linux_dsm_epyc7002/drivers/iommu/amd_iommu_init.c

2847 lines
69 KiB
C
Raw Normal View History

/*
* Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
* Author: Joerg Roedel <jroedel@suse.de>
* Leo Duran <leo.duran@amd.com>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published
* by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <linux/pci.h>
#include <linux/acpi.h>
#include <linux/list.h>
#include <linux/bitmap.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 15:04:11 +07:00
#include <linux/slab.h>
#include <linux/syscore_ops.h>
#include <linux/interrupt.h>
#include <linux/msi.h>
#include <linux/amd-iommu.h>
#include <linux/export.h>
iommu/amd: Add sysfs support AMD-Vi support for IOMMU sysfs. This allows us to associate devices with a specific IOMMU device and examine the capabilities and features of that IOMMU. The AMD IOMMU is hosted on and actual PCI device, so we make that device the parent for the IOMMU class device. This initial implementaiton exposes only the capability header and extended features register for the IOMMU. # find /sys | grep ivhd /sys/devices/pci0000:00/0000:00:00.2/iommu/ivhd0 /sys/devices/pci0000:00/0000:00:00.2/iommu/ivhd0/devices /sys/devices/pci0000:00/0000:00:00.2/iommu/ivhd0/devices/0000:00:00.0 /sys/devices/pci0000:00/0000:00:00.2/iommu/ivhd0/devices/0000:00:02.0 /sys/devices/pci0000:00/0000:00:00.2/iommu/ivhd0/devices/0000:00:04.0 /sys/devices/pci0000:00/0000:00:00.2/iommu/ivhd0/devices/0000:00:09.0 /sys/devices/pci0000:00/0000:00:00.2/iommu/ivhd0/devices/0000:00:11.0 /sys/devices/pci0000:00/0000:00:00.2/iommu/ivhd0/devices/0000:00:12.0 /sys/devices/pci0000:00/0000:00:00.2/iommu/ivhd0/devices/0000:00:12.2 /sys/devices/pci0000:00/0000:00:00.2/iommu/ivhd0/devices/0000:00:13.0 ... /sys/devices/pci0000:00/0000:00:00.2/iommu/ivhd0/power /sys/devices/pci0000:00/0000:00:00.2/iommu/ivhd0/power/control ... /sys/devices/pci0000:00/0000:00:00.2/iommu/ivhd0/device /sys/devices/pci0000:00/0000:00:00.2/iommu/ivhd0/subsystem /sys/devices/pci0000:00/0000:00:00.2/iommu/ivhd0/amd-iommu /sys/devices/pci0000:00/0000:00:00.2/iommu/ivhd0/amd-iommu/cap /sys/devices/pci0000:00/0000:00:00.2/iommu/ivhd0/amd-iommu/features /sys/devices/pci0000:00/0000:00:00.2/iommu/ivhd0/uevent /sys/class/iommu/ivhd0 Signed-off-by: Alex Williamson <alex.williamson@redhat.com> Signed-off-by: Joerg Roedel <jroedel@suse.de>
2014-06-13 05:12:37 +07:00
#include <linux/iommu.h>
#include <linux/kmemleak.h>
#include <linux/crash_dump.h>
#include <asm/pci-direct.h>
#include <asm/iommu.h>
#include <asm/gart.h>
#include <asm/x86_init.h>
#include <asm/iommu_table.h>
#include <asm/io_apic.h>
#include <asm/irq_remapping.h>
#include "amd_iommu_proto.h"
#include "amd_iommu_types.h"
#include "irq_remapping.h"
/*
* definitions for the ACPI scanning code
*/
#define IVRS_HEADER_LENGTH 48
#define ACPI_IVHD_TYPE_MAX_SUPPORTED 0x40
#define ACPI_IVMD_TYPE_ALL 0x20
#define ACPI_IVMD_TYPE 0x21
#define ACPI_IVMD_TYPE_RANGE 0x22
#define IVHD_DEV_ALL 0x01
#define IVHD_DEV_SELECT 0x02
#define IVHD_DEV_SELECT_RANGE_START 0x03
#define IVHD_DEV_RANGE_END 0x04
#define IVHD_DEV_ALIAS 0x42
#define IVHD_DEV_ALIAS_RANGE 0x43
#define IVHD_DEV_EXT_SELECT 0x46
#define IVHD_DEV_EXT_SELECT_RANGE 0x47
#define IVHD_DEV_SPECIAL 0x48
#define IVHD_DEV_ACPI_HID 0xf0
#define UID_NOT_PRESENT 0
#define UID_IS_INTEGER 1
#define UID_IS_CHARACTER 2
#define IVHD_SPECIAL_IOAPIC 1
#define IVHD_SPECIAL_HPET 2
#define IVHD_FLAG_HT_TUN_EN_MASK 0x01
#define IVHD_FLAG_PASSPW_EN_MASK 0x02
#define IVHD_FLAG_RESPASSPW_EN_MASK 0x04
#define IVHD_FLAG_ISOC_EN_MASK 0x08
#define IVMD_FLAG_EXCL_RANGE 0x08
#define IVMD_FLAG_UNITY_MAP 0x01
#define ACPI_DEVFLAG_INITPASS 0x01
#define ACPI_DEVFLAG_EXTINT 0x02
#define ACPI_DEVFLAG_NMI 0x04
#define ACPI_DEVFLAG_SYSMGT1 0x10
#define ACPI_DEVFLAG_SYSMGT2 0x20
#define ACPI_DEVFLAG_LINT0 0x40
#define ACPI_DEVFLAG_LINT1 0x80
#define ACPI_DEVFLAG_ATSDIS 0x10000000
#define LOOP_TIMEOUT 100000
/*
* ACPI table definitions
*
* These data structures are laid over the table to parse the important values
* out of it.
*/
extern const struct iommu_ops amd_iommu_ops;
/*
* structure describing one IOMMU in the ACPI table. Typically followed by one
* or more ivhd_entrys.
*/
struct ivhd_header {
u8 type;
u8 flags;
u16 length;
u16 devid;
u16 cap_ptr;
u64 mmio_phys;
u16 pci_seg;
u16 info;
u32 efr_attr;
/* Following only valid on IVHD type 11h and 40h */
u64 efr_reg; /* Exact copy of MMIO_EXT_FEATURES */
u64 res;
} __attribute__((packed));
/*
* A device entry describing which devices a specific IOMMU translates and
* which requestor ids they use.
*/
struct ivhd_entry {
u8 type;
u16 devid;
u8 flags;
u32 ext;
u32 hidh;
u64 cid;
u8 uidf;
u8 uidl;
u8 uid;
} __attribute__((packed));
/*
* An AMD IOMMU memory definition structure. It defines things like exclusion
* ranges for devices and regions that should be unity mapped.
*/
struct ivmd_header {
u8 type;
u8 flags;
u16 length;
u16 devid;
u16 aux;
u64 resv;
u64 range_start;
u64 range_length;
} __attribute__((packed));
bool amd_iommu_dump;
bool amd_iommu_irq_remap __read_mostly;
int amd_iommu_guest_ir = AMD_IOMMU_GUEST_IR_VAPIC;
static bool amd_iommu_detected;
static bool __initdata amd_iommu_disabled;
static int amd_iommu_target_ivhd_type;
u16 amd_iommu_last_bdf; /* largest PCI device id we have
to handle */
LIST_HEAD(amd_iommu_unity_map); /* a list of required unity mappings
we find in ACPI */
bool amd_iommu_unmap_flush; /* if true, flush on every unmap */
LIST_HEAD(amd_iommu_list); /* list of all AMD IOMMUs in the
system */
/* Array to assign indices to IOMMUs*/
struct amd_iommu *amd_iommus[MAX_IOMMUS];
/* Number of IOMMUs present in the system */
static int amd_iommus_present;
/* IOMMUs have a non-present cache? */
bool amd_iommu_np_cache __read_mostly;
bool amd_iommu_iotlb_sup __read_mostly = true;
u32 amd_iommu_max_pasid __read_mostly = ~0;
bool amd_iommu_v2_present __read_mostly;
static bool amd_iommu_pc_present __read_mostly;
bool amd_iommu_force_isolation __read_mostly;
/*
* List of protection domains - used during resume
*/
LIST_HEAD(amd_iommu_pd_list);
spinlock_t amd_iommu_pd_lock;
/*
* Pointer to the device table which is shared by all AMD IOMMUs
* it is indexed by the PCI device id or the HT unit id and contains
* information about the domain the device belongs to as well as the
* page table root pointer.
*/
struct dev_table_entry *amd_iommu_dev_table;
/*
* The alias table is a driver specific data structure which contains the
* mappings of the PCI device ids to the actual requestor ids on the IOMMU.
* More than one device can share the same requestor id.
*/
u16 *amd_iommu_alias_table;
/*
* The rlookup table is used to find the IOMMU which is responsible
* for a specific device. It is also indexed by the PCI device id.
*/
struct amd_iommu **amd_iommu_rlookup_table;
/*
* This table is used to find the irq remapping table for a given device id
* quickly.
*/
struct irq_remap_table **irq_lookup_table;
/*
* AMD IOMMU allows up to 2^16 different protection domains. This is a bitmap
* to know which ones are already in use.
*/
unsigned long *amd_iommu_pd_alloc_bitmap;
static u32 dev_table_size; /* size of the device table */
static u32 alias_table_size; /* size of the alias table */
static u32 rlookup_table_size; /* size if the rlookup table */
enum iommu_init_state {
IOMMU_START_STATE,
IOMMU_IVRS_DETECTED,
IOMMU_ACPI_FINISHED,
IOMMU_ENABLED,
IOMMU_PCI_INIT,
IOMMU_INTERRUPTS_EN,
IOMMU_DMA_OPS,
IOMMU_INITIALIZED,
IOMMU_NOT_FOUND,
IOMMU_INIT_ERROR,
IOMMU_CMDLINE_DISABLED,
};
/* Early ioapic and hpet maps from kernel command line */
#define EARLY_MAP_SIZE 4
static struct devid_map __initdata early_ioapic_map[EARLY_MAP_SIZE];
static struct devid_map __initdata early_hpet_map[EARLY_MAP_SIZE];
static struct acpihid_map_entry __initdata early_acpihid_map[EARLY_MAP_SIZE];
static int __initdata early_ioapic_map_size;
static int __initdata early_hpet_map_size;
static int __initdata early_acpihid_map_size;
static bool __initdata cmdline_maps;
static enum iommu_init_state init_state = IOMMU_START_STATE;
static int amd_iommu_enable_interrupts(void);
static int __init iommu_go_to_state(enum iommu_init_state state);
static void init_device_table_dma(void);
static inline void update_last_devid(u16 devid)
{
if (devid > amd_iommu_last_bdf)
amd_iommu_last_bdf = devid;
}
static inline unsigned long tbl_size(int entry_size)
{
unsigned shift = PAGE_SHIFT +
get_order(((int)amd_iommu_last_bdf + 1) * entry_size);
return 1UL << shift;
}
int amd_iommu_get_num_iommus(void)
{
return amd_iommus_present;
}
/* Access to l1 and l2 indexed register spaces */
static u32 iommu_read_l1(struct amd_iommu *iommu, u16 l1, u8 address)
{
u32 val;
pci_write_config_dword(iommu->dev, 0xf8, (address | l1 << 16));
pci_read_config_dword(iommu->dev, 0xfc, &val);
return val;
}
static void iommu_write_l1(struct amd_iommu *iommu, u16 l1, u8 address, u32 val)
{
pci_write_config_dword(iommu->dev, 0xf8, (address | l1 << 16 | 1 << 31));
pci_write_config_dword(iommu->dev, 0xfc, val);
pci_write_config_dword(iommu->dev, 0xf8, (address | l1 << 16));
}
static u32 iommu_read_l2(struct amd_iommu *iommu, u8 address)
{
u32 val;
pci_write_config_dword(iommu->dev, 0xf0, address);
pci_read_config_dword(iommu->dev, 0xf4, &val);
return val;
}
static void iommu_write_l2(struct amd_iommu *iommu, u8 address, u32 val)
{
pci_write_config_dword(iommu->dev, 0xf0, (address | 1 << 8));
pci_write_config_dword(iommu->dev, 0xf4, val);
}
/****************************************************************************
*
* AMD IOMMU MMIO register space handling functions
*
* These functions are used to program the IOMMU device registers in
* MMIO space required for that driver.
