linux_dsm_epyc7002/net/bluetooth/hci_core.c

2410 lines
50 KiB
C
Raw Normal View History

/*
BlueZ - Bluetooth protocol stack for Linux
Copyright (C) 2000-2001 Qualcomm Incorporated
Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License version 2 as
published by the Free Software Foundation;
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
SOFTWARE IS DISCLAIMED.
*/
/* Bluetooth HCI core. */
#include <linux/jiffies.h>
#include <linux/module.h>
#include <linux/kmod.h>
#include <linux/types.h>
#include <linux/errno.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/poll.h>
#include <linux/fcntl.h>
#include <linux/init.h>
#include <linux/skbuff.h>
#include <linux/workqueue.h>
#include <linux/interrupt.h>
#include <linux/notifier.h>
#include <linux/rfkill.h>
#include <linux/timer.h>
#include <linux/crypto.h>
#include <net/sock.h>
#include <asm/system.h>
#include <linux/uaccess.h>
#include <asm/unaligned.h>
#include <net/bluetooth/bluetooth.h>
#include <net/bluetooth/hci_core.h>
#define AUTO_OFF_TIMEOUT 2000
static void hci_cmd_task(unsigned long arg);
static void hci_rx_task(unsigned long arg);
static void hci_tx_task(unsigned long arg);
static DEFINE_RWLOCK(hci_task_lock);
/* HCI device list */
LIST_HEAD(hci_dev_list);
DEFINE_RWLOCK(hci_dev_list_lock);
/* HCI callback list */
LIST_HEAD(hci_cb_list);
DEFINE_RWLOCK(hci_cb_list_lock);
/* HCI protocols */
#define HCI_MAX_PROTO 2
struct hci_proto *hci_proto[HCI_MAX_PROTO];
/* HCI notifiers list */
[PATCH] Notifier chain update: API changes The kernel's implementation of notifier chains is unsafe. There is no protection against entries being added to or removed from a chain while the chain is in use. The issues were discussed in this thread: http://marc.theaimsgroup.com/?l=linux-kernel&m=113018709002036&w=2 We noticed that notifier chains in the kernel fall into two basic usage classes: "Blocking" chains are always called from a process context and the callout routines are allowed to sleep; "Atomic" chains can be called from an atomic context and the callout routines are not allowed to sleep. We decided to codify this distinction and make it part of the API. Therefore this set of patches introduces three new, parallel APIs: one for blocking notifiers, one for atomic notifiers, and one for "raw" notifiers (which is really just the old API under a new name). New kinds of data structures are used for the heads of the chains, and new routines are defined for registration, unregistration, and calling a chain. The three APIs are explained in include/linux/notifier.h and their implementation is in kernel/sys.c. With atomic and blocking chains, the implementation guarantees that the chain links will not be corrupted and that chain callers will not get messed up by entries being added or removed. For raw chains the implementation provides no guarantees at all; users of this API must provide their own protections. (The idea was that situations may come up where the assumptions of the atomic and blocking APIs are not appropriate, so it should be possible for users to handle these things in their own way.) There are some limitations, which should not be too hard to live with. For atomic/blocking chains, registration and unregistration must always be done in a process context since the chain is protected by a mutex/rwsem. Also, a callout routine for a non-raw chain must not try to register or unregister entries on its own chain. (This did happen in a couple of places and the code had to be changed to avoid it.) Since atomic chains may be called from within an NMI handler, they cannot use spinlocks for synchronization. Instead we use RCU. The overhead falls almost entirely in the unregister routine, which is okay since unregistration is much less frequent that calling a chain. Here is the list of chains that we adjusted and their classifications. None of them use the raw API, so for the moment it is only a placeholder. ATOMIC CHAINS ------------- arch/i386/kernel/traps.c: i386die_chain arch/ia64/kernel/traps.c: ia64die_chain arch/powerpc/kernel/traps.c: powerpc_die_chain arch/sparc64/kernel/traps.c: sparc64die_chain arch/x86_64/kernel/traps.c: die_chain drivers/char/ipmi/ipmi_si_intf.c: xaction_notifier_list kernel/panic.c: panic_notifier_list kernel/profile.c: task_free_notifier net/bluetooth/hci_core.c: hci_notifier net/ipv4/netfilter/ip_conntrack_core.c: ip_conntrack_chain net/ipv4/netfilter/ip_conntrack_core.c: ip_conntrack_expect_chain net/ipv6/addrconf.c: inet6addr_chain net/netfilter/nf_conntrack_core.c: nf_conntrack_chain net/netfilter/nf_conntrack_core.c: nf_conntrack_expect_chain net/netlink/af_netlink.c: netlink_chain BLOCKING CHAINS --------------- arch/powerpc/platforms/pseries/reconfig.c: pSeries_reconfig_chain arch/s390/kernel/process.c: idle_chain arch/x86_64/kernel/process.c idle_notifier drivers/base/memory.c: memory_chain drivers/cpufreq/cpufreq.c cpufreq_policy_notifier_list drivers/cpufreq/cpufreq.c cpufreq_transition_notifier_list drivers/macintosh/adb.c: adb_client_list drivers/macintosh/via-pmu.c sleep_notifier_list drivers/macintosh/via-pmu68k.c sleep_notifier_list drivers/macintosh/windfarm_core.c wf_client_list drivers/usb/core/notify.c usb_notifier_list drivers/video/fbmem.c fb_notifier_list kernel/cpu.c cpu_chain kernel/module.c module_notify_list kernel/profile.c munmap_notifier kernel/profile.c task_exit_notifier kernel/sys.c reboot_notifier_list net/core/dev.c netdev_chain net/decnet/dn_dev.c: dnaddr_chain net/ipv4/devinet.c: inetaddr_chain It's possible that some of these classifications are wrong. If they are, please let us know or submit a patch to fix them. Note that any chain that gets called very frequently should be atomic, because the rwsem read-locking used for blocking chains is very likely to incur cache misses on SMP systems. (However, if the chain's callout routines may sleep then the chain cannot be atomic.) The patch set was written by Alan Stern and Chandra Seetharaman, incorporating material written by Keith Owens and suggestions from Paul McKenney and Andrew Morton. [jes@sgi.com: restructure the notifier chain initialization macros] Signed-off-by: Alan Stern <stern@rowland.harvard.edu> Signed-off-by: Chandra Seetharaman <sekharan@us.ibm.com> Signed-off-by: Jes Sorensen <jes@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-27 16:16:30 +07:00
static ATOMIC_NOTIFIER_HEAD(hci_notifier);
/* ---- HCI notifications ---- */
int hci_register_notifier(struct notifier_block *nb)
{
[PATCH] Notifier chain update: API changes The kernel's implementation of notifier chains is unsafe. There is no protection against entries being added to or removed from a chain while the chain is in use. The issues were discussed in this thread: http://marc.theaimsgroup.com/?l=linux-kernel&m=113018709002036&w=2 We noticed that notifier chains in the kernel fall into two basic usage classes: "Blocking" chains are always called from a process context and the callout routines are allowed to sleep; "Atomic" chains can be called from an atomic context and the callout routines are not allowed to sleep. We decided to codify this distinction and make it part of the API. Therefore this set of patches introduces three new, parallel APIs: one for blocking notifiers, one for atomic notifiers, and one for "raw" notifiers (which is really just the old API under a new name). New kinds of data structures are used for the heads of the chains, and new routines are defined for registration, unregistration, and calling a chain. The three APIs are explained in include/linux/notifier.h and their implementation is in kernel/sys.c. With atomic and blocking chains, the implementation guarantees that the chain links will not be corrupted and that chain callers will not get messed up by entries being added or removed. For raw chains the implementation provides no guarantees at all; users of this API must provide their own protections. (The idea was that situations may come up where the assumptions of the atomic and blocking APIs are not appropriate, so it should be possible for users to handle these things in their own way.) There are some limitations, which should not be too hard to live with. For atomic/blocking chains, registration and unregistration must always be done in a process context since the chain is protected by a mutex/rwsem. Also, a callout routine for a non-raw chain must not try to register or unregister entries on its own chain. (This did happen in a couple of places and the code had to be changed to avoid it.) Since atomic chains may be called from within an NMI handler, they cannot use spinlocks for synchronization. Instead we use RCU. The overhead falls almost entirely in the unregister routine, which is okay since unregistration is much less frequent that calling a chain. Here is the list of chains that we adjusted and their classifications. None of them use the raw API, so for the moment it is only a placeholder. ATOMIC CHAINS ------------- arch/i386/kernel/traps.c: i386die_chain arch/ia64/kernel/traps.c: ia64die_chain arch/powerpc/kernel/traps.c: powerpc_die_chain arch/sparc64/kernel/traps.c: sparc64die_chain arch/x86_64/kernel/traps.c: die_chain drivers/char/ipmi/ipmi_si_intf.c: xaction_notifier_list kernel/panic.c: panic_notifier_list kernel/profile.c: task_free_notifier net/bluetooth/hci_core.c: hci_notifier net/ipv4/netfilter/ip_conntrack_core.c: ip_conntrack_chain net/ipv4/netfilter/ip_conntrack_core.c: ip_conntrack_expect_chain net/ipv6/addrconf.c: inet6addr_chain net/netfilter/nf_conntrack_core.c: nf_conntrack_chain net/netfilter/nf_conntrack_core.c: nf_conntrack_expect_chain net/netlink/af_netlink.c: netlink_chain BLOCKING CHAINS --------------- arch/powerpc/platforms/pseries/reconfig.c: pSeries_reconfig_chain arch/s390/kernel/process.c: idle_chain arch/x86_64/kernel/process.c idle_notifier drivers/base/memory.c: memory_chain drivers/cpufreq/cpufreq.c cpufreq_policy_notifier_list drivers/cpufreq/cpufreq.c cpufreq_transition_notifier_list drivers/macintosh/adb.c: adb_client_list drivers/macintosh/via-pmu.c sleep_notifier_list drivers/macintosh/via-pmu68k.c sleep_notifier_list drivers/macintosh/windfarm_core.c wf_client_list drivers/usb/core/notify.c usb_notifier_list drivers/video/fbmem.c fb_notifier_list kernel/cpu.c cpu_chain kernel/module.c module_notify_list kernel/profile.c munmap_notifier kernel/profile.c task_exit_notifier kernel/sys.c reboot_notifier_list net/core/dev.c netdev_chain net/decnet/dn_dev.c: dnaddr_chain net/ipv4/devinet.c: inetaddr_chain It's possible that some of these classifications are wrong. If they are, please let us know or submit a patch to fix them. Note that any chain that gets called very frequently should be atomic, because the rwsem read-locking used for blocking chains is very likely to incur cache misses on SMP systems. (However, if the chain's callout routines may sleep then the chain cannot be atomic.) The patch set was written by Alan Stern and Chandra Seetharaman, incorporating material written by Keith Owens and suggestions from Paul McKenney and Andrew Morton. [jes@sgi.com: restructure the notifier chain initialization macros] Signed-off-by: Alan Stern <stern@rowland.harvard.edu> Signed-off-by: Chandra Seetharaman <sekharan@us.ibm.com> Signed-off-by: Jes Sorensen <jes@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-27 16:16:30 +07:00
return atomic_notifier_chain_register(&hci_notifier, nb);
}
int hci_unregister_notifier(struct notifier_block *nb)
{
