroed_page memblock_alloc_try_nid memblock_alloc_internal kmemleak_alloc [1] for_each_memblock(memory, reg) [2] while (pgdp++, addr = next, addr != end) [3] while (pudp++, addr = next, addr != end && pud_none(READ_ONCE(*pudp))) [4] while (pmdp++, addr = next, addr != end && pmd_none(READ_ONCE(*pmdp))) [5] while (ptep++, addr = next, addr != end && pte_none(READ_ONCE(*ptep))) Link: http://lkml.kernel.org/r/1543442925-17794-1-git-send-email-cai@gmx.us Signed-off-by: Qian Cai <cai@gmx.us> Acked-by: Catalin Marinas <catalin.marinas@arm.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Alexander Potapenko <glider@google.com> Cc: Dmitry Vyukov <dvyukov@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-12-28 15:36:29 +07:00
#define MEMBLOCK_ALLOC_KASAN 1
mm: remove include/linux/bootmem.h Move remaining definitions and declarations from include/linux/bootmem.h into include/linux/memblock.h and remove the redundant header. The includes were replaced with the semantic patch below and then semi-automated removal of duplicated '#include <linux/memblock.h> @@ @@ - #include <linux/bootmem.h> + #include <linux/memblock.h> [sfr@canb.auug.org.au: dma-direct: fix up for the removal of linux/bootmem.h] Link: http://lkml.kernel.org/r/20181002185342.133d1680@canb.auug.org.au [sfr@canb.auug.org.au: powerpc: fix up for removal of linux/bootmem.h] Link: http://lkml.kernel.org/r/20181005161406.73ef8727@canb.auug.org.au [sfr@canb.auug.org.au: x86/kaslr, ACPI/NUMA: fix for linux/bootmem.h removal] Link: http://lkml.kernel.org/r/20181008190341.5e396491@canb.auug.org.au Link: http://lkml.kernel.org/r/1536927045-23536-30-git-send-email-rppt@linux.vnet.ibm.com Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com> Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Chris Zankel <chris@zankel.net> Cc: "David S. Miller" <davem@davemloft.net> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Greentime Hu <green.hu@gmail.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Guan Xuetao <gxt@pku.edu.cn> Cc: Ingo Molnar <mingo@redhat.com> Cc: "James E.J. Bottomley" <jejb@parisc-linux.org> Cc: Jonas Bonn <jonas@southpole.se> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ley Foon Tan <lftan@altera.com> Cc: Mark Salter <msalter@redhat.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Matt Turner <mattst88@gmail.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Michal Simek <monstr@monstr.eu> Cc: Palmer Dabbelt <palmer@sifive.com> Cc: Paul Burton <paul.burton@mips.com> Cc: Richard Kuo <rkuo@codeaurora.org> Cc: Richard Weinberger <richard@nod.at> Cc: Rich Felker <dalias@libc.org> Cc: Russell King <linux@armlinux.org.uk> Cc: Serge Semin <fancer.lancer@gmail.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Tony Luck <tony.luck@intel.com> Cc: Vineet Gupta <vgupta@synopsys.com> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-31 05:09:49 +07:00
/* We are using top down, so it is safe to use 0 here */
#define MEMBLOCK_LOW_LIMIT 0
#ifndef ARCH_LOW_ADDRESS_LIMIT
#define ARCH_LOW_ADDRESS_LIMIT 0xffffffffUL
#endif
memblock: rename memblock_alloc{_nid,_try_nid} to memblock_phys_alloc* Make it explicit that the caller gets a physical address rather than a virtual one. This will also allow using meblock_alloc prefix for memblock allocations returning virtual address, which is done in the following patches. The conversion is done using the following semantic patch: @@ expression e1, e2, e3; @@ ( - memblock_alloc(e1, e2) + memblock_phys_alloc(e1, e2) | - memblock_alloc_nid(e1, e2, e3) + memblock_phys_alloc_nid(e1, e2, e3) | - memblock_alloc_try_nid(e1, e2, e3) + memblock_phys_alloc_try_nid(e1, e2, e3) ) Link: http://lkml.kernel.org/r/1536927045-23536-7-git-send-email-rppt@linux.vnet.ibm.com Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Chris Zankel <chris@zankel.net> Cc: "David S. Miller" <davem@davemloft.net> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Greentime Hu <green.hu@gmail.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Guan Xuetao <gxt@pku.edu.cn> Cc: Ingo Molnar <mingo@redhat.com> Cc: "James E.J. Bottomley" <jejb@parisc-linux.org> Cc: Jonas Bonn <jonas@southpole.se> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ley Foon Tan <lftan@altera.com> Cc: Mark Salter <msalter@redhat.