linux_dsm_epyc7002/include/linux/mtd/spinand.h

462 lines
14 KiB
C
Raw Normal View History

/* SPDX-License-Identifier: GPL-2.0 */
/*
* Copyright (c) 2016-2017 Micron Technology, Inc.
*
* Authors:
* Peter Pan <peterpandong@micron.com>
*/
#ifndef __LINUX_MTD_SPINAND_H
#define __LINUX_MTD_SPINAND_H
#include <linux/mutex.h>
#include <linux/bitops.h>
#include <linux/device.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/nand.h>
#include <linux/spi/spi.h>
#include <linux/spi/spi-mem.h>
/**
* Standard SPI NAND flash operations
*/
#define SPINAND_RESET_OP \
SPI_MEM_OP(SPI_MEM_OP_CMD(0xff, 1), \
SPI_MEM_OP_NO_ADDR, \
SPI_MEM_OP_NO_DUMMY, \
SPI_MEM_OP_NO_DATA)
#define SPINAND_WR_EN_DIS_OP(enable) \
SPI_MEM_OP(SPI_MEM_OP_CMD((enable) ? 0x06 : 0x04, 1), \
SPI_MEM_OP_NO_ADDR, \
SPI_MEM_OP_NO_DUMMY, \
SPI_MEM_OP_NO_DATA)
#define SPINAND_READID_OP(ndummy, buf, len) \
SPI_MEM_OP(SPI_MEM_OP_CMD(0x9f, 1), \
SPI_MEM_OP_NO_ADDR, \
SPI_MEM_OP_DUMMY(ndummy, 1), \
SPI_MEM_OP_DATA_IN(len, buf, 1))
#define SPINAND_SET_FEATURE_OP(reg, valptr) \
SPI_MEM_OP(SPI_MEM_OP_CMD(0x1f, 1), \
SPI_MEM_OP_ADDR(1, reg, 1), \
SPI_MEM_OP_NO_DUMMY, \
SPI_MEM_OP_DATA_OUT(1, valptr, 1))
#define SPINAND_GET_FEATURE_OP(reg, valptr) \
SPI_MEM_OP(SPI_MEM_OP_CMD(0x0f, 1), \
SPI_MEM_OP_ADDR(1, reg, 1), \
SPI_MEM_OP_NO_DUMMY, \
SPI_MEM_OP_DATA_IN(1, valptr, 1))
#define SPINAND_BLK_ERASE_OP(addr) \
SPI_MEM_OP(SPI_MEM_OP_CMD(0xd8, 1), \
SPI_MEM_OP_ADDR(3, addr, 1), \
SPI_MEM_OP_NO_DUMMY, \
SPI_MEM_OP_NO_DATA)
#define SPINAND_PAGE_READ_OP(addr) \
SPI_MEM_OP(SPI_MEM_OP_CMD(0x13, 1), \
SPI_MEM_OP_ADDR(3, addr, 1), \
SPI_MEM_OP_NO_DUMMY, \
SPI_MEM_OP_NO_DATA)
#define SPINAND_PAGE_READ_FROM_CACHE_OP(fast, addr, ndummy, buf, len) \
SPI_MEM_OP(SPI_MEM_OP_CMD(fast ? 0x0b : 0x03, 1), \
SPI_MEM_OP_ADDR(2, addr, 1), \
SPI_MEM_OP_DUMMY(ndummy, 1), \
SPI_MEM_OP_DATA_IN(len, buf, 1))
#define SPINAND_PAGE_READ_FROM_CACHE_OP_3A(fast, addr, ndummy, buf, len) \
SPI_MEM_OP(SPI_MEM_OP_CMD(fast ? 0x0b : 0x03, 1), \
SPI_MEM_OP_ADDR(3, addr, 1), \
SPI_MEM_OP_DUMMY(ndummy, 1), \
SPI_MEM_OP_DATA_IN(len, buf, 1))
#define SPINAND_PAGE_READ_FROM_CACHE_X2_OP(addr, ndummy, buf, len) \
SPI_MEM_OP(SPI_MEM_OP_CMD(0x3b, 1), \
SPI_MEM_OP_ADDR(2, addr, 1), \
SPI_MEM_OP_DUMMY(ndummy, 1), \
SPI_MEM_OP_DATA_IN(len, buf, 2))
#define SPINAND_PAGE_READ_FROM_CACHE_X2_OP_3A(addr, ndummy, buf, len) \
SPI_MEM_OP(SPI_MEM_OP_CMD(0x3b, 1), \
SPI_MEM_OP_ADDR(3, addr, 1), \
SPI_MEM_OP_DUMMY(ndummy, 1), \
SPI_MEM_OP_DATA_IN(len, buf, 2))
#define SPINAND_PAGE_READ_FROM_CACHE_X4_OP(addr, ndummy, buf, len) \
SPI_MEM_OP(SPI_MEM_OP_CMD(0x6b, 1), \
SPI_MEM_OP_ADDR(2, addr, 1), \
SPI_MEM_OP_DUMMY(ndummy, 1), \
SPI_MEM_OP_DATA_IN(len, buf, 4))