[PATCH] Notifier chain update: API changes The kernel's implementation of notifier chains is unsafe. There is no protection against entries being added to or removed from a chain while the chain is in use. The issues were discussed in this thread: http://marc.theaimsgroup.com/?l=linux-kernel&m=113018709002036&w=2 We noticed that notifier chains in the kernel fall into two basic usage classes: "Blocking" chains are always called from a process context and the callout routines are allowed to sleep; "Atomic" chains can be called from an atomic context and the callout routines are not allowed to sleep. We decided to codify this distinction and make it part of the API. Therefore this set of patches introduces three new, parallel APIs: one for blocking notifiers, one for atomic notifiers, and one for "raw" notifiers (which is really just the old API under a new name). New kinds of data structures are used for the heads of the chains, and new routines are defined for registration, unregistration, and calling a chain. The three APIs are explained in include/linux/notifier.h and their implementation is in kernel/sys.c. With atomic and blocking chains, the implementation guarantees that the chain links will not be corrupted and that chain callers will not get messed up by entries being added or removed. For raw chains the implementation provides no guarantees at all; users of this API must provide their own protections. (The idea was that situations may come up where the assumptions of the atomic and blocking APIs are not appropriate, so it should be possible for users to handle these things in their own way.) There are some limitations, which should not be too hard to live with. For atomic/blocking chains, registration and unregistration must always be done in a process context since the chain is protected by a mutex/rwsem. Also, a callout routine for a non-raw chain must not try to register or unregister entries on its own chain. (This did happen in a couple of places and the code had to be changed to avoid it.) Since atomic chains may be called from within an NMI handler, they cannot use spinlocks for synchronization. Instead we use RCU. The overhead falls almost entirely in the unregister routine, which is okay since unregistration is much less frequent that calling a chain. Here is the list of chains that we adjusted and their classifications. None of them use the raw API, so for the moment it is only a placeholder. ATOMIC CHAINS ------------- arch/i386/kernel/traps.c: i386die_chain arch/ia64/kernel/traps.c: ia64die_chain arch/powerpc/kernel/traps.c: powerpc_die_chain arch/sparc64/kernel/traps.c: sparc64die_chain arch/x86_64/kernel/traps.c: die_chain drivers/char/ipmi/ipmi_si_intf.c: xaction_notifier_list kernel/panic.c: panic_notifier_list kernel/profile.c: task_free_notifier net/bluetooth/hci_core.c: hci_notifier net/ipv4/netfilter/ip_conntrack_core.c: ip_conntrack_chain net/ipv4/netfilter/ip_conntrack_core.c: ip_conntrack_expect_chain net/ipv6/addrconf.c: inet6addr_chain net/netfilter/nf_conntrack_core.c: nf_conntrack_chain net/netfilter/nf_conntrack_core.c: nf_conntrack_expect_chain net/netlink/af_netlink.c: netlink_chain BLOCKING CHAINS --------------- arch/powerpc/platforms/pseries/reconfig.c: pSeries_reconfig_chain arch/s390/kernel/process.c: idle_chain arch/x86_64/kernel/process.c idle_notifier drivers/base/memory.c: memory_chain drivers/cpufreq/cpufreq.c cpufreq_policy_notifier_list drivers/cpufreq/cpufreq.c cpufreq_transition_notifier_list drivers/macintosh/adb.c: adb_client_list drivers/macintosh/via-pmu.c sleep_notifier_list drivers/macintosh/via-pmu68k.c sleep_notifier_list drivers/macintosh/windfarm_core.c wf_client_list drivers/usb/core/notify.c usb_notifier_list drivers/video/fbmem.c fb_notifier_list kernel/cpu.c cpu_chain kernel/module.c module_notify_list kernel/profile.c munmap_notifier kernel/profile.c task_exit_notifier kernel/sys.c reboot_notifier_list net/core/dev.c netdev_chain net/decnet/dn_dev.c: dnaddr_chain net/ipv4/devinet.c: inetaddr_chain It's possible that some of these classifications are wrong. If they are, please let us know or submit a patch to fix them. Note that any chain that gets called very frequently should be atomic, because the rwsem read-locking used for blocking chains is very likely to incur cache misses on SMP systems. (However, if the chain's callout routines may sleep then the chain cannot be atomic.) The patch set was written by Alan Stern and Chandra Seetharaman, incorporating material written by Keith Owens and suggestions from Paul McKenney and Andrew Morton. [jes@sgi.com: restructure the notifier chain initialization macros] Signed-off-by: Alan Stern <stern@rowland.harvard.edu> Signed-off-by: Chandra Seetharaman <sekharan@us.ibm.com> Signed-off-by: Jes Sorensen <jes@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-27 16:16:30 +07:00
return atomic_notifier_chain_unregister(&hci_notifier, nb);
}
static void hci_notify(struct hci_dev *hdev, int event)
{
[PATCH] Notifier chain update: API changes The kernel's implementation of notifier chains is unsafe. There is no protection against entries being added to or removed from a chain while the chain is in use. The issues were discussed in this thread: http://marc.theaimsgroup.com/?l=linux-kernel&m=113018709002036&w=2 We noticed that notifier chains in the kernel fall into two basic usage classes: "Blocking" chains are always called from a process context and the callout routines are allowed to sleep; "Atomic" chains can be called from an atomic context and the callout routines are not allowed to sleep. We decided to codify this distinction and make it part of the API. Therefore this set of patches introduces three new, parallel APIs: one for blocking notifiers, one for atomic notifiers, and one for "raw" notifiers (which is really just the old API under a new name). New kinds of data structures are used for the heads of the chains, and new routines are defined for registration, unregistration, and calling a chain. The three APIs are explained in include/linux/notifier.h and their implementation is in kernel/sys.c. With atomic and blocking chains, the implementation guarantees that the chain links will not be corrupted and that chain callers will not get messed up by entries being added or removed. For raw chains the implementation provides no guarantees at all; users of this API must provide their own protections. (The idea was that situations may come up where the assumptions of the atomic and blocking APIs are not appropriate, so it should be possible for users to handle these things in their own way.) There are some limitations, which should not be too hard to live with. For atomic/blocking chains, registration and unregistration must always be done in a process context since the chain is protected by a mutex/rwsem. Also, a callout routine for a non-raw chain must not try to register or unregister entries on its own chain. (This did happen in a couple of places and the code had to be changed to avoid it.) Since atomic chains may be called from within an NMI handler, they cannot use spinlocks for synchronization. Instead we use RCU. The overhead falls almost entirely in the unregister routine, which is okay since unregistration is much less frequent that calling a chain. Here is the list of chains that we adjusted and their classifications. None of them use the raw API, so for the moment it is only a placeholder. ATOMIC CHAINS ------------- arch/i386/kernel/traps.c: i386die_chain arch/ia64/kernel/traps.c: ia64die_chain arch/powerpc/kernel/traps.c: powerpc_die_chain arch/sparc64/kernel/traps.c: sparc64die_chain arch/x86_64/kernel/traps.c: die_chain drivers/char/ipmi/ipmi_si_intf.c: xaction_notifier_list kernel/panic.c: panic_notifier_list kernel/profile.c: task_free_notifier net/bluetooth/hci_core.c: hci_notifier net/ipv4/netfilter/ip_conntrack_core.c: ip_conntrack_chain net/ipv4/netfilter/ip_conntrack_core.c: ip_conntrack_expect_chain net/ipv6/addrconf.c: inet6addr_chain net/netfilter/nf_conntrack_core.c: nf_conntrack_chain net/netfilter/nf_conntrack_core.c: nf_conntrack_expect_chain net/netlink/af_netlink.c: netlink_chain BLOCKING CHAINS --------------- arch/powerpc/platforms/pseries/reconfig.c: pSeries_reconfig_chain arch/s390/kernel/process.c: idle_chain arch/x86_64/kernel/process.c idle_notifier drivers/base/memory.c: memory_chain drivers/cpufreq/cpufreq.c cpufreq_policy_notifier_list drivers/cpufreq/cpufreq.c cpufreq_transition_notifier_list drivers/macintosh/adb.c: adb_client_list drivers/macintosh/via-pmu.c sleep_notifier_list drivers/macintosh/via-pmu68k.c sleep_notifier_list drivers/macintosh/windfarm_core.c wf_client_list drivers/usb/core/notify.c usb_notifier_list drivers/video/fbmem.c fb_notifier_list kernel/cpu.c cpu_chain kernel/module.c module_notify_list kernel/profile.c munmap_notifier kernel/profile.c task_exit_notifier kernel/sys.c reboot_notifier_list net/core/dev.c netdev_chain net/decnet/dn_dev.c: dnaddr_chain net/ipv4/devinet.c: inetaddr_chain It's possible that some of these classifications are wrong. If they are, please let us know or submit a patch to fix them. Note that any chain that gets called very frequently should be atomic, because the rwsem read-locking used for blocking chains is very likely to incur cache misses on SMP systems. (However, if the chain's callout routines may sleep then the chain cannot be atomic.) The patch set was written by Alan Stern and Chandra Seetharaman, incorporating material written by Keith Owens and suggestions from Paul McKenney and Andrew Morton. [jes@sgi.com: restructure the notifier chain initialization macros] Signed-off-by: Alan Stern <stern@rowland.harvard.edu> Signed-off-by: Chandra Seetharaman <sekharan@us.ibm.com> Signed-off-by: Jes Sorensen <jes@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-27 16:16:30 +07:00
atomic_notifier_call_chain(&hci_notifier, event, hdev);
}
/* ---- HCI requests ---- */
void hci_req_complete(struct hci_dev *hdev, __u16 cmd, int result)
{
BT_DBG("%s command 0x%04x result 0x%2.2x", hdev->name, cmd, result);
/* If this is the init phase check if the completed command matches
* the last init command, and if not just return.
*/
if (test_bit(HCI_INIT, &hdev->flags) && hdev->init_last_cmd != cmd)
return;
if (hdev->req_status == HCI_REQ_PEND) {
hdev->req_result = result;
hdev->req_status = HCI_REQ_DONE;
wake_up_interruptible(&hdev->req_wait_q);
}
}
static void hci_req_cancel(struct hci_dev *hdev, int err)
{
BT_DBG("%s err 0x%2.2x", hdev->name, err);
if (hdev->req_status == HCI_REQ_PEND) {
hdev->req_result = err;
hdev->req_status = HCI_REQ_CANCELED;
wake_up_interruptible(&hdev->req_wait_q);
}
}
/* Execute request and wait for completion. */
static int __hci_request(struct hci_dev *hdev, void (*req)(struct hci_dev *hdev, unsigned long opt),
unsigned long opt, __u32 timeout)
{
DECLARE_WAITQUEUE(wait, current);
int err = 0;
BT_DBG("%s start", hdev->name);
hdev->req_status = HCI_REQ_PEND;
add_wait_queue(&hdev->req_wait_q, &wait);
set_current_state(TASK_INTERRUPTIBLE);
req(hdev, opt);
schedule_timeout(timeout);
remove_wait_queue(&hdev->req_wait_q, &wait);
if (signal_pending(current))
return -EINTR;
switch (hdev->req_status) {
case HCI_REQ_DONE:
err = -bt_to_errno(hdev->req_result);
break;
case HCI_REQ_CANCELED:
err = -hdev->req_result;
break;
default:
err = -ETIMEDOUT;
break;
}
hdev->req_status = hdev->req_result = 0;
BT_DBG("%s end: err %d", hdev->name, err);
return err;
}
static inline int hci_request(struct hci_dev *hdev, void (*req)(struct hci_dev *hdev, unsigned long opt),
unsigned long opt, __u32 timeout)
{
int ret;
if (!test_bit(HCI_UP, &hdev->flags))
return -ENETDOWN;
/* Serialize all requests */
hci_req_lock(hdev);
ret = __hci_request(hdev, req, opt, timeout);
hci_req_unlock(hdev);
return ret;
}
static void hci_reset_req(struct hci_dev *hdev, unsigned long opt)
{
BT_DBG("%s %ld", hdev->name, opt);
/* Reset device */
set_bit(HCI_RESET, &hdev->flags);
hci_send_cmd(hdev, HCI_OP_RESET, 0, NULL);
}
static void hci_init_req(struct hci_dev *hdev, unsigned long opt)
{
struct hci_cp_delete_stored_link_key cp;
struct sk_buff *skb;
__le16 param;
__u8 flt_type;
BT_DBG("%s %ld", hdev->name, opt);
/* Driver initialization */
/* Special commands */
while ((skb = skb_dequeue(&hdev->driver_init))) {
bt_cb(skb)->pkt_type = HCI_COMMAND_PKT;
skb->dev = (void *) hdev;
skb_queue_tail(&hdev->cmd_q, skb);
tasklet_schedule(&hdev->cmd_task);
}
skb_queue_purge(&hdev->driver_init);
/* Mandatory initialization */
/* Reset */
if (!test_bit(HCI_QUIRK_NO_RESET, &hdev->quirks)) {
set_bit(HCI_RESET, &hdev->flags);
hci_send_cmd(hdev, HCI_OP_RESET, 0, NULL);
}
/* Read Local Supported Features */
hci_send_cmd(hdev, HCI_OP_READ_LOCAL_FEATURES, 0, NULL);
/* Read Local Version */
hci_send_cmd(hdev, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
/* Read Buffer Size (ACL mtu, max pkt, etc.) */
hci_send_cmd(hdev, HCI_OP_READ_BUFFER_SIZE, 0, NULL);
#if 0
/* Host buffer size */
{
struct hci_cp_host_buffer_size cp;
cp.acl_mtu = cpu_to_le16(HCI_MAX_ACL_SIZE);
cp.sco_mtu = HCI_MAX_SCO_SIZE;
cp.acl_max_pkt = cpu_to_le16(0xffff);
cp.sco_max_pkt = cpu_to_le16(0xffff);
hci_send_cmd(hdev, HCI_OP_HOST_BUFFER_SIZE, sizeof(cp), &cp);
}
#endif
/* Read BD Address */
hci_send_cmd(hdev, HCI_OP_READ_BD_ADDR, 0, NULL);
/* Read Class of Device */
hci_send_cmd(hdev, HCI_OP_READ_CLASS_OF_DEV, 0, NULL);
/* Read Local Name */
hci_send_cmd(hdev, HCI_OP_READ_LOCAL_NAME, 0, NULL);
/* Read Voice Setting */
hci_send_cmd(hdev, HCI_OP_READ_VOICE_SETTING, 0, NULL);
/* Optional initialization */
/* Clear Event Filters */
flt_type = HCI_FLT_CLEAR_ALL;
hci_send_cmd(hdev, HCI_OP_SET_EVENT_FLT, 1, &flt_type);
/* Connection accept timeout ~20 secs */
param = cpu_to_le16(0x7d00);
hci_send_cmd(hdev, HCI_OP_WRITE_CA_TIMEOUT, 2, &param);
bacpy(&cp.bdaddr, BDADDR_ANY);
cp.delete_all = 1;
hci_send_cmd(hdev, HCI_OP_DELETE_STORED_LINK_KEY, sizeof(cp), &cp);
}
static void hci_le_init_req(struct hci_dev *hdev, unsigned long opt)
{
BT_DBG("%s", hdev->name);
/* Read LE buffer size */
hci_send_cmd(hdev, HCI_OP_LE_READ_BUFFER_SIZE, 0, NULL);
}
static void hci_scan_req(struct hci_dev *hdev, unsigned long opt)
{
__u8 scan = opt;
BT_DBG("%s %x", hdev->name, scan);
/* Inquiry and Page scans */
hci_send_cmd(hdev, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan);
}
static void hci_auth_req(struct hci_dev *hdev, unsigned long opt)
{
__u8 auth = opt;
BT_DBG("%s %x", hdev->name, auth);
/* Authentication */
hci_send_cmd(hdev, HCI_OP_WRITE_AUTH_ENABLE, 1, &auth);
}
static void hci_encrypt_req(struct hci_dev *hdev, unsigned long opt)
{
__u8 encrypt = opt;
BT_DBG("%s %x", hdev->name, encrypt);
/* Encryption */
hci_send_cmd(hdev, HCI_OP_WRITE_ENCRYPT_MODE, 1, &encrypt);
}
static void hci_linkpol_req(struct hci_dev *hdev, unsigned long opt)
{
__le16 policy = cpu_to_le16(opt);
BT_DBG("%s %x", hdev->name, policy);
/* Default link policy */
hci_send_cmd(hdev, HCI_OP_WRITE_DEF_LINK_POLICY, 2, &policy);
}
/* Get HCI device by index.
