linux_dsm_epyc7002/drivers/scsi/isci/request.c

3659 lines
109 KiB
C
Raw Normal View History

/*
* This file is provided under a dual BSD/GPLv2 license. When using or
* redistributing this file, you may do so under either license.
*
* GPL LICENSE SUMMARY
*
* Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
* The full GNU General Public License is included in this distribution
* in the file called LICENSE.GPL.
*
* BSD LICENSE
*
* Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "isci.h"
#include "task.h"
#include "request.h"
#include "sata.h"
#include "scu_completion_codes.h"
#include "scu_event_codes.h"
#include "sas.h"
/**
* This method returns the sgl element pair for the specificed sgl_pair index.
* @sci_req: This parameter specifies the IO request for which to retrieve
* the Scatter-Gather List element pair.
* @sgl_pair_index: This parameter specifies the index into the SGL element
* pair to be retrieved.
*
* This method returns a pointer to an struct scu_sgl_element_pair.
*/
static struct scu_sgl_element_pair *scic_sds_request_get_sgl_element_pair(
struct scic_sds_request *sci_req,
u32 sgl_pair_index
) {
struct scu_task_context *task_context;
task_context = (struct scu_task_context *)sci_req->task_context_buffer;
if (sgl_pair_index == 0) {
return &task_context->sgl_pair_ab;
} else if (sgl_pair_index == 1) {
return &task_context->sgl_pair_cd;
}
return &sci_req->sg_table[sgl_pair_index - 2];
}
/**
* This function will build the SGL list for an IO request.
* @sci_req: This parameter specifies the IO request for which to build
* the Scatter-Gather List.
*
*/
static void scic_sds_request_build_sgl(struct scic_sds_request *sds_request)
{
struct isci_request *isci_request = sci_req_to_ireq(sds_request);
struct isci_host *isci_host = isci_request->isci_host;
struct sas_task *task = isci_request_access_task(isci_request);
struct scatterlist *sg = NULL;
dma_addr_t dma_addr;
u32 sg_idx = 0;
struct scu_sgl_element_pair *scu_sg = NULL;
struct scu_sgl_element_pair *prev_sg = NULL;
if (task->num_scatter > 0) {
sg = task->scatter;
while (sg) {
scu_sg = scic_sds_request_get_sgl_element_pair(
sds_request,
sg_idx);
SCU_SGL_COPY(scu_sg->A, sg);
sg = sg_next(sg);
if (sg) {
SCU_SGL_COPY(scu_sg->B, sg);
sg = sg_next(sg);
} else
SCU_SGL_ZERO(scu_sg->B);
if (prev_sg) {
dma_addr =
scic_io_request_get_dma_addr(
sds_request,
scu_sg);
prev_sg->next_pair_upper =
upper_32_bits(dma_addr);
prev_sg->next_pair_lower =
lower_32_bits(dma_addr);
}
prev_sg = scu_sg;
sg_idx++;
}
} else { /* handle when no sg */
scu_sg = scic_sds_request_get_sgl_element_pair(sds_request,
sg_idx);
dma_addr = dma_map_single(&isci_host->pdev->dev,
task->scatter,
task->total_xfer_len,
task->data_dir);
isci_request->zero_scatter_daddr = dma_addr;
scu_sg->A.length = task->total_xfer_len;
scu_sg->A.address_upper = upper_32_bits(dma_addr);
scu_sg->A.address_lower = lower_32_bits(dma_addr);
}
if (scu_sg) {
scu_sg->next_pair_upper = 0;
scu_sg->next_pair_lower = 0;
}
}
static void scic_sds_io_request_build_ssp_command_iu(struct scic_sds_request *sci_req)
{
struct ssp_cmd_iu *cmd_iu;
struct isci_request *ireq = sci_req_to_ireq(sci_req);
struct sas_task *task = isci_request_access_task(ireq);
cmd_iu = &sci_req->ssp.cmd;
memcpy(cmd_iu->LUN, task->ssp_task.LUN, 8);
cmd_iu->add_cdb_len = 0;
cmd_iu->_r_a = 0;
cmd_iu->_r_b = 0;
cmd_iu->en_fburst = 0; /* unsupported */
cmd_iu->task_prio = task->ssp_task.task_prio;
cmd_iu->task_attr = task->ssp_task.task_attr;
cmd_iu->_r_c = 0;
sci_swab32_cpy(&cmd_iu->cdb, task->ssp_task.cdb,
sizeof(task->ssp_task.cdb) / sizeof(u32));
}
static void scic_sds_task_request_build_ssp_task_iu(struct scic_sds_request *sci_req)
{
struct ssp_task_iu *task_iu;
struct isci_request *ireq = sci_req_to_ireq(sci_req);
struct sas_task *task = isci_request_access_task(ireq);
struct isci_tmf *isci_tmf = isci_request_access_tmf(ireq);
task_iu = &sci_req->ssp.tmf;
memset(task_iu, 0, sizeof(struct ssp_task_iu));
memcpy(task_iu->LUN, task->ssp_task.LUN, 8);
task_iu->task_func = isci_tmf->tmf_code;
task_iu->task_tag =
(ireq->ttype == tmf_task) ?
isci_tmf->io_tag :
SCI_CONTROLLER_INVALID_IO_TAG;
}
/**
* This method is will fill in the SCU Task Context for any type of SSP request.
* @sci_req:
* @task_context:
*
*/
static void scu_ssp_reqeust_construct_task_context(
struct scic_sds_request *sds_request,
struct scu_task_context *task_context)
{
dma_addr_t dma_addr;
struct scic_sds_remote_device *target_device;
struct scic_sds_port *target_port;
target_device = scic_sds_request_get_device(sds_request);
target_port = scic_sds_request_get_port(sds_request);
/* Fill in the TC with the its required data */
task_context->abort = 0;
task_context->priority = 0;
task_context->initiator_request = 1;
task_context->connection_rate = target_device->connection_rate;
task_context->protocol_engine_index =
scic_sds_controller_get_protocol_engine_group(controller);
task_context->logical_port_index =
scic_sds_port_get_index(target_port);
task_context->protocol_type = SCU_TASK_CONTEXT_PROTOCOL_SSP;
task_context->valid = SCU_TASK_CONTEXT_VALID;
task_context->context_type = SCU_TASK_CONTEXT_TYPE;
task_context->remote_node_index =
scic_sds_remote_device_get_index(sds_request->target_device);
task_context->command_code = 0;
task_context->link_layer_control = 0;
task_context->do_not_dma_ssp_good_response = 1;
task_context->strict_ordering = 0;
task_context->control_frame = 0;
task_context->timeout_enable = 0;
task_context->block_guard_enable = 0;
task_context->address_modifier = 0;
/* task_context->type.ssp.tag = sci_req->io_tag; */
task_context->task_phase = 0x01;
if (sds_request->was_tag_assigned_by_user) {
/*
* Build the task context now since we have already read
* the data
*/
sds_request->post_context =
(SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_TC |
(scic_sds_controller_get_protocol_engine_group(
controller) <<
SCU_CONTEXT_COMMAND_PROTOCOL_ENGINE_GROUP_SHIFT) |
(scic_sds_port_get_index(target_port) <<
SCU_CONTEXT_COMMAND_LOGICAL_PORT_SHIFT) |
ISCI_TAG_TCI(sds_request->io_tag));
} else {
/*
* Build the task context now since we have already read
* the data
*
* I/O tag index is not assigned because we have to wait
* until we get a TCi
*/
sds_request->post_context =
(SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_TC |
(scic_sds_controller_get_protocol_engine_group(
owning_controller) <<
SCU_CONTEXT_COMMAND_PROTOCOL_ENGINE_GROUP_SHIFT) |
(scic_sds_port_get_index(target_port) <<
SCU_CONTEXT_COMMAND_LOGICAL_PORT_SHIFT));
}
/*
* Copy the physical address for the command buffer to the
* SCU Task Context
*/
dma_addr = scic_io_request_get_dma_addr(sds_request,
&sds_request->ssp.cmd);
task_context->command_iu_upper = upper_32_bits(dma_addr);
task_context->command_iu_lower = lower_32_bits(dma_addr);
/*
* Copy the physical address for the response buffer to the
* SCU Task Context
*/
dma_addr = scic_io_request_get_dma_addr(sds_request,
&sds_request->ssp.rsp);
task_context->response_iu_upper = upper_32_bits(dma_addr);
task_context->response_iu_lower = lower_32_bits(dma_addr);
}
/**
* This method is will fill in the SCU Task Context for a SSP IO request.
* @sci_req:
*
*/
static void scu_ssp_io_request_construct_task_context(
struct scic_sds_request *sci_req,
enum dma_data_direction dir,
u32 len)
{
struct scu_task_context *task_context;
task_context = scic_sds_request_get_task_context(sci_req);
scu_ssp_reqeust_construct_task_context(sci_req, task_context);
task_context->ssp_command_iu_length =
sizeof(struct ssp_cmd_iu) / sizeof(u32);
task_context->type.ssp.frame_type = SSP_COMMAND;
switch (dir) {
case DMA_FROM_DEVICE:
case DMA_NONE:
default:
task_context->task_type = SCU_TASK_TYPE_IOREAD;
break;
case DMA_TO_DEVICE:
task_context->task_type = SCU_TASK_TYPE_IOWRITE;
break;
}
task_context->transfer_length_bytes = len;
if (task_context->transfer_length_bytes > 0)
scic_sds_request_build_sgl(sci_req);
}
/**
* This method will fill in the SCU Task Context for a SSP Task request. The
* following important settings are utilized: -# priority ==
* SCU_TASK_PRIORITY_HIGH. This ensures that the task request is issued
* ahead of other task destined for the same Remote Node. -# task_type ==
* SCU_TASK_TYPE_IOREAD. This simply indicates that a normal request type
* (i.e. non-raw frame) is being utilized to perform task management. -#
* control_frame == 1. This ensures that the proper endianess is set so
* that the bytes are transmitted in the right order for a task frame.
* @sci_req: This parameter specifies the task request object being
* constructed.
*
*/
static void scu_ssp_task_request_construct_task_context(
struct scic_sds_request *sci_req)
{
struct scu_task_context *task_context;
task_context = scic_sds_request_get_task_context(sci_req);
scu_ssp_reqeust_construct_task_context(sci_req, task_context);
task_context->control_frame = 1;
task_context->priority = SCU_TASK_PRIORITY_HIGH;
task_context->task_type = SCU_TASK_TYPE_RAW_FRAME;
task_context->transfer_length_bytes = 0;
task_context->type.ssp.frame_type = SSP_TASK;
task_context->ssp_command_iu_length =
sizeof(struct ssp_task_iu) / sizeof(u32);
}
/**
* This method is will fill in the SCU Task Context for any type of SATA
* request. This is called from the various SATA constructors.
* @sci_req: The general IO request object which is to be used in
* constructing the SCU task context.
* @task_context: The buffer pointer for the SCU task context which is being
* constructed.
*
* The general io request construction is complete. The buffer assignment for
* the command buffer is complete. none Revisit task context construction to
* determine what is common for SSP/SMP/STP task context structures.
*/
static void scu_sata_reqeust_construct_task_context(
struct scic_sds_request *sci_req,
struct scu_task_context *task_context)
{
dma_addr_t dma_addr;
struct scic_sds_remote_device *target_device;
struct scic_sds_port *target_port;
target_device = scic_sds_request_get_device(sci_req);
target_port = scic_sds_request_get_port(sci_req);
/* Fill in the TC with the its required data */
task_context->abort = 0;
task_context->priority = SCU_TASK_PRIORITY_NORMAL;
task_context->initiator_request = 1;
task_context->connection_rate = target_device->connection_rate;
task_context->protocol_engine_index =
scic_sds_controller_get_protocol_engine_group(controller);
task_context->logical_port_index =
scic_sds_port_get_index(target_port);
task_context->protocol_type = SCU_TASK_CONTEXT_PROTOCOL_STP;
task_context->valid = SCU_TASK_CONTEXT_VALID;
task_context->context_type = SCU_TASK_CONTEXT_TYPE;
task_context->remote_node_index =
scic_sds_remote_device_get_index(sci_req->target_device);
task_context->command_code = 0;
task_context->link_layer_control = 0;
task_context->do_not_dma_ssp_good_response = 1;
task_context->strict_ordering = 0;
task_context->control_frame = 0;
task_context->timeout_enable = 0;
task_context->block_guard_enable = 0;
task_context->address_modifier = 0;
task_context->task_phase = 0x01;
task_context->ssp_command_iu_length =
(sizeof(struct host_to_dev_fis) - sizeof(u32)) / sizeof(u32);
/* Set the first word of the H2D REG FIS */
task_context->type.words[0] = *(u32 *)&sci_req->stp.cmd;
if (sci_req->was_tag_assigned_by_user) {
/*
* Build the task context now since we have already read
* the data
*/
sci_req->post_context =
(SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_TC |
(scic_sds_controller_get_protocol_engine_group(
controller) <<
SCU_CONTEXT_COMMAND_PROTOCOL_ENGINE_GROUP_SHIFT) |
(scic_sds_port_get_index(target_port) <<
SCU_CONTEXT_COMMAND_LOGICAL_PORT_SHIFT) |
ISCI_TAG_TCI(sci_req->io_tag));
} else {
/*
* Build the task context now since we have already read
* the data.