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Matt Turner <mattst88@gmail.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Michal Simek <monstr@monstr.eu> Cc: Palmer Dabbelt <palmer@sifive.com> Cc: Paul Burton <paul.burton@mips.com> Cc: Richard Kuo <rkuo@codeaurora.org> Cc: Richard Weinberger <richard@nod.at> Cc: Rich Felker <dalias@libc.org> Cc: Russell King <linux@armlinux.org.uk> Cc: Serge Semin <fancer.lancer@gmail.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Tony Luck <tony.luck@intel.com> Cc: Vineet Gupta <vgupta@synopsys.com> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-31 05:07:59 +07:00
phys_addr_t memblock_phys_alloc_nid(phys_addr_t size, phys_addr_t align, int nid);
phys_addr_t memblock_phys_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid);
memblock: rename memblock_alloc{_nid,_try_nid} to memblock_phys_alloc* Make it explicit that the caller gets a physical address rather than a virtual one. This will also allow using meblock_alloc prefix for memblock allocations returning virtual address, which is done in the following patches. The conversion is done using the following semantic patch: @@ expression e1, e2, e3; @@ ( - memblock_alloc(e1, e2) + memblock_phys_alloc(e1, e2) | - memblock_alloc_nid(e1, e2, e3) + memblock_phys_alloc_nid(e1, e2, e3) | - memblock_alloc_try_nid(e1, e2, e3) + memblock_phys_alloc_try_nid(e1, e2, e3) ) Link: http://lkml.kernel.org/r/1536927045-23536-7-git-send-email-rppt@linux.vnet.ibm.com Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Chris Zankel <chris@zankel.net> Cc: "David S. Miller" <davem@davemloft.net> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Greentime Hu <green.hu@gmail.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Guan Xuetao <gxt@pku.edu.cn> Cc: Ingo Molnar <mingo@redhat.com> Cc: "James E.J. Bottomley" <jejb@parisc-linux.org> Cc: Jonas Bonn <jonas@southpole.se> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ley Foon Tan <lftan@altera.com> Cc: Mark Salter <msalter@redhat.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Matt Turner <mattst88@gmail.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Michal Simek <monstr@monstr.eu> Cc: Palmer Dabbelt <palmer@sifive.com> Cc: Paul Burton <paul.burton@mips.com> Cc: Richard Kuo <rkuo@codeaurora.org> Cc: Richard Weinberger <richard@nod.at> Cc: Rich Felker <dalias@libc.org> Cc: Russell King <linux@armlinux.org.uk> Cc: Serge Semin <fancer.lancer@gmail.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Tony Luck <tony.luck@intel.com> Cc: Vineet Gupta <vgupta@synopsys.com> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-31 05:07:59 +07:00
phys_addr_t memblock_phys_alloc(phys_addr_t size, phys_addr_t align);
mm: remove include/linux/bootmem.h Move remaining definitions and declarations from include/linux/bootmem.h into include/linux/memblock.h and remove the redundant header. The includes were replaced with the semantic patch below and then semi-automated removal of duplicated '#include <linux/memblock.h> @@ @@ - #include <linux/bootmem.h> + #include <linux/memblock.h> [sfr@canb.auug.org.au: dma-direct: fix up for the removal of linux/bootmem.h] Link: http://lkml.kernel.org/r/20181002185342.133d1680@canb.auug.org.au [sfr@canb.auug.org.au: powerpc: fix up for removal of linux/bootmem.h] Link: http://lkml.kernel.org/r/20181005161406.73ef8727@canb.auug.org.au [sfr@canb.auug.org.au: x86/kaslr, ACPI/NUMA: fix for linux/bootmem.h removal] Link: http://lkml.kernel.org/r/20181008190341.5e396491@canb.auug.org.au Link: http://lkml.kernel.org/r/1536927045-23536-30-git-send-email-rppt@linux.vnet.ibm.com Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com> Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Chris Zankel <chris@zankel.net> Cc: "David S. Miller" <davem@davemloft.net> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Greentime Hu <green.hu@gmail.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Guan Xuetao <gxt@pku.edu.cn> Cc: Ingo Molnar <mingo@redhat.com> Cc: "James E.J. Bottomley" <jejb@parisc-linux.org> Cc: Jonas Bonn <jonas@southpole.se> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ley Foon Tan <lftan@altera.com> Cc: Mark Salter <msalter@redhat.