* Device is held on return. */
struct hci_dev *hci_dev_get(int index)
{
struct hci_dev *hdev = NULL;
struct list_head *p;
BT_DBG("%d", index);
if (index < 0)
return NULL;
read_lock(&hci_dev_list_lock);
list_for_each(p, &hci_dev_list) {
struct hci_dev *d = list_entry(p, struct hci_dev, list);
if (d->id == index) {
hdev = hci_dev_hold(d);
break;
}
}
read_unlock(&hci_dev_list_lock);
return hdev;
}
/* ---- Inquiry support ---- */
static void inquiry_cache_flush(struct hci_dev *hdev)
{
struct inquiry_cache *cache = &hdev->inq_cache;
struct inquiry_entry *next = cache->list, *e;
BT_DBG("cache %p", cache);
cache->list = NULL;
while ((e = next)) {
next = e->next;
kfree(e);
}
}
struct inquiry_entry *hci_inquiry_cache_lookup(struct hci_dev *hdev, bdaddr_t *bdaddr)
{
struct inquiry_cache *cache = &hdev->inq_cache;
struct inquiry_entry *e;
BT_DBG("cache %p, %s", cache, batostr(bdaddr));
for (e = cache->list; e; e = e->next)
if (!bacmp(&e->data.bdaddr, bdaddr))
break;
return e;
}
void hci_inquiry_cache_update(struct hci_dev *hdev, struct inquiry_data *data)
{
struct inquiry_cache *cache = &hdev->inq_cache;
struct inquiry_entry *ie;
BT_DBG("cache %p, %s", cache, batostr(&data->bdaddr));
ie = hci_inquiry_cache_lookup(hdev, &data->bdaddr);
if (!ie) {
/* Entry not in the cache. Add new one. */
ie = kzalloc(sizeof(struct inquiry_entry), GFP_ATOMIC);
if (!ie)
return;
ie->next = cache->list;
cache->list = ie;
}
memcpy(&ie->data, data, sizeof(*data));
ie->timestamp = jiffies;
cache->timestamp = jiffies;
}
static int inquiry_cache_dump(struct hci_dev *hdev, int num, __u8 *buf)
{
struct inquiry_cache *cache = &hdev->inq_cache;
struct inquiry_info *info = (struct inquiry_info *) buf;
struct inquiry_entry *e;
int copied = 0;
for (e = cache->list; e && copied < num; e = e->next, copied++) {
struct inquiry_data *data = &e->data;
bacpy(&info->bdaddr, &data->bdaddr);
info->pscan_rep_mode = data->pscan_rep_mode;
info->pscan_period_mode = data->pscan_period_mode;
info->pscan_mode = data->pscan_mode;
memcpy(info->dev_class, data->dev_class, 3);
info->clock_offset = data->clock_offset;
info++;
}
BT_DBG("cache %p, copied %d", cache, copied);
return copied;
}
static void hci_inq_req(struct hci_dev *hdev, unsigned long opt)
{
struct hci_inquiry_req *ir = (struct hci_inquiry_req *) opt;
struct hci_cp_inquiry cp;
BT_DBG("%s", hdev->name);
if (test_bit(HCI_INQUIRY, &hdev->flags))
return;
/* Start Inquiry */
memcpy(&cp.lap, &ir->lap, 3);
cp.length = ir->length;
cp.num_rsp = ir->num_rsp;
hci_send_cmd(hdev, HCI_OP_INQUIRY, sizeof(cp), &cp);
}
int hci_inquiry(void __user *arg)
{
__u8 __user *ptr = arg;
struct hci_inquiry_req ir;
struct hci_dev *hdev;
int err = 0, do_inquiry = 0, max_rsp;
long timeo;
__u8 *buf;
if (copy_from_user(&ir, ptr, sizeof(ir)))
return -EFAULT;
hdev = hci_dev_get(ir.dev_id);
if (!hdev)
return -ENODEV;
hci_dev_lock_bh(hdev);
if (inquiry_cache_age(hdev) > INQUIRY_CACHE_AGE_MAX ||
inquiry_cache_empty(hdev) ||
ir.flags & IREQ_CACHE_FLUSH) {
inquiry_cache_flush(hdev);
do_inquiry = 1;
}
hci_dev_unlock_bh(hdev);
timeo = ir.length * msecs_to_jiffies(2000);
if (do_inquiry) {
err = hci_request(hdev, hci_inq_req, (unsigned long)&ir, timeo);
if (err < 0)
goto done;
}
/* for unlimited number of responses we will use buffer with 255 entries */
max_rsp = (ir.num_rsp == 0) ? 255 : ir.num_rsp;
/* cache_dump can't sleep. Therefore we allocate temp buffer and then
* copy it to the user space.
*/
buf = kmalloc(sizeof(struct inquiry_info) * max_rsp, GFP_KERNEL);
if (!buf) {
err = -ENOMEM;
goto done;
}
hci_dev_lock_bh(hdev);
ir.num_rsp = inquiry_cache_dump(hdev, max_rsp, buf);
hci_dev_unlock_bh(hdev);
BT_DBG("num_rsp %d", ir.num_rsp);
if (!copy_to_user(ptr, &ir, sizeof(ir))) {
ptr += sizeof(ir);
if (copy_to_user(ptr, buf, sizeof(struct inquiry_info) *
ir.num_rsp))
err = -EFAULT;
} else
err = -EFAULT;
kfree(buf);
done:
hci_dev_put(hdev);
return err;
}
/* ---- HCI ioctl helpers ---- */
int hci_dev_open(__u16 dev)
{
struct hci_dev *hdev;
int ret = 0;
hdev = hci_dev_get(dev);
if (!hdev)
return -ENODEV;
BT_DBG("%s %p", hdev->name, hdev);
hci_req_lock(hdev);
if (hdev->rfkill && rfkill_blocked(hdev->rfkill)) {
ret = -ERFKILL;
goto done;
}
if (test_bit(HCI_UP, &hdev->flags)) {
ret = -EALREADY;
goto done;
}
if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
set_bit(HCI_RAW, &hdev->flags);
/* Treat all non BR/EDR controllers as raw devices for now */
if (hdev->dev_type != HCI_BREDR)
set_bit(HCI_RAW, &hdev->flags);
if (hdev->open(hdev)) {
ret = -EIO;
goto done;
}
if (!test_bit(HCI_RAW, &hdev->flags)) {
atomic_set(&hdev->cmd_cnt, 1);
set_bit(HCI_INIT, &hdev->flags);
hdev->init_last_cmd = 0;
ret = __hci_request(hdev, hci_init_req, 0,
msecs_to_jiffies(HCI_INIT_TIMEOUT));
if (lmp_host_le_capable(hdev))
ret = __hci_request(hdev, hci_le_init_req, 0,
msecs_to_jiffies(HCI_INIT_TIMEOUT));
clear_bit(HCI_INIT, &hdev->flags);
}
if (!ret) {
hci_dev_hold(hdev);
set_bit(HCI_UP, &hdev->flags);
hci_notify(hdev, HCI_DEV_UP);
if (!test_bit(HCI_SETUP, &hdev->flags))
mgmt_powered(hdev->id, 1);
} else {
/* Init failed, cleanup */
tasklet_kill(&hdev->rx_task);
tasklet_kill(&hdev->tx_task);
tasklet_kill(&hdev->cmd_task);
skb_queue_purge(&hdev->cmd_q);
skb_queue_purge(&hdev->rx_q);
if (hdev->flush)
hdev->flush(hdev);
if (hdev->sent_cmd) {
kfree_skb(hdev->sent_cmd);
hdev->sent_cmd = NULL;
}
hdev->close(hdev);
hdev->flags = 0;
}
done:
hci_req_unlock(hdev);
hci_dev_put(hdev);
return ret;
}
static int hci_dev_do_close(struct hci_dev *hdev)
{
BT_DBG("%s %p", hdev->name, hdev);
hci_req_cancel(hdev, ENODEV);
hci_req_lock(hdev);
if (!test_and_clear_bit(HCI_UP, &hdev->flags)) {
del_timer_sync(&hdev->cmd_timer);
hci_req_unlock(hdev);
return 0;
}
/* Kill RX and TX tasks */
tasklet_kill(&hdev->rx_task);
tasklet_kill(&hdev->tx_task);
hci_dev_lock_bh(hdev);
inquiry_cache_flush(hdev);
hci_conn_hash_flush(hdev);
hci_dev_unlock_bh(hdev);
hci_notify(hdev, HCI_DEV_DOWN);
if (hdev->flush)
hdev->flush(hdev);
/* Reset device */
skb_queue_purge(&hdev->cmd_q);
atomic_set(&hdev->cmd_cnt, 1);
if (!test_bit(HCI_RAW, &hdev->flags)) {
set_bit(HCI_INIT, &hdev->flags);
__hci_request(hdev, hci_reset_req, 0,
Bluetooth: Increase HCI reset timeout in hci_dev_do_close I've noticed that my CSR usb dongle was not working if it was plugged in when PC was booting. It looks like I get two HCI reset command complete events (see hcidump logs below). The root cause is reset called from off_timer. Timeout for this reset to complete is set to 250ms and my bt dongle requires more time for replying with command complete event. After that, chip seems to reply with reset command complete event for next non-reset command. Attached patch increase mentioned timeout to HCI_INIT_TIMEOUT, this value is already used for timeouting hci_reset_req in hci_dev_reset(). This might also be related to BT not working after suspend that was reported here some time ago. Hcidump log: 2011-09-12 23:13:27.379465 < HCI Command: Reset (0x03|0x0003) plen 0 2011-09-12 23:13:27.380797 > HCI Event: Command Complete (0x0e) plen 4 Reset (0x03|0x0003) ncmd 1 status 0x00 2011-09-12 23:13:27.380859 < HCI Command: Read Local Supported Features (0x04|0x000 3) plen 0 2011-09-12 23:13:27.760789 > HCI Event: Command Complete (0x0e) plen 4 Reset (0x03|0x0003) ncmd 1 status 0x00 2011-09-12 23:13:27.760831 < HCI Command: Read Local Version Information (0x04|0x00 01) plen 0 2011-09-12 23:13:27.764780 > HCI Event: Command Complete (0x0e) plen 12 Read Local Version Information (0x04|0x0001) ncmd 1 status 0x00 HCI Version: 1.1 (0x1) HCI Revision: 0x36f LMP Version: 1.1 (0x1) LMP Subversion: 0x36f Manufacturer: Cambridge Silicon Radio (10) Signed-off-by: Szymon Janc <szymon@janc.net.pl> Signed-off-by: Gustavo F. Padovan <padovan@profusion.mobi>
2011-10-18 04:05:49 +07:00
msecs_to_jiffies(HCI_INIT_TIMEOUT));
clear_bit(HCI_INIT, &hdev->flags);
}
/* Kill cmd task */
tasklet_kill(&hdev->cmd_task);
/* Drop queues */
skb_queue_purge(&hdev->rx_q);
skb_queue_purge(&hdev->cmd_q);
skb_queue_purge(&hdev->raw_q);
/* Drop last sent command */
if (hdev->sent_cmd) {
del_timer_sync(&hdev->cmd_timer);
kfree_skb(hdev->sent_cmd);
hdev->sent_cmd = NULL;
}
/* After this point our queues are empty
* and no tasks are scheduled. */
hdev->close(hdev);
mgmt_powered(hdev->id, 0);
/* Clear flags */
hdev->flags = 0;
hci_req_unlock(hdev);
hci_dev_put(hdev);
return 0;
}
int hci_dev_close(__u16 dev)
{
struct hci_dev *hdev;
int err;
hdev = hci_dev_get(dev);
if (!hdev)
return -ENODEV;
err = hci_dev_do_close(hdev);
hci_dev_put(hdev);
return err;
}