* I/O tag index is not assigned because we have to wait
* until we get a TCi.
*/
sci_req->post_context =
(SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_TC |
(scic_sds_controller_get_protocol_engine_group(
controller) <<
SCU_CONTEXT_COMMAND_PROTOCOL_ENGINE_GROUP_SHIFT) |
(scic_sds_port_get_index(target_port) <<
SCU_CONTEXT_COMMAND_LOGICAL_PORT_SHIFT));
}
/*
* Copy the physical address for the command buffer to the SCU Task
* Context. We must offset the command buffer by 4 bytes because the
* first 4 bytes are transfered in the body of the TC.
*/
dma_addr = scic_io_request_get_dma_addr(sci_req,
((char *) &sci_req->stp.cmd) +
sizeof(u32));
task_context->command_iu_upper = upper_32_bits(dma_addr);
task_context->command_iu_lower = lower_32_bits(dma_addr);
/* SATA Requests do not have a response buffer */
task_context->response_iu_upper = 0;
task_context->response_iu_lower = 0;
}
/**
* scu_stp_raw_request_construct_task_context -
* @sci_req: This parameter specifies the STP request object for which to
* construct a RAW command frame task context.
* @task_context: This parameter specifies the SCU specific task context buffer
* to construct.
*
* This method performs the operations common to all SATA/STP requests
* utilizing the raw frame method. none
*/
static void scu_stp_raw_request_construct_task_context(struct scic_sds_stp_request *stp_req,
struct scu_task_context *task_context)
{
struct scic_sds_request *sci_req = to_sci_req(stp_req);
scu_sata_reqeust_construct_task_context(sci_req, task_context);
task_context->control_frame = 0;
task_context->priority = SCU_TASK_PRIORITY_NORMAL;
task_context->task_type = SCU_TASK_TYPE_SATA_RAW_FRAME;
task_context->type.stp.fis_type = FIS_REGH2D;
task_context->transfer_length_bytes = sizeof(struct host_to_dev_fis) - sizeof(u32);
}
static enum sci_status
scic_sds_stp_pio_request_construct(struct scic_sds_request *sci_req,
bool copy_rx_frame)
{
struct scic_sds_stp_request *stp_req = &sci_req->stp.req;
struct scic_sds_stp_pio_request *pio = &stp_req->type.pio;
scu_stp_raw_request_construct_task_context(stp_req,
sci_req->task_context_buffer);
pio->current_transfer_bytes = 0;
pio->ending_error = 0;
pio->ending_status = 0;
pio->request_current.sgl_offset = 0;
pio->request_current.sgl_set = SCU_SGL_ELEMENT_PAIR_A;
if (copy_rx_frame) {
scic_sds_request_build_sgl(sci_req);
/* Since the IO request copy of the TC contains the same data as
* the actual TC this pointer is vaild for either.
*/
pio->request_current.sgl_pair = &sci_req->task_context_buffer->sgl_pair_ab;
} else {
/* The user does not want the data copied to the SGL buffer location */
pio->request_current.sgl_pair = NULL;
}
return SCI_SUCCESS;
}
/**
*
* @sci_req: This parameter specifies the request to be constructed as an
* optimized request.
* @optimized_task_type: This parameter specifies whether the request is to be
* an UDMA request or a NCQ request. - A value of 0 indicates UDMA. - A
* value of 1 indicates NCQ.
*
* This method will perform request construction common to all types of STP
* requests that are optimized by the silicon (i.e. UDMA, NCQ). This method
* returns an indication as to whether the construction was successful.
*/
static void scic_sds_stp_optimized_request_construct(struct scic_sds_request *sci_req,
u8 optimized_task_type,
u32 len,
enum dma_data_direction dir)
{
struct scu_task_context *task_context = sci_req->task_context_buffer;
/* Build the STP task context structure */
scu_sata_reqeust_construct_task_context(sci_req, task_context);
/* Copy over the SGL elements */
scic_sds_request_build_sgl(sci_req);
/* Copy over the number of bytes to be transfered */
task_context->transfer_length_bytes = len;
if (dir == DMA_TO_DEVICE) {
/*
* The difference between the DMA IN and DMA OUT request task type
* values are consistent with the difference between FPDMA READ
* and FPDMA WRITE values. Add the supplied task type parameter
* to this difference to set the task type properly for this
* DATA OUT (WRITE) case. */
task_context->task_type = optimized_task_type + (SCU_TASK_TYPE_DMA_OUT
- SCU_TASK_TYPE_DMA_IN);
} else {
/*
* For the DATA IN (READ) case, simply save the supplied
* optimized task type. */
task_context->task_type = optimized_task_type;
}
}
static enum sci_status
scic_io_request_construct_sata(struct scic_sds_request *sci_req,
u32 len,
enum dma_data_direction dir,
bool copy)
{
enum sci_status status = SCI_SUCCESS;
struct isci_request *ireq = sci_req_to_ireq(sci_req);
struct sas_task *task = isci_request_access_task(ireq);
/* check for management protocols */
if (ireq->ttype == tmf_task) {
struct isci_tmf *tmf = isci_request_access_tmf(ireq);
if (tmf->tmf_code == isci_tmf_sata_srst_high ||
tmf->tmf_code == isci_tmf_sata_srst_low) {
scu_stp_raw_request_construct_task_context(&sci_req->stp.req,
sci_req->task_context_buffer);
return SCI_SUCCESS;
} else {
dev_err(scic_to_dev(sci_req->owning_controller),
"%s: Request 0x%p received un-handled SAT "
"management protocol 0x%x.\n",
__func__, sci_req, tmf->tmf_code);
return SCI_FAILURE;
}
}
if (!sas_protocol_ata(task->task_proto)) {
dev_err(scic_to_dev(sci_req->owning_controller),
"%s: Non-ATA protocol in SATA path: 0x%x\n",
__func__,
task->task_proto);
return SCI_FAILURE;
}
/* non data */
if (task->data_dir == DMA_NONE) {
scu_stp_raw_request_construct_task_context(&sci_req->stp.req,
sci_req->task_context_buffer);
return SCI_SUCCESS;
}
/* NCQ */
if (task->ata_task.use_ncq) {
scic_sds_stp_optimized_request_construct(sci_req,
SCU_TASK_TYPE_FPDMAQ_READ,
len, dir);
return SCI_SUCCESS;
}
/* DMA */
if (task->ata_task.dma_xfer) {
scic_sds_stp_optimized_request_construct(sci_req,
SCU_TASK_TYPE_DMA_IN,
len, dir);
return SCI_SUCCESS;
} else /* PIO */
return scic_sds_stp_pio_request_construct(sci_req, copy);
return status;
}
static enum sci_status scic_io_request_construct_basic_ssp(struct scic_sds_request *sci_req)
{
struct isci_request *ireq = sci_req_to_ireq(sci_req);
struct sas_task *task = isci_request_access_task(ireq);
sci_req->protocol = SCIC_SSP_PROTOCOL;
scu_ssp_io_request_construct_task_context(sci_req,
task->data_dir,
task->total_xfer_len);
scic_sds_io_request_build_ssp_command_iu(sci_req);
sci_change_state(&sci_req->sm, SCI_REQ_CONSTRUCTED);
return SCI_SUCCESS;
}
enum sci_status scic_task_request_construct_ssp(
struct scic_sds_request *sci_req)
{
/* Construct the SSP Task SCU Task Context */
scu_ssp_task_request_construct_task_context(sci_req);
/* Fill in the SSP Task IU */
scic_sds_task_request_build_ssp_task_iu(sci_req);
sci_change_state(&sci_req->sm, SCI_REQ_CONSTRUCTED);
return SCI_SUCCESS;
}
static enum sci_status scic_io_request_construct_basic_sata(struct scic_sds_request *sci_req)
{
enum sci_status status;
bool copy = false;
struct isci_request *isci_request = sci_req_to_ireq(sci_req);
struct sas_task *task = isci_request_access_task(isci_request);
sci_req->protocol = SCIC_STP_PROTOCOL;
copy = (task->data_dir == DMA_NONE) ? false : true;
status = scic_io_request_construct_sata(sci_req,
task->total_xfer_len,
task->data_dir,
copy);
if (status == SCI_SUCCESS)
sci_change_state(&sci_req->sm, SCI_REQ_CONSTRUCTED);
return status;
}
enum sci_status scic_task_request_construct_sata(struct scic_sds_request *sci_req)
{
enum sci_status status = SCI_SUCCESS;
struct isci_request *ireq = sci_req_to_ireq(sci_req);
/* check for management protocols */
if (ireq->ttype == tmf_task) {
struct isci_tmf *tmf = isci_request_access_tmf(ireq);
if (tmf->tmf_code == isci_tmf_sata_srst_high ||
tmf->tmf_code == isci_tmf_sata_srst_low) {
scu_stp_raw_request_construct_task_context(&sci_req->stp.req,
sci_req->task_context_buffer);
} else {
dev_err(scic_to_dev(sci_req->owning_controller),
"%s: Request 0x%p received un-handled SAT "
"Protocol 0x%x.\n",
__func__, sci_req, tmf->tmf_code);
return SCI_FAILURE;
}
}
if (status != SCI_SUCCESS)
return status;
sci_change_state(&sci_req->sm, SCI_REQ_CONSTRUCTED);
return status;
}
/**
* sci_req_tx_bytes - bytes transferred when reply underruns request
* @sci_req: request that was terminated early
*/
#define SCU_TASK_CONTEXT_SRAM 0x200000
static u32 sci_req_tx_bytes(struct scic_sds_request *sci_req)
{
struct scic_sds_controller *scic = sci_req->owning_controller;
u32 ret_val = 0;
if (readl(&scic->smu_registers->address_modifier) == 0) {
void __iomem *scu_reg_base = scic->scu_registers;
/* get the bytes of data from the Address == BAR1 + 20002Ch + (256*TCi) where
* BAR1 is the scu_registers
* 0x20002C = 0x200000 + 0x2c
* = start of task context SRAM + offset of (type.ssp.data_offset)
* TCi is the io_tag of struct scic_sds_request
*/
ret_val = readl(scu_reg_base +
(SCU_TASK_CONTEXT_SRAM + offsetof(struct scu_task_context, type.ssp.data_offset)) +
((sizeof(struct scu_task_context)) * ISCI_TAG_TCI(sci_req->io_tag)));
}
return ret_val;
}
enum sci_status scic_sds_request_start(struct scic_sds_request *sci_req)
{
struct scic_sds_controller *scic = sci_req->owning_controller;
struct scu_task_context *task_context;
enum sci_base_request_states state;
state = sci_req->sm.current_state_id;
if (state != SCI_REQ_CONSTRUCTED) {
dev_warn(scic_to_dev(scic),
"%s: SCIC IO Request requested to start while in wrong "
"state %d\n", __func__, state);
return SCI_FAILURE_INVALID_STATE;
}
/* if necessary, allocate a TCi for the io request object and then will,
* if necessary, copy the constructed TC data into the actual TC buffer.
* If everything is successful the post context field is updated with
* the TCi so the controller can post the request to the hardware.