*
****************************************************************************/
/*
* This function set the exclusion range in the IOMMU. DMA accesses to the
* exclusion range are passed through untranslated
*/
static void iommu_set_exclusion_range(struct amd_iommu *iommu)
{
u64 start = iommu->exclusion_start & PAGE_MASK;
u64 limit = (start + iommu->exclusion_length) & PAGE_MASK;
u64 entry;
if (!iommu->exclusion_start)
return;
entry = start | MMIO_EXCL_ENABLE_MASK;
memcpy_toio(iommu->mmio_base + MMIO_EXCL_BASE_OFFSET,
&entry, sizeof(entry));
entry = limit;
memcpy_toio(iommu->mmio_base + MMIO_EXCL_LIMIT_OFFSET,
&entry, sizeof(entry));
}
/* Programs the physical address of the device table into the IOMMU hardware */
static void iommu_set_device_table(struct amd_iommu *iommu)
{
u64 entry;
BUG_ON(iommu->mmio_base == NULL);
entry = virt_to_phys(amd_iommu_dev_table);
entry |= (dev_table_size >> 12) - 1;
memcpy_toio(iommu->mmio_base + MMIO_DEV_TABLE_OFFSET,
&entry, sizeof(entry));
}
/* Generic functions to enable/disable certain features of the IOMMU. */
static void iommu_feature_enable(struct amd_iommu *iommu, u8 bit)
{
u32 ctrl;
ctrl = readl(iommu->mmio_base + MMIO_CONTROL_OFFSET);
ctrl |= (1 << bit);
writel(ctrl, iommu->mmio_base + MMIO_CONTROL_OFFSET);
}
static void iommu_feature_disable(struct amd_iommu *iommu, u8 bit)
{
u32 ctrl;
ctrl = readl(iommu->mmio_base + MMIO_CONTROL_OFFSET);
ctrl &= ~(1 << bit);
writel(ctrl, iommu->mmio_base + MMIO_CONTROL_OFFSET);
}
static void iommu_set_inv_tlb_timeout(struct amd_iommu *iommu, int timeout)
{
u32 ctrl;
ctrl = readl(iommu->mmio_base + MMIO_CONTROL_OFFSET);
ctrl &= ~CTRL_INV_TO_MASK;
ctrl |= (timeout << CONTROL_INV_TIMEOUT) & CTRL_INV_TO_MASK;
writel(ctrl, iommu->mmio_base + MMIO_CONTROL_OFFSET);
}
/* Function to enable the hardware */
static void iommu_enable(struct amd_iommu *iommu)
{
iommu_feature_enable(iommu, CONTROL_IOMMU_EN);
}
static void iommu_disable(struct amd_iommu *iommu)
{
/* Disable command buffer */
iommu_feature_disable(iommu, CONTROL_CMDBUF_EN);
/* Disable event logging and event interrupts */
iommu_feature_disable(iommu, CONTROL_EVT_INT_EN);
iommu_feature_disable(iommu, CONTROL_EVT_LOG_EN);
/* Disable IOMMU GA_LOG */
iommu_feature_disable(iommu, CONTROL_GALOG_EN);
iommu_feature_disable(iommu, CONTROL_GAINT_EN);
/* Disable IOMMU hardware itself */
iommu_feature_disable(iommu, CONTROL_IOMMU_EN);
}
/*
* mapping and unmapping functions for the IOMMU MMIO space. Each AMD IOMMU in
* the system has one.
*/
static u8 __iomem * __init iommu_map_mmio_space(u64 address, u64 end)
{
if (!request_mem_region(address, end, "amd_iommu")) {
pr_err("AMD-Vi: Can not reserve memory region %llx-%llx for mmio\n",
address, end);
pr_err("AMD-Vi: This is a BIOS bug. Please contact your hardware vendor\n");
return NULL;
}
return (u8 __iomem *)ioremap_nocache(address, end);
}
static void __init iommu_unmap_mmio_space(struct amd_iommu *iommu)
{
if (iommu->mmio_base)
iounmap(iommu->mmio_base);
release_mem_region(iommu->mmio_phys, iommu->mmio_phys_end);
}
static inline u32 get_ivhd_header_size(struct ivhd_header *h)
{
u32 size = 0;
switch (h->type) {
case 0x10:
size = 24;
break;
case 0x11:
case 0x40:
size = 40;
break;
}
return size;
}
/****************************************************************************
*
* The functions below belong to the first pass of AMD IOMMU ACPI table
* parsing. In this pass we try to find out the highest device id this
* code has to handle. Upon this information the size of the shared data
* structures is determined later.
*
****************************************************************************/
/*
* This function calculates the length of a given IVHD entry
*/
static inline int ivhd_entry_length(u8 *ivhd)
{
u32 type = ((struct ivhd_entry *)ivhd)->type;
if (type < 0x80) {
return 0x04 << (*ivhd >> 6);
} else if (type == IVHD_DEV_ACPI_HID) {
/* For ACPI_HID, offset 21 is uid len */
return *((u8 *)ivhd + 21) + 22;
}
return 0;
}
/*
* After reading the highest device id from the IOMMU PCI capability header
* this function looks if there is a higher device id defined in the ACPI table
*/
static int __init find_last_devid_from_ivhd(struct ivhd_header *h)
{
u8 *p = (void *)h, *end = (void *)h;
struct ivhd_entry *dev;
u32 ivhd_size = get_ivhd_header_size(h);
if (!ivhd_size) {
pr_err("AMD-Vi: Unsupported IVHD type %#x\n", h->type);
return -EINVAL;
}
p += ivhd_size;
end += h->length;
while (p < end) {
dev = (struct ivhd_entry *)p;
switch (dev->type) {
case IVHD_DEV_ALL:
/* Use maximum BDF value for DEV_ALL */
update_last_devid(0xffff);
break;
case IVHD_DEV_SELECT:
case IVHD_DEV_RANGE_END:
case IVHD_DEV_ALIAS:
case IVHD_DEV_EXT_SELECT:
/* all the above subfield types refer to device ids */
update_last_devid(dev->devid);
break;
default:
break;
}
p += ivhd_entry_length(p);
}
WARN_ON(p != end);
return 0;
}
static int __init check_ivrs_checksum(struct acpi_table_header *table)
{
int i;
u8 checksum = 0, *p = (u8 *)table;
for (i = 0; i < table->length; ++i)
checksum += p[i];
if (checksum != 0) {
/* ACPI table corrupt */
pr_err(FW_BUG "AMD-Vi: IVRS invalid checksum\n");
return -ENODEV;
}
return 0;
}
/*
* Iterate over all IVHD entries in the ACPI table and find the highest device
* id which we need to handle. This is the first of three functions which parse
* the ACPI table. So we check the checksum here.
*/
static int __init find_last_devid_acpi(struct acpi_table_header *table)
{
u8 *p = (u8 *)table, *end = (u8 *)table;
struct ivhd_header *h;
p += IVRS_HEADER_LENGTH;
end += table->length;
while (p < end) {
h = (struct ivhd_header *)p;
if (h->type == amd_iommu_target_ivhd_type) {
int ret = find_last_devid_from_ivhd(h);
if (ret)
return ret;
}
p += h->length;
}
WARN_ON(p != end);
return 0;
}
/****************************************************************************
*
* The following functions belong to the code path which parses the ACPI table
* the second time. In this ACPI parsing iteration we allocate IOMMU specific
* data structures, initialize the device/alias/rlookup table and also
* basically initialize the hardware.
*
****************************************************************************/
/*
* Allocates the command buffer. This buffer is per AMD IOMMU. We can
* write commands to that buffer later and the IOMMU will execute them
* asynchronously
*/
static int __init alloc_command_buffer(struct amd_iommu *iommu)
{
iommu->cmd_buf = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
get_order(CMD_BUFFER_SIZE));
return iommu->cmd_buf ? 0 : -ENOMEM;
}
/*
* This function resets the command buffer if the IOMMU stopped fetching
* commands from it.
*/
void amd_iommu_reset_cmd_buffer(struct amd_iommu *iommu)
{
iommu_feature_disable(iommu, CONTROL_CMDBUF_EN);
writel(0x00, iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
writel(0x00, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
iommu->cmd_buf_head = 0;
iommu->cmd_buf_tail = 0;
iommu_feature_enable(iommu, CONTROL_CMDBUF_EN);
}
/*
* This function writes the command buffer address to the hardware and
* enables it.
*/
static void iommu_enable_command_buffer(struct amd_iommu *iommu)
{
u64 entry;
BUG_ON(iommu->cmd_buf == NULL);
entry = (u64)virt_to_phys(iommu->cmd_buf);
entry |= MMIO_CMD_SIZE_512;
memcpy_toio(iommu->mmio_base + MMIO_CMD_BUF_OFFSET,
&entry, sizeof(entry));
amd_iommu_reset_cmd_buffer(iommu);
}
static void __init free_command_buffer(struct amd_iommu *iommu)
{
free_pages((unsigned long)iommu->cmd_buf, get_order(CMD_BUFFER_SIZE));
}
/* allocates the memory where the IOMMU will log its events to */
static int __init alloc_event_buffer(struct amd_iommu *iommu)
{
iommu->evt_buf = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
get_order(EVT_BUFFER_SIZE));
return iommu->evt_buf ? 0 : -ENOMEM;
}
static void iommu_enable_event_buffer(struct amd_iommu *iommu)
{
u64 entry;
BUG_ON(iommu->evt_buf == NULL);
entry = (u64)virt_to_phys(iommu->evt_buf) | EVT_LEN_MASK;
memcpy_toio(iommu->mmio_base + MMIO_EVT_BUF_OFFSET,
&entry, sizeof(entry));
/* set head and tail to zero manually */
writel(0x00, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
writel(0x00, iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
iommu_feature_enable(iommu, CONTROL_EVT_LOG_EN);
}
static void __init free_event_buffer(struct amd_iommu *iommu)
{
free_pages((unsigned long)iommu->evt_buf, get_order(EVT_BUFFER_SIZE));
}
/* allocates the memory where the IOMMU will log its events to */
static int __init alloc_ppr_log(struct amd_iommu *iommu)
{
iommu->ppr_log = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
get_order(PPR_LOG_SIZE));
return iommu->ppr_log ? 0 : -ENOMEM;
}
static void iommu_enable_ppr_log(struct amd_iommu *iommu)
{
u64 entry;
if (iommu->ppr_log == NULL)
return;
entry = (u64)virt_to_phys(iommu->ppr_log) | PPR_LOG_SIZE_512;
memcpy_toio(iommu->mmio_base + MMIO_PPR_LOG_OFFSET,
&entry, sizeof(entry));
/* set head and tail to zero manually */
writel(0x00, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
writel(0x00, iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
iommu_feature_enable(iommu, CONTROL_PPFLOG_EN);
iommu_feature_enable(iommu, CONTROL_PPR_EN);
}
static void __init free_ppr_log(struct amd_iommu *iommu)
{
if (iommu->ppr_log == NULL)
return;
free_pages((unsigned long)iommu->ppr_log, get_order(PPR_LOG_SIZE));
}
static void free_ga_log(struct amd_iommu *iommu)
{
#ifdef CONFIG_IRQ_REMAP
if (iommu->ga_log)
free_pages((unsigned long)iommu->ga_log,
get_order(GA_LOG_SIZE));
if (iommu->ga_log_tail)
free_pages((unsigned long)iommu->ga_log_tail,
get_order(8));
#endif
}
static int iommu_ga_log_enable(struct amd_iommu *iommu)
{
#ifdef CONFIG_IRQ_REMAP
u32 status, i;
if (!iommu->ga_log)
return -EINVAL;
status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
/* Check if already running */
if (status & (MMIO_STATUS_GALOG_RUN_MASK))
return 0;
iommu_feature_enable(iommu, CONTROL_GAINT_EN);
iommu_feature_enable(iommu, CONTROL_GALOG_EN);
for (i = 0; i < LOOP_TIMEOUT; ++i) {
status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
if (status & (MMIO_STATUS_GALOG_RUN_MASK))
break;
}
if (i >= LOOP_TIMEOUT)
return -EINVAL;
#endif /* CONFIG_IRQ_REMAP */
return 0;
}
#ifdef CONFIG_IRQ_REMAP
static int iommu_init_ga_log(struct amd_iommu *iommu)
{
u64 entry;
if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir))
return 0;
iommu->ga_log = (u8 *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
get_order(GA_LOG_SIZE));
if (!iommu->ga_log)
goto err_out;
iommu->ga_log_tail = (u8 *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
get_order(8));
if (!iommu->ga_log_tail)
goto err_out;
entry = (u64)virt_to_phys(iommu->ga_log) | GA_LOG_SIZE_512;
memcpy_toio(iommu->mmio_base + MMIO_GA_LOG_BASE_OFFSET,
&entry, sizeof(entry));
entry = ((u64)virt_to_phys(iommu->ga_log) & 0xFFFFFFFFFFFFFULL) & ~7ULL;
memcpy_toio(iommu->mmio_base + MMIO_GA_LOG_TAIL_OFFSET,
&entry, sizeof(entry));
writel(0x00, iommu->mmio_base + MMIO_GA_HEAD_OFFSET);
writel(0x00, iommu->mmio_base + MMIO_GA_TAIL_OFFSET);
return 0;
err_out:
free_ga_log(iommu);
return -EINVAL;
}
#endif /* CONFIG_IRQ_REMAP */
static int iommu_init_ga(struct amd_iommu *iommu)
{
int ret = 0;
#ifdef CONFIG_IRQ_REMAP
/* Note: We have already checked GASup from IVRS table.