#define SPINAND_PAGE_READ_FROM_CACHE_X4_OP_3A(addr, ndummy, buf, len) \
SPI_MEM_OP(SPI_MEM_OP_CMD(0x6b, 1), \
SPI_MEM_OP_ADDR(3, addr, 1), \
SPI_MEM_OP_DUMMY(ndummy, 1), \
SPI_MEM_OP_DATA_IN(len, buf, 4))
#define SPINAND_PAGE_READ_FROM_CACHE_DUALIO_OP(addr, ndummy, buf, len) \
SPI_MEM_OP(SPI_MEM_OP_CMD(0xbb, 1), \
SPI_MEM_OP_ADDR(2, addr, 2), \
SPI_MEM_OP_DUMMY(ndummy, 2), \
SPI_MEM_OP_DATA_IN(len, buf, 2))
#define SPINAND_PAGE_READ_FROM_CACHE_DUALIO_OP_3A(addr, ndummy, buf, len) \
SPI_MEM_OP(SPI_MEM_OP_CMD(0xbb, 1), \
SPI_MEM_OP_ADDR(3, addr, 2), \
SPI_MEM_OP_DUMMY(ndummy, 2), \
SPI_MEM_OP_DATA_IN(len, buf, 2))
#define SPINAND_PAGE_READ_FROM_CACHE_QUADIO_OP(addr, ndummy, buf, len) \
SPI_MEM_OP(SPI_MEM_OP_CMD(0xeb, 1), \
SPI_MEM_OP_ADDR(2, addr, 4), \
SPI_MEM_OP_DUMMY(ndummy, 4), \
SPI_MEM_OP_DATA_IN(len, buf, 4))
#define SPINAND_PAGE_READ_FROM_CACHE_QUADIO_OP_3A(addr, ndummy, buf, len) \
SPI_MEM_OP(SPI_MEM_OP_CMD(0xeb, 1), \
SPI_MEM_OP_ADDR(3, addr, 4), \
SPI_MEM_OP_DUMMY(ndummy, 4), \
SPI_MEM_OP_DATA_IN(len, buf, 4))
#define SPINAND_PROG_EXEC_OP(addr) \
SPI_MEM_OP(SPI_MEM_OP_CMD(0x10, 1), \
SPI_MEM_OP_ADDR(3, addr, 1), \
SPI_MEM_OP_NO_DUMMY, \
SPI_MEM_OP_NO_DATA)
#define SPINAND_PROG_LOAD(reset, addr, buf, len) \
SPI_MEM_OP(SPI_MEM_OP_CMD(reset ? 0x02 : 0x84, 1), \
SPI_MEM_OP_ADDR(2, addr, 1), \
SPI_MEM_OP_NO_DUMMY, \
SPI_MEM_OP_DATA_OUT(len, buf, 1))
#define SPINAND_PROG_LOAD_X4(reset, addr, buf, len) \
SPI_MEM_OP(SPI_MEM_OP_CMD(reset ? 0x32 : 0x34, 1), \
SPI_MEM_OP_ADDR(2, addr, 1), \
SPI_MEM_OP_NO_DUMMY, \
SPI_MEM_OP_DATA_OUT(len, buf, 4))
/**
* Standard SPI NAND flash commands
*/
#define SPINAND_CMD_PROG_LOAD_X4 0x32
#define SPINAND_CMD_PROG_LOAD_RDM_DATA_X4 0x34
/* feature register */
#define REG_BLOCK_LOCK 0xa0
#define BL_ALL_UNLOCKED 0x00
/* configuration register */
#define REG_CFG 0xb0
#define CFG_OTP_ENABLE BIT(6)
#define CFG_ECC_ENABLE BIT(4)
#define CFG_QUAD_ENABLE BIT(0)
/* status register */
#define REG_STATUS 0xc0
#define STATUS_BUSY BIT(0)
#define STATUS_ERASE_FAILED BIT(2)
#define STATUS_PROG_FAILED BIT(3)
#define STATUS_ECC_MASK GENMASK(5, 4)
#define STATUS_ECC_NO_BITFLIPS (0 << 4)
#define STATUS_ECC_HAS_BITFLIPS (1 << 4)
#define STATUS_ECC_UNCOR_ERROR (2 << 4)
struct spinand_op;
struct spinand_device;
#define SPINAND_MAX_ID_LEN 4
/**
* struct spinand_id - SPI NAND id structure
* @data: buffer containing the id bytes. Currently 4 bytes large, but can
* be extended if required
* @len: ID length
*
* struct_spinand_id->data contains all bytes returned after a READ_ID command,
* including dummy bytes if the chip does not emit ID bytes right after the
* READ_ID command. The responsibility to extract real ID bytes is left to
* struct_manufacurer_ops->detect().