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Matt Turner <mattst88@gmail.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Michal Simek <monstr@monstr.eu> Cc: Palmer Dabbelt <palmer@sifive.com> Cc: Paul Burton <paul.burton@mips.com> Cc: Richard Kuo <rkuo@codeaurora.org> Cc: Richard Weinberger <richard@nod.at> Cc: Rich Felker <dalias@libc.org> Cc: Russell King <linux@armlinux.org.uk> Cc: Serge Semin <fancer.lancer@gmail.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Tony Luck <tony.luck@intel.com> Cc: Vineet Gupta <vgupta@synopsys.com> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-31 05:09:49 +07:00
void *memblock_alloc_try_nid_raw(phys_addr_t size, phys_addr_t align,
phys_addr_t min_addr, phys_addr_t max_addr,
int nid);
void *memblock_alloc_try_nid_nopanic(phys_addr_t size, phys_addr_t align,
phys_addr_t min_addr, phys_addr_t max_addr,
int nid);
void *memblock_alloc_try_nid(phys_addr_t size, phys_addr_t align,
phys_addr_t min_addr, phys_addr_t max_addr,
int nid);
static inline void * __init memblock_alloc(phys_addr_t size, phys_addr_t align)
{
return memblock_alloc_try_nid(size, align, MEMBLOCK_LOW_LIMIT,
MEMBLOCK_ALLOC_ACCESSIBLE, NUMA_NO_NODE);
}
static inline void * __init memblock_alloc_raw(phys_addr_t size,
phys_addr_t align)
{
return memblock_alloc_try_nid_raw(size, align, MEMBLOCK_LOW_LIMIT,
MEMBLOCK_ALLOC_ACCESSIBLE,
NUMA_NO_NODE);
}
static inline void * __init memblock_alloc_from(phys_addr_t size,
phys_addr_t align,
phys_addr_t min_addr)
{
return memblock_alloc_try_nid(size, align, min_addr,
MEMBLOCK_ALLOC_ACCESSIBLE, NUMA_NO_NODE);
}
static inline void * __init memblock_alloc_nopanic(phys_addr_t size,
phys_addr_t align)
{
return memblock_alloc_try_nid_nopanic(size, align, MEMBLOCK_LOW_LIMIT,
MEMBLOCK_ALLOC_ACCESSIBLE,
NUMA_NO_NODE);
}
static inline void * __init memblock_alloc_low(phys_addr_t size,
phys_addr_t align)
{
return memblock_alloc_try_nid(size, align, MEMBLOCK_LOW_LIMIT,
ARCH_LOW_ADDRESS_LIMIT, NUMA_NO_NODE);
}
static inline void * __init memblock_alloc_low_nopanic(phys_addr_t size,
phys_addr_t align)
{
return memblock_alloc_try_nid_nopanic(size, align, MEMBLOCK_LOW_LIMIT,
ARCH_LOW_ADDRESS_LIMIT,
NUMA_NO_NODE);
}
static inline void * __init memblock_alloc_from_nopanic(phys_addr_t size,
phys_addr_t align,
phys_addr_t min_addr)
{
return memblock_alloc_try_nid_nopanic(size, align, min_addr,
MEMBLOCK_ALLOC_ACCESSIBLE,
NUMA_NO_NODE);
}
static inline void * __init memblock_alloc_node(phys_addr_t size,
phys_addr_t align, int nid)
{
return memblock_alloc_try_nid(size, align, MEMBLOCK_LOW_LIMIT,
MEMBLOCK_ALLOC_ACCESSIBLE, nid);
}
static inline void * __init memblock_alloc_node_nopanic(phys_addr_t size,
int nid)
{
memblock: stop using implicit alignment to SMP_CACHE_BYTES When a memblock allocation APIs are called with align = 0, the alignment is implicitly set to SMP_CACHE_BYTES. Implicit alignment is done deep in the memblock allocator and it can come as a surprise. Not that such an alignment would be wrong even when used incorrectly but it is better to be explicit for the sake of clarity and the prinicple of the least surprise. Replace all such uses of memblock APIs with the 'align' parameter explicitly set to SMP_CACHE_BYTES and stop implicit alignment assignment in the memblock internal allocation functions. For the case when memblock APIs are used via helper functions, e.g. like iommu_arena_new_node() in Alpha, the helper functions were detected with Coccinelle's help and then manually examined and updated where appropriate. The direct memblock APIs users were updated using the semantic patch below: @@ expression size, min_addr, max_addr, nid; @@ ( | - memblock_alloc_try_nid_raw(size, 0, min_addr, max_addr, nid) + memblock_alloc_try_nid_raw(size, SMP_CACHE_BYTES, min_addr, max_addr, nid) | - memblock_alloc_try_nid_nopanic(size, 0, min_addr, max_addr, nid) + memblock_alloc_try_nid_nopanic(size, SMP_CACHE_BYTES, min_addr, max_addr, nid) | - memblock_alloc_try_nid(size, 0, min_addr, max_addr, nid) + memblock_alloc_try_nid(size, SMP_CACHE_BYTES, min_addr, max_addr, nid) | - memblock_alloc(size, 0) + memblock_alloc(size, SMP_CACHE_BYTES) | - memblock_alloc_raw(size, 