linux_dsm_epyc7002/drivers/video/backlight/tosa_lcd.c

287 lines
5.7 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-only
/*
* LCD / Backlight control code for Sharp SL-6000x (tosa)
*
* Copyright (c) 2005 Dirk Opfer
* Copyright (c) 2007,2008 Dmitry Baryshkov
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/device.h>
#include <linux/spi/spi.h>
#include <linux/i2c.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 15:04:11 +07:00
#include <linux/slab.h>
#include <linux/gpio/consumer.h>
#include <linux/delay.h>
#include <linux/lcd.h>
#include <linux/fb.h>
#include <asm/mach/sharpsl_param.h>
#include "tosa_bl.h"
#define POWER_IS_ON(pwr) ((pwr) <= FB_BLANK_NORMAL)
#define TG_REG0_VQV 0x0001
#define TG_REG0_COLOR 0x0002
#define TG_REG0_UD 0x0004
#define TG_REG0_LR 0x0008
/*
* Timing Generator
*/
#define TG_PNLCTL 0x00
#define TG_TPOSCTL 0x01
#define TG_DUTYCTL 0x02
#define TG_GPOSR 0x03
#define TG_GPODR1 0x04
#define TG_GPODR2 0x05
#define TG_PINICTL 0x06
#define TG_HPOSCTL 0x07
#define DAC_BASE 0x4e
struct tosa_lcd_data {
struct spi_device *spi;
struct lcd_device *lcd;
struct i2c_client *i2c;
struct gpio_desc *gpiod_tg;
int lcd_power;
bool is_vga;
};
static int tosa_tg_send(struct spi_device *spi, int adrs, uint8_t data)
{
u8 buf[1];
struct spi_message msg;
struct spi_transfer xfer = {
.len = 1,
.cs_change = 0,
.tx_buf = buf,
};
buf[0] = ((adrs & 0x07) << 5) | (data & 0x1f);
spi_message_init(&msg);
spi_message_add_tail(&xfer, &msg);
return spi_sync(spi, &msg);
}
int tosa_bl_enable(struct spi_device *spi, int enable)
{
/* bl_enable GP04=1 otherwise GP04=0*/
return tosa_tg_send(spi, TG_GPODR2, enable ? 0x01 : 0x00);
}
EXPORT_SYMBOL(tosa_bl_enable);
static void tosa_lcd_tg_init(struct tosa_lcd_data *data)
{
/* TG on */
gpiod_set_value(data->gpiod_tg, 0);
mdelay(60);
/* delayed 0clk TCTL signal for VGA */
tosa_tg_send(data->spi, TG_TPOSCTL, 0x00);
/* GPOS0=powercontrol, GPOS1=GPIO, GPOS2=TCTL */
tosa_tg_send(data->spi, TG_GPOSR, 0x02);
}
static void tosa_lcd_tg_on(struct tosa_lcd_data *data)
{
struct spi_device *spi = data->spi;
int value = TG_REG0_COLOR | TG_REG0_UD | TG_REG0_LR;
if (data->is_vga)
value |= TG_REG0_VQV;
tosa_tg_send(spi, TG_PNLCTL, value);
/* TG LCD pannel power up */
tosa_tg_send(spi, TG_PINICTL, 0x4);
mdelay(50);
/* TG LCD GVSS */
tosa_tg_send(spi, TG_PINICTL, 0x0);
if (IS_ERR_OR_NULL(data->i2c)) {
/*
* after the pannel is powered up the first time,
* we can access the i2c bus so probe for the DAC
*/
struct i2c_adapter *adap = i2c_get_adapter(0);
struct i2c_board_info info = {
.dev_name = "tosa-bl",
.type = "tosa-bl",
.addr = DAC_BASE,
.platform_data = data->spi,
};
data->i2c = i2c_new_client_device(adap, &info);
}
}
static void tosa_lcd_tg_off(struct tosa_lcd_data *data)
{
struct spi_device *spi = data->spi;
/* TG LCD VHSA off */
tosa_tg_send(spi, TG_PINICTL, 0x4);
mdelay(50);