int hci_dev_reset(__u16 dev)
{
struct hci_dev *hdev;
int ret = 0;
hdev = hci_dev_get(dev);
if (!hdev)
return -ENODEV;
hci_req_lock(hdev);
tasklet_disable(&hdev->tx_task);
if (!test_bit(HCI_UP, &hdev->flags))
goto done;
/* Drop queues */
skb_queue_purge(&hdev->rx_q);
skb_queue_purge(&hdev->cmd_q);
hci_dev_lock_bh(hdev);
inquiry_cache_flush(hdev);
hci_conn_hash_flush(hdev);
hci_dev_unlock_bh(hdev);
if (hdev->flush)
hdev->flush(hdev);
atomic_set(&hdev->cmd_cnt, 1);
hdev->acl_cnt = 0; hdev->sco_cnt = 0; hdev->le_cnt = 0;
if (!test_bit(HCI_RAW, &hdev->flags))
ret = __hci_request(hdev, hci_reset_req, 0,
msecs_to_jiffies(HCI_INIT_TIMEOUT));
done:
tasklet_enable(&hdev->tx_task);
hci_req_unlock(hdev);
hci_dev_put(hdev);
return ret;
}
int hci_dev_reset_stat(__u16 dev)
{
struct hci_dev *hdev;
int ret = 0;
hdev = hci_dev_get(dev);
if (!hdev)
return -ENODEV;
memset(&hdev->stat, 0, sizeof(struct hci_dev_stats));
hci_dev_put(hdev);
return ret;
}
int hci_dev_cmd(unsigned int cmd, void __user *arg)
{
struct hci_dev *hdev;
struct hci_dev_req dr;
int err = 0;
if (copy_from_user(&dr, arg, sizeof(dr)))
return -EFAULT;
hdev = hci_dev_get(dr.dev_id);
if (!hdev)
return -ENODEV;
switch (cmd) {
case HCISETAUTH:
err = hci_request(hdev, hci_auth_req, dr.dev_opt,
msecs_to_jiffies(HCI_INIT_TIMEOUT));
break;
case HCISETENCRYPT:
if (!lmp_encrypt_capable(hdev)) {
err = -EOPNOTSUPP;
break;
}
if (!test_bit(HCI_AUTH, &hdev->flags)) {
/* Auth must be enabled first */
err = hci_request(hdev, hci_auth_req, dr.dev_opt,
msecs_to_jiffies(HCI_INIT_TIMEOUT));
if (err)
break;
}
err = hci_request(hdev, hci_encrypt_req, dr.dev_opt,
msecs_to_jiffies(HCI_INIT_TIMEOUT));
break;
case HCISETSCAN:
err = hci_request(hdev, hci_scan_req, dr.dev_opt,
msecs_to_jiffies(HCI_INIT_TIMEOUT));
break;
case HCISETLINKPOL:
err = hci_request(hdev, hci_linkpol_req, dr.dev_opt,
msecs_to_jiffies(HCI_INIT_TIMEOUT));
break;
case HCISETLINKMODE:
hdev->link_mode = ((__u16) dr.dev_opt) &
(HCI_LM_MASTER | HCI_LM_ACCEPT);
break;
case HCISETPTYPE:
hdev->pkt_type = (__u16) dr.dev_opt;
break;
case HCISETACLMTU:
hdev->acl_mtu = *((__u16 *) &dr.dev_opt + 1);
hdev->acl_pkts = *((__u16 *) &dr.dev_opt + 0);
break;
case HCISETSCOMTU:
hdev->sco_mtu = *((__u16 *) &dr.dev_opt + 1);
hdev->sco_pkts = *((__u16 *) &dr.dev_opt + 0);
break;
default:
err = -EINVAL;
break;
}
hci_dev_put(hdev);
return err;
}
int hci_get_dev_list(void __user *arg)
{
struct hci_dev_list_req *dl;
struct hci_dev_req *dr;
struct list_head *p;
int n = 0, size, err;
__u16 dev_num;
if (get_user(dev_num, (__u16 __user *) arg))
return -EFAULT;
if (!dev_num || dev_num > (PAGE_SIZE * 2) / sizeof(*dr))
return -EINVAL;
size = sizeof(*dl) + dev_num * sizeof(*dr);
dl = kzalloc(size, GFP_KERNEL);
if (!dl)
return -ENOMEM;
dr = dl->dev_req;
read_lock_bh(&hci_dev_list_lock);
list_for_each(p, &hci_dev_list) {
struct hci_dev *hdev;
hdev = list_entry(p, struct hci_dev, list);
hci_del_off_timer(hdev);
if (!test_bit(HCI_MGMT, &hdev->flags))
set_bit(HCI_PAIRABLE, &hdev->flags);
(dr + n)->dev_id = hdev->id;
(dr + n)->dev_opt = hdev->flags;
if (++n >= dev_num)
break;
}
read_unlock_bh(&hci_dev_list_lock);
dl->dev_num = n;
size = sizeof(*dl) + n * sizeof(*dr);
err = copy_to_user(arg, dl, size);
kfree(dl);
return err ? -EFAULT : 0;
}
int hci_get_dev_info(void __user *arg)
{
struct hci_dev *hdev;
struct hci_dev_info di;
int err = 0;
if (copy_from_user(&di, arg, sizeof(di)))
return -EFAULT;
hdev = hci_dev_get(di.dev_id);
if (!hdev)
return -ENODEV;
hci_del_off_timer(hdev);
if (!test_bit(HCI_MGMT, &hdev->flags))
set_bit(HCI_PAIRABLE, &hdev->flags);
strcpy(di.name, hdev->name);
di.bdaddr = hdev->bdaddr;
di.type = (hdev->bus & 0x0f) | (hdev->dev_type << 4);
di.flags = hdev->flags;
di.pkt_type = hdev->pkt_type;
di.acl_mtu = hdev->acl_mtu;
di.acl_pkts = hdev->acl_pkts;
di.sco_mtu = hdev->sco_mtu;
di.sco_pkts = hdev->sco_pkts;
di.link_policy = hdev->link_policy;
di.link_mode = hdev->link_mode;
memcpy(&di.stat, &hdev->stat, sizeof(di.stat));
memcpy(&di.features, &hdev->features, sizeof(di.features));
if (copy_to_user(arg, &di, sizeof(di)))
err = -EFAULT;
hci_dev_put(hdev);
return err;
}
/* ---- Interface to HCI drivers ---- */
static int hci_rfkill_set_block(void *data, bool blocked)
{
struct hci_dev *hdev = data;
BT_DBG("%p name %s blocked %d", hdev, hdev->name, blocked);
if (!blocked)
return 0;
hci_dev_do_close(hdev);
return 0;
}
static const struct rfkill_ops hci_rfkill_ops = {
.set_block = hci_rfkill_set_block,
};
/* Alloc HCI device */
struct hci_dev *hci_alloc_dev(void)
{
struct hci_dev *hdev;
hdev = kzalloc(sizeof(struct hci_dev), GFP_KERNEL);
if (!hdev)
return NULL;
skb_queue_head_init(&hdev->driver_init);
return hdev;
}
EXPORT_SYMBOL(hci_alloc_dev);
/* Free HCI device */
void hci_free_dev(struct hci_dev *hdev)
{
skb_queue_purge(&hdev->driver_init);
/* will free via device release */
put_device(&hdev->dev);
}
EXPORT_SYMBOL(hci_free_dev);
static void hci_power_on(struct work_struct *work)
{
struct hci_dev *hdev = container_of(work, struct hci_dev, power_on);
BT_DBG("%s", hdev->name);
if (hci_dev_open(hdev->id) < 0)
return;
if (test_bit(HCI_AUTO_OFF, &hdev->flags))
mod_timer(&hdev->off_timer,
jiffies + msecs_to_jiffies(AUTO_OFF_TIMEOUT));
if (test_and_clear_bit(HCI_SETUP, &hdev->flags))
mgmt_index_added(hdev->id);
}
static void hci_power_off(struct work_struct *work)
{
struct hci_dev *hdev = container_of(work, struct hci_dev, power_off);
BT_DBG("%s", hdev->name);
hci_dev_close(hdev->id);
}
static void hci_auto_off(unsigned long data)
{
struct hci_dev *hdev = (struct hci_dev *) data;
BT_DBG("%s", hdev->name);
clear_bit(HCI_AUTO_OFF, &hdev->flags);
queue_work(hdev->workqueue, &hdev->power_off);
}
void hci_del_off_timer(struct hci_dev *hdev)
{
BT_DBG("%s", hdev->name);
clear_bit(HCI_AUTO_OFF, &hdev->flags);
del_timer(&hdev->off_timer);
}
int hci_uuids_clear(struct hci_dev *hdev)
{
struct list_head *p, *n;
list_for_each_safe(p, n, &hdev->uuids) {
struct bt_uuid *uuid;
uuid = list_entry(p, struct bt_uuid, list);
list_del(p);
kfree(uuid);
}
return 0;
}
int hci_link_keys_clear(struct hci_dev *hdev)
{
struct list_head *p, *n;
list_for_each_safe(p, n, &hdev->link_keys) {
struct link_key *key;
key = list_entry(p, struct link_key, list);
list_del(p);
kfree(key);
}
return 0;
}
struct link_key *hci_find_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
{
struct list_head *p;
list_for_each(p, &hdev->link_keys) {
struct link_key *k;
k = list_entry(p, struct link_key, list);
if (bacmp(bdaddr, &k->bdaddr) == 0)
return k;
}
return NULL;
}
static int hci_persistent_key(struct hci_dev *hdev, struct hci_conn *conn,
u8 key_type, u8 old_key_type)
{
/* Legacy key */
if (key_type < 0x03)
return 1;
/* Debug keys are insecure so don't store them persistently */
if (key_type == HCI_LK_DEBUG_COMBINATION)
return 0;
/* Changed combination key and there's no previous one */
if (key_type == HCI_LK_CHANGED_COMBINATION && old_key_type == 0xff)
return 0;
/* Security mode 3 case */
if (!conn)
return 1;
/* Neither local nor remote side had no-bonding as requirement */
if (conn->auth_type > 0x01 && conn->remote_auth > 0x01)
return 1;
/* Local side had dedicated bonding as requirement */
if (conn->auth_type == 0x02 || conn->auth_type == 0x03)
return 1;
/* Remote side had dedicated bonding as requirement */
if (conn->remote_auth == 0x02 || conn->remote_auth == 0x03)
return 1;
/* If none of the above criteria match, then don't store the key
* persistently */
return 0;
}
struct link_key *hci_find_ltk(struct hci_dev *hdev, __le16 ediv, u8 rand[8])
{
struct link_key *k;
list_for_each_entry(k, &hdev->link_keys, list) {
struct key_master_id *id;
if (k->type != HCI_LK_SMP_LTK)
continue;
if (k->dlen != sizeof(*id))
continue;
id = (void *) &k->data;
if (id->ediv == ediv &&
(memcmp(rand, id->rand, sizeof(id->rand)) == 0))
return k;
}
return NULL;
}
EXPORT_SYMBOL(hci_find_ltk);
struct link_key *hci_find_link_key_type(struct hci_dev *hdev,
bdaddr_t *bdaddr, u8 type)
{
struct link_key *k;
list_for_each_entry(k, &hdev->link_keys, list)
if (k->type == type && bacmp(bdaddr, &k->bdaddr) == 0)
return k;
return NULL;
}
EXPORT_SYMBOL(hci_find_link_key_type);
int hci_add_link_key(struct hci_dev *hdev, struct hci_conn *conn, int new_key,
bdaddr_t *bdaddr, u8 *val, u8 type, u8 pin_len)
{
struct link_key *key, *old_key;
u8 old_key_type, persistent;
old_key = hci_find_link_key(hdev, bdaddr);
if (old_key) {
old_key_type = old_key->type;
key = old_key;
} else {
old_key_type = conn ? conn->key_type : 0xff;
key = kzalloc(sizeof(*key), GFP_ATOMIC);
if (!key)
return -ENOMEM;