0) + memblock_alloc_raw(size, SMP_CACHE_BYTES) | - memblock_alloc_from(size, 0, min_addr) + memblock_alloc_from(size, SMP_CACHE_BYTES, min_addr) | - memblock_alloc_nopanic(size, 0) + memblock_alloc_nopanic(size, SMP_CACHE_BYTES) | - memblock_alloc_low(size, 0) + memblock_alloc_low(size, SMP_CACHE_BYTES) | - memblock_alloc_low_nopanic(size, 0) + memblock_alloc_low_nopanic(size, SMP_CACHE_BYTES) | - memblock_alloc_from_nopanic(size, 0, min_addr) + memblock_alloc_from_nopanic(size, SMP_CACHE_BYTES, min_addr) | - memblock_alloc_node(size, 0, nid) + memblock_alloc_node(size, SMP_CACHE_BYTES, nid) ) [mhocko@suse.com: changelog update] [akpm@linux-foundation.org: coding-style fixes] [rppt@linux.ibm.com: fix missed uses of implicit alignment] Link: http://lkml.kernel.org/r/20181016133656.GA10925@rapoport-lnx Link: http://lkml.kernel.org/r/1538687224-17535-1-git-send-email-rppt@linux.vnet.ibm.com Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com> Suggested-by: Michal Hocko <mhocko@suse.com> Acked-by: Paul Burton <paul.burton@mips.com> [MIPS] Acked-by: Michael Ellerman <mpe@ellerman.id.au> [powerpc] Acked-by: Michal Hocko <mhocko@suse.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Chris Zankel <chris@zankel.net> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Guan Xuetao <gxt@pku.edu.cn> Cc: Ingo Molnar <mingo@redhat.com> Cc: Matt Turner <mattst88@gmail.com> Cc: Michal Simek <monstr@monstr.eu> Cc: Richard Weinberger <richard@nod.at> Cc: Russell King <linux@armlinux.org.uk> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Tony Luck <tony.luck@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-31 05:09:57 +07:00
return memblock_alloc_try_nid_nopanic(size, SMP_CACHE_BYTES,
MEMBLOCK_LOW_LIMIT,
mm: remove include/linux/bootmem.h Move remaining definitions and declarations from include/linux/bootmem.h into include/linux/memblock.h and remove the redundant header. The includes were replaced with the semantic patch below and then semi-automated removal of duplicated '#include <linux/memblock.h> @@ @@ - #include <linux/bootmem.h> + #include <linux/memblock.h> [sfr@canb.auug.org.au: dma-direct: fix up for the removal of linux/bootmem.h] Link: http://lkml.kernel.org/r/20181002185342.133d1680@canb.auug.org.au [sfr@canb.auug.org.au: powerpc: fix up for removal of linux/bootmem.h] Link: http://lkml.kernel.org/r/20181005161406.73ef8727@canb.auug.org.au [sfr@canb.auug.org.au: x86/kaslr, ACPI/NUMA: fix for linux/bootmem.h removal] Link: http://lkml.kernel.org/r/20181008190341.5e396491@canb.auug.org.au Link: http://lkml.kernel.org/r/1536927045-23536-30-git-send-email-rppt@linux.vnet.ibm.com Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com> Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Chris Zankel <chris@zankel.net> Cc: "David S. Miller" <davem@davemloft.net> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Greentime Hu <green.hu@gmail.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Guan Xuetao <gxt@pku.edu.cn> Cc: Ingo Molnar <mingo@redhat.com> Cc: "James E.J. Bottomley" <jejb@parisc-linux.org> Cc: Jonas Bonn <jonas@southpole.se> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ley Foon Tan <lftan@altera.com> Cc: Mark Salter <msalter@redhat.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Matt Turner <mattst88@gmail.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Michal Simek <monstr@monstr.eu> Cc: Palmer Dabbelt <palmer@sifive.com> Cc: Paul Burton <paul.burton@mips.com> Cc: Richard Kuo <rkuo@codeaurora.org> Cc: Richard Weinberger <richard@nod.at> Cc: Rich Felker <dalias@libc.org> Cc: Russell King <linux@armlinux.org.uk> Cc: Serge Semin <fancer.lancer@gmail.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Tony Luck <tony.luck@intel.com> Cc: Vineet Gupta <vgupta@synopsys.com> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-31 05:09:49 +07:00
MEMBLOCK_ALLOC_ACCESSIBLE, nid);
}
static inline void __init memblock_free_early(phys_addr_t base,
phys_addr_t size)
{
memblock_free(base, size);