/* TG LCD signal off */
tosa_tg_send(spi, TG_PINICTL, 0x6);
mdelay(50);
/* TG Off */
gpiod_set_value(data->gpiod_tg, 1);
mdelay(100);
}
int tosa_lcd_set_power(struct lcd_device *lcd, int power)
{
struct tosa_lcd_data *data = lcd_get_data(lcd);
if (POWER_IS_ON(power) && !POWER_IS_ON(data->lcd_power))
tosa_lcd_tg_on(data);
if (!POWER_IS_ON(power) && POWER_IS_ON(data->lcd_power))
tosa_lcd_tg_off(data);
data->lcd_power = power;
return 0;
}
static int tosa_lcd_get_power(struct lcd_device *lcd)
{
struct tosa_lcd_data *data = lcd_get_data(lcd);
return data->lcd_power;
}
static int tosa_lcd_set_mode(struct lcd_device *lcd, struct fb_videomode *mode)
{
struct tosa_lcd_data *data = lcd_get_data(lcd);
if (mode->xres == 320 || mode->yres == 320)
data->is_vga = false;
else
data->is_vga = true;
if (POWER_IS_ON(data->lcd_power))
tosa_lcd_tg_on(data);
return 0;
}
static struct lcd_ops tosa_lcd_ops = {
.set_power = tosa_lcd_set_power,
.get_power = tosa_lcd_get_power,
.set_mode = tosa_lcd_set_mode,
};
static int tosa_lcd_probe(struct spi_device *spi)
{
int ret;
struct tosa_lcd_data *data;
data = devm_kzalloc(&spi->dev, sizeof(struct tosa_lcd_data),
GFP_KERNEL);
if (!data)
return -ENOMEM;
data->is_vga = true; /* default to VGA mode */
/*
* bits_per_word cannot be configured in platform data
*/
spi->bits_per_word = 8;
ret = spi_setup(spi);
if (ret < 0)
return ret;
data->spi = spi;
spi_set_drvdata(spi, data);
data->gpiod_tg = devm_gpiod_get(&spi->dev, "tg #pwr", GPIOD_OUT_LOW);
if (IS_ERR(data->gpiod_tg))
return PTR_ERR(data->gpiod_tg);
mdelay(60);
tosa_lcd_tg_init(data);
tosa_lcd_tg_on(data);
data->lcd = devm_lcd_device_register(&spi->dev, "tosa-lcd", &spi->dev,
data, &tosa_lcd_ops);
if (IS_ERR(data->lcd)) {
ret = PTR_ERR(data->lcd);
data->lcd = NULL;
goto err_register;
}
return 0;
err_register:
tosa_lcd_tg_off(data);
return ret;
}
static int tosa_lcd_remove(struct spi_device *spi)
{
struct tosa_lcd_data *data = spi_get_drvdata(spi);
i2c_unregister_device(data->i2c);
tosa_lcd_tg_off(data);
return 0;
}
#ifdef CONFIG_PM_SLEEP
static int tosa_lcd_suspend(struct device *dev)
{
struct tosa_lcd_data *data = dev_get_drvdata(dev);
tosa_lcd_tg_off(data);
return 0;
}
static int tosa_lcd_resume(struct device *dev)
{
struct tosa_lcd_data *data = dev_get_drvdata(dev);
tosa_lcd_tg_init(data);
if (POWER_IS_ON(data->lcd_power))
tosa_lcd_tg_on(data);
else
tosa_lcd_tg_off(data);
return 0;
}
#endif
static SIMPLE_DEV_PM_OPS(tosa_lcd_pm_ops, tosa_lcd_suspend, tosa_lcd_resume);
static struct spi_driver tosa_lcd_driver = {
.driver = {
.name = "tosa-lcd",
.pm = &tosa_lcd_pm_ops,
},
.probe = tosa_lcd_probe,
.remove = tosa_lcd_remove,
};
module_spi_driver(tosa_lcd_driver);
MODULE_AUTHOR("Dmitry Baryshkov");
MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("LCD/Backlight control for Sharp SL-6000 PDA");
MODULE_ALIAS("spi:tosa-lcd");