* Now, we need to make sure that GAMSup is set.
*/
if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) &&
!iommu_feature(iommu, FEATURE_GAM_VAPIC))
amd_iommu_guest_ir = AMD_IOMMU_GUEST_IR_LEGACY_GA;
ret = iommu_init_ga_log(iommu);
#endif /* CONFIG_IRQ_REMAP */
return ret;
}
static void iommu_enable_gt(struct amd_iommu *iommu)
{
if (!iommu_feature(iommu, FEATURE_GT))
return;
iommu_feature_enable(iommu, CONTROL_GT_EN);
}
/* sets a specific bit in the device table entry. */
static void set_dev_entry_bit(u16 devid, u8 bit)
{
int i = (bit >> 6) & 0x03;
int _bit = bit & 0x3f;
amd_iommu_dev_table[devid].data[i] |= (1UL << _bit);
}
static int get_dev_entry_bit(u16 devid, u8 bit)
{
int i = (bit >> 6) & 0x03;
int _bit = bit & 0x3f;
return (amd_iommu_dev_table[devid].data[i] & (1UL << _bit)) >> _bit;
}
void amd_iommu_apply_erratum_63(u16 devid)
{
int sysmgt;
sysmgt = get_dev_entry_bit(devid, DEV_ENTRY_SYSMGT1) |
(get_dev_entry_bit(devid, DEV_ENTRY_SYSMGT2) << 1);
if (sysmgt == 0x01)
set_dev_entry_bit(devid, DEV_ENTRY_IW);
}
/* Writes the specific IOMMU for a device into the rlookup table */
static void __init set_iommu_for_device(struct amd_iommu *iommu, u16 devid)
{
amd_iommu_rlookup_table[devid] = iommu;
}
/*
* This function takes the device specific flags read from the ACPI
* table and sets up the device table entry with that information
*/
static void __init set_dev_entry_from_acpi(struct amd_iommu *iommu,
u16 devid, u32 flags, u32 ext_flags)
{
if (flags & ACPI_DEVFLAG_INITPASS)
set_dev_entry_bit(devid, DEV_ENTRY_INIT_PASS);
if (flags & ACPI_DEVFLAG_EXTINT)
set_dev_entry_bit(devid, DEV_ENTRY_EINT_PASS);
if (flags & ACPI_DEVFLAG_NMI)
set_dev_entry_bit(devid, DEV_ENTRY_NMI_PASS);
if (flags & ACPI_DEVFLAG_SYSMGT1)
set_dev_entry_bit(devid, DEV_ENTRY_SYSMGT1);
if (flags & ACPI_DEVFLAG_SYSMGT2)
set_dev_entry_bit(devid, DEV_ENTRY_SYSMGT2);
if (flags & ACPI_DEVFLAG_LINT0)
set_dev_entry_bit(devid, DEV_ENTRY_LINT0_PASS);
if (flags & ACPI_DEVFLAG_LINT1)
set_dev_entry_bit(devid, DEV_ENTRY_LINT1_PASS);
amd_iommu_apply_erratum_63(devid);
set_iommu_for_device(iommu, devid);
}
static int __init add_special_device(u8 type, u8 id, u16 *devid, bool cmd_line)
{
struct devid_map *entry;
struct list_head *list;
if (type == IVHD_SPECIAL_IOAPIC)
list = &ioapic_map;
else if (type == IVHD_SPECIAL_HPET)
list = &hpet_map;
else
return -EINVAL;
list_for_each_entry(entry, list, list) {
if (!(entry->id == id && entry->cmd_line))
continue;
pr_info("AMD-Vi: Command-line override present for %s id %d - ignoring\n",
type == IVHD_SPECIAL_IOAPIC ? "IOAPIC" : "HPET", id);
*devid = entry->devid;
return 0;
}
entry = kzalloc(sizeof(*entry), GFP_KERNEL);
if (!entry)
return -ENOMEM;
entry->id = id;
entry->devid = *devid;
entry->cmd_line = cmd_line;
list_add_tail(&entry->list, list);
return 0;
}
static int __init add_acpi_hid_device(u8 *hid, u8 *uid, u16 *devid,
bool cmd_line)
{
struct acpihid_map_entry *entry;
struct list_head *list = &acpihid_map;
list_for_each_entry(entry, list, list) {
if (strcmp(entry->hid, hid) ||
(*uid && *entry->uid && strcmp(entry->uid, uid)) ||
!entry->cmd_line)
continue;
pr_info("AMD-Vi: Command-line override for hid:%s uid:%s\n",
hid, uid);
*devid = entry->devid;
return 0;
}
entry = kzalloc(sizeof(*entry), GFP_KERNEL);
if (!entry)
return -ENOMEM;
memcpy(entry->uid, uid, strlen(uid));
memcpy(entry->hid, hid, strlen(hid));
entry->devid = *devid;
entry->cmd_line = cmd_line;
entry->root_devid = (entry->devid & (~0x7));
pr_info("AMD-Vi:%s, add hid:%s, uid:%s, rdevid:%d\n",
entry->cmd_line ? "cmd" : "ivrs",
entry->hid, entry->uid, entry->root_devid);
list_add_tail(&entry->list, list);
return 0;
}
static int __init add_early_maps(void)
{
int i, ret;
for (i = 0; i < early_ioapic_map_size; ++i) {
ret = add_special_device(IVHD_SPECIAL_IOAPIC,
early_ioapic_map[i].id,
&early_ioapic_map[i].devid,
early_ioapic_map[i].cmd_line);
if (ret)
return ret;
}
for (i = 0; i < early_hpet_map_size; ++i) {
ret = add_special_device(IVHD_SPECIAL_HPET,
early_hpet_map[i].id,
&early_hpet_map[i].devid,
early_hpet_map[i].cmd_line);
if (ret)
return ret;
}
for (i = 0; i < early_acpihid_map_size; ++i) {
ret = add_acpi_hid_device(early_acpihid_map[i].hid,
early_acpihid_map[i].uid,
&early_acpihid_map[i].devid,
early_acpihid_map[i].cmd_line);
if (ret)
return ret;
}
return 0;
}
/*
* Reads the device exclusion range from ACPI and initializes the IOMMU with
* it
*/
static void __init set_device_exclusion_range(u16 devid, struct ivmd_header *m)
{
struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
if (!(m->flags & IVMD_FLAG_EXCL_RANGE))
return;
if (iommu) {
/*
* We only can configure exclusion ranges per IOMMU, not
* per device. But we can enable the exclusion range per
* device. This is done here
*/
set_dev_entry_bit(devid, DEV_ENTRY_EX);
iommu->exclusion_start = m->range_start;
iommu->exclusion_length = m->range_length;
}
}
/*
* Takes a pointer to an AMD IOMMU entry in the ACPI table and
* initializes the hardware and our data structures with it.
*/
static int __init init_iommu_from_acpi(struct amd_iommu *iommu,
struct ivhd_header *h)
{
u8 *p = (u8 *)h;
u8 *end = p, flags = 0;
u16 devid = 0, devid_start = 0, devid_to = 0;
u32 dev_i, ext_flags = 0;
bool alias = false;
struct ivhd_entry *e;
u32 ivhd_size;
int ret;
ret = add_early_maps();
if (ret)
return ret;
/*
* First save the recommended feature enable bits from ACPI
*/
iommu->acpi_flags = h->flags;
/*
* Done. Now parse the device entries
*/
ivhd_size = get_ivhd_header_size(h);
if (!ivhd_size) {
pr_err("AMD-Vi: Unsupported IVHD type %#x\n", h->type);
return -EINVAL;
}
p += ivhd_size;
end += h->length;
while (p < end) {
e = (struct ivhd_entry *)p;
switch (e->type) {
case IVHD_DEV_ALL:
DUMP_printk(" DEV_ALL\t\t\tflags: %02x\n", e->flags);
for (dev_i = 0; dev_i <= amd_iommu_last_bdf; ++dev_i)
set_dev_entry_from_acpi(iommu, dev_i, e->flags, 0);
break;
case IVHD_DEV_SELECT:
DUMP_printk(" DEV_SELECT\t\t\t devid: %02x:%02x.%x "
"flags: %02x\n",
PCI_BUS_NUM(e->devid),
PCI_SLOT(e->devid),
PCI_FUNC(e->devid),
e->flags);
devid = e->devid;
set_dev_entry_from_acpi(iommu, devid, e->flags, 0);
break;
case IVHD_DEV_SELECT_RANGE_START:
DUMP_printk(" DEV_SELECT_RANGE_START\t "
"devid: %02x:%02x.%x flags: %02x\n",
PCI_BUS_NUM(e->devid),
PCI_SLOT(e->devid),
PCI_FUNC(e->devid),
e->flags);
devid_start = e->devid;
flags = e->flags;
ext_flags = 0;
alias = false;
break;
case IVHD_DEV_ALIAS:
DUMP_printk(" DEV_ALIAS\t\t\t devid: %02x:%02x.%x "
"flags: %02x devid_to: %02x:%02x.%x\n",
PCI_BUS_NUM(e->devid),
PCI_SLOT(e->devid),
PCI_FUNC(e->devid),
e->flags,
PCI_BUS_NUM(e->ext >> 8),
PCI_SLOT(e->ext >> 8),
PCI_FUNC(e->ext >> 8));
devid = e->devid;
devid_to = e->ext >> 8;
set_dev_entry_from_acpi(iommu, devid , e->flags, 0);
set_dev_entry_from_acpi(iommu, devid_to, e->flags, 0);
amd_iommu_alias_table[devid] = devid_to;
break;
case IVHD_DEV_ALIAS_RANGE:
DUMP_printk(" DEV_ALIAS_RANGE\t\t "
"devid: %02x:%02x.%x flags: %02x "
"devid_to: %02x:%02x.%x\n",
PCI_BUS_NUM(e->devid),
PCI_SLOT(e->devid),
PCI_FUNC(e->devid),
e->flags,
PCI_BUS_NUM(e->ext >> 8),
PCI_SLOT(e->ext >> 8),
PCI_FUNC(e->ext >> 8));
devid_start = e->devid;
flags = e->flags;
devid_to = e->ext >> 8;
ext_flags = 0;
alias = true;
break;
case IVHD_DEV_EXT_SELECT:
DUMP_printk(" DEV_EXT_SELECT\t\t devid: %02x:%02x.%x "
"flags: %02x ext: %08x\n",
PCI_BUS_NUM(e->devid),
PCI_SLOT(e->devid),
PCI_FUNC(e->devid),
e->flags, e->ext);
devid = e->devid;
set_dev_entry_from_acpi(iommu, devid, e->flags,
e->ext);
break;
case IVHD_DEV_EXT_SELECT_RANGE:
DUMP_printk(" DEV_EXT_SELECT_RANGE\t devid: "
"%02x:%02x.%x flags: %02x ext: %08x\n",
PCI_BUS_NUM(e->devid),
PCI_SLOT(e->devid),
PCI_FUNC(e->devid),
e->flags, e->ext);
devid_start = e->devid;
flags = e->flags;
ext_flags = e->ext;
alias = false;
break;
case IVHD_DEV_RANGE_END:
DUMP_printk(" DEV_RANGE_END\t\t devid: %02x:%02x.%x\n",
PCI_BUS_NUM(e->devid),
PCI_SLOT(e->devid),
PCI_FUNC(e->devid));
devid = e->devid;
for (dev_i = devid_start; dev_i <= devid; ++dev_i) {
if (alias) {
amd_iommu_alias_table[dev_i] = devid_to;
set_dev_entry_from_acpi(iommu,
devid_to, flags, ext_flags);
}
set_dev_entry_from_acpi(iommu, dev_i,
flags, ext_flags);
}
break;
case IVHD_DEV_SPECIAL: {
u8 handle, type;
const char *var;
u16 devid;
int ret;
handle = e->ext & 0xff;
devid = (e->ext >> 8) & 0xffff;
type = (e->ext >> 24) & 0xff;
if (type == IVHD_SPECIAL_IOAPIC)
var = "IOAPIC";
else if (type == IVHD_SPECIAL_HPET)
var = "HPET";
else
var = "UNKNOWN";
DUMP_printk(" DEV_SPECIAL(%s[%d])\t\tdevid: %02x:%02x.%x\n",
var, (int)handle,
PCI_BUS_NUM(devid),
PCI_SLOT(devid),
PCI_FUNC(devid));
ret = add_special_device(type, handle, &devid, false);
if (ret)
return ret;
/*
* add_special_device might update the devid in case a
* command-line override is present. So call
* set_dev_entry_from_acpi after add_special_device.