mm: remove include/linux/bootmem.h Move remaining definitions and declarations from include/linux/bootmem.h into include/linux/memblock.h and remove the redundant header. The includes were replaced with the semantic patch below and then semi-automated removal of duplicated '#include <linux/memblock.h> @@ @@ - #include <linux/bootmem.h> + #include <linux/memblock.h> [sfr@canb.auug.org.au: dma-direct: fix up for the removal of linux/bootmem.h] Link: http://lkml.kernel.org/r/20181002185342.133d1680@canb.auug.org.au [sfr@canb.auug.org.au: powerpc: fix up for removal of linux/bootmem.h] Link: http://lkml.kernel.org/r/20181005161406.73ef8727@canb.auug.org.au [sfr@canb.auug.org.au: x86/kaslr, ACPI/NUMA: fix for linux/bootmem.h removal] Link: http://lkml.kernel.org/r/20181008190341.5e396491@canb.auug.org.au Link: http://lkml.kernel.org/r/1536927045-23536-30-git-send-email-rppt@linux.vnet.ibm.com Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com> Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Chris Zankel <chris@zankel.net> Cc: "David S. Miller" <davem@davemloft.net> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Greentime Hu <green.hu@gmail.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Guan Xuetao <gxt@pku.edu.cn> Cc: Ingo Molnar <mingo@redhat.com> Cc: "James E.J. Bottomley" <jejb@parisc-linux.org> Cc: Jonas Bonn <jonas@southpole.se> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ley Foon Tan <lftan@altera.com> Cc: Mark Salter <msalter@redhat.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Matt Turner <mattst88@gmail.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Michal Simek <monstr@monstr.eu> Cc: Palmer Dabbelt <palmer@sifive.com> Cc: Paul Burton <paul.burton@mips.com> Cc: Richard Kuo <rkuo@codeaurora.org> Cc: Richard Weinberger <richard@nod.at> Cc: Rich Felker <dalias@libc.org> Cc: Russell King <linux@armlinux.org.uk> Cc: Serge Semin <fancer.lancer@gmail.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Tony Luck <tony.luck@intel.com> Cc: Vineet Gupta <vgupta@synopsys.com> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-31 05:09:49 +07:00
}
static inline void __init memblock_free_early_nid(phys_addr_t base,
phys_addr_t size, int nid)
{
memblock_free(base, size);
mm: remove include/linux/bootmem.h Move remaining definitions and declarations from include/linux/bootmem.h into include/linux/memblock.h and remove the redundant header. The includes were replaced with the semantic patch below and then semi-automated removal of duplicated '#include <linux/memblock.h> @@ @@ - #include <linux/bootmem.h> + #include <linux/memblock.h> [sfr@canb.auug.org.au: dma-direct: fix up for the removal of linux/bootmem.h] Link: http://lkml.kernel.org/r/20181002185342.133d1680@canb.auug.org.au [sfr@canb.auug.org.au: powerpc: fix up for removal of linux/bootmem.h] Link: http://lkml.kernel.org/r/20181005161406.73ef8727@canb.auug.org.au [sfr@canb.auug.org.au: x86/kaslr, ACPI/NUMA: fix for linux/bootmem.h removal] Link: http://lkml.kernel.org/r/20181008190341.5e396491@canb.auug.org.au Link: http://lkml.kernel.org/r/1536927045-23536-30-git-send-email-rppt@linux.vnet.ibm.com Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com> Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Chris Zankel <chris@zankel.net> Cc: "David S. Miller" <davem@davemloft.net> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Greentime Hu <green.hu@gmail.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Guan Xuetao <gxt@pku.edu.cn> Cc: Ingo Molnar <mingo@redhat.com> Cc: "James E.J. Bottomley" <jejb@parisc-linux.org> Cc: Jonas Bonn <jonas@southpole.se> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ley Foon Tan <lftan@altera.com> Cc: Mark Salter <msalter@redhat.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Matt Turner <mattst88@gmail.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Michal Simek <monstr@monstr.eu> Cc: Palmer Dabbelt <palmer@sifive.com> Cc: Paul Burton <paul.burton@mips.com> Cc: Richard Kuo <rkuo@codeaurora.org> Cc: Richard Weinberger <richard@nod.at> Cc: Rich Felker <dalias@libc.org> Cc: Russell King <linux@armlinux.org.uk> Cc: Serge Semin <fancer.lancer@gmail.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Tony Luck <tony.luck@intel.com> Cc: Vineet Gupta <vgupta@synopsys.com> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-31 05:09:49 +07:00
}
static inline void __init memblock_free_late(phys_addr_t base, phys_addr_t size)