list_add(&key->list, &hdev->link_keys);
}
BT_DBG("%s key for %s type %u", hdev->name, batostr(bdaddr), type);
/* Some buggy controller combinations generate a changed
* combination key for legacy pairing even when there's no
* previous key */
if (type == HCI_LK_CHANGED_COMBINATION &&
(!conn || conn->remote_auth == 0xff) &&
old_key_type == 0xff) {
type = HCI_LK_COMBINATION;
if (conn)
conn->key_type = type;
}
bacpy(&key->bdaddr, bdaddr);
memcpy(key->val, val, 16);
key->pin_len = pin_len;
if (type == HCI_LK_CHANGED_COMBINATION)
key->type = old_key_type;
else
key->type = type;
if (!new_key)
return 0;
persistent = hci_persistent_key(hdev, conn, type, old_key_type);
mgmt_new_key(hdev->id, key, persistent);
if (!persistent) {
list_del(&key->list);
kfree(key);
}
return 0;
}
int hci_add_ltk(struct hci_dev *hdev, int new_key, bdaddr_t *bdaddr,
u8 key_size, __le16 ediv, u8 rand[8], u8 ltk[16])
{
struct link_key *key, *old_key;
struct key_master_id *id;
u8 old_key_type;
BT_DBG("%s addr %s", hdev->name, batostr(bdaddr));
old_key = hci_find_link_key_type(hdev, bdaddr, HCI_LK_SMP_LTK);
if (old_key) {
key = old_key;
old_key_type = old_key->type;
} else {
key = kzalloc(sizeof(*key) + sizeof(*id), GFP_ATOMIC);
if (!key)
return -ENOMEM;
list_add(&key->list, &hdev->link_keys);
old_key_type = 0xff;
}
key->dlen = sizeof(*id);
bacpy(&key->bdaddr, bdaddr);
memcpy(key->val, ltk, sizeof(key->val));
key->type = HCI_LK_SMP_LTK;
key->pin_len = key_size;
id = (void *) &key->data;
id->ediv = ediv;
memcpy(id->rand, rand, sizeof(id->rand));
if (new_key)
mgmt_new_key(hdev->id, key, old_key_type);
return 0;
}
int hci_remove_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
{
struct link_key *key;
key = hci_find_link_key(hdev, bdaddr);
if (!key)
return -ENOENT;
BT_DBG("%s removing %s", hdev->name, batostr(bdaddr));
list_del(&key->list);
kfree(key);
return 0;
}
/* HCI command timer function */
static void hci_cmd_timer(unsigned long arg)
{
struct hci_dev *hdev = (void *) arg;
BT_ERR("%s command tx timeout", hdev->name);
atomic_set(&hdev->cmd_cnt, 1);
tasklet_schedule(&hdev->cmd_task);
}
struct oob_data *hci_find_remote_oob_data(struct hci_dev *hdev,
bdaddr_t *bdaddr)
{
struct oob_data *data;
list_for_each_entry(data, &hdev->remote_oob_data, list)
if (bacmp(bdaddr, &data->bdaddr) == 0)
return data;
return NULL;
}
int hci_remove_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr)
{
struct oob_data *data;
data = hci_find_remote_oob_data(hdev, bdaddr);
if (!data)
return -ENOENT;
BT_DBG("%s removing %s", hdev->name, batostr(bdaddr));
list_del(&data->list);
kfree(data);
return 0;
}
int hci_remote_oob_data_clear(struct hci_dev *hdev)
{
struct oob_data *data, *n;
list_for_each_entry_safe(data, n, &hdev->remote_oob_data, list) {
list_del(&data->list);
kfree(data);
}
return 0;
}
int hci_add_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 *hash,
u8 *randomizer)
{
struct oob_data *data;
data = hci_find_remote_oob_data(hdev, bdaddr);
if (!data) {
data = kmalloc(sizeof(*data), GFP_ATOMIC);
if (!data)
return -ENOMEM;
bacpy(&data->bdaddr, bdaddr);
list_add(&data->list, &hdev->remote_oob_data);
}
memcpy(data->hash, hash, sizeof(data->hash));
memcpy(data->randomizer, randomizer, sizeof(data->randomizer));
BT_DBG("%s for %s", hdev->name, batostr(bdaddr));
return 0;
}
struct bdaddr_list *hci_blacklist_lookup(struct hci_dev *hdev,
bdaddr_t *bdaddr)
{
struct list_head *p;
list_for_each(p, &hdev->blacklist) {
struct bdaddr_list *b;
b = list_entry(p, struct bdaddr_list, list);
if (bacmp(bdaddr, &b->bdaddr) == 0)
return b;
}
return NULL;
}
int hci_blacklist_clear(struct hci_dev *hdev)
{
struct list_head *p, *n;
list_for_each_safe(p, n, &hdev->blacklist) {
struct bdaddr_list *b;
b = list_entry(p, struct bdaddr_list, list);
list_del(p);
kfree(b);
}
return 0;
}
int hci_blacklist_add(struct hci_dev *hdev, bdaddr_t *bdaddr)
{
struct bdaddr_list *entry;
if (bacmp(bdaddr, BDADDR_ANY) == 0)
return -EBADF;
if (hci_blacklist_lookup(hdev, bdaddr))
return -EEXIST;
entry = kzalloc(sizeof(struct bdaddr_list), GFP_KERNEL);
if (!entry)
return -ENOMEM;
bacpy(&entry->bdaddr, bdaddr);
list_add(&entry->list, &hdev->blacklist);
return mgmt_device_blocked(hdev->id, bdaddr);
}
int hci_blacklist_del(struct hci_dev *hdev, bdaddr_t *bdaddr)
{
struct bdaddr_list *entry;
if (bacmp(bdaddr, BDADDR_ANY) == 0) {
return hci_blacklist_clear(hdev);
}
entry = hci_blacklist_lookup(hdev, bdaddr);
if (!entry) {
return -ENOENT;
}
list_del(&entry->list);
kfree(entry);
return mgmt_device_unblocked(hdev->id, bdaddr);
}
static void hci_clear_adv_cache(unsigned long arg)
{
struct hci_dev *hdev = (void *) arg;
hci_dev_lock(hdev);
hci_adv_entries_clear(hdev);
hci_dev_unlock(hdev);
}
int hci_adv_entries_clear(struct hci_dev *hdev)
{
struct adv_entry *entry, *tmp;
list_for_each_entry_safe(entry, tmp, &hdev->adv_entries, list) {
list_del(&entry->list);
kfree(entry);
}
BT_DBG("%s adv cache cleared", hdev->name);
return 0;
}
struct adv_entry *hci_find_adv_entry(struct hci_dev *hdev, bdaddr_t *bdaddr)
{
struct adv_entry *entry;
list_for_each_entry(entry, &hdev->adv_entries, list)
if (bacmp(bdaddr, &entry->bdaddr) == 0)
return entry;
return NULL;
}
static inline int is_connectable_adv(u8 evt_type)
{
if (evt_type == ADV_IND || evt_type == ADV_DIRECT_IND)
return 1;
return 0;
}
int hci_add_adv_entry(struct hci_dev *hdev,
struct hci_ev_le_advertising_info *ev)
{
struct adv_entry *entry;
if (!is_connectable_adv(ev->evt_type))
return -EINVAL;
/* Only new entries should be added to adv_entries. So, if
* bdaddr was found, don't add it. */
if (hci_find_adv_entry(hdev, &ev->bdaddr))
return 0;
entry = kzalloc(sizeof(*entry), GFP_ATOMIC);
if (!entry)
return -ENOMEM;
bacpy(&entry->bdaddr, &ev->bdaddr);
entry->bdaddr_type = ev->bdaddr_type;
list_add(&entry->list, &hdev->adv_entries);
BT_DBG("%s adv entry added: address %s type %u", hdev->name,
batostr(&entry->bdaddr), entry->bdaddr_type);
return 0;
}
/* Register HCI device */
int hci_register_dev(struct hci_dev *hdev)
{
struct list_head *head = &hci_dev_list, *p;
int i, id = 0;
BT_DBG("%p name %s bus %d owner %p", hdev, hdev->name,
hdev->bus, hdev->owner);
if (!hdev->open || !hdev->close || !hdev->destruct)
return -EINVAL;
write_lock_bh(&hci_dev_list_lock);
/* Find first available device id */
list_for_each(p, &hci_dev_list) {
if (list_entry(p, struct hci_dev, list)->id != id)
break;
head = p; id++;
}
sprintf(hdev->name, "hci%d", id);
hdev->id = id;
list_add(&hdev->list, head);
atomic_set(&hdev->refcnt, 1);
spin_lock_init(&hdev->lock);
hdev->flags = 0;
hdev->pkt_type = (HCI_DM1 | HCI_DH1 | HCI_HV1);
hdev->esco_type = (ESCO_HV1);
hdev->link_mode = (HCI_LM_ACCEPT);
hdev->io_capability = 0x03; /* No Input No Output */
hdev->idle_timeout = 0;
hdev->sniff_max_interval = 800;
hdev->sniff_min_interval = 80;
tasklet_init(&hdev->cmd_task, hci_cmd_task, (unsigned long) hdev);
tasklet_init(&hdev->rx_task, hci_rx_task, (unsigned long) hdev);
tasklet_init(&hdev->tx_task, hci_tx_task, (unsigned long) hdev);
skb_queue_head_init(&hdev->rx_q);
skb_queue_head_init(&hdev->cmd_q);
skb_queue_head_init(&hdev->raw_q);
setup_timer(&hdev->cmd_timer, hci_cmd_timer, (unsigned long) hdev);
for (i = 0; i < NUM_REASSEMBLY; i++)
hdev->reassembly[i] = NULL;
init_waitqueue_head(&hdev->req_wait_q);
mutex_init(&hdev->req_lock);
inquiry_cache_init(hdev);
hci_conn_hash_init(hdev);
INIT_LIST_HEAD(&hdev->blacklist);
INIT_LIST_HEAD(&hdev->uuids);
INIT_LIST_HEAD(&hdev->link_keys);
INIT_LIST_HEAD(&hdev->remote_oob_data);
INIT_LIST_HEAD(&hdev->adv_entries);
setup_timer(&hdev->adv_timer, hci_clear_adv_cache,
(unsigned long) hdev);
INIT_WORK(&hdev->power_on, hci_power_on);
INIT_WORK(&hdev->power_off, hci_power_off);
setup_timer(&hdev->off_timer, hci_auto_off, (unsigned long) hdev);
memset(&hdev->stat, 0, sizeof(struct hci_dev_stats));
atomic_set(&hdev->promisc, 0);
write_unlock_bh(&hci_dev_list_lock);
hdev->workqueue = create_singlethread_workqueue(hdev->name);
if (!hdev->workqueue)
goto nomem;
hci_register_sysfs(hdev);
hdev->rfkill = rfkill_alloc(hdev->name, &hdev->dev,
RFKILL_TYPE_BLUETOOTH, &hci_rfkill_ops, hdev);
if (hdev->rfkill) {
if (rfkill_register(hdev->rfkill) < 0) {
rfkill_destroy(hdev->rfkill);
hdev->rfkill = NULL;
}
}
set_bit(HCI_AUTO_OFF, &hdev->flags);
set_bit(HCI_SETUP, &hdev->flags);
queue_work(hdev->workqueue, &hdev->power_on);
hci_notify(hdev, HCI_DEV_REG);
return id;
nomem:
write_lock_bh(&hci_dev_list_lock);
list_del(&hdev->list);
write_unlock_bh(&hci_dev_list_lock);
return -ENOMEM;
}
EXPORT_SYMBOL(hci_register_dev);
/* Unregister HCI device */