*/
set_dev_entry_from_acpi(iommu, devid, e->flags, 0);
break;
}
case IVHD_DEV_ACPI_HID: {
u16 devid;
u8 hid[ACPIHID_HID_LEN] = {0};
u8 uid[ACPIHID_UID_LEN] = {0};
int ret;
if (h->type != 0x40) {
pr_err(FW_BUG "Invalid IVHD device type %#x\n",
e->type);
break;
}
memcpy(hid, (u8 *)(&e->ext), ACPIHID_HID_LEN - 1);
hid[ACPIHID_HID_LEN - 1] = '\0';
if (!(*hid)) {
pr_err(FW_BUG "Invalid HID.\n");
break;
}
switch (e->uidf) {
case UID_NOT_PRESENT:
if (e->uidl != 0)
pr_warn(FW_BUG "Invalid UID length.\n");
break;
case UID_IS_INTEGER:
sprintf(uid, "%d", e->uid);
break;
case UID_IS_CHARACTER:
memcpy(uid, (u8 *)(&e->uid), ACPIHID_UID_LEN - 1);
uid[ACPIHID_UID_LEN - 1] = '\0';
break;
default:
break;
}
devid = e->devid;
DUMP_printk(" DEV_ACPI_HID(%s[%s])\t\tdevid: %02x:%02x.%x\n",
hid, uid,
PCI_BUS_NUM(devid),
PCI_SLOT(devid),
PCI_FUNC(devid));
flags = e->flags;
ret = add_acpi_hid_device(hid, uid, &devid, false);
if (ret)
return ret;
/*
* add_special_device might update the devid in case a
* command-line override is present. So call
* set_dev_entry_from_acpi after add_special_device.
*/
set_dev_entry_from_acpi(iommu, devid, e->flags, 0);
break;
}
default:
break;
}
p += ivhd_entry_length(p);
}
return 0;
}
static void __init free_iommu_one(struct amd_iommu *iommu)
{
free_command_buffer(iommu);
free_event_buffer(iommu);
free_ppr_log(iommu);
free_ga_log(iommu);
iommu_unmap_mmio_space(iommu);
}
static void __init free_iommu_all(void)
{
struct amd_iommu *iommu, *next;
for_each_iommu_safe(iommu, next) {
list_del(&iommu->list);
free_iommu_one(iommu);
kfree(iommu);
}
}
/*
* Family15h Model 10h-1fh erratum 746 (IOMMU Logging May Stall Translations)
* Workaround:
* BIOS should disable L2B micellaneous clock gating by setting
* L2_L2B_CK_GATE_CONTROL[CKGateL2BMiscDisable](D0F2xF4_x90[2]) = 1b
*/
static void amd_iommu_erratum_746_workaround(struct amd_iommu *iommu)
{
u32 value;
if ((boot_cpu_data.x86 != 0x15) ||
(boot_cpu_data.x86_model < 0x10) ||
(boot_cpu_data.x86_model > 0x1f))
return;
pci_write_config_dword(iommu->dev, 0xf0, 0x90);
pci_read_config_dword(iommu->dev, 0xf4, &value);
if (value & BIT(2))
return;
/* Select NB indirect register 0x90 and enable writing */
pci_write_config_dword(iommu->dev, 0xf0, 0x90 | (1 << 8));
pci_write_config_dword(iommu->dev, 0xf4, value | 0x4);
pr_info("AMD-Vi: Applying erratum 746 workaround for IOMMU at %s\n",
dev_name(&iommu->dev->dev));
/* Clear the enable writing bit */
pci_write_config_dword(iommu->dev, 0xf0, 0x90);
}
/*
* Family15h Model 30h-3fh (IOMMU Mishandles ATS Write Permission)
* Workaround:
* BIOS should enable ATS write permission check by setting
* L2_DEBUG_3[AtsIgnoreIWDis](D0F2xF4_x47[0]) = 1b
*/
static void amd_iommu_ats_write_check_workaround(struct amd_iommu *iommu)
{
u32 value;
if ((boot_cpu_data.x86 != 0x15) ||
(boot_cpu_data.x86_model < 0x30) ||
(boot_cpu_data.x86_model > 0x3f))
return;
/* Test L2_DEBUG_3[AtsIgnoreIWDis] == 1 */
value = iommu_read_l2(iommu, 0x47);
if (value & BIT(0))
return;
/* Set L2_DEBUG_3[AtsIgnoreIWDis] = 1 */
iommu_write_l2(iommu, 0x47, value | BIT(0));
pr_info("AMD-Vi: Applying ATS write check workaround for IOMMU at %s\n",
dev_name(&iommu->dev->dev));
}
/*
* This function clues the initialization function for one IOMMU
* together and also allocates the command buffer and programs the
* hardware. It does NOT enable the IOMMU. This is done afterwards.
*/
static int __init init_iommu_one(struct amd_iommu *iommu, struct ivhd_header *h)
{
int ret;
spin_lock_init(&iommu->lock);
/* Add IOMMU to internal data structures */
list_add_tail(&iommu->list, &amd_iommu_list);
iommu->index = amd_iommus_present++;
if (unlikely(iommu->index >= MAX_IOMMUS)) {
WARN(1, "AMD-Vi: System has more IOMMUs than supported by this driver\n");
return -ENOSYS;
}
/* Index is fine - add IOMMU to the array */
amd_iommus[iommu->index] = iommu;
/*
* Copy data from ACPI table entry to the iommu struct
*/
iommu->devid = h->devid;
iommu->cap_ptr = h->cap_ptr;
iommu->pci_seg = h->pci_seg;
iommu->mmio_phys = h->mmio_phys;
switch (h->type) {
case 0x10:
/* Check if IVHD EFR contains proper max banks/counters */
if ((h->efr_attr != 0) &&
((h->efr_attr & (0xF << 13)) != 0) &&
((h->efr_attr & (0x3F << 17)) != 0))
iommu->mmio_phys_end = MMIO_REG_END_OFFSET;
else
iommu->mmio_phys_end = MMIO_CNTR_CONF_OFFSET;
if (((h->efr_attr & (0x1 << IOMMU_FEAT_GASUP_SHIFT)) == 0))
amd_iommu_guest_ir = AMD_IOMMU_GUEST_IR_LEGACY;
break;
case 0x11:
case 0x40:
if (h->efr_reg & (1 << 9))
iommu->mmio_phys_end = MMIO_REG_END_OFFSET;
else
iommu->mmio_phys_end = MMIO_CNTR_CONF_OFFSET;
if (((h->efr_reg & (0x1 << IOMMU_EFR_GASUP_SHIFT)) == 0))
amd_iommu_guest_ir = AMD_IOMMU_GUEST_IR_LEGACY;
break;
default:
return -EINVAL;
}
iommu->mmio_base = iommu_map_mmio_space(iommu->mmio_phys,
iommu->mmio_phys_end);
if (!iommu->mmio_base)
return -ENOMEM;
if (alloc_command_buffer(iommu))
return -ENOMEM;
if (alloc_event_buffer(iommu))
return -ENOMEM;
iommu->int_enabled = false;
ret = init_iommu_from_acpi(iommu, h);
if (ret)
return ret;
ret = amd_iommu_create_irq_domain(iommu);
if (ret)
return ret;
/*
* Make sure IOMMU is not considered to translate itself. The IVRS
* table tells us so, but this is a lie!
*/
amd_iommu_rlookup_table[iommu->devid] = NULL;
return 0;
}
/**
* get_highest_supported_ivhd_type - Look up the appropriate IVHD type
* @ivrs Pointer to the IVRS header
*
* This function search through all IVDB of the maximum supported IVHD
*/
static u8 get_highest_supported_ivhd_type(struct acpi_table_header *ivrs)
{
u8 *base = (u8 *)ivrs;
struct ivhd_header *ivhd = (struct ivhd_header *)
(base + IVRS_HEADER_LENGTH);
u8 last_type = ivhd->type;
u16 devid = ivhd->devid;
while (((u8 *)ivhd - base < ivrs->length) &&
(ivhd->type <= ACPI_IVHD_TYPE_MAX_SUPPORTED)) {
u8 *p = (u8 *) ivhd;
if (ivhd->devid == devid)
last_type = ivhd->type;
ivhd = (struct ivhd_header *)(p + ivhd->length);
}
return last_type;
}
/*
* Iterates over all IOMMU entries in the ACPI table, allocates the
* IOMMU structure and initializes it with init_iommu_one()
*/
static int __init init_iommu_all(struct acpi_table_header *table)
{
u8 *p = (u8 *)table, *end = (u8 *)table;
struct ivhd_header *h;
struct amd_iommu *iommu;
int ret;
end += table->length;
p += IVRS_HEADER_LENGTH;
while (p < end) {
h = (struct ivhd_header *)p;
if (*p == amd_iommu_target_ivhd_type) {
DUMP_printk("device: %02x:%02x.%01x cap: %04x "
"seg: %d flags: %01x info %04x\n",
PCI_BUS_NUM(h->devid), PCI_SLOT(h->devid),
PCI_FUNC(h->devid), h->cap_ptr,
h->pci_seg, h->flags, h->info);
DUMP_printk(" mmio-addr: %016llx\n",
h->mmio_phys);
iommu = kzalloc(sizeof(struct amd_iommu), GFP_KERNEL);
if (iommu == NULL)
return -ENOMEM;
ret = init_iommu_one(iommu, h);
if (ret)
return ret;
}
p += h->length;
}
WARN_ON(p != end);
return 0;
}
static int iommu_pc_get_set_reg(struct amd_iommu *iommu, u8 bank, u8 cntr,
u8 fxn, u64 *value, bool is_write);
static void init_iommu_perf_ctr(struct amd_iommu *iommu)
{
u64 val = 0xabcd, val2 = 0;
if (!iommu_feature(iommu, FEATURE_PC))
return;
amd_iommu_pc_present = true;
/* Check if the performance counters can be written to */
if ((iommu_pc_get_set_reg(iommu, 0, 0, 0, &val, true)) ||
(iommu_pc_get_set_reg(iommu, 0, 0, 0, &val2, false)) ||
(val != val2)) {
pr_err("AMD-Vi: Unable to write to IOMMU perf counter.\n");
amd_iommu_pc_present = false;
return;
}
pr_info("AMD-Vi: IOMMU performance counters supported\n");
val = readl(iommu->mmio_base + MMIO_CNTR_CONF_OFFSET);
iommu->max_banks = (u8) ((val >> 12) & 0x3f);
iommu->max_counters = (u8) ((val >> 7) & 0xf);
}
iommu/amd: Add sysfs support AMD-Vi support for IOMMU sysfs. This allows us to associate devices with a specific IOMMU device and examine the capabilities and features of that IOMMU. The AMD IOMMU is hosted on and actual PCI device, so we make that device the parent for the IOMMU class device. This initial implementaiton exposes only the capability header and extended features register for the IOMMU. # find /sys | grep ivhd /sys/devices/pci0000:00/0000:00:00.2/iommu/ivhd0 /sys/devices/pci0000:00/0000:00:00.2/iommu/ivhd0/devices /sys/devices/pci0000:00/0000:00:00.2/iommu/ivhd0/devices/0000:00:00.0 /sys/devices/pci0000:00/0000:00:00.2/iommu/ivhd0/devices/0000:00:02.0 /sys/devices/pci0000:00/0000:00:00.2/iommu/ivhd0/devices/0000:00:04.0 /sys/devices/pci0000:00/0000:00:00.2/iommu/ivhd0/devices/0000:00:09.0 /sys/devices/pci0000:00/0000:00:00.2/iommu/ivhd0/devices/0000:00:11.0 /sys/devices/pci0000:00/0000:00:00.2/iommu/ivhd0/devices/0000:00:12.0 /sys/devices/pci0000:00/0000:00:00.2/iommu/ivhd0/devices/0000:00:12.2 /sys/devices/pci0000:00/0000:00:00.2/iommu/ivhd0/devices/0000:00:13.0 ... /sys/devices/pci0000:00/0000:00:00.2/iommu/ivhd0/power /sys/devices/pci0000:00/0000:00:00.2/iommu/ivhd0/power/control ... /sys/devices/pci0000:00/0000:00:00.2/iommu/ivhd0/device /sys/devices/pci0000:00/0000:00:00.2/iommu/ivhd0/subsystem /sys/devices/pci0000:00/0000:00:00.2/iommu/ivhd0/amd-iommu /sys/devices/pci0000:00/0000:00:00.2/iommu/ivhd0/amd-iommu/cap /sys/devices/pci0000:00/0000:00:00.2/iommu/ivhd0/amd-iommu/features /sys/devices/pci0000:00/0000:00:00.2/iommu/ivhd0/uevent /sys/class/iommu/ivhd0 Signed-off-by: Alex Williamson <alex.williamson@redhat.com> Signed-off-by: Joerg Roedel <jroedel@suse.de>
2014-06-13 05:12:37 +07:00
static ssize_t amd_iommu_show_cap(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct amd_iommu *iommu = dev_to_amd_iommu(dev);
