mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-25 13:59:32 +07:00
180 lines
5.3 KiB
C
180 lines
5.3 KiB
C
|
/*
|
||
|
* Functions for auto gain.
|
||
|
*
|
||
|
* Copyright (C) 2010-2011 Hans de Goede <hdegoede@redhat.com>
|
||
|
*
|
||
|
* This program is free software; you can redistribute it and/or modify
|
||
|
* it under the terms of the GNU General Public License as published by
|
||
|
* the Free Software Foundation; either version 2 of the License, or
|
||
|
* (at your option) any later version.
|
||
|
*
|
||
|
* This program is distributed in the hope that it will be useful,
|
||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
|
* GNU General Public License for more details.
|
||
|
*
|
||
|
* You should have received a copy of the GNU General Public License
|
||
|
* along with this program; if not, write to the Free Software
|
||
|
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
||
|
*/
|
||
|
|
||
|
/* auto gain and exposure algorithm based on the knee algorithm described here:
|
||
|
http://ytse.tricolour.net/docs/LowLightOptimization.html
|
||
|
|
||
|
Returns 0 if no changes were made, 1 if the gain and or exposure settings
|
||
|
where changed. */
|
||
|
static inline int auto_gain_n_exposure(
|
||
|
struct gspca_dev *gspca_dev,
|
||
|
int avg_lum,
|
||
|
int desired_avg_lum,
|
||
|
int deadzone,
|
||
|
int gain_knee,
|
||
|
int exposure_knee)
|
||
|
{
|
||
|
struct sd *sd = (struct sd *) gspca_dev;
|
||
|
int i, steps, gain, orig_gain, exposure, orig_exposure;
|
||
|
int retval = 0;
|
||
|
|
||
|
orig_gain = gain = sd->ctrls[GAIN].val;
|
||
|
orig_exposure = exposure = sd->ctrls[EXPOSURE].val;
|
||
|
|
||
|
/* If we are of a multiple of deadzone, do multiple steps to reach the
|
||
|
desired lumination fast (with the risc of a slight overshoot) */
|
||
|
steps = abs(desired_avg_lum - avg_lum) / deadzone;
|
||
|
|
||
|
PDEBUG(D_FRAM, "autogain: lum: %d, desired: %d, steps: %d",
|
||
|
avg_lum, desired_avg_lum, steps);
|
||
|
|
||
|
for (i = 0; i < steps; i++) {
|
||
|
if (avg_lum > desired_avg_lum) {
|
||
|
if (gain > gain_knee)
|
||
|
gain--;
|
||
|
else if (exposure > exposure_knee)
|
||
|
exposure--;
|
||
|
else if (gain > sd->ctrls[GAIN].def)
|
||
|
gain--;
|
||
|
else if (exposure > sd->ctrls[EXPOSURE].min)
|
||
|
exposure--;
|
||
|
else if (gain > sd->ctrls[GAIN].min)
|
||
|
gain--;
|
||
|
else
|
||
|
break;
|
||
|
} else {
|
||
|
if (gain < sd->ctrls[GAIN].def)
|
||
|
gain++;
|
||
|
else if (exposure < exposure_knee)
|
||
|
exposure++;
|
||
|
else if (gain < gain_knee)
|
||
|
gain++;
|
||
|
else if (exposure < sd->ctrls[EXPOSURE].max)
|
||
|
exposure++;
|
||
|
else if (gain < sd->ctrls[GAIN].max)
|
||
|
gain++;
|
||
|
else
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (gain != orig_gain) {
|
||
|
sd->ctrls[GAIN].val = gain;
|
||
|
setgain(gspca_dev);
|
||
|
retval = 1;
|
||
|
}
|
||
|
if (exposure != orig_exposure) {
|
||
|
sd->ctrls[EXPOSURE].val = exposure;
|
||
|
setexposure(gspca_dev);
|
||
|
retval = 1;
|
||
|
}
|
||
|
|
||
|
if (retval)
|
||
|
PDEBUG(D_FRAM, "autogain: changed gain: %d, expo: %d",
|
||
|
gain, exposure);
|
||
|
return retval;
|
||
|
}
|
||
|
|
||
|
/* Autogain + exposure algorithm for cameras with a coarse exposure control
|
||
|
(usually this means we can only control the clockdiv to change exposure)
|
||
|
As changing the clockdiv so that the fps drops from 30 to 15 fps for
|
||
|
example, will lead to a huge exposure change (it effectively doubles),
|
||
|
this algorithm normally tries to only adjust the gain (between 40 and
|
||
|
80 %) and if that does not help, only then changes exposure. This leads
|
||
|
to a much more stable image then using the knee algorithm which at
|
||
|
certain points of the knee graph will only try to adjust exposure,
|
||
|
which leads to oscilating as one exposure step is huge.