{
__memblock_free_late(base, size);
}
mm/memblock.c: introduce bottom-up allocation mode The Linux kernel cannot migrate pages used by the kernel. As a result, kernel pages cannot be hot-removed. So we cannot allocate hotpluggable memory for the kernel. ACPI SRAT (System Resource Affinity Table) contains the memory hotplug info. But before SRAT is parsed, memblock has already started to allocate memory for the kernel. So we need to prevent memblock from doing this. In a memory hotplug system, any numa node the kernel resides in should be unhotpluggable. And for a modern server, each node could have at least 16GB memory. So memory around the kernel image is highly likely unhotpluggable. So the basic idea is: Allocate memory from the end of the kernel image and to the higher memory. Since memory allocation before SRAT is parsed won't be too much, it could highly likely be in the same node with kernel image. The current memblock can only allocate memory top-down. So this patch introduces a new bottom-up allocation mode to allocate memory bottom-up. And later when we use this allocation direction to allocate memory, we will limit the start address above the kernel. Signed-off-by: Tang Chen <tangchen@cn.fujitsu.com> Signed-off-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com> Acked-by: Toshi Kani <toshi.kani@hp.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@elte.hu> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Tejun Heo <tj@kernel.org> Cc: Wanpeng Li <liwanp@linux.vnet.ibm.com> Cc: Thomas Renninger <trenn@suse.de> Cc: Yinghai Lu <yinghai@kernel.org> Cc: Jiang Liu <jiang.liu@huawei.com> Cc: Wen Congyang <wency@cn.fujitsu.com> Cc: Lai Jiangshan <laijs@cn.fujitsu.com> Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Cc: Taku Izumi <izumi.taku@jp.fujitsu.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Michal Nazarewicz <mina86@mina86.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-11-13 06:07:59 +07:00
/*
* Set the allocation direction to bottom-up or top-down.
*/
static inline void __init memblock_set_bottom_up(bool enable)
mm/memblock.c: introduce bottom-up allocation mode The Linux kernel cannot migrate pages used by the kernel. As a result, kernel pages cannot be hot-removed. So we cannot allocate hotpluggable memory for the kernel. ACPI SRAT (System Resource Affinity Table) contains the memory hotplug info. But before SRAT is parsed, memblock has already started to allocate memory for the kernel. So we need to prevent memblock from doing this. In a memory hotplug system, any numa node the kernel resides in should be unhotpluggable. And for a modern server, each node could have at least 16GB memory. So memory around the kernel image is highly likely unhotpluggable. So the basic idea is: Allocate memory from the end of the kernel image and to the higher memory. Since memory allocation before SRAT is parsed won't be too much, it could highly likely be in the same node with kernel image. The current memblock can only allocate memory top-down. So this patch introduces a new bottom-up allocation mode to allocate memory bottom-up. And later when we use this allocation direction to allocate memory, we will limit the start address above the kernel. Signed-off-by: Tang Chen <tangchen@cn.fujitsu.com> Signed-off-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com> Acked-by: Toshi Kani <toshi.kani@hp.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@elte.hu> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Tejun Heo <tj@kernel.org> Cc: Wanpeng Li <liwanp@linux.vnet.ibm.com> Cc: Thomas Renninger <trenn@suse.de> Cc: Yinghai Lu <yinghai@kernel.org> Cc: Jiang Liu <jiang.liu@huawei.com> Cc: Wen Congyang <wency@cn.fujitsu.com> Cc: Lai Jiangshan <laijs@cn.fujitsu.com> Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Cc: Taku Izumi <izumi.taku@jp.fujitsu.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Michal Nazarewicz <mina86@mina86.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-11-13 06:07:59 +07:00
{
memblock.bottom_up = enable;
}
/*
* Check if the allocation direction is bottom-up or not.
* if this is true, that said, memblock will allocate memory
* in bottom-up direction.