*/
if (sci_req->io_tag == SCI_CONTROLLER_INVALID_IO_TAG)
sci_req->io_tag = scic_controller_allocate_io_tag(scic);
/* Record the IO Tag in the request */
if (sci_req->io_tag != SCI_CONTROLLER_INVALID_IO_TAG) {
task_context = sci_req->task_context_buffer;
task_context->task_index = ISCI_TAG_TCI(sci_req->io_tag);
switch (task_context->protocol_type) {
case SCU_TASK_CONTEXT_PROTOCOL_SMP:
case SCU_TASK_CONTEXT_PROTOCOL_SSP:
/* SSP/SMP Frame */
task_context->type.ssp.tag = sci_req->io_tag;
task_context->type.ssp.target_port_transfer_tag =
0xFFFF;
break;
case SCU_TASK_CONTEXT_PROTOCOL_STP:
/* STP/SATA Frame
* task_context->type.stp.ncq_tag = sci_req->ncq_tag;
*/
break;
case SCU_TASK_CONTEXT_PROTOCOL_NONE:
/* / @todo When do we set no protocol type? */
break;
default:
/* This should never happen since we build the IO
* requests */
break;
}
/*
* Check to see if we need to copy the task context buffer
* or have been building into the task context buffer */
if (sci_req->was_tag_assigned_by_user == false)
scic_sds_controller_copy_task_context(scic, sci_req);
/* Add to the post_context the io tag value */
sci_req->post_context |= ISCI_TAG_TCI(sci_req->io_tag);
/* Everything is good go ahead and change state */
sci_change_state(&sci_req->sm, SCI_REQ_STARTED);
return SCI_SUCCESS;
}
return SCI_FAILURE_INSUFFICIENT_RESOURCES;
}
enum sci_status
scic_sds_io_request_terminate(struct scic_sds_request *sci_req)
{
enum sci_base_request_states state;
state = sci_req->sm.current_state_id;
switch (state) {
case SCI_REQ_CONSTRUCTED:
scic_sds_request_set_status(sci_req,
SCU_TASK_DONE_TASK_ABORT,
SCI_FAILURE_IO_TERMINATED);
sci_change_state(&sci_req->sm, SCI_REQ_COMPLETED);
return SCI_SUCCESS;
case SCI_REQ_STARTED:
case SCI_REQ_TASK_WAIT_TC_COMP:
case SCI_REQ_SMP_WAIT_RESP:
case SCI_REQ_SMP_WAIT_TC_COMP:
case SCI_REQ_STP_UDMA_WAIT_TC_COMP:
case SCI_REQ_STP_UDMA_WAIT_D2H:
case SCI_REQ_STP_NON_DATA_WAIT_H2D:
case SCI_REQ_STP_NON_DATA_WAIT_D2H:
case SCI_REQ_STP_PIO_WAIT_H2D:
case SCI_REQ_STP_PIO_WAIT_FRAME:
case SCI_REQ_STP_PIO_DATA_IN:
case SCI_REQ_STP_PIO_DATA_OUT:
case SCI_REQ_STP_SOFT_RESET_WAIT_H2D_ASSERTED:
case SCI_REQ_STP_SOFT_RESET_WAIT_H2D_DIAG:
case SCI_REQ_STP_SOFT_RESET_WAIT_D2H:
sci_change_state(&sci_req->sm, SCI_REQ_ABORTING);
return SCI_SUCCESS;
case SCI_REQ_TASK_WAIT_TC_RESP:
sci_change_state(&sci_req->sm, SCI_REQ_ABORTING);
sci_change_state(&sci_req->sm, SCI_REQ_COMPLETED);
return SCI_SUCCESS;
case SCI_REQ_ABORTING:
sci_change_state(&sci_req->sm, SCI_REQ_COMPLETED);
return SCI_SUCCESS;
case SCI_REQ_COMPLETED:
default:
dev_warn(scic_to_dev(sci_req->owning_controller),
"%s: SCIC IO Request requested to abort while in wrong "
"state %d\n",
__func__,
sci_req->sm.current_state_id);
break;
}
return SCI_FAILURE_INVALID_STATE;
}
enum sci_status scic_sds_request_complete(struct scic_sds_request *sci_req)
{
enum sci_base_request_states state;
struct scic_sds_controller *scic = sci_req->owning_controller;
state = sci_req->sm.current_state_id;
if (WARN_ONCE(state != SCI_REQ_COMPLETED,
"isci: request completion from wrong state (%d)\n", state))
return SCI_FAILURE_INVALID_STATE;
if (!sci_req->was_tag_assigned_by_user)
scic_controller_free_io_tag(scic, sci_req->io_tag);
if (sci_req->saved_rx_frame_index != SCU_INVALID_FRAME_INDEX)
scic_sds_controller_release_frame(scic,
sci_req->saved_rx_frame_index);
/* XXX can we just stop the machine and remove the 'final' state? */
sci_change_state(&sci_req->sm, SCI_REQ_FINAL);
return SCI_SUCCESS;
}
enum sci_status scic_sds_io_request_event_handler(struct scic_sds_request *sci_req,
u32 event_code)
{
enum sci_base_request_states state;
struct scic_sds_controller *scic = sci_req->owning_controller;
state = sci_req->sm.current_state_id;
if (state != SCI_REQ_STP_PIO_DATA_IN) {
dev_warn(scic_to_dev(scic), "%s: (%x) in wrong state %d\n",
__func__, event_code, state);
return SCI_FAILURE_INVALID_STATE;
}
switch (scu_get_event_specifier(event_code)) {
case SCU_TASK_DONE_CRC_ERR << SCU_EVENT_SPECIFIC_CODE_SHIFT:
/* We are waiting for data and the SCU has R_ERR the data frame.
* Go back to waiting for the D2H Register FIS
*/
sci_change_state(&sci_req->sm, SCI_REQ_STP_PIO_WAIT_FRAME);
return SCI_SUCCESS;
default:
dev_err(scic_to_dev(scic),
"%s: pio request unexpected event %#x\n",
__func__, event_code);
/* TODO Should we fail the PIO request when we get an
* unexpected event?
*/
return SCI_FAILURE;
}
}
/*
* This function copies response data for requests returning response data
* instead of sense data.
* @sci_req: This parameter specifies the request object for which to copy
* the response data.
*/
static void scic_sds_io_request_copy_response(struct scic_sds_request *sci_req)
{
void *resp_buf;
u32 len;
struct ssp_response_iu *ssp_response;
struct isci_request *ireq = sci_req_to_ireq(sci_req);
struct isci_tmf *isci_tmf = isci_request_access_tmf(ireq);
ssp_response = &sci_req->ssp.rsp;
resp_buf = &isci_tmf->resp.resp_iu;
len = min_t(u32,
SSP_RESP_IU_MAX_SIZE,
be32_to_cpu(ssp_response->response_data_len));
memcpy(resp_buf, ssp_response->resp_data, len);
}
static enum sci_status
request_started_state_tc_event(struct scic_sds_request *sci_req,
u32 completion_code)
{
struct ssp_response_iu *resp_iu;
u8 datapres;
/* TODO: Any SDMA return code of other than 0 is bad decode 0x003C0000
* to determine SDMA status
*/
switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
scic_sds_request_set_status(sci_req,
SCU_TASK_DONE_GOOD,
SCI_SUCCESS);
break;
case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_EARLY_RESP): {
/* There are times when the SCU hardware will return an early
* response because the io request specified more data than is
* returned by the target device (mode pages, inquiry data,
* etc.). We must check the response stats to see if this is
* truly a failed request or a good request that just got
* completed early.
*/
struct ssp_response_iu *resp = &sci_req->ssp.rsp;
ssize_t word_cnt = SSP_RESP_IU_MAX_SIZE / sizeof(u32);
sci_swab32_cpy(&sci_req->ssp.rsp,
&sci_req->ssp.rsp,
word_cnt);
if (resp->status == 0) {
scic_sds_request_set_status(sci_req,
SCU_TASK_DONE_GOOD,
SCI_SUCCESS_IO_DONE_EARLY);
} else {
scic_sds_request_set_status(sci_req,
SCU_TASK_DONE_CHECK_RESPONSE,
SCI_FAILURE_IO_RESPONSE_VALID);
}
break;
}
case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_CHECK_RESPONSE): {
ssize_t word_cnt = SSP_RESP_IU_MAX_SIZE / sizeof(u32);
sci_swab32_cpy(&sci_req->ssp.rsp,
&sci_req->ssp.rsp,
word_cnt);
scic_sds_request_set_status(sci_req,
SCU_TASK_DONE_CHECK_RESPONSE,
SCI_FAILURE_IO_RESPONSE_VALID);
break;
}
case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_RESP_LEN_ERR):
/* TODO With TASK_DONE_RESP_LEN_ERR is the response frame
* guaranteed to be received before this completion status is
* posted?
*/
resp_iu = &sci_req->ssp.rsp;
datapres = resp_iu->datapres;
if (datapres == 1 || datapres == 2) {
scic_sds_request_set_status(sci_req,
SCU_TASK_DONE_CHECK_RESPONSE,
SCI_FAILURE_IO_RESPONSE_VALID);
} else
scic_sds_request_set_status(sci_req,
SCU_TASK_DONE_GOOD,
SCI_SUCCESS);
break;
/* only stp device gets suspended. */
case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_ACK_NAK_TO):
case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_LL_PERR):
case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_NAK_ERR):
case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_DATA_LEN_ERR):
case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_LL_ABORT_ERR):
case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_XR_WD_LEN):
case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_MAX_PLD_ERR):
case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_UNEXP_RESP):
case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_UNEXP_SDBFIS):
case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_REG_ERR):
case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SDB_ERR):
if (sci_req->protocol == SCIC_STP_PROTOCOL) {
scic_sds_request_set_status(sci_req,
SCU_GET_COMPLETION_TL_STATUS(completion_code) >>
SCU_COMPLETION_TL_STATUS_SHIFT,
SCI_FAILURE_REMOTE_DEVICE_RESET_REQUIRED);
} else {
scic_sds_request_set_status(sci_req,
SCU_GET_COMPLETION_TL_STATUS(completion_code) >>
SCU_COMPLETION_TL_STATUS_SHIFT,
SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR);
}
break;
/* both stp/ssp device gets suspended */
case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_LF_ERR):
case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_WRONG_DESTINATION):
case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_1):
case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_2):
case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_3):
case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_BAD_DESTINATION):
case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_ZONE_VIOLATION):
case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_STP_RESOURCES_BUSY):
case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_PROTOCOL_NOT_SUPPORTED):
case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_CONNECTION_RATE_NOT_SUPPORTED):
scic_sds_request_set_status(sci_req,
SCU_GET_COMPLETION_TL_STATUS(completion_code) >>
SCU_COMPLETION_TL_STATUS_SHIFT,
SCI_FAILURE_REMOTE_DEVICE_RESET_REQUIRED);
break;
/* neither ssp nor stp gets suspended. */
case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_NAK_CMD_ERR):
case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_UNEXP_XR):
case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_XR_IU_LEN_ERR):
case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SDMA_ERR):
case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_OFFSET_ERR):
case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_EXCESS_DATA):
case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_RESP_TO_ERR):
case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_UFI_ERR):
case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_FRM_TYPE_ERR):
case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_LL_RX_ERR):
case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_UNEXP_DATA):
case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_OPEN_FAIL):
case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_VIIT_ENTRY_NV):
case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_IIT_ENTRY_NV):
case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_RNCNV_OUTBOUND):
default:
scic_sds_request_set_status(
sci_req,
SCU_GET_COMPLETION_TL_STATUS(completion_code) >>
SCU_COMPLETION_TL_STATUS_SHIFT,
SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR);
break;
}
/*
* TODO: This is probably wrong for ACK/NAK timeout conditions
*/
/* In all cases we will treat this as the completion of the IO req. */
sci_change_state(&sci_req->sm, SCI_REQ_COMPLETED);
return SCI_SUCCESS;
}
static enum sci_status
request_aborting_state_tc_event(struct scic_sds_request *sci_req,
u32 completion_code)
{
switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
case (SCU_TASK_DONE_GOOD << SCU_COMPLETION_TL_STATUS_SHIFT):
case (SCU_TASK_DONE_TASK_ABORT << SCU_COMPLETION_TL_STATUS_SHIFT):
scic_sds_request_set_status(sci_req, SCU_TASK_DONE_TASK_ABORT,
SCI_FAILURE_IO_TERMINATED);
sci_change_state(&sci_req->sm, SCI_REQ_COMPLETED);
break;
default:
/* Unless we get some strange error wait for the task abort to complete
* TODO: Should there be a state change for this completion?
*/
break;
}
return SCI_SUCCESS;
}
static enum sci_status ssp_task_request_await_tc_event(struct scic_sds_request *sci_req,
u32 completion_code)
{
switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
scic_sds_request_set_status(sci_req, SCU_TASK_DONE_GOOD,
SCI_SUCCESS);
sci_change_state(&sci_req->sm, SCI_REQ_TASK_WAIT_TC_RESP);
break;
case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_ACK_NAK_TO):
/* Currently, the decision is to simply allow the task request
* to timeout if the task IU wasn't received successfully.
* There is a potential for receiving multiple task responses if
* we decide to send the task IU again.
*/
dev_warn(scic_to_dev(sci_req->owning_controller),
"%s: TaskRequest:0x%p CompletionCode:%x - "
"ACK/NAK timeout\n", __func__, sci_req,
completion_code);
sci_change_state(&sci_req->sm, SCI_REQ_TASK_WAIT_TC_RESP);
break;
default:
/*
* All other completion status cause the IO to be complete.
* If a NAK was received, then it is up to the user to retry
* the request.
*/
scic_sds_request_set_status(sci_req,
SCU_NORMALIZE_COMPLETION_STATUS(completion_code),
SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR);
sci_change_state(&sci_req->sm, SCI_REQ_COMPLETED);
break;
}
return SCI_SUCCESS;
}
static enum sci_status
smp_request_await_response_tc_event(struct scic_sds_request *sci_req,
u32 completion_code)
{
switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
/* In the AWAIT RESPONSE state, any TC completion is
* unexpected. but if the TC has success status, we
* complete the IO anyway.