iommu/amd: Add sysfs support AMD-Vi support for IOMMU sysfs. This allows us to associate devices with a specific IOMMU device and examine the capabilities and features of that IOMMU. The AMD IOMMU is hosted on and actual PCI device, so we make that device the parent for the IOMMU class device. This initial implementaiton exposes only the capability header and extended features register for the IOMMU. # find /sys | grep ivhd /sys/devices/pci0000:00/0000:00:00.2/iommu/ivhd0 /sys/devices/pci0000:00/0000:00:00.2/iommu/ivhd0/devices /sys/devices/pci0000:00/0000:00:00.2/iommu/ivhd0/devices/0000:00:00.0 /sys/devices/pci0000:00/0000:00:00.2/iommu/ivhd0/devices/0000:00:02.0 /sys/devices/pci0000:00/0000:00:00.2/iommu/ivhd0/devices/0000:00:04.0 /sys/devices/pci0000:00/0000:00:00.2/iommu/ivhd0/devices/0000:00:09.0 /sys/devices/pci0000:00/0000:00:00.2/iommu/ivhd0/devices/0000:00:11.0 /sys/devices/pci0000:00/0000:00:00.2/iommu/ivhd0/devices/0000:00:12.0 /sys/devices/pci0000:00/0000:00:00.2/iommu/ivhd0/devices/0000:00:12.2 /sys/devices/pci0000:00/0000:00:00.2/iommu/ivhd0/devices/0000:00:13.0 ... /sys/devices/pci0000:00/0000:00:00.2/iommu/ivhd0/power /sys/devices/pci0000:00/0000:00:00.2/iommu/ivhd0/power/control ... /sys/devices/pci0000:00/0000:00:00.2/iommu/ivhd0/device /sys/devices/pci0000:00/0000:00:00.2/iommu/ivhd0/subsystem /sys/devices/pci0000:00/0000:00:00.2/iommu/ivhd0/amd-iommu /sys/devices/pci0000:00/0000:00:00.2/iommu/ivhd0/amd-iommu/cap /sys/devices/pci0000:00/0000:00:00.2/iommu/ivhd0/amd-iommu/features /sys/devices/pci0000:00/0000:00:00.2/iommu/ivhd0/uevent /sys/class/iommu/ivhd0 Signed-off-by: Alex Williamson <alex.williamson@redhat.com> Signed-off-by: Joerg Roedel <jroedel@suse.de>
2014-06-13 05:12:37 +07:00
return sprintf(buf, "%x\n", iommu->cap);
}
static DEVICE_ATTR(cap, S_IRUGO, amd_iommu_show_cap, NULL);
static ssize_t amd_iommu_show_features(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct amd_iommu *iommu = dev_to_amd_iommu(dev);
iommu/amd: Add sysfs support AMD-Vi support for IOMMU sysfs. This allows us to associate devices with a specific IOMMU device and examine the capabilities and features of that IOMMU. The AMD IOMMU is hosted on and actual PCI device, so we make that device the parent for the IOMMU class device. This initial implementaiton exposes only the capability header and extended features register for the IOMMU. # find /sys | grep ivhd /sys/devices/pci0000:00/0000:00:00.2/iommu/ivhd0 /sys/devices/pci0000:00/0000:00:00.2/iommu/ivhd0/devices /sys/devices/pci0000:00/0000:00:00.2/iommu/ivhd0/devices/0000:00:00.0 /sys/devices/pci0000:00/0000:00:00.2/iommu/ivhd0/devices/0000:00:02.0 /sys/devices/pci0000:00/0000:00:00.2/iommu/ivhd0/devices/0000:00:04.0 /sys/devices/pci0000:00/0000:00:00.2/iommu/ivhd0/devices/0000:00:09.0 /sys/devices/pci0000:00/0000:00:00.2/iommu/ivhd0/devices/0000:00:11.0 /sys/devices/pci0000:00/0000:00:00.2/iommu/ivhd0/devices/0000:00:12.0 /sys/devices/pci0000:00/0000:00:00.2/iommu/ivhd0/devices/0000:00:12.2 /sys/devices/pci0000:00/0000:00:00.2/iommu/ivhd0/devices/0000:00:13.0 ... /sys/devices/pci0000:00/0000:00:00.2/iommu/ivhd0/power /sys/devices/pci0000:00/0000:00:00.2/iommu/ivhd0/power/control ... /sys/devices/pci0000:00/0000:00:00.2/iommu/ivhd0/device /sys/devices/pci0000:00/0000:00:00.2/iommu/ivhd0/subsystem /sys/devices/pci0000:00/0000:00:00.2/iommu/ivhd0/amd-iommu /sys/devices/pci0000:00/0000:00:00.2/iommu/ivhd0/amd-iommu/cap /sys/devices/pci0000:00/0000:00:00.2/iommu/ivhd0/amd-iommu/features /sys/devices/pci0000:00/0000:00:00.2/iommu/ivhd0/uevent /sys/class/iommu/ivhd0 Signed-off-by: Alex Williamson <alex.williamson@redhat.com> Signed-off-by: Joerg Roedel <jroedel@suse.de>
2014-06-13 05:12:37 +07:00
return sprintf(buf, "%llx\n", iommu->features);
}
static DEVICE_ATTR(features, S_IRUGO, amd_iommu_show_features, NULL);
static struct attribute *amd_iommu_attrs[] = {
&dev_attr_cap.attr,
&dev_attr_features.attr,
NULL,
};
static struct attribute_group amd_iommu_group = {
.name = "amd-iommu",
.attrs = amd_iommu_attrs,
};
static const struct attribute_group *amd_iommu_groups[] = {
&amd_iommu_group,
NULL,
};
static int iommu_init_pci(struct amd_iommu *iommu)
{
int cap_ptr = iommu->cap_ptr;
u32 range, misc, low, high;
int ret;
iommu->dev = pci_get_bus_and_slot(PCI_BUS_NUM(iommu->devid),
iommu->devid & 0xff);
if (!iommu->dev)
return -ENODEV;
/* Prevent binding other PCI device drivers to IOMMU devices */
iommu->dev->match_driver = false;
pci_read_config_dword(iommu->dev, cap_ptr + MMIO_CAP_HDR_OFFSET,
&iommu->cap);
pci_read_config_dword(iommu->dev, cap_ptr + MMIO_RANGE_OFFSET,
&range);
pci_read_config_dword(iommu->dev, cap_ptr + MMIO_MISC_OFFSET,
&misc);
if (!(iommu->cap & (1 << IOMMU_CAP_IOTLB)))
amd_iommu_iotlb_sup = false;
/* read extended feature bits */
low = readl(iommu->mmio_base + MMIO_EXT_FEATURES);
high = readl(iommu->mmio_base + MMIO_EXT_FEATURES + 4);
iommu->features = ((u64)high << 32) | low;
if (iommu_feature(iommu, FEATURE_GT)) {
int glxval;
u32 max_pasid;
u64 pasmax;
pasmax = iommu->features & FEATURE_PASID_MASK;
pasmax >>= FEATURE_PASID_SHIFT;
max_pasid = (1 << (pasmax + 1)) - 1;
amd_iommu_max_pasid = min(amd_iommu_max_pasid, max_pasid);
BUG_ON(amd_iommu_max_pasid & ~PASID_MASK);
glxval = iommu->features & FEATURE_GLXVAL_MASK;
glxval >>= FEATURE_GLXVAL_SHIFT;
if (amd_iommu_max_glx_val == -1)
amd_iommu_max_glx_val = glxval;
else
amd_iommu_max_glx_val = min(amd_iommu_max_glx_val, glxval);
}
if (iommu_feature(iommu, FEATURE_GT) &&
iommu_feature(iommu, FEATURE_PPR)) {
iommu->is_iommu_v2 = true;
amd_iommu_v2_present = true;
}
if (iommu_feature(iommu, FEATURE_PPR) && alloc_ppr_log(iommu))
return -ENOMEM;
ret = iommu_init_ga(iommu);
if (ret)
return ret;
if (iommu->cap & (1UL << IOMMU_CAP_NPCACHE))
amd_iommu_np_cache = true;
init_iommu_perf_ctr(iommu);
if (is_rd890_iommu(iommu->dev)) {
int i, j;
iommu->root_pdev = pci_get_bus_and_slot(iommu->dev->bus->number,
PCI_DEVFN(0, 0));
/*
* Some rd890 systems may not be fully reconfigured by the
* BIOS, so it's necessary for us to store this information so
* it can be reprogrammed on resume
*/
pci_read_config_dword(iommu->dev, iommu->cap_ptr + 4,
&iommu->stored_addr_lo);
pci_read_config_dword(iommu->dev, iommu->cap_ptr + 8,
&iommu->stored_addr_hi);
/* Low bit locks writes to configuration space */
iommu->stored_addr_lo &= ~1;
for (i = 0; i < 6; i++)
for (j = 0; j < 0x12; j++)
iommu->stored_l1[i][j] = iommu_read_l1(iommu, i, j);
for (i = 0; i < 0x83; i++)
iommu->stored_l2[i] = iommu_read_l2(iommu, i);
}
amd_iommu_erratum_746_workaround(iommu);
amd_iommu_ats_write_check_workaround(iommu);
iommu_device_sysfs_add(&iommu->iommu, &iommu->dev->dev,
amd_iommu_groups, "ivhd%d", iommu->index);
iommu_device_set_ops(&iommu->iommu, &amd_iommu_ops);
iommu_device_register(&iommu->iommu);
iommu/amd: Add sysfs support AMD-Vi support for IOMMU sysfs. This allows us to associate devices with a specific IOMMU device and examine the capabilities and features of that IOMMU. The AMD IOMMU is hosted on and actual PCI device, so we make that device the parent for the IOMMU class device. This initial implementaiton exposes only the capability header and extended features register for the IOMMU. # find /sys | grep ivhd /sys/devices/pci0000:00/0000:00:00.2/iommu/ivhd0 /sys/devices/pci0000:00/0000:00:00.2/iommu/ivhd0/devices /sys/devices/pci0000:00/0000:00:00.2/iommu/ivhd0/devices/0000:00:00.0 /sys/devices/pci0000:00/0000:00:00.2/iommu/ivhd0/devices/0000:00:02.0 /sys/devices/pci0000:00/0000:00:00.2/iommu/ivhd0/devices/0000:00:04.0 /sys/devices/pci0000:00/0000:00:00.2/iommu/ivhd0/devices/0000:00:09.0 /sys/devices/pci0000:00/0000:00:00.2/iommu/ivhd0/devices/0000:00:11.0 /sys/devices/pci0000:00/0000:00:00.2/iommu/ivhd0/devices/0000:00:12.0 /sys/devices/pci0000:00/0000:00:00.2/iommu/ivhd0/devices/0000:00:12.2 /sys/devices/pci0000:00/0000:00:00.2/iommu/ivhd0/devices/0000:00:13.0 ... /sys/devices/pci0000:00/0000:00:00.2/iommu/ivhd0/power /sys/devices/pci0000:00/0000:00:00.2/iommu/ivhd0/power/control ... /sys/devices/pci0000:00/0000:00:00.2/iommu/ivhd0/device /sys/devices/pci0000:00/0000:00:00.2/iommu/ivhd0/subsystem /sys/devices/pci0000:00/0000:00:00.2/iommu/ivhd0/amd-iommu /sys/devices/pci0000:00/0000:00:00.2/iommu/ivhd0/amd-iommu/cap /sys/devices/pci0000:00/0000:00:00.2/iommu/ivhd0/amd-iommu/features /sys/devices/pci0000:00/0000:00:00.2/iommu/ivhd0/uevent /sys/class/iommu/ivhd0 Signed-off-by: Alex Williamson <alex.williamson@redhat.com> Signed-off-by: Joerg Roedel <jroedel@suse.de>
2014-06-13 05:12:37 +07:00
return pci_enable_device(iommu->dev);
}
static void print_iommu_info(void)
{
static const char * const feat_str[] = {
"PreF", "PPR", "X2APIC", "NX", "GT", "[5]",
"IA", "GA", "HE", "PC"
};
struct amd_iommu *iommu;
for_each_iommu(iommu) {
int i;
pr_info("AMD-Vi: Found IOMMU at %s cap 0x%hx\n",
dev_name(&iommu->dev->dev), iommu->cap_ptr);
if (iommu->cap & (1 << IOMMU_CAP_EFR)) {
pr_info("AMD-Vi: Extended features (%#llx):\n",
iommu->features);
for (i = 0; i < ARRAY_SIZE(feat_str); ++i) {
if (iommu_feature(iommu, (1ULL << i)))
pr_cont(" %s", feat_str[i]);
}
if (iommu->features & FEATURE_GAM_VAPIC)
pr_cont(" GA_vAPIC");
pr_cont("\n");
}
}
if (irq_remapping_enabled) {
pr_info("AMD-Vi: Interrupt remapping enabled\n");
if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir))
pr_info("AMD-Vi: virtual APIC enabled\n");
}
}
static int __init amd_iommu_init_pci(void)
{
struct amd_iommu *iommu;
int ret = 0;
for_each_iommu(iommu) {
ret = iommu_init_pci(iommu);
if (ret)
break;
}
/*
* Order is important here to make sure any unity map requirements are
* fulfilled. The unity mappings are created and written to the device
* table during the amd_iommu_init_api() call.