int hci_unregister_dev(struct hci_dev *hdev)
{
int i;
BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
write_lock_bh(&hci_dev_list_lock);
list_del(&hdev->list);
write_unlock_bh(&hci_dev_list_lock);
hci_dev_do_close(hdev);
for (i = 0; i < NUM_REASSEMBLY; i++)
kfree_skb(hdev->reassembly[i]);
if (!test_bit(HCI_INIT, &hdev->flags) &&
!test_bit(HCI_SETUP, &hdev->flags))
mgmt_index_removed(hdev->id);
hci_notify(hdev, HCI_DEV_UNREG);
if (hdev->rfkill) {
rfkill_unregister(hdev->rfkill);
rfkill_destroy(hdev->rfkill);
}
bluetooth: hci_core: defer hci_unregister_sysfs() Alon Bar-Lev reports: Feb 16 23:41:33 alon1 usb 3-1: configuration #1 chosen from 1 choice Feb 16 23:41:33 alon1 BUG: unable to handle kernel NULL pointer dereference at virtual address 00000008 Feb 16 23:41:33 alon1 printing eip: c01b2db6 *pde = 00000000 Feb 16 23:41:33 alon1 Oops: 0000 [#1] PREEMPT Feb 16 23:41:33 alon1 Modules linked in: ppp_deflate zlib_deflate zlib_inflate bsd_comp ppp_async rfcomm l2cap hci_usb vmnet(P) vmmon(P) tun radeon drm autofs4 ipv6 aes_generic crypto_algapi ieee80211_crypt_ccmp nf_nat_irc nf_nat_ftp nf_conntrack_irc nf_conntrack_ftp ipt_MASQUERADE iptable_nat nf_nat ipt_REJECT xt_tcpudp ipt_LOG xt_limit xt_state nf_conntrack_ipv4 nf_conntrack iptable_filter ip_tables x_tables snd_pcm_oss snd_mixer_oss snd_seq_dummy snd_seq_oss snd_seq_midi_event snd_seq snd_seq_device bluetooth ppp_generic slhc ioatdma dca cfq_iosched cpufreq_powersave cpufreq_ondemand cpufreq_conservative acpi_cpufreq freq_table uinput fan af_packet nls_cp1255 nls_iso8859_1 nls_utf8 nls_base pcmcia snd_intel8x0 snd_ac97_codec ac97_bus snd_pcm nsc_ircc snd_timer ipw2200 thinkpad_acpi irda snd ehci_hcd yenta_socket uhci_hcd psmouse ieee80211 soundcore intel_agp hwmon rsrc_nonstatic pcspkr e1000 crc_ccitt snd_page_alloc i2c_i801 ieee80211_crypt pcmcia_core agpgart thermal bat! tery nvram rtc sr_mod ac sg firmware_class button processor cdrom unix usbcore evdev ext3 jbd ext2 mbcache loop ata_piix libata sd_mod scsi_mod Feb 16 23:41:33 alon1 Feb 16 23:41:33 alon1 Pid: 4, comm: events/0 Tainted: P (2.6.24-gentoo-r2 #1) Feb 16 23:41:33 alon1 EIP: 0060:[<c01b2db6>] EFLAGS: 00010282 CPU: 0 Feb 16 23:41:33 alon1 EIP is at sysfs_get_dentry+0x26/0x80 Feb 16 23:41:33 alon1 EAX: 00000000 EBX: 00000000 ECX: 00000000 EDX: f48a2210 Feb 16 23:41:33 alon1 ESI: f72eb900 EDI: f4803ae0 EBP: f4803ae0 ESP: f7c49efc Feb 16 23:41:33 alon1 hcid[7004]: HCI dev 0 registered Feb 16 23:41:33 alon1 DS: 007b ES: 007b FS: 0000 GS: 0000 SS: 0068 Feb 16 23:41:33 alon1 Process events/0 (pid: 4, ti=f7c48000 task=f7c3efc0 task.ti=f7c48000) Feb 16 23:41:33 alon1 Stack: f7cb6140 f4822668 f7e71e10 c01b304d ffffffff ffffffff fffffffe c030ba9c Feb 16 23:41:33 alon1 f7cb6140 f4822668 f6da6720 f7cb6140 f4822668 f6da6720 c030ba8e c01ce20b Feb 16 23:41:33 alon1 f6e9dd00 c030ba8e f6da6720 f6e9dd00 f6e9dd00 00000000 f4822600 00000000 Feb 16 23:41:33 alon1 Call Trace: Feb 16 23:41:33 alon1 [<c01b304d>] sysfs_move_dir+0x3d/0x1f0 Feb 16 23:41:33 alon1 [<c01ce20b>] kobject_move+0x9b/0x120 Feb 16 23:41:33 alon1 [<c0241711>] device_move+0x51/0x110 Feb 16 23:41:33 alon1 [<f9aaed80>] del_conn+0x0/0x70 [bluetooth] Feb 16 23:41:33 alon1 [<f9aaed99>] del_conn+0x19/0x70 [bluetooth] Feb 16 23:41:33 alon1 [<c012c1a1>] run_workqueue+0x81/0x140 Feb 16 23:41:33 alon1 [<c02c0c88>] schedule+0x168/0x2e0 Feb 16 23:41:33 alon1 [<c012fc70>] autoremove_wake_function+0x0/0x50 Feb 16 23:41:33 alon1 [<c012c9cb>] worker_thread+0x9b/0xf0 Feb 16 23:41:33 alon1 [<c012fc70>] autoremove_wake_function+0x0/0x50 Feb 16 23:41:33 alon1 [<c012c930>] worker_thread+0x0/0xf0 Feb 16 23:41:33 alon1 [<c012f962>] kthread+0x42/0x70 Feb 16 23:41:33 alon1 [<c012f920>] kthread+0x0/0x70 Feb 16 23:41:33 alon1 [<c0104c2f>] kernel_thread_helper+0x7/0x18 Feb 16 23:41:33 alon1 ======================= Feb 16 23:41:33 alon1 Code: 26 00 00 00 00 57 89 c7 a1 50 1b 3a c0 56 53 8b 70 38 85 f6 74 08 8b 0e 85 c9 74 58 ff 06 8b 56 50 39 fa 74 47 89 fb eb 02 89 c3 <8b> 43 08 39 c2 75 f7 8b 46 08 83 c0 68 e8 98 e7 10 00 8b 43 10 Feb 16 23:41:33 alon1 EIP: [<c01b2db6>] sysfs_get_dentry+0x26/0x80 SS:ESP 0068:f7c49efc Feb 16 23:41:33 alon1 ---[ end trace aae864e9592acc1d ]--- Defer hci_unregister_sysfs because hci device could be destructed while hci conn devices still there. Signed-off-by: Dave Young <hidave.darkstar@gmail.com> Tested-by: Stefan Seyfried <seife@suse.de> Acked-by: Alon Bar-Lev <alon.barlev@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Marcel Holtmann <marcel@holtmann.org>
2008-03-06 09:45:59 +07:00
hci_unregister_sysfs(hdev);
hci_del_off_timer(hdev);
del_timer(&hdev->adv_timer);
destroy_workqueue(hdev->workqueue);
hci_dev_lock_bh(hdev);
hci_blacklist_clear(hdev);
hci_uuids_clear(hdev);
hci_link_keys_clear(hdev);
hci_remote_oob_data_clear(hdev);
hci_adv_entries_clear(hdev);
hci_dev_unlock_bh(hdev);
__hci_dev_put(hdev);
return 0;
}
EXPORT_SYMBOL(hci_unregister_dev);
/* Suspend HCI device */
int hci_suspend_dev(struct hci_dev *hdev)
{
hci_notify(hdev, HCI_DEV_SUSPEND);
return 0;
}
EXPORT_SYMBOL(hci_suspend_dev);
/* Resume HCI device */
int hci_resume_dev(struct hci_dev *hdev)
{
hci_notify(hdev, HCI_DEV_RESUME);
return 0;
}
EXPORT_SYMBOL(hci_resume_dev);
/* Receive frame from HCI drivers */
int hci_recv_frame(struct sk_buff *skb)
{
struct hci_dev *hdev = (struct hci_dev *) skb->dev;
if (!hdev || (!test_bit(HCI_UP, &hdev->flags)
&& !test_bit(HCI_INIT, &hdev->flags))) {
kfree_skb(skb);
return -ENXIO;
}
/* Incomming skb */
bt_cb(skb)->incoming = 1;
/* Time stamp */
__net_timestamp(skb);
/* Queue frame for rx task */
skb_queue_tail(&hdev->rx_q, skb);
tasklet_schedule(&hdev->rx_task);
return 0;
}
EXPORT_SYMBOL(hci_recv_frame);
static int hci_reassembly(struct hci_dev *hdev, int type, void *data,
int count, __u8 index)
{
int len = 0;
int hlen = 0;
int remain = count;
struct sk_buff *skb;
struct bt_skb_cb *scb;
if ((type < HCI_ACLDATA_PKT || type > HCI_EVENT_PKT) ||
index >= NUM_REASSEMBLY)
return -EILSEQ;
skb = hdev->reassembly[index];
if (!skb) {
switch (type) {
case HCI_ACLDATA_PKT:
len = HCI_MAX_FRAME_SIZE;
hlen = HCI_ACL_HDR_SIZE;
break;
case HCI_EVENT_PKT:
len = HCI_MAX_EVENT_SIZE;
hlen = HCI_EVENT_HDR_SIZE;
break;
case HCI_SCODATA_PKT:
len = HCI_MAX_SCO_SIZE;
hlen = HCI_SCO_HDR_SIZE;
break;
}
skb = bt_skb_alloc(len, GFP_ATOMIC);
if (!skb)
return -ENOMEM;
scb = (void *) skb->cb;
scb->expect = hlen;
scb->pkt_type = type;
skb->dev = (void *) hdev;
hdev->reassembly[index] = skb;
}
while (count) {
scb = (void *) skb->cb;
len = min(scb->expect, (__u16)count);
memcpy(skb_put(skb, len), data, len);
count -= len;
data += len;
scb->expect -= len;
remain = count;
switch (type) {
case HCI_EVENT_PKT:
if (skb->len == HCI_EVENT_HDR_SIZE) {
struct hci_event_hdr *h = hci_event_hdr(skb);
scb->expect = h->plen;
if (skb_tailroom(skb) < scb->expect) {
kfree_skb(skb);
hdev->reassembly[index] = NULL;
return -ENOMEM;
}
}
break;
case HCI_ACLDATA_PKT:
if (skb->len == HCI_ACL_HDR_SIZE) {
struct hci_acl_hdr *h = hci_acl_hdr(skb);
scb->expect = __le16_to_cpu(h->dlen);
if (skb_tailroom(skb) < scb->expect) {
kfree_skb(skb);
hdev->reassembly[index] = NULL;
return -ENOMEM;
}
}
break;
case HCI_SCODATA_PKT:
if (skb->len == HCI_SCO_HDR_SIZE) {
struct hci_sco_hdr *h = hci_sco_hdr(skb);
scb->expect = h->dlen;
if (skb_tailroom(skb) < scb->expect) {
kfree_skb(skb);
hdev->reassembly[index] = NULL;
return -ENOMEM;
}
}
break;
}
if (scb->expect == 0) {
/* Complete frame */
bt_cb(skb)->pkt_type = type;
hci_recv_frame(skb);
hdev->reassembly[index] = NULL;
return remain;
}
}
return remain;
}
int hci_recv_fragment(struct hci_dev *hdev, int type, void *data, int count)
{
int rem = 0;
if (type < HCI_ACLDATA_PKT || type > HCI_EVENT_PKT)
return -EILSEQ;
while (count) {
rem = hci_reassembly(hdev, type, data, count, type - 1);
if (rem < 0)
return rem;
data += (count - rem);
count = rem;
}
return rem;
}
EXPORT_SYMBOL(hci_recv_fragment);
#define STREAM_REASSEMBLY 0
int hci_recv_stream_fragment(struct hci_dev *hdev, void *data, int count)
{
int type;
int rem = 0;
while (count) {
struct sk_buff *skb = hdev->reassembly[STREAM_REASSEMBLY];
if (!skb) {
struct { char type; } *pkt;
/* Start of the frame */
pkt = data;
type = pkt->type;
data++;
count--;
} else
type = bt_cb(skb)->pkt_type;
rem = hci_reassembly(hdev, type, data, count,
STREAM_REASSEMBLY);
if (rem < 0)
return rem;
data += (count - rem);
count = rem;
}
return rem;
}
EXPORT_SYMBOL(hci_recv_stream_fragment);
/* ---- Interface to upper protocols ---- */
/* Register/Unregister protocols.