*/
scic_sds_request_set_status(sci_req, SCU_TASK_DONE_GOOD,
SCI_SUCCESS);
sci_change_state(&sci_req->sm, SCI_REQ_COMPLETED);
break;
case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_RESP_TO_ERR):
case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_UFI_ERR):
case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_FRM_TYPE_ERR):
case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_LL_RX_ERR):
/* These status has been seen in a specific LSI
* expander, which sometimes is not able to send smp
* response within 2 ms. This causes our hardware break
* the connection and set TC completion with one of
* these SMP_XXX_XX_ERR status. For these type of error,
* we ask scic user to retry the request.
*/
scic_sds_request_set_status(sci_req, SCU_TASK_DONE_SMP_RESP_TO_ERR,
SCI_FAILURE_RETRY_REQUIRED);
sci_change_state(&sci_req->sm, SCI_REQ_COMPLETED);
break;
default:
/* All other completion status cause the IO to be complete. If a NAK
* was received, then it is up to the user to retry the request
*/
scic_sds_request_set_status(sci_req,
SCU_NORMALIZE_COMPLETION_STATUS(completion_code),
SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR);
sci_change_state(&sci_req->sm, SCI_REQ_COMPLETED);
break;
}
return SCI_SUCCESS;
}
static enum sci_status
smp_request_await_tc_event(struct scic_sds_request *sci_req,
u32 completion_code)
{
switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
scic_sds_request_set_status(sci_req, SCU_TASK_DONE_GOOD,
SCI_SUCCESS);
sci_change_state(&sci_req->sm, SCI_REQ_COMPLETED);
break;
default:
/* All other completion status cause the IO to be
* complete. If a NAK was received, then it is up to
* the user to retry the request.
*/
scic_sds_request_set_status(sci_req,
SCU_NORMALIZE_COMPLETION_STATUS(completion_code),
SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR);
sci_change_state(&sci_req->sm, SCI_REQ_COMPLETED);
break;
}
return SCI_SUCCESS;
}
void scic_stp_io_request_set_ncq_tag(struct scic_sds_request *req,
u16 ncq_tag)
{
/**
* @note This could be made to return an error to the user if the user
* attempts to set the NCQ tag in the wrong state.
*/
req->task_context_buffer->type.stp.ncq_tag = ncq_tag;
}
/**
*
* @sci_req:
*
* Get the next SGL element from the request. - Check on which SGL element pair
* we are working - if working on SLG pair element A - advance to element B -
* else - check to see if there are more SGL element pairs for this IO request
* - if there are more SGL element pairs - advance to the next pair and return
* element A struct scu_sgl_element*
*/
static struct scu_sgl_element *scic_sds_stp_request_pio_get_next_sgl(struct scic_sds_stp_request *stp_req)
{
struct scu_sgl_element *current_sgl;
struct scic_sds_request *sci_req = to_sci_req(stp_req);
struct scic_sds_request_pio_sgl *pio_sgl = &stp_req->type.pio.request_current;
if (pio_sgl->sgl_set == SCU_SGL_ELEMENT_PAIR_A) {
if (pio_sgl->sgl_pair->B.address_lower == 0 &&
pio_sgl->sgl_pair->B.address_upper == 0) {
current_sgl = NULL;
} else {
pio_sgl->sgl_set = SCU_SGL_ELEMENT_PAIR_B;
current_sgl = &pio_sgl->sgl_pair->B;
}
} else {
if (pio_sgl->sgl_pair->next_pair_lower == 0 &&
pio_sgl->sgl_pair->next_pair_upper == 0) {
current_sgl = NULL;
} else {
u64 phys_addr;
phys_addr = pio_sgl->sgl_pair->next_pair_upper;
phys_addr <<= 32;
phys_addr |= pio_sgl->sgl_pair->next_pair_lower;
pio_sgl->sgl_pair = scic_request_get_virt_addr(sci_req, phys_addr);
pio_sgl->sgl_set = SCU_SGL_ELEMENT_PAIR_A;
current_sgl = &pio_sgl->sgl_pair->A;
}
}
return current_sgl;
}
static enum sci_status
stp_request_non_data_await_h2d_tc_event(struct scic_sds_request *sci_req,
u32 completion_code)
{
switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
scic_sds_request_set_status(sci_req, SCU_TASK_DONE_GOOD,
SCI_SUCCESS);
sci_change_state(&sci_req->sm, SCI_REQ_STP_NON_DATA_WAIT_D2H);
break;
default:
/* All other completion status cause the IO to be
* complete. If a NAK was received, then it is up to
* the user to retry the request.
*/
scic_sds_request_set_status(sci_req,
SCU_NORMALIZE_COMPLETION_STATUS(completion_code),
SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR);
sci_change_state(&sci_req->sm, SCI_REQ_COMPLETED);
break;
}
return SCI_SUCCESS;
}
#define SCU_MAX_FRAME_BUFFER_SIZE 0x400 /* 1K is the maximum SCU frame data payload */
/* transmit DATA_FIS from (current sgl + offset) for input
* parameter length. current sgl and offset is alreay stored in the IO request
*/
static enum sci_status scic_sds_stp_request_pio_data_out_trasmit_data_frame(
struct scic_sds_request *sci_req,
u32 length)
{
struct scic_sds_controller *scic = sci_req->owning_controller;
struct scic_sds_stp_request *stp_req = &sci_req->stp.req;
struct scu_task_context *task_context;
struct scu_sgl_element *current_sgl;
/* Recycle the TC and reconstruct it for sending out DATA FIS containing
* for the data from current_sgl+offset for the input length
*/
task_context = scic_sds_controller_get_task_context_buffer(scic,
sci_req->io_tag);
if (stp_req->type.pio.request_current.sgl_set == SCU_SGL_ELEMENT_PAIR_A)
current_sgl = &stp_req->type.pio.request_current.sgl_pair->A;
else
current_sgl = &stp_req->type.pio.request_current.sgl_pair->B;
/* update the TC */
task_context->command_iu_upper = current_sgl->address_upper;
task_context->command_iu_lower = current_sgl->address_lower;
task_context->transfer_length_bytes = length;
task_context->type.stp.fis_type = FIS_DATA;
/* send the new TC out. */
return scic_controller_continue_io(sci_req);
}
static enum sci_status scic_sds_stp_request_pio_data_out_transmit_data(struct scic_sds_request *sci_req)
{
struct scu_sgl_element *current_sgl;
u32 sgl_offset;
u32 remaining_bytes_in_current_sgl = 0;
enum sci_status status = SCI_SUCCESS;
struct scic_sds_stp_request *stp_req = &sci_req->stp.req;
sgl_offset = stp_req->type.pio.request_current.sgl_offset;
if (stp_req->type.pio.request_current.sgl_set == SCU_SGL_ELEMENT_PAIR_A) {
current_sgl = &(stp_req->type.pio.request_current.sgl_pair->A);
remaining_bytes_in_current_sgl = stp_req->type.pio.request_current.sgl_pair->A.length - sgl_offset;
} else {
current_sgl = &(stp_req->type.pio.request_current.sgl_pair->B);
remaining_bytes_in_current_sgl = stp_req->type.pio.request_current.sgl_pair->B.length - sgl_offset;
}
if (stp_req->type.pio.pio_transfer_bytes > 0) {
if (stp_req->type.pio.pio_transfer_bytes >= remaining_bytes_in_current_sgl) {
/* recycle the TC and send the H2D Data FIS from (current sgl + sgl_offset) and length = remaining_bytes_in_current_sgl */
status = scic_sds_stp_request_pio_data_out_trasmit_data_frame(sci_req, remaining_bytes_in_current_sgl);
if (status == SCI_SUCCESS) {
stp_req->type.pio.pio_transfer_bytes -= remaining_bytes_in_current_sgl;
/* update the current sgl, sgl_offset and save for future */
current_sgl = scic_sds_stp_request_pio_get_next_sgl(stp_req);
sgl_offset = 0;
}
} else if (stp_req->type.pio.pio_transfer_bytes < remaining_bytes_in_current_sgl) {
/* recycle the TC and send the H2D Data FIS from (current sgl + sgl_offset) and length = type.pio.pio_transfer_bytes */
scic_sds_stp_request_pio_data_out_trasmit_data_frame(sci_req, stp_req->type.pio.pio_transfer_bytes);
if (status == SCI_SUCCESS) {
/* Sgl offset will be adjusted and saved for future */
sgl_offset += stp_req->type.pio.pio_transfer_bytes;
current_sgl->address_lower += stp_req->type.pio.pio_transfer_bytes;
stp_req->type.pio.pio_transfer_bytes = 0;
}
}
}
if (status == SCI_SUCCESS) {
stp_req->type.pio.request_current.sgl_offset = sgl_offset;
}
return status;
}
/**
*
* @stp_request: The request that is used for the SGL processing.
* @data_buffer: The buffer of data to be copied.
* @length: The length of the data transfer.
*
* Copy the data from the buffer for the length specified to the IO reqeust SGL
* specified data region. enum sci_status
*/
static enum sci_status
scic_sds_stp_request_pio_data_in_copy_data_buffer(struct scic_sds_stp_request *stp_req,
u8 *data_buf, u32 len)
{
struct scic_sds_request *sci_req;
struct isci_request *ireq;
u8 *src_addr;
int copy_len;
struct sas_task *task;
struct scatterlist *sg;
void *kaddr;
int total_len = len;
sci_req = to_sci_req(stp_req);
ireq = sci_req_to_ireq(sci_req);
task = isci_request_access_task(ireq);
src_addr = data_buf;
if (task->num_scatter > 0) {
sg = task->scatter;
while (total_len > 0) {
struct page *page = sg_page(sg);
copy_len = min_t(int, total_len, sg_dma_len(sg));
kaddr = kmap_atomic(page, KM_IRQ0);
memcpy(kaddr + sg->offset, src_addr, copy_len);
kunmap_atomic(kaddr, KM_IRQ0);
total_len -= copy_len;
src_addr += copy_len;
sg = sg_next(sg);
}
} else {
BUG_ON(task->total_xfer_len < total_len);
memcpy(task->scatter, src_addr, total_len);
}
return SCI_SUCCESS;
}
/**
*
* @sci_req: The PIO DATA IN request that is to receive the data.
* @data_buffer: The buffer to copy from.
*
* Copy the data buffer to the io request data region. enum sci_status
*/
static enum sci_status scic_sds_stp_request_pio_data_in_copy_data(
struct scic_sds_stp_request *sci_req,
u8 *data_buffer)
{
enum sci_status status;
/*
* If there is less than 1K remaining in the transfer request
* copy just the data for the transfer */
if (sci_req->type.pio.pio_transfer_bytes < SCU_MAX_FRAME_BUFFER_SIZE) {
status = scic_sds_stp_request_pio_data_in_copy_data_buffer(
sci_req, data_buffer, sci_req->type.pio.pio_transfer_bytes);
if (status == SCI_SUCCESS)
sci_req->type.pio.pio_transfer_bytes = 0;
} else {
/* We are transfering the whole frame so copy */
status = scic_sds_stp_request_pio_data_in_copy_data_buffer(
sci_req, data_buffer, SCU_MAX_FRAME_BUFFER_SIZE);
if (status == SCI_SUCCESS)
sci_req->type.pio.pio_transfer_bytes -= SCU_MAX_FRAME_BUFFER_SIZE;
}
return status;
}
static enum sci_status
stp_request_pio_await_h2d_completion_tc_event(struct scic_sds_request *sci_req,
u32 completion_code)
{
enum sci_status status = SCI_SUCCESS;
switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
scic_sds_request_set_status(sci_req,
SCU_TASK_DONE_GOOD,
SCI_SUCCESS);
sci_change_state(&sci_req->sm, SCI_REQ_STP_PIO_WAIT_FRAME);
break;
default:
/* All other completion status cause the IO to be
* complete. If a NAK was received, then it is up to
* the user to retry the request.
*/
scic_sds_request_set_status(sci_req,
SCU_NORMALIZE_COMPLETION_STATUS(completion_code),
SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR);
sci_change_state(&sci_req->sm, SCI_REQ_COMPLETED);
break;
}
return status;
}
static enum sci_status
pio_data_out_tx_done_tc_event(struct scic_sds_request *sci_req,
u32 completion_code)
{
enum sci_status status = SCI_SUCCESS;
bool all_frames_transferred = false;
struct scic_sds_stp_request *stp_req = &sci_req->stp.req;
switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
/* Transmit data */
if (stp_req->type.pio.pio_transfer_bytes != 0) {
status = scic_sds_stp_request_pio_data_out_transmit_data(sci_req);
if (status == SCI_SUCCESS) {
if (stp_req->type.pio.pio_transfer_bytes == 0)
all_frames_transferred = true;
}
} else if (stp_req->type.pio.pio_transfer_bytes == 0) {
/*
* this will happen if the all data is written at the
* first time after the pio setup fis is received
*/
all_frames_transferred = true;
}
/* all data transferred. */
if (all_frames_transferred) {
/*
* Change the state to SCI_REQ_STP_PIO_DATA_IN
* and wait for PIO_SETUP fis / or D2H REg fis. */
sci_change_state(&sci_req->sm, SCI_REQ_STP_PIO_WAIT_FRAME);
}
break;
default:
/*
* All other completion status cause the IO to be complete.