*
* After that we call init_device_table_dma() to make sure any
* uninitialized DTE will block DMA, and in the end we flush the caches
* of all IOMMUs to make sure the changes to the device table are
* active.
*/
ret = amd_iommu_init_api();
init_device_table_dma();
for_each_iommu(iommu)
iommu_flush_all_caches(iommu);
if (!ret)
print_iommu_info();
return ret;
}
/****************************************************************************
*
* The following functions initialize the MSI interrupts for all IOMMUs
* in the system. It's a bit challenging because there could be multiple
* IOMMUs per PCI BDF but we can call pci_enable_msi(x) only once per
* pci_dev.
*
****************************************************************************/
static int iommu_setup_msi(struct amd_iommu *iommu)
{
int r;
r = pci_enable_msi(iommu->dev);
if (r)
return r;
r = request_threaded_irq(iommu->dev->irq,
amd_iommu_int_handler,
amd_iommu_int_thread,
0, "AMD-Vi",
iommu);
if (r) {
pci_disable_msi(iommu->dev);
return r;
}
iommu->int_enabled = true;
return 0;
}
static int iommu_init_msi(struct amd_iommu *iommu)
{
int ret;
if (iommu->int_enabled)
goto enable_faults;
if (iommu->dev->msi_cap)
ret = iommu_setup_msi(iommu);
else
ret = -ENODEV;
if (ret)
return ret;
enable_faults:
iommu_feature_enable(iommu, CONTROL_EVT_INT_EN);
if (iommu->ppr_log != NULL)
iommu_feature_enable(iommu, CONTROL_PPFINT_EN);
iommu_ga_log_enable(iommu);
return 0;
}
/****************************************************************************
*
* The next functions belong to the third pass of parsing the ACPI
* table. In this last pass the memory mapping requirements are
* gathered (like exclusion and unity mapping ranges).
*
****************************************************************************/
static void __init free_unity_maps(void)
{
struct unity_map_entry *entry, *next;
list_for_each_entry_safe(entry, next, &amd_iommu_unity_map, list) {
list_del(&entry->list);
kfree(entry);
}
}
/* called when we find an exclusion range definition in ACPI */
static int __init init_exclusion_range(struct ivmd_header *m)
{
int i;
switch (m->type) {
case ACPI_IVMD_TYPE:
set_device_exclusion_range(m->devid, m);
break;
case ACPI_IVMD_TYPE_ALL:
for (i = 0; i <= amd_iommu_last_bdf; ++i)
set_device_exclusion_range(i, m);
break;
case ACPI_IVMD_TYPE_RANGE:
for (i = m->devid; i <= m->aux; ++i)
set_device_exclusion_range(i, m);
break;
default:
break;
}
return 0;
}
/* called for unity map ACPI definition */
static int __init init_unity_map_range(struct ivmd_header *m)
{
struct unity_map_entry *e = NULL;
char *s;
e = kzalloc(sizeof(*e), GFP_KERNEL);
if (e == NULL)
return -ENOMEM;
switch (m->type) {
default:
kfree(e);
return 0;
case ACPI_IVMD_TYPE:
s = "IVMD_TYPEi\t\t\t";
e->devid_start = e->devid_end = m->devid;
break;
case ACPI_IVMD_TYPE_ALL:
s = "IVMD_TYPE_ALL\t\t";
e->devid_start = 0;
e->devid_end = amd_iommu_last_bdf;
break;
case ACPI_IVMD_TYPE_RANGE:
s = "IVMD_TYPE_RANGE\t\t";
e->devid_start = m->devid;
e->devid_end = m->aux;
break;
}
e->address_start = PAGE_ALIGN(m->range_start);
e->address_end = e->address_start + PAGE_ALIGN(m->range_length);
e->prot = m->flags >> 1;
DUMP_printk("%s devid_start: %02x:%02x.%x devid_end: %02x:%02x.%x"
" range_start: %016llx range_end: %016llx flags: %x\n", s,
PCI_BUS_NUM(e->devid_start), PCI_SLOT(e->devid_start),
PCI_FUNC(e->devid_start), PCI_BUS_NUM(e->devid_end),
PCI_SLOT(e->devid_end), PCI_FUNC(e->devid_end),
e->address_start, e->address_end, m->flags);
list_add_tail(&e->list, &amd_iommu_unity_map);
return 0;
}
/* iterates over all memory definitions we find in the ACPI table */
static int __init init_memory_definitions(struct acpi_table_header *table)
{
u8 *p = (u8 *)table, *end = (u8 *)table;
struct ivmd_header *m;
end += table->length;
p += IVRS_HEADER_LENGTH;
while (p < end) {
m = (struct ivmd_header *)p;
if (m->flags & IVMD_FLAG_EXCL_RANGE)
init_exclusion_range(m);
else if (m->flags & IVMD_FLAG_UNITY_MAP)
init_unity_map_range(m);
p += m->length;
}
return 0;
}
/*
* Init the device table to not allow DMA access for devices and
* suppress all page faults
*/
static void init_device_table_dma(void)
{
u32 devid;
for (devid = 0; devid <= amd_iommu_last_bdf; ++devid) {
set_dev_entry_bit(devid, DEV_ENTRY_VALID);
set_dev_entry_bit(devid, DEV_ENTRY_TRANSLATION);
/*
* In kdump kernels in-flight DMA from the old kernel might
* cause IO_PAGE_FAULTs. There are no reports that a kdump
* actually failed because of that, so just disable fault
* reporting in the hardware to get rid of the messages
*/
if (is_kdump_kernel())
set_dev_entry_bit(devid, DEV_ENTRY_NO_PAGE_FAULT);
}
}
static void __init uninit_device_table_dma(void)
{
u32 devid;
for (devid = 0; devid <= amd_iommu_last_bdf; ++devid) {
amd_iommu_dev_table[devid].data[0] = 0ULL;
amd_iommu_dev_table[devid].data[1] = 0ULL;
}
}
static void init_device_table(void)
{
u32 devid;
if (!amd_iommu_irq_remap)
return;
for (devid = 0; devid <= amd_iommu_last_bdf; ++devid)
set_dev_entry_bit(devid, DEV_ENTRY_IRQ_TBL_EN);
}
static void iommu_init_flags(struct amd_iommu *iommu)
{
iommu->acpi_flags & IVHD_FLAG_HT_TUN_EN_MASK ?
iommu_feature_enable(iommu, CONTROL_HT_TUN_EN) :
iommu_feature_disable(iommu, CONTROL_HT_TUN_EN);
iommu->acpi_flags & IVHD_FLAG_PASSPW_EN_MASK ?
iommu_feature_enable(iommu, CONTROL_PASSPW_EN) :
iommu_feature_disable(iommu, CONTROL_PASSPW_EN);
iommu->acpi_flags & IVHD_FLAG_RESPASSPW_EN_MASK ?
iommu_feature_enable(iommu, CONTROL_RESPASSPW_EN) :
iommu_feature_disable(iommu, CONTROL_RESPASSPW_EN);
iommu->acpi_flags & IVHD_FLAG_ISOC_EN_MASK ?
iommu_feature_enable(iommu, CONTROL_ISOC_EN) :
iommu_feature_disable(iommu, CONTROL_ISOC_EN);
/*
* make IOMMU memory accesses cache coherent
*/
iommu_feature_enable(iommu, CONTROL_COHERENT_EN);
/* Set IOTLB invalidation timeout to 1s */
iommu_set_inv_tlb_timeout(iommu, CTRL_INV_TO_1S);
}
static void iommu_apply_resume_quirks(struct amd_iommu *iommu)
{
int i, j;
u32 ioc_feature_control;
struct pci_dev *pdev = iommu->root_pdev;
/* RD890 BIOSes may not have completely reconfigured the iommu */
if (!is_rd890_iommu(iommu->dev) || !pdev)
return;
/*
* First, we need to ensure that the iommu is enabled. This is
* controlled by a register in the northbridge
*/
/* Select Northbridge indirect register 0x75 and enable writing */
pci_write_config_dword(pdev, 0x60, 0x75 | (1 << 7));
pci_read_config_dword(pdev, 0x64, &ioc_feature_control);
/* Enable the iommu */
if (!(ioc_feature_control & 0x1))
pci_write_config_dword(pdev, 0x64, ioc_feature_control | 1);
/* Restore the iommu BAR */
pci_write_config_dword(iommu->dev, iommu->cap_ptr + 4,
iommu->stored_addr_lo);
pci_write_config_dword(iommu->dev, iommu->cap_ptr + 8,
iommu->stored_addr_hi);
/* Restore the l1 indirect regs for each of the 6 l1s */
for (i = 0; i < 6; i++)
for (j = 0; j < 0x12; j++)
iommu_write_l1(iommu, i, j, iommu->stored_l1[i][j]);
/* Restore the l2 indirect regs */
for (i = 0; i < 0x83; i++)
iommu_write_l2(iommu, i, iommu->stored_l2[i]);
/* Lock PCI setup registers */
pci_write_config_dword(iommu->dev, iommu->cap_ptr + 4,
iommu->stored_addr_lo | 1);
}
static void iommu_enable_ga(struct amd_iommu *iommu)
{
#ifdef CONFIG_IRQ_REMAP
switch (amd_iommu_guest_ir) {
case AMD_IOMMU_GUEST_IR_VAPIC:
iommu_feature_enable(iommu, CONTROL_GAM_EN);
/* Fall through */
case AMD_IOMMU_GUEST_IR_LEGACY_GA:
iommu_feature_enable(iommu, CONTROL_GA_EN);
iommu->irte_ops = &irte_128_ops;
break;
default:
iommu->irte_ops = &irte_32_ops;
break;
}
#endif
}
/*
* This function finally enables all IOMMUs found in the system after
* they have been initialized
*/
static void early_enable_iommus(void)
{
struct amd_iommu *iommu;
for_each_iommu(iommu) {
iommu_disable(iommu);
iommu_init_flags(iommu);
iommu_set_device_table(iommu);
iommu_enable_command_buffer(iommu);
iommu_enable_event_buffer(iommu);
iommu_set_exclusion_range(iommu);
iommu_enable_ga(iommu);
iommu_enable(iommu);
iommu_flush_all_caches(iommu);
}
#ifdef CONFIG_IRQ_REMAP
if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir))
amd_iommu_irq_ops.capability |= (1 << IRQ_POSTING_CAP);
#endif
}
static void enable_iommus_v2(void)
{
struct amd_iommu *iommu;
for_each_iommu(iommu) {
iommu_enable_ppr_log(iommu);
iommu_enable_gt(iommu);
}
}
static void enable_iommus(void)
{
early_enable_iommus();
enable_iommus_v2();
}
static void disable_iommus(void)
{
struct amd_iommu *iommu;
for_each_iommu(iommu)
iommu_disable(iommu);
#ifdef CONFIG_IRQ_REMAP
if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir))
amd_iommu_irq_ops.capability &= ~(1 << IRQ_POSTING_CAP);
#endif
}
/*
* Suspend/Resume support
* disable suspend until real resume implemented
*/
static void amd_iommu_resume(void)
{
struct amd_iommu *iommu;
for_each_iommu(iommu)
iommu_apply_resume_quirks(iommu);
/* re-load the hardware */
enable_iommus();
amd_iommu_enable_interrupts();
}
static int amd_iommu_suspend(void)
{
/* disable IOMMUs to go out of the way for BIOS */
disable_iommus();
return 0;
}
static struct syscore_ops amd_iommu_syscore_ops = {
.suspend = amd_iommu_suspend,
.resume = amd_iommu_resume,
};
static void __init free_iommu_resources(void)
{
kmemleak_free(irq_lookup_table);
free_pages((unsigned long)irq_lookup_table,
get_order(rlookup_table_size));
irq_lookup_table = NULL;
kmem_cache_destroy(amd_iommu_irq_cache);
amd_iommu_irq_cache = NULL;
free_pages((unsigned long)amd_iommu_rlookup_table,
get_order(rlookup_table_size));
amd_iommu_rlookup_table = NULL;
free_pages((unsigned long)amd_iommu_alias_table,
get_order(alias_table_size));
amd_iommu_alias_table = NULL;
free_pages((unsigned long)amd_iommu_dev_table,
get_order(dev_table_size));
amd_iommu_dev_table = NULL;
free_iommu_all();
#ifdef CONFIG_GART_IOMMU
/*
* We failed to initialize the AMD IOMMU - try fallback to GART
* if possible.