|
||
|
|
||
|
Note this assumes that the sd struct for the cam in question has
|
||
|
exp_too_high_cnt and exp_too_high_cnt int members for use by this function.
|
||
|
|
||
|
Returns 0 if no changes were made, 1 if the gain and or exposure settings
|
||
|
where changed. */
|
||
|
static inline int coarse_grained_expo_autogain(
|
||
|
struct gspca_dev *gspca_dev,
|
||
|
int avg_lum,
|
||
|
int desired_avg_lum,
|
||
|
int deadzone)
|
||
|
{
|
||
|
struct sd *sd = (struct sd *) gspca_dev;
|
||
|
int steps, gain, orig_gain, exposure, orig_exposure;
|
||
|
int gain_low, gain_high;
|
||
|
int retval = 0;
|
||
|
|
||
|
orig_gain = gain = sd->ctrls[GAIN].val;
|
||
|
orig_exposure = exposure = sd->ctrls[EXPOSURE].val;
|
||
|
|
||
|
gain_low = (sd->ctrls[GAIN].max - sd->ctrls[GAIN].min) / 5 * 2;
|
||
|
gain_low += sd->ctrls[GAIN].min;
|
||
|
gain_high = (sd->ctrls[GAIN].max - sd->ctrls[GAIN].min) / 5 * 4;
|
||
|
gain_high += sd->ctrls[GAIN].min;
|
||
|
|
||
|
/* If we are of a multiple of deadzone, do multiple steps to reach the
|
||
|
desired lumination fast (with the risc of a slight overshoot) */
|
||
|
steps = (desired_avg_lum - avg_lum) / deadzone;
|
||
|
|
||
|
PDEBUG(D_FRAM, "autogain: lum: %d, desired: %d, steps: %d",
|
||
|
avg_lum, desired_avg_lum, steps);
|
||
|
|
||
|
if ((gain + steps) > gain_high &&
|
||
|
exposure < sd->ctrls[EXPOSURE].max) {
|
||
|
gain = gain_high;
|
||
|
sd->exp_too_low_cnt++;
|
||
|
sd->exp_too_high_cnt = 0;
|
||
|
} else if ((gain + steps) < gain_low &&
|
||
|
exposure > sd->ctrls[EXPOSURE].min) {
|
||
|
gain = gain_low;
|
||
|
sd->exp_too_high_cnt++;
|
||
|
sd->exp_too_low_cnt = 0;
|
||
|
} else {
|
||
|
gain += steps;
|
||
|
if (gain > sd->ctrls[GAIN].max)
|
||
|
gain = sd->ctrls[GAIN].max;
|
||
|
else if (gain < sd->ctrls[GAIN].min)
|
||
|
gain = sd->ctrls[GAIN].min;
|
||
|
sd->exp_too_high_cnt = 0;
|
||
|
sd->exp_too_low_cnt = 0;
|
||
|
}
|
||
|
|
||
|
if (sd->exp_too_high_cnt > 3) {
|
||
|
exposure--;
|
||
|
sd->exp_too_high_cnt = 0;
|
||
|
} else if (sd->exp_too_low_cnt > 3) {
|
||
|
exposure++;
|
||
|
sd->exp_too_low_cnt = 0;
|
||
|
}
|
||
|
|
||
|
if (gain != orig_gain) {
|
||
|
sd->ctrls[GAIN].val = gain;
|
||
|
setgain(gspca_dev);
|
||
|
retval = 1;
|
||
|
}
|
||
|
if (exposure != orig_exposure) {
|
||
|
sd->ctrls[EXPOSURE].val = exposure;
|
||
|
setexposure(gspca_dev);
|
||
|
retval = 1;
|
||
|
}
|
||
|
|
||
|
if (retval)
|
||
|
PDEBUG(D_FRAM, "autogain: changed gain: %d, expo: %d",
|
||
|
gain, exposure);
|
||
|
return retval;
|
||
|
}
|