* If a NAK was received, then it is up to the user to retry
* the request.
*/
scic_sds_request_set_status(
sci_req,
SCU_NORMALIZE_COMPLETION_STATUS(completion_code),
SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR);
sci_change_state(&sci_req->sm, SCI_REQ_COMPLETED);
break;
}
return status;
}
static void scic_sds_stp_request_udma_complete_request(
struct scic_sds_request *request,
u32 scu_status,
enum sci_status sci_status)
{
scic_sds_request_set_status(request, scu_status, sci_status);
sci_change_state(&request->sm, SCI_REQ_COMPLETED);
}
static enum sci_status scic_sds_stp_request_udma_general_frame_handler(struct scic_sds_request *sci_req,
u32 frame_index)
{
struct scic_sds_controller *scic = sci_req->owning_controller;
struct dev_to_host_fis *frame_header;
enum sci_status status;
u32 *frame_buffer;
status = scic_sds_unsolicited_frame_control_get_header(&scic->uf_control,
frame_index,
(void **)&frame_header);
if ((status == SCI_SUCCESS) &&
(frame_header->fis_type == FIS_REGD2H)) {
scic_sds_unsolicited_frame_control_get_buffer(&scic->uf_control,
frame_index,
(void **)&frame_buffer);
scic_sds_controller_copy_sata_response(&sci_req->stp.rsp,
frame_header,
frame_buffer);
}
scic_sds_controller_release_frame(scic, frame_index);
return status;
}
enum sci_status
scic_sds_io_request_frame_handler(struct scic_sds_request *sci_req,
u32 frame_index)
{
struct scic_sds_controller *scic = sci_req->owning_controller;
struct scic_sds_stp_request *stp_req = &sci_req->stp.req;
enum sci_base_request_states state;
enum sci_status status;
ssize_t word_cnt;
state = sci_req->sm.current_state_id;
switch (state) {
case SCI_REQ_STARTED: {
struct ssp_frame_hdr ssp_hdr;
void *frame_header;
scic_sds_unsolicited_frame_control_get_header(&scic->uf_control,
frame_index,
&frame_header);
word_cnt = sizeof(struct ssp_frame_hdr) / sizeof(u32);
sci_swab32_cpy(&ssp_hdr, frame_header, word_cnt);
if (ssp_hdr.frame_type == SSP_RESPONSE) {
struct ssp_response_iu *resp_iu;
ssize_t word_cnt = SSP_RESP_IU_MAX_SIZE / sizeof(u32);
scic_sds_unsolicited_frame_control_get_buffer(&scic->uf_control,
frame_index,
(void **)&resp_iu);
sci_swab32_cpy(&sci_req->ssp.rsp, resp_iu, word_cnt);
resp_iu = &sci_req->ssp.rsp;
if (resp_iu->datapres == 0x01 ||
resp_iu->datapres == 0x02) {
scic_sds_request_set_status(sci_req,
SCU_TASK_DONE_CHECK_RESPONSE,
SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR);
} else
scic_sds_request_set_status(sci_req,
SCU_TASK_DONE_GOOD,
SCI_SUCCESS);
} else {
/* not a response frame, why did it get forwarded? */
dev_err(scic_to_dev(scic),
"%s: SCIC IO Request 0x%p received unexpected "
"frame %d type 0x%02x\n", __func__, sci_req,
frame_index, ssp_hdr.frame_type);
}
/*
* In any case we are done with this frame buffer return it to
* the controller
*/
scic_sds_controller_release_frame(scic, frame_index);
return SCI_SUCCESS;
}
case SCI_REQ_TASK_WAIT_TC_RESP:
scic_sds_io_request_copy_response(sci_req);
sci_change_state(&sci_req->sm, SCI_REQ_COMPLETED);
scic_sds_controller_release_frame(scic,frame_index);
return SCI_SUCCESS;
case SCI_REQ_SMP_WAIT_RESP: {
struct smp_resp *rsp_hdr = &sci_req->smp.rsp;
void *frame_header;
scic_sds_unsolicited_frame_control_get_header(&scic->uf_control,
frame_index,
&frame_header);
/* byte swap the header. */
word_cnt = SMP_RESP_HDR_SZ / sizeof(u32);
sci_swab32_cpy(rsp_hdr, frame_header, word_cnt);
if (rsp_hdr->frame_type == SMP_RESPONSE) {
void *smp_resp;
scic_sds_unsolicited_frame_control_get_buffer(&scic->uf_control,
frame_index,
&smp_resp);
word_cnt = (sizeof(struct smp_resp) - SMP_RESP_HDR_SZ) /
sizeof(u32);
sci_swab32_cpy(((u8 *) rsp_hdr) + SMP_RESP_HDR_SZ,
smp_resp, word_cnt);
scic_sds_request_set_status(sci_req, SCU_TASK_DONE_GOOD,
SCI_SUCCESS);
sci_change_state(&sci_req->sm, SCI_REQ_SMP_WAIT_TC_COMP);
} else {
/*
* This was not a response frame why did it get
* forwarded?
*/
dev_err(scic_to_dev(scic),
"%s: SCIC SMP Request 0x%p received unexpected "
"frame %d type 0x%02x\n",
__func__,
sci_req,
frame_index,
rsp_hdr->frame_type);
scic_sds_request_set_status(sci_req,
SCU_TASK_DONE_SMP_FRM_TYPE_ERR,
SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR);
sci_change_state(&sci_req->sm, SCI_REQ_COMPLETED);
}
scic_sds_controller_release_frame(scic, frame_index);
return SCI_SUCCESS;
}
case SCI_REQ_STP_UDMA_WAIT_TC_COMP:
return scic_sds_stp_request_udma_general_frame_handler(sci_req,
frame_index);
case SCI_REQ_STP_UDMA_WAIT_D2H:
/* Use the general frame handler to copy the resposne data */
status = scic_sds_stp_request_udma_general_frame_handler(sci_req,
frame_index);
if (status != SCI_SUCCESS)
return status;
scic_sds_stp_request_udma_complete_request(sci_req,
SCU_TASK_DONE_CHECK_RESPONSE,
SCI_FAILURE_IO_RESPONSE_VALID);
return SCI_SUCCESS;
case SCI_REQ_STP_NON_DATA_WAIT_D2H: {
struct dev_to_host_fis *frame_header;
u32 *frame_buffer;
status = scic_sds_unsolicited_frame_control_get_header(&scic->uf_control,
frame_index,
(void **)&frame_header);
if (status != SCI_SUCCESS) {
dev_err(scic_to_dev(scic),
"%s: SCIC IO Request 0x%p could not get frame "
"header for frame index %d, status %x\n",
__func__,
stp_req,
frame_index,
status);
return status;
}
switch (frame_header->fis_type) {
case FIS_REGD2H:
scic_sds_unsolicited_frame_control_get_buffer(&scic->uf_control,
frame_index,
(void **)&frame_buffer);
scic_sds_controller_copy_sata_response(&sci_req->stp.rsp,
frame_header,
frame_buffer);
/* The command has completed with error */
scic_sds_request_set_status(sci_req, SCU_TASK_DONE_CHECK_RESPONSE,
SCI_FAILURE_IO_RESPONSE_VALID);
break;
default:
dev_warn(scic_to_dev(scic),
"%s: IO Request:0x%p Frame Id:%d protocol "
"violation occurred\n", __func__, stp_req,
frame_index);
scic_sds_request_set_status(sci_req, SCU_TASK_DONE_UNEXP_FIS,
SCI_FAILURE_PROTOCOL_VIOLATION);
break;
}
sci_change_state(&sci_req->sm, SCI_REQ_COMPLETED);
/* Frame has been decoded return it to the controller */
scic_sds_controller_release_frame(scic, frame_index);
return status;
}
case SCI_REQ_STP_PIO_WAIT_FRAME: {
struct isci_request *ireq = sci_req_to_ireq(sci_req);
struct sas_task *task = isci_request_access_task(ireq);
struct dev_to_host_fis *frame_header;
u32 *frame_buffer;
status = scic_sds_unsolicited_frame_control_get_header(&scic->uf_control,
frame_index,
(void **)&frame_header);
if (status != SCI_SUCCESS) {
dev_err(scic_to_dev(scic),
"%s: SCIC IO Request 0x%p could not get frame "
"header for frame index %d, status %x\n",
__func__, stp_req, frame_index, status);
return status;
}
switch (frame_header->fis_type) {
case FIS_PIO_SETUP:
/* Get from the frame buffer the PIO Setup Data */
scic_sds_unsolicited_frame_control_get_buffer(&scic->uf_control,
frame_index,
(void **)&frame_buffer);
/* Get the data from the PIO Setup The SCU Hardware
* returns first word in the frame_header and the rest
* of the data is in the frame buffer so we need to
* back up one dword
*/
/* transfer_count: first 16bits in the 4th dword */
stp_req->type.pio.pio_transfer_bytes = frame_buffer[3] & 0xffff;
/* ending_status: 4th byte in the 3rd dword */
stp_req->type.pio.ending_status = (frame_buffer[2] >> 24) & 0xff;
scic_sds_controller_copy_sata_response(&sci_req->stp.rsp,
frame_header,
frame_buffer);
sci_req->stp.rsp.status = stp_req->type.pio.ending_status;
/* The next state is dependent on whether the
* request was PIO Data-in or Data out
*/
if (task->data_dir == DMA_FROM_DEVICE) {
sci_change_state(&sci_req->sm, SCI_REQ_STP_PIO_DATA_IN);
} else if (task->data_dir == DMA_TO_DEVICE) {
/* Transmit data */
status = scic_sds_stp_request_pio_data_out_transmit_data(sci_req);
if (status != SCI_SUCCESS)
break;
sci_change_state(&sci_req->sm, SCI_REQ_STP_PIO_DATA_OUT);
}
break;
case FIS_SETDEVBITS:
sci_change_state(&sci_req->sm, SCI_REQ_STP_PIO_WAIT_FRAME);
break;
case FIS_REGD2H:
if (frame_header->status & ATA_BUSY) {
/*
* Now why is the drive sending a D2H Register
* FIS when it is still busy? Do nothing since
* we are still in the right state.
*/
dev_dbg(scic_to_dev(scic),
"%s: SCIC PIO Request 0x%p received "
"D2H Register FIS with BSY status "
"0x%x\n",
__func__,
stp_req,
frame_header->status);
break;
}
scic_sds_unsolicited_frame_control_get_buffer(&scic->uf_control,
frame_index,
(void **)&frame_buffer);
scic_sds_controller_copy_sata_response(&sci_req->stp.req,
frame_header,
frame_buffer);
scic_sds_request_set_status(sci_req,
SCU_TASK_DONE_CHECK_RESPONSE,
SCI_FAILURE_IO_RESPONSE_VALID);
sci_change_state(&sci_req->sm, SCI_REQ_COMPLETED);
break;
default:
/* FIXME: what do we do here? */
break;
}
/* Frame is decoded return it to the controller */
scic_sds_controller_release_frame(scic, frame_index);
return status;
}
case SCI_REQ_STP_PIO_DATA_IN: {
struct dev_to_host_fis *frame_header;
struct sata_fis_data *frame_buffer;
status = scic_sds_unsolicited_frame_control_get_header(&scic->uf_control,
frame_index,
(void **)&frame_header);
if (status != SCI_SUCCESS) {
dev_err(scic_to_dev(scic),
"%s: SCIC IO Request 0x%p could not get frame "
"header for frame index %d, status %x\n",
__func__,
stp_req,
frame_index,
status);
return status;
}
if (frame_header->fis_type != FIS_DATA) {
dev_err(scic_to_dev(scic),
"%s: SCIC PIO Request 0x%p received frame %d "
"with fis type 0x%02x when expecting a data "
"fis.\n",
__func__,
stp_req,
frame_index,
frame_header->fis_type);
scic_sds_request_set_status(sci_req,
SCU_TASK_DONE_GOOD,
SCI_FAILURE_IO_REQUIRES_SCSI_ABORT);
sci_change_state(&sci_req->sm, SCI_REQ_COMPLETED);
/* Frame is decoded return it to the controller */
scic_sds_controller_release_frame(scic, frame_index);
return status;
}
if (stp_req->type.pio.request_current.sgl_pair == NULL) {
sci_req->saved_rx_frame_index = frame_index;
stp_req->type.pio.pio_transfer_bytes = 0;
} else {
scic_sds_unsolicited_frame_control_get_buffer(&scic->uf_control,
frame_index,
(void **)&frame_buffer);
status = scic_sds_stp_request_pio_data_in_copy_data(stp_req,
(u8 *)frame_buffer);
/* Frame is decoded return it to the controller */
scic_sds_controller_release_frame(scic, frame_index);
}
/* Check for the end of the transfer, are there more
* bytes remaining for this data transfer
*/
if (status != SCI_SUCCESS ||
stp_req->type.pio.pio_transfer_bytes != 0)
return status;
if ((stp_req->type.pio.ending_status & ATA_BUSY) == 0) {
scic_sds_request_set_status(sci_req,
SCU_TASK_DONE_CHECK_RESPONSE,
SCI_FAILURE_IO_RESPONSE_VALID);
sci_change_state(&sci_req->sm, SCI_REQ_COMPLETED);
} else {
sci_change_state(&sci_req->sm, SCI_REQ_STP_PIO_WAIT_FRAME);
}
return status;
}
case SCI_REQ_STP_SOFT_RESET_WAIT_D2H: {
struct dev_to_host_fis *frame_header;
u32 *frame_buffer;
status = scic_sds_unsolicited_frame_control_get_header(&scic->uf_control,
frame_index,
(void **)&frame_header);
if (status != SCI_SUCCESS) {
dev_err(scic_to_dev(scic),
"%s: SCIC IO Request 0x%p could not get frame "
"header for frame index %d, status %x\n",
__func__,
stp_req,
frame_index,
status);
return status;
}
switch (frame_header->fis_type) {
case FIS_REGD2H:
scic_sds_unsolicited_frame_control_get_buffer(&scic->uf_control,
frame_index,
(void **)&frame_buffer);
scic_sds_controller_copy_sata_response(&sci_req->stp.rsp,
frame_header,
frame_buffer);
/* The command has completed with error */
scic_sds_request_set_status(sci_req,
SCU_TASK_DONE_CHECK_RESPONSE,
SCI_FAILURE_IO_RESPONSE_VALID);
break;
default:
dev_warn(scic_to_dev(scic),
"%s: IO Request:0x%p Frame Id:%d protocol "
"violation occurred\n",
__func__,
stp_req,
frame_index);
scic_sds_request_set_status(sci_req,
SCU_TASK_DONE_UNEXP_FIS,
SCI_FAILURE_PROTOCOL_VIOLATION);
break;
}
sci_change_state(&sci_req->sm, SCI_REQ_COMPLETED);
/* Frame has been decoded return it to the controller */
scic_sds_controller_release_frame(scic, frame_index);
return status;
}
case SCI_REQ_ABORTING:
/*
* TODO: Is it even possible to get an unsolicited frame in the
* aborting state?