*/
static inline bool memblock_bottom_up(void)
{
return memblock.bottom_up;
}
phys_addr_t __init memblock_alloc_range(phys_addr_t size, phys_addr_t align,
mm/memblock: add extra "flags" to memblock to allow selection of memory based on attribute Some high end Intel Xeon systems report uncorrectable memory errors as a recoverable machine check. Linux has included code for some time to process these and just signal the affected processes (or even recover completely if the error was in a read only page that can be replaced by reading from disk). But we have no recovery path for errors encountered during kernel code execution. Except for some very specific cases were are unlikely to ever be able to recover. Enter memory mirroring. Actually 3rd generation of memory mirroing. Gen1: All memory is mirrored Pro: No s/w enabling - h/w just gets good data from other side of the mirror Con: Halves effective memory capacity available to OS/applications Gen2: Partial memory mirror - just mirror memory begind some memory controllers Pro: Keep more of the capacity Con: Nightmare to enable. Have to choose between allocating from mirrored memory for safety vs. NUMA local memory for performance Gen3: Address range partial memory mirror - some mirror on each memory controller Pro: Can tune the amount of mirror and keep NUMA performance Con: I have to write memory management code to implement The current plan is just to use mirrored memory for kernel allocations. This has been broken into two phases: 1) This patch series - find the mirrored memory, use it for boot time allocations 2) Wade into mm/page_alloc.c and define a ZONE_MIRROR to pick up the unused mirrored memory from mm/memblock.c and only give it out to select kernel allocations (this is still being scoped because page_alloc.c is scary). This patch (of 3): Add extra "flags" to memblock to allow selection of memory based on attribute. No functional changes Signed-off-by: Tony Luck <tony.luck@intel.com> Cc: Xishi Qiu <qiuxishi@huawei.com> Cc: Hanjun Guo <guohanjun@huawei.com> Cc: Xiexiuqi <xiexiuqi@huawei.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Yinghai Lu <yinghai@kernel.org> Cc: Naoya Horiguchi <nao.horiguchi@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-06-25 06:58:09 +07:00
phys_addr_t start, phys_addr_t end,
enum memblock_flags flags);
phys_addr_t memblock_alloc_base_nid(phys_addr_t size,
phys_addr_t align, phys_addr_t max_addr,
int nid, enum memblock_flags flags);
phys_addr_t memblock_alloc_base(phys_addr_t size, phys_addr_t align,
phys_addr_t max_addr);
phys_addr_t __memblock_alloc_base(phys_addr_t size, phys_addr_t align,
phys_addr_t max_addr);
phys_addr_t memblock_phys_mem_size(void);
phys_addr_t memblock_reserved_size(void);
phys_addr_t memblock_mem_size(unsigned long limit_pfn);
phys_addr_t memblock_start_of_DRAM(void);
phys_addr_t memblock_end_of_DRAM(void);
void memblock_enforce_memory_limit(phys_addr_t memory_limit);
void memblock_cap_memory_range(phys_addr_t base, phys_addr_t size);
mm/memblock.c: add new infrastructure to address the mem limit issue In some cases, memblock is queried by kernel to determine whether a specified address is RAM or not. For example, the ACPI core needs this information to determine which attributes to use when mapping ACPI regions(acpi_os_ioremap). Use of incorrect memory types can result in faults, data corruption, or other issues. Removing memory with memblock_enforce_memory_limit() throws away this information, and so a kernel booted with 'mem=' may suffer from the issues described above. To avoid this, we need to keep those NOMAP regions instead of removing all above the limit, which preserves the information we need while preventing other use of those regions. This patch adds new infrastructure to retain all NOMAP memblock regions while removing others, to cater for this. Link: http://lkml.kernel.org/r/1468475036-5852-2-git-send-email-dennis.chen@arm.com Signed-off-by: Dennis Chen <dennis.chen@arm.com> Acked-by: Steve Capper <steve.capper@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org> Cc: Pekka Enberg <penberg@kernel.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Tang Chen <tangchen@cn.fujitsu.com> Cc: Tony Luck <tony.luck@intel.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Rafael J. Wysocki <rafael@kernel.org> Cc: Will Deacon <will.deacon@arm.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Matt Fleming <matt@codeblueprint.co.uk> Cc: Kaly Xin <kaly.xin@arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-29 05:48:26 +07:00
void memblock_mem_limit_remove_map(phys_addr_t limit);
bool memblock_is_memory(phys_addr_t addr);
bool memblock_is_map_memory(phys_addr_t addr);
bool memblock_is_region_memory(phys_addr_t base, phys_addr_t size);
bool memblock_is_reserved(phys_addr_t addr);
bool memblock_is_region_reserved(phys_addr_t base, phys_addr_t size);
extern void __memblock_dump_all(void);
static inline void memblock_dump_all(void)
{
if (memblock_debug)
__memblock_dump_all();
}
/**
* memblock_set_current_limit - Set the current allocation limit to allow
* limiting allocations to what is currently
* accessible during boot
* @limit: New limit value (physical address)
*/
void memblock_set_current_limit(phys_addr_t limit);
phys_addr_t memblock_get_current_limit(void);
/*
* pfn conversion functions
*
* While the memory MEMBLOCKs should always be page aligned, the reserved
* MEMBLOCKs may not be. This accessor attempt to provide a very clear
* idea of what they return for such non aligned MEMBLOCKs.