* hci_task_lock is used to ensure that no tasks are running. */
int hci_register_proto(struct hci_proto *hp)
{
int err = 0;
BT_DBG("%p name %s id %d", hp, hp->name, hp->id);
if (hp->id >= HCI_MAX_PROTO)
return -EINVAL;
write_lock_bh(&hci_task_lock);
if (!hci_proto[hp->id])
hci_proto[hp->id] = hp;
else
err = -EEXIST;
write_unlock_bh(&hci_task_lock);
return err;
}
EXPORT_SYMBOL(hci_register_proto);
int hci_unregister_proto(struct hci_proto *hp)
{
int err = 0;
BT_DBG("%p name %s id %d", hp, hp->name, hp->id);
if (hp->id >= HCI_MAX_PROTO)
return -EINVAL;
write_lock_bh(&hci_task_lock);
if (hci_proto[hp->id])
hci_proto[hp->id] = NULL;
else
err = -ENOENT;
write_unlock_bh(&hci_task_lock);
return err;
}
EXPORT_SYMBOL(hci_unregister_proto);
int hci_register_cb(struct hci_cb *cb)
{
BT_DBG("%p name %s", cb, cb->name);
write_lock_bh(&hci_cb_list_lock);
list_add(&cb->list, &hci_cb_list);
write_unlock_bh(&hci_cb_list_lock);
return 0;
}
EXPORT_SYMBOL(hci_register_cb);
int hci_unregister_cb(struct hci_cb *cb)
{
BT_DBG("%p name %s", cb, cb->name);
write_lock_bh(&hci_cb_list_lock);
list_del(&cb->list);
write_unlock_bh(&hci_cb_list_lock);
return 0;
}
EXPORT_SYMBOL(hci_unregister_cb);
static int hci_send_frame(struct sk_buff *skb)
{
struct hci_dev *hdev = (struct hci_dev *) skb->dev;
if (!hdev) {
kfree_skb(skb);
return -ENODEV;
}
BT_DBG("%s type %d len %d", hdev->name, bt_cb(skb)->pkt_type, skb->len);
if (atomic_read(&hdev->promisc)) {
/* Time stamp */
__net_timestamp(skb);
hci_send_to_sock(hdev, skb, NULL);
}
/* Get rid of skb owner, prior to sending to the driver. */
skb_orphan(skb);
return hdev->send(skb);
}
/* Send HCI command */
int hci_send_cmd(struct hci_dev *hdev, __u16 opcode, __u32 plen, void *param)
{
int len = HCI_COMMAND_HDR_SIZE + plen;
struct hci_command_hdr *hdr;
struct sk_buff *skb;
BT_DBG("%s opcode 0x%x plen %d", hdev->name, opcode, plen);
skb = bt_skb_alloc(len, GFP_ATOMIC);
if (!skb) {
BT_ERR("%s no memory for command", hdev->name);
return -ENOMEM;
}
hdr = (struct hci_command_hdr *) skb_put(skb, HCI_COMMAND_HDR_SIZE);
hdr->opcode = cpu_to_le16(opcode);
hdr->plen = plen;
if (plen)
memcpy(skb_put(skb, plen), param, plen);
BT_DBG("skb len %d", skb->len);
bt_cb(skb)->pkt_type = HCI_COMMAND_PKT;
skb->dev = (void *) hdev;
if (test_bit(HCI_INIT, &hdev->flags))
hdev->init_last_cmd = opcode;
skb_queue_tail(&hdev->cmd_q, skb);
tasklet_schedule(&hdev->cmd_task);
return 0;
}
/* Get data from the previously sent command */
void *hci_sent_cmd_data(struct hci_dev *hdev, __u16 opcode)
{
struct hci_command_hdr *hdr;
if (!hdev->sent_cmd)
return NULL;
hdr = (void *) hdev->sent_cmd->data;
if (hdr->opcode != cpu_to_le16(opcode))
return NULL;
BT_DBG("%s opcode 0x%x", hdev->name, opcode);
return hdev->sent_cmd->data + HCI_COMMAND_HDR_SIZE;
}
/* Send ACL data */
static void hci_add_acl_hdr(struct sk_buff *skb, __u16 handle, __u16 flags)
{
struct hci_acl_hdr *hdr;
int len = skb->len;
skb_push(skb, HCI_ACL_HDR_SIZE);
skb_reset_transport_header(skb);
hdr = (struct hci_acl_hdr *)skb_transport_header(skb);
hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags));
hdr->dlen = cpu_to_le16(len);
}
void hci_send_acl(struct hci_conn *conn, struct sk_buff *skb, __u16 flags)
{
struct hci_dev *hdev = conn->hdev;
struct sk_buff *list;
BT_DBG("%s conn %p flags 0x%x", hdev->name, conn, flags);
skb->dev = (void *) hdev;
bt_cb(skb)->pkt_type = HCI_ACLDATA_PKT;
Bluetooth: Use non-flushable by default L2CAP data packets Modification of Nick Pelly <npelly@google.com> patch. With Bluetooth 2.1 ACL packets can be flushable or non-flushable. This commit makes ACL data packets non-flushable by default on compatible chipsets, and adds the BT_FLUSHABLE socket option to explicitly request flushable ACL data packets for a given L2CAP socket. This is useful for A2DP data which can be safely discarded if it can not be delivered within a short time (while other ACL data should not be discarded). Note that making ACL data flushable has no effect unless the automatic flush timeout for that ACL link is changed from its default of 0 (infinite). Default packet types (for compatible chipsets): Frame 34: 13 bytes on wire (104 bits), 13 bytes captured (104 bits) Bluetooth HCI H4 Bluetooth HCI ACL Packet .... 0000 0000 0010 = Connection Handle: 0x0002 ..00 .... .... .... = PB Flag: First Non-automatically Flushable Packet (0) 00.. .... .... .... = BC Flag: Point-To-Point (0) Data Total Length: 8 Bluetooth L2CAP Packet After setting BT_FLUSHABLE (sock.setsockopt(274 /*SOL_BLUETOOTH*/, 8 /* BT_FLUSHABLE */, 1 /* flush */)) Frame 34: 13 bytes on wire (104 bits), 13 bytes captured (104 bits) Bluetooth HCI H4 Bluetooth HCI ACL Packet .... 0000 0000 0010 = Connection Handle: 0x0002 ..10 .... .... .... = PB Flag: First Automatically Flushable Packet (2) 00.. .... .... .... = BC Flag: Point-To-Point (0) Data Total Length: 8 Bluetooth L2CAP Packet Signed-off-by: Andrei Emeltchenko <andrei.emeltchenko@nokia.com> Signed-off-by: Gustavo F. Padovan <padovan@profusion.mobi>
2011-01-03 16:14:36 +07:00
hci_add_acl_hdr(skb, conn->handle, flags);
list = skb_shinfo(skb)->frag_list;
if (!list) {
/* Non fragmented */
BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len);
skb_queue_tail(&conn->data_q, skb);
} else {
/* Fragmented */
BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
skb_shinfo(skb)->frag_list = NULL;
/* Queue all fragments atomically */
spin_lock_bh(&conn->data_q.lock);
__skb_queue_tail(&conn->data_q, skb);
Bluetooth: Use non-flushable by default L2CAP data packets Modification of Nick Pelly <npelly@google.com> patch. With Bluetooth 2.1 ACL packets can be flushable or non-flushable. This commit makes ACL data packets non-flushable by default on compatible chipsets, and adds the BT_FLUSHABLE socket option to explicitly request flushable ACL data packets for a given L2CAP socket. This is useful for A2DP data which can be safely discarded if it can not be delivered within a short time (while other ACL data should not be discarded). Note that making ACL data flushable has no effect unless the automatic flush timeout for that ACL link is changed from its default of 0 (infinite). Default packet types (for compatible chipsets): Frame 34: 13 bytes on wire (104 bits), 13 bytes captured (104 bits) Bluetooth HCI H4 Bluetooth HCI ACL Packet .... 0000 0000 0010 = Connection Handle: 0x0002 ..00 .... .... .... = PB Flag: First Non-automatically Flushable Packet (0) 00.. .... .... .... = BC Flag: Point-To-Point (0) Data Total Length: 8 Bluetooth L2CAP Packet After setting BT_FLUSHABLE (sock.setsockopt(274 /*SOL_BLUETOOTH*/, 8 /* BT_FLUSHABLE */, 1 /* flush */)) Frame 34: 13 bytes on wire (104 bits), 13 bytes captured (104 bits) Bluetooth HCI H4 Bluetooth HCI ACL Packet .... 0000 0000 0010 = Connection Handle: 0x0002 ..10 .... .... .... = PB Flag: First Automatically Flushable Packet (2) 00.. .... .... .... = BC Flag: Point-To-Point (0) Data Total Length: 8 Bluetooth L2CAP Packet Signed-off-by: Andrei Emeltchenko <andrei.emeltchenko@nokia.com> Signed-off-by: Gustavo F. Padovan <padovan@profusion.mobi>
2011-01-03 16:14:36 +07:00
flags &= ~ACL_START;
flags |= ACL_CONT;
do {
skb = list; list = list->next;
skb->dev = (void *) hdev;
bt_cb(skb)->pkt_type = HCI_ACLDATA_PKT;
Bluetooth: Use non-flushable by default L2CAP data packets Modification of Nick Pelly <npelly@google.com> patch. With Bluetooth 2.1 ACL packets can be flushable or non-flushable. This commit makes ACL data packets non-flushable by default on compatible chipsets, and adds the BT_FLUSHABLE socket option to explicitly request flushable ACL data packets for a given L2CAP socket. This is useful for A2DP data which can be safely discarded if it can not be delivered within a short time (while other ACL data should not be discarded). Note that making ACL data flushable has no effect unless the automatic flush timeout for that ACL link is changed from its default of 0 (infinite). Default packet types (for compatible chipsets): Frame 34: 13 bytes on wire (104 bits), 13 bytes captured (104 bits) Bluetooth HCI H4 Bluetooth HCI ACL Packet .... 0000 0000 0010 = Connection Handle: 0x0002 ..00 .... .... .... = PB Flag: First Non-automatically Flushable Packet (0) 00.. .... .... .... = BC Flag: Point-To-Point (0) Data Total Length: 8 Bluetooth L2CAP Packet After setting BT_FLUSHABLE (sock.setsockopt(274 /*SOL_BLUETOOTH*/, 8 /* BT_FLUSHABLE */, 1 /* flush */)) Frame 34: 13 bytes on wire (104 bits), 13 bytes captured (104 bits) Bluetooth HCI H4 Bluetooth HCI ACL Packet .... 0000 0000 0010 = Connection Handle: 0x0002 ..10 .... .... .... = PB Flag: First Automatically Flushable Packet (2) 00.. .... .... .... = BC Flag: Point-To-Point (0) Data Total Length: 8 Bluetooth L2CAP Packet Signed-off-by: Andrei Emeltchenko <andrei.emeltchenko@nokia.com> Signed-off-by: Gustavo F. Padovan <padovan@profusion.mobi>