*/
scic_sds_controller_release_frame(scic, frame_index);
return SCI_SUCCESS;
default:
dev_warn(scic_to_dev(scic),
"%s: SCIC IO Request given unexpected frame %x while "
"in state %d\n",
__func__,
frame_index,
state);
scic_sds_controller_release_frame(scic, frame_index);
return SCI_FAILURE_INVALID_STATE;
}
}
static enum sci_status stp_request_udma_await_tc_event(struct scic_sds_request *sci_req,
u32 completion_code)
{
enum sci_status status = SCI_SUCCESS;
switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
scic_sds_stp_request_udma_complete_request(sci_req,
SCU_TASK_DONE_GOOD,
SCI_SUCCESS);
break;
case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_UNEXP_FIS):
case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_REG_ERR):
/* We must check ther response buffer to see if the D2H
* Register FIS was received before we got the TC
* completion.
*/
if (sci_req->stp.rsp.fis_type == FIS_REGD2H) {
scic_sds_remote_device_suspend(sci_req->target_device,
SCU_EVENT_SPECIFIC(SCU_NORMALIZE_COMPLETION_STATUS(completion_code)));
scic_sds_stp_request_udma_complete_request(sci_req,
SCU_TASK_DONE_CHECK_RESPONSE,
SCI_FAILURE_IO_RESPONSE_VALID);
} else {
/* If we have an error completion status for the
* TC then we can expect a D2H register FIS from
* the device so we must change state to wait
* for it
*/
sci_change_state(&sci_req->sm, SCI_REQ_STP_UDMA_WAIT_D2H);
}
break;
/* TODO Check to see if any of these completion status need to
* wait for the device to host register fis.
*/
/* TODO We can retry the command for SCU_TASK_DONE_CMD_LL_R_ERR
* - this comes only for B0
*/
case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_INV_FIS_LEN):
case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_MAX_PLD_ERR):
case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_LL_R_ERR):
case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_CMD_LL_R_ERR):
case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_CRC_ERR):
scic_sds_remote_device_suspend(sci_req->target_device,
SCU_EVENT_SPECIFIC(SCU_NORMALIZE_COMPLETION_STATUS(completion_code)));
/* Fall through to the default case */
default:
/* All other completion status cause the IO to be complete. */
scic_sds_stp_request_udma_complete_request(sci_req,
SCU_NORMALIZE_COMPLETION_STATUS(completion_code),
SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR);
break;
}
return status;
}
static enum sci_status
stp_request_soft_reset_await_h2d_asserted_tc_event(struct scic_sds_request *sci_req,
u32 completion_code)
{
switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
scic_sds_request_set_status(sci_req, SCU_TASK_DONE_GOOD,
SCI_SUCCESS);
sci_change_state(&sci_req->sm, SCI_REQ_STP_SOFT_RESET_WAIT_H2D_DIAG);
break;
default:
/*
* All other completion status cause the IO to be complete.
* If a NAK was received, then it is up to the user to retry
* the request.
*/
scic_sds_request_set_status(sci_req,
SCU_NORMALIZE_COMPLETION_STATUS(completion_code),
SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR);
sci_change_state(&sci_req->sm, SCI_REQ_COMPLETED);
break;
}
return SCI_SUCCESS;
}
static enum sci_status
stp_request_soft_reset_await_h2d_diagnostic_tc_event(struct scic_sds_request *sci_req,
u32 completion_code)
{
switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
scic_sds_request_set_status(sci_req, SCU_TASK_DONE_GOOD,
SCI_SUCCESS);
sci_change_state(&sci_req->sm, SCI_REQ_STP_SOFT_RESET_WAIT_D2H);
break;
default:
/* All other completion status cause the IO to be complete. If
* a NAK was received, then it is up to the user to retry the
* request.
*/
scic_sds_request_set_status(sci_req,
SCU_NORMALIZE_COMPLETION_STATUS(completion_code),
SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR);
sci_change_state(&sci_req->sm, SCI_REQ_COMPLETED);
break;
}
return SCI_SUCCESS;
}
enum sci_status
scic_sds_io_request_tc_completion(struct scic_sds_request *sci_req,
u32 completion_code)
{
enum sci_base_request_states state;
struct scic_sds_controller *scic = sci_req->owning_controller;
state = sci_req->sm.current_state_id;
switch (state) {
case SCI_REQ_STARTED:
return request_started_state_tc_event(sci_req, completion_code);
case SCI_REQ_TASK_WAIT_TC_COMP:
return ssp_task_request_await_tc_event(sci_req,
completion_code);
case SCI_REQ_SMP_WAIT_RESP:
return smp_request_await_response_tc_event(sci_req,
completion_code);
case SCI_REQ_SMP_WAIT_TC_COMP:
return smp_request_await_tc_event(sci_req, completion_code);
case SCI_REQ_STP_UDMA_WAIT_TC_COMP:
return stp_request_udma_await_tc_event(sci_req,
completion_code);
case SCI_REQ_STP_NON_DATA_WAIT_H2D:
return stp_request_non_data_await_h2d_tc_event(sci_req,
completion_code);
case SCI_REQ_STP_PIO_WAIT_H2D:
return stp_request_pio_await_h2d_completion_tc_event(sci_req,
completion_code);
case SCI_REQ_STP_PIO_DATA_OUT:
return pio_data_out_tx_done_tc_event(sci_req, completion_code);
case SCI_REQ_STP_SOFT_RESET_WAIT_H2D_ASSERTED:
return stp_request_soft_reset_await_h2d_asserted_tc_event(sci_req,
completion_code);
case SCI_REQ_STP_SOFT_RESET_WAIT_H2D_DIAG:
return stp_request_soft_reset_await_h2d_diagnostic_tc_event(sci_req,
completion_code);
case SCI_REQ_ABORTING:
return request_aborting_state_tc_event(sci_req,
completion_code);
default:
dev_warn(scic_to_dev(scic),
"%s: SCIC IO Request given task completion "
"notification %x while in wrong state %d\n",
__func__,
completion_code,
state);
return SCI_FAILURE_INVALID_STATE;
}
}
/**
* isci_request_process_response_iu() - This function sets the status and
* response iu, in the task struct, from the request object for the upper
* layer driver.
* @sas_task: This parameter is the task struct from the upper layer driver.
* @resp_iu: This parameter points to the response iu of the completed request.
* @dev: This parameter specifies the linux device struct.
*
* none.
*/
static void isci_request_process_response_iu(
struct sas_task *task,
struct ssp_response_iu *resp_iu,
struct device *dev)
{
dev_dbg(dev,
"%s: resp_iu = %p "
"resp_iu->status = 0x%x,\nresp_iu->datapres = %d "
"resp_iu->response_data_len = %x, "
"resp_iu->sense_data_len = %x\nrepsonse data: ",
__func__,
resp_iu,
resp_iu->status,
resp_iu->datapres,
resp_iu->response_data_len,
resp_iu->sense_data_len);
task->task_status.stat = resp_iu->status;
/* libsas updates the task status fields based on the response iu. */
sas_ssp_task_response(dev, task, resp_iu);
}
/**
* isci_request_set_open_reject_status() - This function prepares the I/O
* completion for OPEN_REJECT conditions.
* @request: This parameter is the completed isci_request object.
* @response_ptr: This parameter specifies the service response for the I/O.
* @status_ptr: This parameter specifies the exec status for the I/O.
* @complete_to_host_ptr: This parameter specifies the action to be taken by
* the LLDD with respect to completing this request or forcing an abort
* condition on the I/O.
* @open_rej_reason: This parameter specifies the encoded reason for the
* abandon-class reject.
*
* none.
*/
static void isci_request_set_open_reject_status(
struct isci_request *request,
struct sas_task *task,
enum service_response *response_ptr,
enum exec_status *status_ptr,
enum isci_completion_selection *complete_to_host_ptr,
enum sas_open_rej_reason open_rej_reason)
{
/* Task in the target is done. */
request->complete_in_target = true;
*response_ptr = SAS_TASK_UNDELIVERED;
*status_ptr = SAS_OPEN_REJECT;
*complete_to_host_ptr = isci_perform_normal_io_completion;
task->task_status.open_rej_reason = open_rej_reason;
}
/**
* isci_request_handle_controller_specific_errors() - This function decodes
* controller-specific I/O completion error conditions.
* @request: This parameter is the completed isci_request object.
* @response_ptr: This parameter specifies the service response for the I/O.
* @status_ptr: This parameter specifies the exec status for the I/O.
* @complete_to_host_ptr: This parameter specifies the action to be taken by
* the LLDD with respect to completing this request or forcing an abort
* condition on the I/O.
*
* none.
*/
static void isci_request_handle_controller_specific_errors(
struct isci_remote_device *idev,
struct isci_request *request,
struct sas_task *task,
enum service_response *response_ptr,
enum exec_status *status_ptr,
enum isci_completion_selection *complete_to_host_ptr)
{
unsigned int cstatus;
cstatus = request->sci.scu_status;
dev_dbg(&request->isci_host->pdev->dev,
"%s: %p SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR "
"- controller status = 0x%x\n",
__func__, request, cstatus);
/* Decode the controller-specific errors; most
* important is to recognize those conditions in which
* the target may still have a task outstanding that
* must be aborted.
*
* Note that there are SCU completion codes being
* named in the decode below for which SCIC has already
* done work to handle them in a way other than as
* a controller-specific completion code; these are left
* in the decode below for completeness sake.
*/
switch (cstatus) {
case SCU_TASK_DONE_DMASETUP_DIRERR:
/* Also SCU_TASK_DONE_SMP_FRM_TYPE_ERR: */
case SCU_TASK_DONE_XFERCNT_ERR:
/* Also SCU_TASK_DONE_SMP_UFI_ERR: */
if (task->task_proto == SAS_PROTOCOL_SMP) {
/* SCU_TASK_DONE_SMP_UFI_ERR == Task Done. */
*response_ptr = SAS_TASK_COMPLETE;
/* See if the device has been/is being stopped. Note
* that we ignore the quiesce state, since we are
* concerned about the actual device state.
*/
if (!idev)
*status_ptr = SAS_DEVICE_UNKNOWN;
else
*status_ptr = SAS_ABORTED_TASK;
request->complete_in_target = true;
*complete_to_host_ptr =
isci_perform_normal_io_completion;
} else {
/* Task in the target is not done. */
*response_ptr = SAS_TASK_UNDELIVERED;
if (!idev)
*status_ptr = SAS_DEVICE_UNKNOWN;
else
*status_ptr = SAM_STAT_TASK_ABORTED;
request->complete_in_target = false;
*complete_to_host_ptr =
isci_perform_error_io_completion;
}
break;
case SCU_TASK_DONE_CRC_ERR:
case SCU_TASK_DONE_NAK_CMD_ERR:
case SCU_TASK_DONE_EXCESS_DATA:
case SCU_TASK_DONE_UNEXP_FIS:
/* Also SCU_TASK_DONE_UNEXP_RESP: */
case SCU_TASK_DONE_VIIT_ENTRY_NV: /* TODO - conditions? */
case SCU_TASK_DONE_IIT_ENTRY_NV: /* TODO - conditions? */
case SCU_TASK_DONE_RNCNV_OUTBOUND: /* TODO - conditions? */
/* These are conditions in which the target
* has completed the task, so that no cleanup
* is necessary.