*/
struct spinand_id {
u8 data[SPINAND_MAX_ID_LEN];
int len;
};
/**
* struct manufacurer_ops - SPI NAND manufacturer specific operations
* @detect: detect a SPI NAND device. Every time a SPI NAND device is probed
* the core calls the struct_manufacurer_ops->detect() hook of each
* registered manufacturer until one of them return 1. Note that
* the first thing to check in this hook is that the manufacturer ID
* in struct_spinand_device->id matches the manufacturer whose
* ->detect() hook has been called. Should return 1 if there's a
* match, 0 if the manufacturer ID does not match and a negative
* error code otherwise. When true is returned, the core assumes
* that properties of the NAND chip (spinand->base.memorg and
* spinand->base.eccreq) have been filled
* @init: initialize a SPI NAND device
* @cleanup: cleanup a SPI NAND device
*
* Each SPI NAND manufacturer driver should implement this interface so that
* NAND chips coming from this vendor can be detected and initialized properly.
*/
struct spinand_manufacturer_ops {
int (*detect)(struct spinand_device *spinand);
int (*init)(struct spinand_device *spinand);
void (*cleanup)(struct spinand_device *spinand);
};
/**
* struct spinand_manufacturer - SPI NAND manufacturer instance
* @id: manufacturer ID
* @name: manufacturer name
* @ops: manufacturer operations
*/
struct spinand_manufacturer {
u8 id;
char *name;
const struct spinand_manufacturer_ops *ops;
};
/* SPI NAND manufacturers */
extern const struct spinand_manufacturer gigadevice_spinand_manufacturer;
extern const struct spinand_manufacturer macronix_spinand_manufacturer;
extern const struct spinand_manufacturer micron_spinand_manufacturer;
extern const struct spinand_manufacturer paragon_spinand_manufacturer;
extern const struct spinand_manufacturer toshiba_spinand_manufacturer;
extern const struct spinand_manufacturer winbond_spinand_manufacturer;
/**
* struct spinand_op_variants - SPI NAND operation variants
* @ops: the list of variants for a given operation
* @nops: the number of variants
*
* Some operations like read-from-cache/write-to-cache have several variants
* depending on the number of IO lines you use to transfer data or address
* cycles. This structure is a way to describe the different variants supported
* by a chip and let the core pick the best one based on the SPI mem controller
* capabilities.
*/
struct spinand_op_variants {
const struct spi_mem_op *ops;
unsigned int nops;
};
#define SPINAND_OP_VARIANTS(name, ...) \
const struct spinand_op_variants name = { \
.ops = (struct spi_mem_op[]) { __VA_ARGS__ }, \
.nops = sizeof((struct spi_mem_op[]){ __VA_ARGS__ }) / \
sizeof(struct spi_mem_op), \
}
/**
* spinand_ecc_info - description of the on-die ECC implemented by a SPI NAND
* chip
* @get_status: get the ECC status. Should return a positive number encoding
* the number of corrected bitflips if correction was possible or
* -EBADMSG if there are uncorrectable errors. I can also return
* other negative error codes if the error is not caused by
* uncorrectable bitflips
* @ooblayout: the OOB layout used by the on-die ECC implementation
*/
struct spinand_ecc_info {
int (*get_status)(struct spinand_device *spinand, u8 status);
const struct mtd_ooblayout_ops *ooblayout;
};
#define SPINAND_HAS_QE_BIT BIT(0)
/**
* struct spinand_info - Structure used to describe SPI NAND chips
* @model: model name
* @devid: device ID
* @flags: OR-ing of the SPINAND_XXX flags
* @memorg: memory organization
* @eccreq: ECC requirements
* @eccinfo: on-die ECC info
* @op_variants: operations variants
* @op_variants.read_cache: variants of the read-cache operation
* @op_variants.write_cache: variants of the write-cache operation
* @op_variants.update_cache: variants of the update-cache operation
* @select_target: function used to select a target/die. Required only for
* multi-die chips
*
* Each SPI NAND manufacturer driver should have a spinand_info table
* describing all the chips supported by the driver.