*/
gart_iommu_init();
#endif
}
/* SB IOAPIC is always on this device in AMD systems */
#define IOAPIC_SB_DEVID ((0x00 << 8) | PCI_DEVFN(0x14, 0))
static bool __init check_ioapic_information(void)
{
const char *fw_bug = FW_BUG;
bool ret, has_sb_ioapic;
int idx;
has_sb_ioapic = false;
ret = false;
/*
* If we have map overrides on the kernel command line the
* messages in this function might not describe firmware bugs
* anymore - so be careful
*/
if (cmdline_maps)
fw_bug = "";
for (idx = 0; idx < nr_ioapics; idx++) {
int devid, id = mpc_ioapic_id(idx);
devid = get_ioapic_devid(id);
if (devid < 0) {
pr_err("%sAMD-Vi: IOAPIC[%d] not in IVRS table\n",
fw_bug, id);
ret = false;
} else if (devid == IOAPIC_SB_DEVID) {
has_sb_ioapic = true;
ret = true;
}
}
if (!has_sb_ioapic) {
/*
* We expect the SB IOAPIC to be listed in the IVRS
* table. The system timer is connected to the SB IOAPIC
* and if we don't have it in the list the system will
* panic at boot time. This situation usually happens
* when the BIOS is buggy and provides us the wrong
* device id for the IOAPIC in the system.
*/
pr_err("%sAMD-Vi: No southbridge IOAPIC found\n", fw_bug);
}
if (!ret)
pr_err("AMD-Vi: Disabling interrupt remapping\n");
return ret;
}
static void __init free_dma_resources(void)
{
free_pages((unsigned long)amd_iommu_pd_alloc_bitmap,
get_order(MAX_DOMAIN_ID/8));
amd_iommu_pd_alloc_bitmap = NULL;
free_unity_maps();
}
/*
* This is the hardware init function for AMD IOMMU in the system.
* This function is called either from amd_iommu_init or from the interrupt
* remapping setup code.
*
* This function basically parses the ACPI table for AMD IOMMU (IVRS)
* four times:
*
* 1 pass) Discover the most comprehensive IVHD type to use.
*
* 2 pass) Find the highest PCI device id the driver has to handle.
* Upon this information the size of the data structures is
* determined that needs to be allocated.
*
* 3 pass) Initialize the data structures just allocated with the
* information in the ACPI table about available AMD IOMMUs
* in the system. It also maps the PCI devices in the
* system to specific IOMMUs
*
* 4 pass) After the basic data structures are allocated and
* initialized we update them with information about memory
* remapping requirements parsed out of the ACPI table in
* this last pass.
*
* After everything is set up the IOMMUs are enabled and the necessary
* hotplug and suspend notifiers are registered.
*/
static int __init early_amd_iommu_init(void)
{
struct acpi_table_header *ivrs_base;
acpi_status status;
int i, remap_cache_sz, ret = 0;
if (!amd_iommu_detected)
return -ENODEV;
status = acpi_get_table("IVRS", 0, &ivrs_base);
if (status == AE_NOT_FOUND)
return -ENODEV;
else if (ACPI_FAILURE(status)) {
const char *err = acpi_format_exception(status);
pr_err("AMD-Vi: IVRS table error: %s\n", err);
return -EINVAL;
}
/*
* Validate checksum here so we don't need to do it when
* we actually parse the table
*/
ret = check_ivrs_checksum(ivrs_base);
if (ret)
goto out;
amd_iommu_target_ivhd_type = get_highest_supported_ivhd_type(ivrs_base);
DUMP_printk("Using IVHD type %#x\n", amd_iommu_target_ivhd_type);
/*
* First parse ACPI tables to find the largest Bus/Dev/Func
* we need to handle. Upon this information the shared data
* structures for the IOMMUs in the system will be allocated
*/
ret = find_last_devid_acpi(ivrs_base);
if (ret)
goto out;
dev_table_size = tbl_size(DEV_TABLE_ENTRY_SIZE);
alias_table_size = tbl_size(ALIAS_TABLE_ENTRY_SIZE);
rlookup_table_size = tbl_size(RLOOKUP_TABLE_ENTRY_SIZE);
/* Device table - directly used by all IOMMUs */
ret = -ENOMEM;
amd_iommu_dev_table = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
get_order(dev_table_size));
if (amd_iommu_dev_table == NULL)
goto out;
/*
* Alias table - map PCI Bus/Dev/Func to Bus/Dev/Func the
* IOMMU see for that device
*/
amd_iommu_alias_table = (void *)__get_free_pages(GFP_KERNEL,
get_order(alias_table_size));
if (amd_iommu_alias_table == NULL)
goto out;
/* IOMMU rlookup table - find the IOMMU for a specific device */
amd_iommu_rlookup_table = (void *)__get_free_pages(
GFP_KERNEL | __GFP_ZERO,
get_order(rlookup_table_size));
if (amd_iommu_rlookup_table == NULL)
goto out;
amd_iommu_pd_alloc_bitmap = (void *)__get_free_pages(
GFP_KERNEL | __GFP_ZERO,
get_order(MAX_DOMAIN_ID/8));
if (amd_iommu_pd_alloc_bitmap == NULL)
goto out;
/*
* let all alias entries point to itself
*/
for (i = 0; i <= amd_iommu_last_bdf; ++i)
amd_iommu_alias_table[i] = i;
/*
* never allocate domain 0 because its used as the non-allocated and
* error value placeholder
*/
__set_bit(0, amd_iommu_pd_alloc_bitmap);
spin_lock_init(&amd_iommu_pd_lock);
/*
* now the data structures are allocated and basically initialized
* start the real acpi table scan
*/
ret = init_iommu_all(ivrs_base);
if (ret)
goto out;
/* Disable any previously enabled IOMMUs */
disable_iommus();
if (amd_iommu_irq_remap)
amd_iommu_irq_remap = check_ioapic_information();
if (amd_iommu_irq_remap) {
/*
* Interrupt remapping enabled, create kmem_cache for the
* remapping tables.
*/
ret = -ENOMEM;
if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
remap_cache_sz = MAX_IRQS_PER_TABLE * sizeof(u32);
else
remap_cache_sz = MAX_IRQS_PER_TABLE * (sizeof(u64) * 2);
amd_iommu_irq_cache = kmem_cache_create("irq_remap_cache",
remap_cache_sz,
IRQ_TABLE_ALIGNMENT,
0, NULL);
if (!amd_iommu_irq_cache)
goto out;
irq_lookup_table = (void *)__get_free_pages(
GFP_KERNEL | __GFP_ZERO,
get_order(rlookup_table_size));
kmemleak_alloc(irq_lookup_table, rlookup_table_size,
1, GFP_KERNEL);
if (!irq_lookup_table)
goto out;
}
ret = init_memory_definitions(ivrs_base);
if (ret)
goto out;
/* init the device table */
init_device_table();
out:
/* Don't leak any ACPI memory */
acpi_put_table(ivrs_base);
ivrs_base = NULL;
return ret;
}
static int amd_iommu_enable_interrupts(void)
{
struct amd_iommu *iommu;
int ret = 0;
for_each_iommu(iommu) {
ret = iommu_init_msi(iommu);
if (ret)
goto out;
}
out:
return ret;
}
static bool detect_ivrs(void)
{
struct acpi_table_header *ivrs_base;
acpi_status status;
status = acpi_get_table("IVRS", 0, &ivrs_base);
if (status == AE_NOT_FOUND)
return false;
else if (ACPI_FAILURE(status)) {
const char *err = acpi_format_exception(status);
pr_err("AMD-Vi: IVRS table error: %s\n", err);
return false;
}
acpi_put_table(ivrs_base);
/* Make sure ACS will be enabled during PCI probe */
pci_request_acs();
return true;
}
/****************************************************************************
*
* AMD IOMMU Initialization State Machine
*
****************************************************************************/
static int __init state_next(void)
{
int ret = 0;
switch (init_state) {
case IOMMU_START_STATE:
if (!detect_ivrs()) {
init_state = IOMMU_NOT_FOUND;
ret = -ENODEV;
} else {
init_state = IOMMU_IVRS_DETECTED;
}
break;
case IOMMU_IVRS_DETECTED:
ret = early_amd_iommu_init();
init_state = ret ? IOMMU_INIT_ERROR : IOMMU_ACPI_FINISHED;
if (init_state == IOMMU_ACPI_FINISHED && amd_iommu_disabled) {
pr_info("AMD-Vi: AMD IOMMU disabled on kernel command-line\n");
free_dma_resources();
free_iommu_resources();
init_state = IOMMU_CMDLINE_DISABLED;
ret = -EINVAL;
}
break;
case IOMMU_ACPI_FINISHED:
early_enable_iommus();
x86_platform.iommu_shutdown = disable_iommus;
init_state = IOMMU_ENABLED;
break;
case IOMMU_ENABLED:
iommu/amd: Fix schedule-while-atomic BUG in initialization code The register_syscore_ops() function takes a mutex and might sleep. In the IOMMU initialization code it is invoked during irq-remapping setup already, where irqs are disabled. This causes a schedule-while-atomic bug: BUG: sleeping function called from invalid context at kernel/locking/mutex.c:747 in_atomic(): 0, irqs_disabled(): 1, pid: 1, name: swapper/0 no locks held by swapper/0/1. irq event stamp: 304 hardirqs last enabled at (303): [<ffffffff818a87b6>] _raw_spin_unlock_irqrestore+0x36/0x60 hardirqs last disabled at (304): [<ffffffff8235d440>] enable_IR_x2apic+0x79/0x196 softirqs last enabled at (36): [<ffffffff818ae75f>] __do_softirq+0x35f/0x4ec softirqs last disabled at (31): [<ffffffff810c1955>] irq_exit+0x105/0x120 CPU: 0 PID: 1 Comm: swapper/0 Not tainted 4.13.0-rc2.1.el7a.test.x86_64.debug #1 Hardware name: PowerEdge C6145 /040N24, BIOS 3.5.0 10/28/2014 Call Trace: dump_stack+0x85/0xca ___might_sleep+0x22a/0x260 __might_sleep+0x4a/0x80 __mutex_lock+0x58/0x960 ? iommu_completion_wait.part.17+0xb5/0x160 ? register_syscore_ops+0x1d/0x70 ? iommu_flush_all_caches+0x120/0x150 mutex_lock_nested+0x1b/0x20 register_syscore_ops+0x1d/0x70 state_next+0x119/0x910 iommu_go_to_state+0x29/0x30 amd_iommu_enable+0x13/0x23 Fix it by moving the register_syscore_ops() call to the next initialization step, which runs with irqs enabled. Reported-by: Artem Savkov <asavkov@redhat.com> Tested-by: Artem Savkov <asavkov@redhat.com> Acked-by: Thomas Gleixner <tglx@linutronix.de> Fixes: 2c0ae1720c09 ('iommu/amd: Convert iommu initialization to state machine') Signed-off-by: Joerg Roedel <jroedel@suse.de>
2017-07-26 19:17:55 +07:00
register_syscore_ops(&amd_iommu_syscore_ops);
ret = amd_iommu_init_pci();
init_state = ret ? IOMMU_INIT_ERROR : IOMMU_PCI_INIT;
enable_iommus_v2();
break;
case IOMMU_PCI_INIT:
ret = amd_iommu_enable_interrupts();
init_state = ret ? IOMMU_INIT_ERROR : IOMMU_INTERRUPTS_EN;
break;
case IOMMU_INTERRUPTS_EN:
ret = amd_iommu_init_dma_ops();
init_state = ret ? IOMMU_INIT_ERROR : IOMMU_DMA_OPS;
break;
case IOMMU_DMA_OPS:
init_state = IOMMU_INITIALIZED;
break;
case IOMMU_INITIALIZED:
/* Nothing to do */
break;
case IOMMU_NOT_FOUND:
case IOMMU_INIT_ERROR:
case IOMMU_CMDLINE_DISABLED:
/* Error states => do nothing */
ret = -EINVAL;
break;
default:
/* Unknown state */
BUG();
}
return ret;
}
static int __init iommu_go_to_state(enum iommu_init_state state)
{
int ret = -EINVAL;
while (init_state != state) {
if (init_state == IOMMU_NOT_FOUND ||
init_state == IOMMU_INIT_ERROR ||
init_state == IOMMU_CMDLINE_DISABLED)
break;
ret = state_next();
}
return ret;
}
#ifdef CONFIG_IRQ_REMAP
int __init amd_iommu_prepare(void)
{
int ret;
amd_iommu_irq_remap = true;
ret = iommu_go_to_state(IOMMU_ACPI_FINISHED);
if (ret)
return ret;
return amd_iommu_irq_remap ? 0 : -ENODEV;
}
int __init amd_iommu_enable(void)
{
int ret;
ret = iommu_go_to_state(IOMMU_ENABLED);
if (ret)
return ret;
irq_remapping_enabled = 1;
return 0;
}
void amd_iommu_disable(void)
{
amd_iommu_suspend();
}
int amd_iommu_reenable(int mode)
{
amd_iommu_resume();
return 0;
}
int __init amd_iommu_enable_faulting(void)
{
/* We enable MSI later when PCI is initialized */
return 0;
}
#endif
/*
* This is the core init function for AMD IOMMU hardware in the system.