*/
*response_ptr = SAS_TASK_COMPLETE;
/* See if the device has been/is being stopped. Note
* that we ignore the quiesce state, since we are
* concerned about the actual device state.
*/
if (!idev)
*status_ptr = SAS_DEVICE_UNKNOWN;
else
*status_ptr = SAS_ABORTED_TASK;
request->complete_in_target = true;
*complete_to_host_ptr = isci_perform_normal_io_completion;
break;
/* Note that the only open reject completion codes seen here will be
* abandon-class codes; all others are automatically retried in the SCU.
*/
case SCU_TASK_OPEN_REJECT_WRONG_DESTINATION:
isci_request_set_open_reject_status(
request, task, response_ptr, status_ptr,
complete_to_host_ptr, SAS_OREJ_WRONG_DEST);
break;
case SCU_TASK_OPEN_REJECT_ZONE_VIOLATION:
/* Note - the return of AB0 will change when
* libsas implements detection of zone violations.
*/
isci_request_set_open_reject_status(
request, task, response_ptr, status_ptr,
complete_to_host_ptr, SAS_OREJ_RESV_AB0);
break;
case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_1:
isci_request_set_open_reject_status(
request, task, response_ptr, status_ptr,
complete_to_host_ptr, SAS_OREJ_RESV_AB1);
break;
case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_2:
isci_request_set_open_reject_status(
request, task, response_ptr, status_ptr,
complete_to_host_ptr, SAS_OREJ_RESV_AB2);
break;
case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_3:
isci_request_set_open_reject_status(
request, task, response_ptr, status_ptr,
complete_to_host_ptr, SAS_OREJ_RESV_AB3);
break;
case SCU_TASK_OPEN_REJECT_BAD_DESTINATION:
isci_request_set_open_reject_status(
request, task, response_ptr, status_ptr,
complete_to_host_ptr, SAS_OREJ_BAD_DEST);
break;
case SCU_TASK_OPEN_REJECT_STP_RESOURCES_BUSY:
isci_request_set_open_reject_status(
request, task, response_ptr, status_ptr,
complete_to_host_ptr, SAS_OREJ_STP_NORES);
break;
case SCU_TASK_OPEN_REJECT_PROTOCOL_NOT_SUPPORTED:
isci_request_set_open_reject_status(
request, task, response_ptr, status_ptr,
complete_to_host_ptr, SAS_OREJ_EPROTO);
break;
case SCU_TASK_OPEN_REJECT_CONNECTION_RATE_NOT_SUPPORTED:
isci_request_set_open_reject_status(
request, task, response_ptr, status_ptr,
complete_to_host_ptr, SAS_OREJ_CONN_RATE);
break;
case SCU_TASK_DONE_LL_R_ERR:
/* Also SCU_TASK_DONE_ACK_NAK_TO: */
case SCU_TASK_DONE_LL_PERR:
case SCU_TASK_DONE_LL_SY_TERM:
/* Also SCU_TASK_DONE_NAK_ERR:*/
case SCU_TASK_DONE_LL_LF_TERM:
/* Also SCU_TASK_DONE_DATA_LEN_ERR: */
case SCU_TASK_DONE_LL_ABORT_ERR:
case SCU_TASK_DONE_SEQ_INV_TYPE:
/* Also SCU_TASK_DONE_UNEXP_XR: */
case SCU_TASK_DONE_XR_IU_LEN_ERR:
case SCU_TASK_DONE_INV_FIS_LEN:
/* Also SCU_TASK_DONE_XR_WD_LEN: */
case SCU_TASK_DONE_SDMA_ERR:
case SCU_TASK_DONE_OFFSET_ERR:
case SCU_TASK_DONE_MAX_PLD_ERR:
case SCU_TASK_DONE_LF_ERR:
case SCU_TASK_DONE_SMP_RESP_TO_ERR: /* Escalate to dev reset? */
case SCU_TASK_DONE_SMP_LL_RX_ERR:
case SCU_TASK_DONE_UNEXP_DATA:
case SCU_TASK_DONE_UNEXP_SDBFIS:
case SCU_TASK_DONE_REG_ERR:
case SCU_TASK_DONE_SDB_ERR:
case SCU_TASK_DONE_TASK_ABORT:
default:
/* Task in the target is not done. */
*response_ptr = SAS_TASK_UNDELIVERED;
*status_ptr = SAM_STAT_TASK_ABORTED;
if (task->task_proto == SAS_PROTOCOL_SMP) {
request->complete_in_target = true;
*complete_to_host_ptr = isci_perform_normal_io_completion;
} else {
request->complete_in_target = false;
*complete_to_host_ptr = isci_perform_error_io_completion;
}
break;
}
}
/**
* isci_task_save_for_upper_layer_completion() - This function saves the
* request for later completion to the upper layer driver.
* @host: This parameter is a pointer to the host on which the the request
* should be queued (either as an error or success).
* @request: This parameter is the completed request.
* @response: This parameter is the response code for the completed task.
* @status: This parameter is the status code for the completed task.
*
* none.
*/
static void isci_task_save_for_upper_layer_completion(
struct isci_host *host,
struct isci_request *request,
enum service_response response,
enum exec_status status,
enum isci_completion_selection task_notification_selection)
{
struct sas_task *task = isci_request_access_task(request);
task_notification_selection
= isci_task_set_completion_status(task, response, status,
task_notification_selection);
/* Tasks aborted specifically by a call to the lldd_abort_task
* function should not be completed to the host in the regular path.
*/
switch (task_notification_selection) {
case isci_perform_normal_io_completion:
/* Normal notification (task_done) */
dev_dbg(&host->pdev->dev,
"%s: Normal - task = %p, response=%d (%d), status=%d (%d)\n",
__func__,
task,
task->task_status.resp, response,
task->task_status.stat, status);
/* Add to the completed list. */
list_add(&request->completed_node,
&host->requests_to_complete);
/* Take the request off the device's pending request list. */
list_del_init(&request->dev_node);
break;
case isci_perform_aborted_io_completion:
/* No notification to libsas because this request is
* already in the abort path.
*/
dev_warn(&host->pdev->dev,
"%s: Aborted - task = %p, response=%d (%d), status=%d (%d)\n",
__func__,
task,
task->task_status.resp, response,
task->task_status.stat, status);
/* Wake up whatever process was waiting for this
* request to complete.
*/
WARN_ON(request->io_request_completion == NULL);
if (request->io_request_completion != NULL) {
/* Signal whoever is waiting that this
* request is complete.
*/
complete(request->io_request_completion);
}
break;
case isci_perform_error_io_completion:
/* Use sas_task_abort */
dev_warn(&host->pdev->dev,
"%s: Error - task = %p, response=%d (%d), status=%d (%d)\n",
__func__,
task,
task->task_status.resp, response,
task->task_status.stat, status);
/* Add to the aborted list. */
list_add(&request->completed_node,
&host->requests_to_errorback);
break;
default:
dev_warn(&host->pdev->dev,
"%s: Unknown - task = %p, response=%d (%d), status=%d (%d)\n",
__func__,
task,
task->task_status.resp, response,
task->task_status.stat, status);
/* Add to the error to libsas list. */
list_add(&request->completed_node,
&host->requests_to_errorback);
break;
}
}
static void isci_request_io_request_complete(struct isci_host *isci_host,
struct isci_request *request,
enum sci_io_status completion_status)
{
struct sas_task *task = isci_request_access_task(request);
struct ssp_response_iu *resp_iu;
void *resp_buf;
unsigned long task_flags;
struct isci_remote_device *idev = isci_lookup_device(task->dev);
enum service_response response = SAS_TASK_UNDELIVERED;
enum exec_status status = SAS_ABORTED_TASK;
enum isci_request_status request_status;
enum isci_completion_selection complete_to_host
= isci_perform_normal_io_completion;
dev_dbg(&isci_host->pdev->dev,
"%s: request = %p, task = %p,\n"
"task->data_dir = %d completion_status = 0x%x\n",
__func__,
request,
task,
task->data_dir,
completion_status);
spin_lock(&request->state_lock);
request_status = isci_request_get_state(request);
/* Decode the request status. Note that if the request has been
* aborted by a task management function, we don't care
* what the status is.
*/
switch (request_status) {
case aborted:
/* "aborted" indicates that the request was aborted by a task
* management function, since once a task management request is
* perfomed by the device, the request only completes because
* of the subsequent driver terminate.
*
* Aborted also means an external thread is explicitly managing
* this request, so that we do not complete it up the stack.
*
* The target is still there (since the TMF was successful).
*/
request->complete_in_target = true;
response = SAS_TASK_COMPLETE;
/* See if the device has been/is being stopped. Note
* that we ignore the quiesce state, since we are
* concerned about the actual device state.
*/
if (!idev)
status = SAS_DEVICE_UNKNOWN;
else
status = SAS_ABORTED_TASK;
complete_to_host = isci_perform_aborted_io_completion;
/* This was an aborted request. */
spin_unlock(&request->state_lock);
break;
case aborting:
/* aborting means that the task management function tried and
* failed to abort the request. We need to note the request
* as SAS_TASK_UNDELIVERED, so that the scsi mid layer marks the
* target as down.
*
* Aborting also means an external thread is explicitly managing
* this request, so that we do not complete it up the stack.
*/
request->complete_in_target = true;
response = SAS_TASK_UNDELIVERED;
if (!idev)
/* The device has been /is being stopped. Note that
* we ignore the quiesce state, since we are
* concerned about the actual device state.
*/
status = SAS_DEVICE_UNKNOWN;
else
status = SAS_PHY_DOWN;
complete_to_host = isci_perform_aborted_io_completion;
/* This was an aborted request. */
spin_unlock(&request->state_lock);
break;
case terminating:
/* This was an terminated request. This happens when
* the I/O is being terminated because of an action on
* the device (reset, tear down, etc.), and the I/O needs
* to be completed up the stack.
*/
request->complete_in_target = true;
response = SAS_TASK_UNDELIVERED;
/* See if the device has been/is being stopped. Note
* that we ignore the quiesce state, since we are
* concerned about the actual device state.
*/
if (!idev)
status = SAS_DEVICE_UNKNOWN;
else
status = SAS_ABORTED_TASK;
complete_to_host = isci_perform_aborted_io_completion;
/* This was a terminated request. */
spin_unlock(&request->state_lock);
break;
case dead:
/* This was a terminated request that timed-out during the
* termination process. There is no task to complete to
* libsas.
*/
complete_to_host = isci_perform_normal_io_completion;
spin_unlock(&request->state_lock);
break;
default:
/* The request is done from an SCU HW perspective. */
request->status = completed;
spin_unlock(&request->state_lock);
/* This is an active request being completed from the core. */
switch (completion_status) {
case SCI_IO_FAILURE_RESPONSE_VALID:
dev_dbg(&isci_host->pdev->dev,
"%s: SCI_IO_FAILURE_RESPONSE_VALID (%p/%p)\n",
__func__,
request,
task);
if (sas_protocol_ata(task->task_proto)) {
resp_buf = &request->sci.stp.rsp;
isci_request_process_stp_response(task,
resp_buf);
} else if (SAS_PROTOCOL_SSP == task->task_proto) {
/* crack the iu response buffer. */
resp_iu = &request->sci.ssp.rsp;
isci_request_process_response_iu(task, resp_iu,
&isci_host->pdev->dev);
} else if (SAS_PROTOCOL_SMP == task->task_proto) {
dev_err(&isci_host->pdev->dev,
"%s: SCI_IO_FAILURE_RESPONSE_VALID: "
"SAS_PROTOCOL_SMP protocol\n",
__func__);
} else
dev_err(&isci_host->pdev->dev,
"%s: unknown protocol\n", __func__);
/* use the task status set in the task struct by the
* isci_request_process_response_iu call.
*/
request->complete_in_target = true;
response = task->task_status.resp;
status = task->task_status.stat;
break;
case SCI_IO_SUCCESS:
case SCI_IO_SUCCESS_IO_DONE_EARLY:
response = SAS_TASK_COMPLETE;
status = SAM_STAT_GOOD;
request->complete_in_target = true;
if (task->task_proto == SAS_PROTOCOL_SMP) {
void *rsp = &request->sci.smp.rsp;
dev_dbg(&isci_host->pdev->dev,
"%s: SMP protocol completion\n",
__func__);
sg_copy_from_buffer(
&task->smp_task.smp_resp, 1,
rsp, sizeof(struct smp_resp));
} else if (completion_status
== SCI_IO_SUCCESS_IO_DONE_EARLY) {
/* This was an SSP / STP / SATA transfer.