*/
struct spinand_info {
const char *model;
u16 devid;
u32 flags;
struct nand_memory_organization memorg;
struct nand_ecc_req eccreq;
struct spinand_ecc_info eccinfo;
struct {
const struct spinand_op_variants *read_cache;
const struct spinand_op_variants *write_cache;
const struct spinand_op_variants *update_cache;
} op_variants;
int (*select_target)(struct spinand_device *spinand,
unsigned int target);
};
#define SPINAND_INFO_OP_VARIANTS(__read, __write, __update) \
{ \
.read_cache = __read, \
.write_cache = __write, \
.update_cache = __update, \
}
#define SPINAND_ECCINFO(__ooblayout, __get_status) \
.eccinfo = { \
.ooblayout = __ooblayout, \
.get_status = __get_status, \
}
#define SPINAND_SELECT_TARGET(__func) \
.select_target = __func,
#define SPINAND_INFO(__model, __id, __memorg, __eccreq, __op_variants, \
__flags, ...) \
{ \
.model = __model, \
.devid = __id, \
.memorg = __memorg, \
.eccreq = __eccreq, \
.op_variants = __op_variants, \
.flags = __flags, \
__VA_ARGS__ \
}
struct spinand_dirmap {
struct spi_mem_dirmap_desc *wdesc;
struct spi_mem_dirmap_desc *rdesc;
};
/**
* struct spinand_device - SPI NAND device instance
* @base: NAND device instance
* @spimem: pointer to the SPI mem object
* @lock: lock used to serialize accesses to the NAND
* @id: NAND ID as returned by READ_ID
* @flags: NAND flags
* @op_templates: various SPI mem op templates
* @op_templates.read_cache: read cache op template
* @op_templates.write_cache: write cache op template
* @op_templates.update_cache: update cache op template
* @select_target: select a specific target/die. Usually called before sending
* a command addressing a page or an eraseblock embedded in
* this die. Only required if your chip exposes several dies
* @cur_target: currently selected target/die
* @eccinfo: on-die ECC information
* @cfg_cache: config register cache. One entry per die
* @databuf: bounce buffer for data
* @oobbuf: bounce buffer for OOB data
* @scratchbuf: buffer used for everything but page accesses. This is needed
* because the spi-mem interface explicitly requests that buffers
* passed in spi_mem_op be DMA-able, so we can't based the bufs on
* the stack
* @manufacturer: SPI NAND manufacturer information
* @priv: manufacturer private data
*/
struct spinand_device {
struct nand_device base;
struct spi_mem *spimem;
struct mutex lock;
struct spinand_id id;
u32 flags;
struct {
const struct spi_mem_op *read_cache;
const struct spi_mem_op *write_cache;
const struct spi_mem_op *update_cache;
} op_templates;
struct spinand_dirmap *dirmaps;
int (*select_target)(struct spinand_device *spinand,
unsigned int target);
unsigned int cur_target;
struct spinand_ecc_info eccinfo;
u8 *cfg_cache;
u8 *databuf;
u8 *oobbuf;
u8 *scratchbuf;
const struct spinand_manufacturer *manufacturer;
void *priv;
};
/**
* mtd_to_spinand() - Get the SPI NAND device attached to an MTD instance
* @mtd: MTD instance
*
* Return: the SPI NAND device attached to @mtd.
*/
static inline struct spinand_device *mtd_to_spinand(struct mtd_info *mtd)
{
return container_of(mtd_to_nanddev(mtd), struct spinand_device, base);
}
/**
* spinand_to_mtd() - Get the MTD device embedded in a SPI NAND device
* @spinand: SPI NAND device
*
* Return: the MTD device embedded in @spinand.
*/
static inline struct mtd_info *spinand_to_mtd(struct spinand_device *spinand)
{
return nanddev_to_mtd(&spinand->base);
}
/**
* nand_to_spinand() - Get the SPI NAND device embedding an NAND object
* @nand: NAND object
*
* Return: the SPI NAND device embedding @nand.
*/
static inline struct spinand_device *nand_to_spinand(struct nand_device *nand)
{
return container_of(nand, struct spinand_device, base);
}
/**
* spinand_to_nand() - Get the NAND device embedded in a SPI NAND object
* @spinand: SPI NAND device
*
* Return: the NAND device embedded in @spinand.
*/
static inline struct nand_device *
spinand_to_nand(struct spinand_device *spinand)
{
return &spinand->base;
}
/**
* spinand_set_of_node - Attach a DT node to a SPI NAND device
* @spinand: SPI NAND device
* @np: DT node
*
* Attach a DT node to a SPI NAND device.
*/
static inline void spinand_set_of_node(struct spinand_device *spinand,
struct device_node *np)
{
nanddev_set_of_node(&spinand->base, np);
}
int spinand_match_and_init(struct spinand_device *dev,
const struct spinand_info *table,
unsigned int table_size, u16 devid);
int spinand_upd_cfg(struct spinand_device *spinand, u8 mask, u8 val);
int spinand_select_target(struct spinand_device *spinand, unsigned int target);
#endif /* __LINUX_MTD_SPINAND_H */