* This function is called from the generic x86 DMA layer initialization
* code.
*/
static int __init amd_iommu_init(void)
{
int ret;
ret = iommu_go_to_state(IOMMU_INITIALIZED);
if (ret) {
free_dma_resources();
if (!irq_remapping_enabled) {
disable_iommus();
free_iommu_resources();
} else {
struct amd_iommu *iommu;
uninit_device_table_dma();
for_each_iommu(iommu)
iommu_flush_all_caches(iommu);
}
}
return ret;
}
/****************************************************************************
*
* Early detect code. This code runs at IOMMU detection time in the DMA
* layer. It just looks if there is an IVRS ACPI table to detect AMD
* IOMMUs
*
****************************************************************************/
int __init amd_iommu_detect(void)
{
int ret;
x86: Handle HW IOMMU initialization failure gracefully If HW IOMMU initialization fails (Intel VT-d often does this, typically due to BIOS bugs), we fall back to nommu. It doesn't work for the majority since nowadays we have more than 4GB memory so we must use swiotlb instead of nommu. The problem is that it's too late to initialize swiotlb when HW IOMMU initialization fails. We need to allocate swiotlb memory earlier from bootmem allocator. Chris explained the issue in detail: http://marc.info/?l=linux-kernel&m=125657444317079&w=2 The current x86 IOMMU initialization sequence is too complicated and handling the above issue makes it more hacky. This patch changes x86 IOMMU initialization sequence to handle the above issue cleanly. The new x86 IOMMU initialization sequence are: 1. we initialize the swiotlb (and setting swiotlb to 1) in the case of (max_pfn > MAX_DMA32_PFN && !no_iommu). dma_ops is set to swiotlb_dma_ops or nommu_dma_ops. if swiotlb usage is forced by the boot option, we finish here. 2. we call the detection functions of all the IOMMUs 3. the detection function sets x86_init.iommu.iommu_init to the IOMMU initialization function (so we can avoid calling the initialization functions of all the IOMMUs needlessly). 4. if the IOMMU initialization function doesn't need to swiotlb then sets swiotlb to zero (e.g. the initialization is sucessful). 5. if we find that swiotlb is set to zero, we free swiotlb resource. Signed-off-by: FUJITA Tomonori <fujita.tomonori@lab.ntt.co.jp> Cc: chrisw@sous-sol.org Cc: dwmw2@infradead.org Cc: joerg.roedel@amd.com Cc: muli@il.ibm.com LKML-Reference: <1257849980-22640-10-git-send-email-fujita.tomonori@lab.ntt.co.jp> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-11-10 17:46:20 +07:00
if (no_iommu || (iommu_detected && !gart_iommu_aperture))
return -ENODEV;
ret = iommu_go_to_state(IOMMU_IVRS_DETECTED);
if (ret)
return ret;
amd_iommu_detected = true;
iommu_detected = 1;
x86_init.iommu.iommu_init = amd_iommu_init;
return 1;
}
/****************************************************************************
*
* Parsing functions for the AMD IOMMU specific kernel command line
* options.
*
****************************************************************************/
static int __init parse_amd_iommu_dump(char *str)
{
amd_iommu_dump = true;
return 1;
}
static int __init parse_amd_iommu_intr(char *str)
{
for (; *str; ++str) {
if (strncmp(str, "legacy", 6) == 0) {
amd_iommu_guest_ir = AMD_IOMMU_GUEST_IR_LEGACY;
break;
}
if (strncmp(str, "vapic", 5) == 0) {
amd_iommu_guest_ir = AMD_IOMMU_GUEST_IR_VAPIC;
break;
}
}
return 1;
}
static int __init parse_amd_iommu_options(char *str)
{
for (; *str; ++str) {
if (strncmp(str, "fullflush", 9) == 0)
amd_iommu_unmap_flush = true;
if (strncmp(str, "off", 3) == 0)
amd_iommu_disabled = true;
if (strncmp(str, "force_isolation", 15) == 0)
amd_iommu_force_isolation = true;
}
return 1;
}
static int __init parse_ivrs_ioapic(char *str)
{
unsigned int bus, dev, fn;
int ret, id, i;
u16 devid;
ret = sscanf(str, "[%d]=%x:%x.%x", &id, &bus, &dev, &fn);
if (ret != 4) {
pr_err("AMD-Vi: Invalid command line: ivrs_ioapic%s\n", str);
return 1;
}
if (early_ioapic_map_size == EARLY_MAP_SIZE) {
pr_err("AMD-Vi: Early IOAPIC map overflow - ignoring ivrs_ioapic%s\n",
str);
return 1;
}
devid = ((bus & 0xff) << 8) | ((dev & 0x1f) << 3) | (fn & 0x7);
cmdline_maps = true;
i = early_ioapic_map_size++;
early_ioapic_map[i].id = id;
early_ioapic_map[i].devid = devid;
early_ioapic_map[i].cmd_line = true;
return 1;
}
static int __init parse_ivrs_hpet(char *str)
{
unsigned int bus, dev, fn;
int ret, id, i;
u16 devid;
ret = sscanf(str, "[%d]=%x:%x.%x", &id, &bus, &dev, &fn);
if (ret != 4) {
pr_err("AMD-Vi: Invalid command line: ivrs_hpet%s\n", str);
return 1;
}
if (early_hpet_map_size == EARLY_MAP_SIZE) {
pr_err("AMD-Vi: Early HPET map overflow - ignoring ivrs_hpet%s\n",
str);
return 1;
}
devid = ((bus & 0xff) << 8) | ((dev & 0x1f) << 3) | (fn & 0x7);
cmdline_maps = true;
i = early_hpet_map_size++;
early_hpet_map[i].id = id;
early_hpet_map[i].devid = devid;
early_hpet_map[i].cmd_line = true;
return 1;
}
static int __init parse_ivrs_acpihid(char *str)
{
u32 bus, dev, fn;
char *hid, *uid, *p;
char acpiid[ACPIHID_UID_LEN + ACPIHID_HID_LEN] = {0};
int ret, i;
ret = sscanf(str, "[%x:%x.%x]=%s", &bus, &dev, &fn, acpiid);
if (ret != 4) {
pr_err("AMD-Vi: Invalid command line: ivrs_acpihid(%s)\n", str);
return 1;
}
p = acpiid;
hid = strsep(&p, ":");
uid = p;
if (!hid || !(*hid) || !uid) {
pr_err("AMD-Vi: Invalid command line: hid or uid\n");
return 1;
}
i = early_acpihid_map_size++;
memcpy(early_acpihid_map[i].hid, hid, strlen(hid));
memcpy(early_acpihid_map[i].uid, uid, strlen(uid));
early_acpihid_map[i].devid =
((bus & 0xff) << 8) | ((dev & 0x1f) << 3) | (fn & 0x7);
early_acpihid_map[i].cmd_line = true;
return 1;
}
__setup("amd_iommu_dump", parse_amd_iommu_dump);
__setup("amd_iommu=", parse_amd_iommu_options);
__setup("amd_iommu_intr=", parse_amd_iommu_intr);
__setup("ivrs_ioapic", parse_ivrs_ioapic);
__setup("ivrs_hpet", parse_ivrs_hpet);
__setup("ivrs_acpihid", parse_ivrs_acpihid);
IOMMU_INIT_FINISH(amd_iommu_detect,
gart_iommu_hole_init,
NULL,
NULL);
bool amd_iommu_v2_supported(void)
{
return amd_iommu_v2_present;
}
EXPORT_SYMBOL(amd_iommu_v2_supported);
struct amd_iommu *get_amd_iommu(unsigned int idx)
{
unsigned int i = 0;
struct amd_iommu *iommu;
for_each_iommu(iommu)
if (i++ == idx)
return iommu;
return NULL;
}
EXPORT_SYMBOL(get_amd_iommu);
/****************************************************************************
*
* IOMMU EFR Performance Counter support functionality. This code allows
* access to the IOMMU PC functionality.
*
****************************************************************************/
u8 amd_iommu_pc_get_max_banks(unsigned int idx)
{
struct amd_iommu *iommu = get_amd_iommu(idx);
if (iommu)
return iommu->max_banks;
return 0;
}
EXPORT_SYMBOL(amd_iommu_pc_get_max_banks);
bool amd_iommu_pc_supported(void)
{
return amd_iommu_pc_present;
}
EXPORT_SYMBOL(amd_iommu_pc_supported);
u8 amd_iommu_pc_get_max_counters(unsigned int idx)
{
struct amd_iommu *iommu = get_amd_iommu(idx);
if (iommu)
return iommu->max_counters;
return 0;
}
EXPORT_SYMBOL(amd_iommu_pc_get_max_counters);
static int iommu_pc_get_set_reg(struct amd_iommu *iommu, u8 bank, u8 cntr,
u8 fxn, u64 *value, bool is_write)
{
u32 offset;
u32 max_offset_lim;
/* Make sure the IOMMU PC resource is available */
if (!amd_iommu_pc_present)
return -ENODEV;
/* Check for valid iommu and pc register indexing */
if (WARN_ON(!iommu || (fxn > 0x28) || (fxn & 7)))
return -ENODEV;
offset = (u32)(((0x40 | bank) << 12) | (cntr << 8) | fxn);
/* Limit the offset to the hw defined mmio region aperture */
max_offset_lim = (u32)(((0x40 | iommu->max_banks) << 12) |
(iommu->max_counters << 8) | 0x28);
if ((offset < MMIO_CNTR_REG_OFFSET) ||
(offset > max_offset_lim))
return -EINVAL;
if (is_write) {
u64 val = *value & GENMASK_ULL(47, 0);
writel((u32)val, iommu->mmio_base + offset);
writel((val >> 32), iommu->mmio_base + offset + 4);
} else {
*value = readl(iommu->mmio_base + offset + 4);
*value <<= 32;
*value |= readl(iommu->mmio_base + offset);
*value &= GENMASK_ULL(47, 0);
}
return 0;
}
int amd_iommu_pc_get_reg(struct amd_iommu *iommu, u8 bank, u8 cntr, u8 fxn, u64 *value)
{
if (!iommu)
return -EINVAL;
return iommu_pc_get_set_reg(iommu, bank, cntr, fxn, value, false);
}
EXPORT_SYMBOL(amd_iommu_pc_get_reg);
int amd_iommu_pc_set_reg(struct amd_iommu *iommu, u8 bank, u8 cntr, u8 fxn, u64 *value)
{
if (!iommu)
return -EINVAL;
return iommu_pc_get_set_reg(iommu, bank, cntr, fxn, value, true);
}
EXPORT_SYMBOL(amd_iommu_pc_set_reg);