2011-01-03 16:14:36 +07:00
hci_add_acl_hdr(skb, conn->handle, flags);
BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
__skb_queue_tail(&conn->data_q, skb);
} while (list);
spin_unlock_bh(&conn->data_q.lock);
}
tasklet_schedule(&hdev->tx_task);
}
EXPORT_SYMBOL(hci_send_acl);
/* Send SCO data */
void hci_send_sco(struct hci_conn *conn, struct sk_buff *skb)
{
struct hci_dev *hdev = conn->hdev;
struct hci_sco_hdr hdr;
BT_DBG("%s len %d", hdev->name, skb->len);
hdr.handle = cpu_to_le16(conn->handle);
hdr.dlen = skb->len;
skb_push(skb, HCI_SCO_HDR_SIZE);
skb_reset_transport_header(skb);
memcpy(skb_transport_header(skb), &hdr, HCI_SCO_HDR_SIZE);
skb->dev = (void *) hdev;
bt_cb(skb)->pkt_type = HCI_SCODATA_PKT;
skb_queue_tail(&conn->data_q, skb);
tasklet_schedule(&hdev->tx_task);
}
EXPORT_SYMBOL(hci_send_sco);
/* ---- HCI TX task (outgoing data) ---- */
/* HCI Connection scheduler */
static inline struct hci_conn *hci_low_sent(struct hci_dev *hdev, __u8 type, int *quote)
{
struct hci_conn_hash *h = &hdev->conn_hash;
struct hci_conn *conn = NULL;
int num = 0, min = ~0;
struct list_head *p;
/* We don't have to lock device here. Connections are always
* added and removed with TX task disabled. */
list_for_each(p, &h->list) {
struct hci_conn *c;
c = list_entry(p, struct hci_conn, list);
if (c->type != type || skb_queue_empty(&c->data_q))
continue;
if (c->state != BT_CONNECTED && c->state != BT_CONFIG)
continue;
num++;
if (c->sent < min) {
min = c->sent;
conn = c;
}
if (hci_conn_num(hdev, type) == num)
break;
}
if (conn) {
int cnt, q;
switch (conn->type) {
case ACL_LINK:
cnt = hdev->acl_cnt;
break;
case SCO_LINK:
case ESCO_LINK:
cnt = hdev->sco_cnt;
break;
case LE_LINK:
cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
break;
default:
cnt = 0;
BT_ERR("Unknown link type");
}
q = cnt / num;
*quote = q ? q : 1;
} else
*quote = 0;
BT_DBG("conn %p quote %d", conn, *quote);
return conn;
}
static inline void hci_link_tx_to(struct hci_dev *hdev, __u8 type)
{
struct hci_conn_hash *h = &hdev->conn_hash;
struct list_head *p;
struct hci_conn *c;
BT_ERR("%s link tx timeout", hdev->name);
/* Kill stalled connections */
list_for_each(p, &h->list) {
c = list_entry(p, struct hci_conn, list);
if (c->type == type && c->sent) {
BT_ERR("%s killing stalled connection %s",
hdev->name, batostr(&c->dst));
hci_acl_disconn(c, 0x13);
}
}
}
static inline void hci_sched_acl(struct hci_dev *hdev)
{
struct hci_conn *conn;
struct sk_buff *skb;
int quote;
BT_DBG("%s", hdev->name);
if (!hci_conn_num(hdev, ACL_LINK))
return;
if (!test_bit(HCI_RAW, &hdev->flags)) {
/* ACL tx timeout must be longer than maximum
* link supervision timeout (40.9 seconds) */
if (!hdev->acl_cnt && time_after(jiffies, hdev->acl_last_tx + HZ * 45))
hci_link_tx_to(hdev, ACL_LINK);
}
while (hdev->acl_cnt && (conn = hci_low_sent(hdev, ACL_LINK, &quote))) {
while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
BT_DBG("skb %p len %d", skb, skb->len);
hci_conn_enter_active_mode(conn, bt_cb(skb)->force_active);
hci_send_frame(skb);
hdev->acl_last_tx = jiffies;
hdev->acl_cnt--;
conn->sent++;
}
}
}
/* Schedule SCO */
static inline void hci_sched_sco(struct hci_dev *hdev)
{
struct hci_conn *conn;
struct sk_buff *skb;
int quote;
BT_DBG("%s", hdev->name);
if (!hci_conn_num(hdev, SCO_LINK))
return;
while (hdev->sco_cnt && (conn = hci_low_sent(hdev, SCO_LINK, &quote))) {
while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
BT_DBG("skb %p len %d", skb, skb->len);
hci_send_frame(skb);
conn->sent++;
if (conn->sent == ~0)
conn->sent = 0;
}
}
}
static inline void hci_sched_esco(struct hci_dev *hdev)
{
struct hci_conn *conn;
struct sk_buff *skb;
int quote;
BT_DBG("%s", hdev->name);
if (!hci_conn_num(hdev, ESCO_LINK))
return;
while (hdev->sco_cnt && (conn = hci_low_sent(hdev, ESCO_LINK, &quote))) {
while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
BT_DBG("skb %p len %d", skb, skb->len);
hci_send_frame(skb);
conn->sent++;
if (conn->sent == ~0)
conn->sent = 0;
}
}
}
static inline void hci_sched_le(struct hci_dev *hdev)
{
struct hci_conn *conn;
struct sk_buff *skb;
int quote, cnt;
BT_DBG("%s", hdev->name);
if (!hci_conn_num(hdev, LE_LINK))
return;
if (!test_bit(HCI_RAW, &hdev->flags)) {
/* LE tx timeout must be longer than maximum
* link supervision timeout (40.9 seconds) */
if (!hdev->le_cnt && hdev->le_pkts &&
time_after(jiffies, hdev->le_last_tx + HZ * 45))
hci_link_tx_to(hdev, LE_LINK);
}
cnt = hdev->le_pkts ? hdev->le_cnt : hdev->acl_cnt;
while (cnt && (conn = hci_low_sent(hdev, LE_LINK, &quote))) {
while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
BT_DBG("skb %p len %d", skb, skb->len);
hci_send_frame(skb);
hdev->le_last_tx = jiffies;
cnt--;
conn->sent++;
}
}
if (hdev->le_pkts)
hdev->le_cnt = cnt;
else
hdev->acl_cnt = cnt;
}
static void hci_tx_task(unsigned long arg)
{
struct hci_dev *hdev = (struct hci_dev *) arg;
struct sk_buff *skb;
read_lock(&hci_task_lock);
BT_DBG("%s acl %d sco %d le %d", hdev->name, hdev->acl_cnt,
hdev->sco_cnt, hdev->le_cnt);
/* Schedule queues and send stuff to HCI driver */
hci_sched_acl(hdev);
hci_sched_sco(hdev);
hci_sched_esco(hdev);
hci_sched_le(hdev);
/* Send next queued raw (unknown type) packet */
while ((skb = skb_dequeue(&hdev->raw_q)))
hci_send_frame(skb);
read_unlock(&hci_task_lock);
}
/* ----- HCI RX task (incoming data processing) ----- */
/* ACL data packet */
static inline void hci_acldata_packet(struct hci_dev *hdev, struct sk_buff *skb)
{
struct hci_acl_hdr *hdr = (void *) skb->data;
struct hci_conn *conn;
__u16 handle, flags;
skb_pull(skb, HCI_ACL_HDR_SIZE);
handle = __le16_to_cpu(hdr->handle);
flags = hci_flags(handle);
handle = hci_handle(handle);
BT_DBG("%s len %d handle 0x%x flags 0x%x", hdev->name, skb->len, handle, flags);
hdev->stat.acl_rx++;
hci_dev_lock(hdev);
conn = hci_conn_hash_lookup_handle(hdev, handle);
hci_dev_unlock(hdev);
if (conn) {
register struct hci_proto *hp;
hci_conn_enter_active_mode(conn, bt_cb(skb)->force_active);
/* Send to upper protocol */
hp = hci_proto[HCI_PROTO_L2CAP];
if (hp && hp->recv_acldata) {
hp->recv_acldata(conn, skb, flags);
return;
}
} else {
BT_ERR("%s ACL packet for unknown connection handle %d",
hdev->name, handle);
}
kfree_skb(skb);
}
/* SCO data packet */
static inline void hci_scodata_packet(struct hci_dev *hdev, struct sk_buff *skb)
{
struct hci_sco_hdr *hdr = (void *) skb->data;
struct hci_conn *conn;
__u16 handle;
skb_pull(skb, HCI_SCO_HDR_SIZE);
handle = __le16_to_cpu(hdr->handle);
BT_DBG("%s len %d handle 0x%x", hdev->name, skb->len, handle);
hdev->stat.sco_rx++;
hci_dev_lock(hdev);
conn = hci_conn_hash_lookup_handle(hdev, handle);
hci_dev_unlock(hdev);
if (conn) {
register struct hci_proto *hp;
/* Send to upper protocol */
hp = hci_proto[HCI_PROTO_SCO];
if (hp && hp->recv_scodata) {
hp->recv_scodata(conn, skb);
return;
}
} else {
BT_ERR("%s SCO packet for unknown connection handle %d",
hdev->name, handle);
}
kfree_skb(skb);
}
static void hci_rx_task(unsigned long arg)
{
struct hci_dev *hdev = (struct hci_dev *) arg;
struct sk_buff *skb;
BT_DBG("%s", hdev->name);
read_lock(&hci_task_lock);
while ((skb = skb_dequeue(&hdev->rx_q))) {
if (atomic_read(&hdev->promisc)) {
/* Send copy to the sockets */
hci_send_to_sock(hdev, skb, NULL);
}
if (test_bit(HCI_RAW, &hdev->flags)) {
kfree_skb(skb);
continue;
}
if (test_bit(HCI_INIT, &hdev->flags)) {
/* Don't process data packets in this states. */
switch (bt_cb(skb)->pkt_type) {
case HCI_ACLDATA_PKT:
case HCI_SCODATA_PKT:
kfree_skb(skb);
continue;
}
}
/* Process frame */
switch (bt_cb(skb)->pkt_type) {
case HCI_EVENT_PKT:
hci_event_packet(hdev, skb);
break;
case HCI_ACLDATA_PKT:
BT_DBG("%s ACL data packet", hdev->name);
hci_acldata_packet(hdev, skb);
break;
case HCI_SCODATA_PKT:
BT_DBG("%s SCO data packet", hdev->name);
hci_scodata_packet(hdev, skb);
break;
default:
kfree_skb(skb);
break;
}
}
read_unlock(&hci_task_lock);
}
static void hci_cmd_task(unsigned long arg)
{
struct hci_dev *hdev = (struct hci_dev *) arg;
struct sk_buff *skb;
BT_DBG("%s cmd %d", hdev->name, atomic_read(&hdev->cmd_cnt));
/* Send queued commands */
if (atomic_read(&hdev->cmd_cnt)) {
skb = skb_dequeue(&hdev->cmd_q);
if (!skb)
return;
kfree_skb(hdev->sent_cmd);
hdev->sent_cmd = skb_clone(skb, GFP_ATOMIC);
if (hdev->sent_cmd) {
atomic_dec(&hdev->cmd_cnt);
hci_send_frame(skb);
if (test_bit(HCI_RESET, &hdev->flags))
del_timer(&hdev->cmd_timer);
else
mod_timer(&hdev->cmd_timer,
jiffies + msecs_to_jiffies(HCI_CMD_TIMEOUT));
} else {
skb_queue_head(&hdev->cmd_q, skb);
tasklet_schedule(&hdev->cmd_task);
}
}
}