*/
/**
* memblock_region_memory_base_pfn - get the lowest pfn of the memory region
* @reg: memblock_region structure
*
* Return: the lowest pfn intersecting with the memory region
*/
static inline unsigned long memblock_region_memory_base_pfn(const struct memblock_region *reg)
{
return PFN_UP(reg->base);
}
/**
* memblock_region_memory_end_pfn - get the end pfn of the memory region
* @reg: memblock_region structure
*
* Return: the end_pfn of the reserved region
*/
static inline unsigned long memblock_region_memory_end_pfn(const struct memblock_region *reg)
{
return PFN_DOWN(reg->base + reg->size);
}
/**
* memblock_region_reserved_base_pfn - get the lowest pfn of the reserved region
* @reg: memblock_region structure
*
* Return: the lowest pfn intersecting with the reserved region
*/
static inline unsigned long memblock_region_reserved_base_pfn(const struct memblock_region *reg)
{
return PFN_DOWN(reg->base);
}
/**
* memblock_region_reserved_end_pfn - get the end pfn of the reserved region
* @reg: memblock_region structure
*
* Return: the end_pfn of the reserved region
*/
static inline unsigned long memblock_region_reserved_end_pfn(const struct memblock_region *reg)
{
return PFN_UP(reg->base + reg->size);
}
#define for_each_memblock(memblock_type, region) \
for (region = memblock.memblock_type.regions; \
region < (memblock.memblock_type.regions + memblock.memblock_type.cnt); \
region++)
#define for_each_memblock_type(i, memblock_type, rgn) \
for (i = 0, rgn = &memblock_type->regions[0]; \
i < memblock_type->cnt; \
i++, rgn = &memblock_type->regions[i])
mm: remove include/linux/bootmem.h Move remaining definitions and declarations from include/linux/bootmem.h into include/linux/memblock.h and remove the redundant header. The includes were replaced with the semantic patch below and then semi-automated removal of duplicated '#include <linux/memblock.h> @@ @@ - #include <linux/bootmem.h> + #include <linux/memblock.h> [sfr@canb.auug.org.au: dma-direct: fix up for the removal of linux/bootmem.h] Link: http://lkml.kernel.org/r/20181002185342.133d1680@canb.auug.org.au [sfr@canb.auug.org.au: powerpc: fix up for removal of linux/bootmem.h] Link: http://lkml.kernel.org/r/20181005161406.73ef8727@canb.auug.org.au [sfr@canb.auug.org.au: x86/kaslr, ACPI/NUMA: fix for linux/bootmem.h removal] Link: http://lkml.kernel.org/r/20181008190341.5e396491@canb.auug.org.au Link: http://lkml.kernel.org/r/1536927045-23536-30-git-send-email-rppt@linux.vnet.ibm.com Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com> Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Chris Zankel <chris@zankel.net> Cc: "David S. Miller" <davem@davemloft.net> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Greentime Hu <green.hu@gmail.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Guan Xuetao <gxt@pku.edu.cn> Cc: Ingo Molnar <mingo@redhat.com> Cc: "James E.J. Bottomley" <jejb@parisc-linux.org> Cc: Jonas Bonn <jonas@southpole.se> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Ley Foon Tan <lftan@altera.com> Cc: Mark Salter <msalter@redhat.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Matt Turner <mattst88@gmail.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Michal Simek <monstr@monstr.eu> Cc: Palmer Dabbelt <palmer@sifive.com> Cc: Paul Burton <paul.burton@mips.com> Cc: Richard Kuo <rkuo@codeaurora.org> Cc: Richard Weinberger <richard@nod.at> Cc: Rich Felker <dalias@libc.org> Cc: Russell King <linux@armlinux.org.uk> Cc: Serge Semin <fancer.lancer@gmail.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Tony Luck <tony.luck@intel.com> Cc: Vineet Gupta <vgupta@synopsys.com> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-31 05:09:49 +07:00
extern void *alloc_large_system_hash(const char *tablename,
unsigned long bucketsize,
unsigned long numentries,
int scale,
int flags,
unsigned int *_hash_shift,
unsigned int *_hash_mask,
unsigned long low_limit,
unsigned long high_limit);
#define HASH_EARLY 0x00000001 /* Allocating during early boot? */
#define HASH_SMALL 0x00000002 /* sub-page allocation allowed, min
* shift passed via *_hash_shift */
#define HASH_ZERO 0x00000004 /* Zero allocated hash table */
/* Only NUMA needs hash distribution. 64bit NUMA architectures have
* sufficient vmalloc space.
*/
#ifdef CONFIG_NUMA
#define HASHDIST_DEFAULT IS_ENABLED(CONFIG_64BIT)
extern int hashdist; /* Distribute hashes across NUMA nodes? */
#else
#define hashdist (0)
#endif
#ifdef CONFIG_MEMTEST
extern void early_memtest(phys_addr_t start, phys_addr_t end);
#else
static inline void early_memtest(phys_addr_t start, phys_addr_t end)
{
}
#endif
#endif /* __KERNEL__ */
#endif /* _LINUX_MEMBLOCK_H */