* There is a possibility that less data than
* the maximum was transferred.
*/
u32 transferred_length = sci_req_tx_bytes(&request->sci);
task->task_status.residual
= task->total_xfer_len - transferred_length;
/* If there were residual bytes, call this an
* underrun.
*/
if (task->task_status.residual != 0)
status = SAS_DATA_UNDERRUN;
dev_dbg(&isci_host->pdev->dev,
"%s: SCI_IO_SUCCESS_IO_DONE_EARLY %d\n",
__func__,
status);
} else
dev_dbg(&isci_host->pdev->dev,
"%s: SCI_IO_SUCCESS\n",
__func__);
break;
case SCI_IO_FAILURE_TERMINATED:
dev_dbg(&isci_host->pdev->dev,
"%s: SCI_IO_FAILURE_TERMINATED (%p/%p)\n",
__func__,
request,
task);
/* The request was terminated explicitly. No handling
* is needed in the SCSI error handler path.
*/
request->complete_in_target = true;
response = SAS_TASK_UNDELIVERED;
/* See if the device has been/is being stopped. Note
* that we ignore the quiesce state, since we are
* concerned about the actual device state.
*/
if (!idev)
status = SAS_DEVICE_UNKNOWN;
else
status = SAS_ABORTED_TASK;
complete_to_host = isci_perform_normal_io_completion;
break;
case SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR:
isci_request_handle_controller_specific_errors(
idev, request, task, &response, &status,
&complete_to_host);
break;
case SCI_IO_FAILURE_REMOTE_DEVICE_RESET_REQUIRED:
/* This is a special case, in that the I/O completion
* is telling us that the device needs a reset.
* In order for the device reset condition to be
* noticed, the I/O has to be handled in the error
* handler. Set the reset flag and cause the
* SCSI error thread to be scheduled.
*/
spin_lock_irqsave(&task->task_state_lock, task_flags);
task->task_state_flags |= SAS_TASK_NEED_DEV_RESET;
spin_unlock_irqrestore(&task->task_state_lock, task_flags);
/* Fail the I/O. */
response = SAS_TASK_UNDELIVERED;
status = SAM_STAT_TASK_ABORTED;
complete_to_host = isci_perform_error_io_completion;
request->complete_in_target = false;
break;
case SCI_FAILURE_RETRY_REQUIRED:
/* Fail the I/O so it can be retried. */
response = SAS_TASK_UNDELIVERED;
if (!idev)
status = SAS_DEVICE_UNKNOWN;
else
status = SAS_ABORTED_TASK;
complete_to_host = isci_perform_normal_io_completion;
request->complete_in_target = true;
break;
default:
/* Catch any otherwise unhandled error codes here. */
dev_warn(&isci_host->pdev->dev,
"%s: invalid completion code: 0x%x - "
"isci_request = %p\n",
__func__, completion_status, request);
response = SAS_TASK_UNDELIVERED;
/* See if the device has been/is being stopped. Note
* that we ignore the quiesce state, since we are
* concerned about the actual device state.
*/
if (!idev)
status = SAS_DEVICE_UNKNOWN;
else
status = SAS_ABORTED_TASK;
if (SAS_PROTOCOL_SMP == task->task_proto) {
request->complete_in_target = true;
complete_to_host = isci_perform_normal_io_completion;
} else {
request->complete_in_target = false;
complete_to_host = isci_perform_error_io_completion;
}
break;
}
break;
}
switch (task->task_proto) {
case SAS_PROTOCOL_SSP:
if (task->data_dir == DMA_NONE)
break;
if (task->num_scatter == 0)
/* 0 indicates a single dma address */
dma_unmap_single(&isci_host->pdev->dev,
request->zero_scatter_daddr,
task->total_xfer_len, task->data_dir);
else /* unmap the sgl dma addresses */
dma_unmap_sg(&isci_host->pdev->dev, task->scatter,
request->num_sg_entries, task->data_dir);
break;
case SAS_PROTOCOL_SMP: {
struct scatterlist *sg = &task->smp_task.smp_req;
struct smp_req *smp_req;
void *kaddr;
dma_unmap_sg(&isci_host->pdev->dev, sg, 1, DMA_TO_DEVICE);
/* need to swab it back in case the command buffer is re-used */
kaddr = kmap_atomic(sg_page(sg), KM_IRQ0);
smp_req = kaddr + sg->offset;
sci_swab32_cpy(smp_req, smp_req, sg->length / sizeof(u32));
kunmap_atomic(kaddr, KM_IRQ0);
break;
}
default:
break;
}
/* Put the completed request on the correct list */
isci_task_save_for_upper_layer_completion(isci_host, request, response,
status, complete_to_host
);
/* complete the io request to the core. */
scic_controller_complete_io(&isci_host->sci,
request->sci.target_device,
&request->sci);
isci_put_device(idev);
/* set terminated handle so it cannot be completed or
* terminated again, and to cause any calls into abort
* task to recognize the already completed case.
*/
request->terminated = true;
isci_host_can_dequeue(isci_host, 1);
}
static void scic_sds_request_started_state_enter(struct sci_base_state_machine *sm)
{
struct scic_sds_request *sci_req = container_of(sm, typeof(*sci_req), sm);
struct isci_request *ireq = sci_req_to_ireq(sci_req);
struct domain_device *dev = sci_dev_to_domain(sci_req->target_device);
struct sas_task *task;
/* XXX as hch said always creating an internal sas_task for tmf
* requests would simplify the driver
*/
task = ireq->ttype == io_task ? isci_request_access_task(ireq) : NULL;
/* all unaccelerated request types (non ssp or ncq) handled with
* substates
*/
if (!task && dev->dev_type == SAS_END_DEV) {
sci_change_state(sm, SCI_REQ_TASK_WAIT_TC_COMP);
} else if (!task &&
(isci_request_access_tmf(ireq)->tmf_code == isci_tmf_sata_srst_high ||
isci_request_access_tmf(ireq)->tmf_code == isci_tmf_sata_srst_low)) {
sci_change_state(sm, SCI_REQ_STP_SOFT_RESET_WAIT_H2D_ASSERTED);
} else if (task && task->task_proto == SAS_PROTOCOL_SMP) {
sci_change_state(sm, SCI_REQ_SMP_WAIT_RESP);
} else if (task && sas_protocol_ata(task->task_proto) &&
!task->ata_task.use_ncq) {
u32 state;
if (task->data_dir == DMA_NONE)
state = SCI_REQ_STP_NON_DATA_WAIT_H2D;
else if (task->ata_task.dma_xfer)
state = SCI_REQ_STP_UDMA_WAIT_TC_COMP;
else /* PIO */
state = SCI_REQ_STP_PIO_WAIT_H2D;
sci_change_state(sm, state);
}
}
static void scic_sds_request_completed_state_enter(struct sci_base_state_machine *sm)
{
struct scic_sds_request *sci_req = container_of(sm, typeof(*sci_req), sm);
struct scic_sds_controller *scic = sci_req->owning_controller;
struct isci_host *ihost = scic_to_ihost(scic);
struct isci_request *ireq = sci_req_to_ireq(sci_req);
/* Tell the SCI_USER that the IO request is complete */
if (sci_req->is_task_management_request == false)
isci_request_io_request_complete(ihost, ireq,
sci_req->sci_status);
else
isci_task_request_complete(ihost, ireq, sci_req->sci_status);
}
static void scic_sds_request_aborting_state_enter(struct sci_base_state_machine *sm)
{
struct scic_sds_request *sci_req = container_of(sm, typeof(*sci_req), sm);
/* Setting the abort bit in the Task Context is required by the silicon. */
sci_req->task_context_buffer->abort = 1;
}
static void scic_sds_stp_request_started_non_data_await_h2d_completion_enter(struct sci_base_state_machine *sm)
{
struct scic_sds_request *sci_req = container_of(sm, typeof(*sci_req), sm);
scic_sds_remote_device_set_working_request(sci_req->target_device,
sci_req);
}
static void scic_sds_stp_request_started_pio_await_h2d_completion_enter(struct sci_base_state_machine *sm)
{
struct scic_sds_request *sci_req = container_of(sm, typeof(*sci_req), sm);
scic_sds_remote_device_set_working_request(sci_req->target_device,
sci_req);
}
static void scic_sds_stp_request_started_soft_reset_await_h2d_asserted_completion_enter(struct sci_base_state_machine *sm)
{
struct scic_sds_request *sci_req = container_of(sm, typeof(*sci_req), sm);
scic_sds_remote_device_set_working_request(sci_req->target_device,
sci_req);
}
static void scic_sds_stp_request_started_soft_reset_await_h2d_diagnostic_completion_enter(struct sci_base_state_machine *sm)
{
struct scic_sds_request *sci_req = container_of(sm, typeof(*sci_req), sm);
struct scu_task_context *task_context;
struct host_to_dev_fis *h2d_fis;
enum sci_status status;
/* Clear the SRST bit */
h2d_fis = &sci_req->stp.cmd;
h2d_fis->control = 0;
/* Clear the TC control bit */
task_context = scic_sds_controller_get_task_context_buffer(
sci_req->owning_controller, sci_req->io_tag);
task_context->control_frame = 0;
status = scic_controller_continue_io(sci_req);
WARN_ONCE(status != SCI_SUCCESS, "isci: continue io failure\n");
}
static const struct sci_base_state scic_sds_request_state_table[] = {
[SCI_REQ_INIT] = { },
[SCI_REQ_CONSTRUCTED] = { },
[SCI_REQ_STARTED] = {
.enter_state = scic_sds_request_started_state_enter,
},
[SCI_REQ_STP_NON_DATA_WAIT_H2D] = {
.enter_state = scic_sds_stp_request_started_non_data_await_h2d_completion_enter,
},
[SCI_REQ_STP_NON_DATA_WAIT_D2H] = { },
[SCI_REQ_STP_PIO_WAIT_H2D] = {
.enter_state = scic_sds_stp_request_started_pio_await_h2d_completion_enter,
},
[SCI_REQ_STP_PIO_WAIT_FRAME] = { },
[SCI_REQ_STP_PIO_DATA_IN] = { },
[SCI_REQ_STP_PIO_DATA_OUT] = { },
[SCI_REQ_STP_UDMA_WAIT_TC_COMP] = { },
[SCI_REQ_STP_UDMA_WAIT_D2H] = { },
[SCI_REQ_STP_SOFT_RESET_WAIT_H2D_ASSERTED] = {
.enter_state = scic_sds_stp_request_started_soft_reset_await_h2d_asserted_completion_enter,
},
[SCI_REQ_STP_SOFT_RESET_WAIT_H2D_DIAG] = {
.enter_state = scic_sds_stp_request_started_soft_reset_await_h2d_diagnostic_completion_enter,
},
[SCI_REQ_STP_SOFT_RESET_WAIT_D2H] = { },
[SCI_REQ_TASK_WAIT_TC_COMP] = { },
[SCI_REQ_TASK_WAIT_TC_RESP] = { },
[SCI_REQ_SMP_WAIT_RESP] = { },
[SCI_REQ_SMP_WAIT_TC_COMP] = { },
[SCI_REQ_COMPLETED] = {
.enter_state = scic_sds_request_completed_state_enter,
},
[SCI_REQ_ABORTING] = {
.enter_state = scic_sds_request_aborting_state_enter,
},
[SCI_REQ_FINAL] = { },
};
static void
scic_sds_general_request_construct(struct scic_sds_controller *scic,
struct scic_sds_remote_device *sci_dev,
u16 io_tag,
struct scic_sds_request *sci_req)
{
sci_init_sm(&sci_req->sm, scic_sds_request_state_table, SCI_REQ_INIT);
sci_req->io_tag = io_tag;
sci_req->owning_controller = scic;
sci_req->target_device = sci_dev;
sci_req->protocol = SCIC_NO_PROTOCOL;
sci_req->saved_rx_frame_index = SCU_INVALID_FRAME_INDEX;
sci_req->sci_status = SCI_SUCCESS;
sci_req->scu_status = 0;
sci_req->post_context = 0xFFFFFFFF;
sci_req->is_task_management_request = false;
if (io_tag == SCI_CONTROLLER_INVALID_IO_TAG) {
sci_req->was_tag_assigned_by_user = false;
sci_req->task_context_buffer = &sci_req->tc;
} else {
sci_req->was_tag_assigned_by_user = true;
sci_req->task_context_buffer =
scic_sds_controller_get_task_context_buffer(scic, io_tag);
}
}
static enum sci_status
scic_io_request_construct(struct scic_sds_controller *scic,
struct scic_sds_remote_device *sci_dev,
u16 io_tag, struct scic_sds_request *sci_req)
{
struct domain_device *dev = sci_dev_to_domain(sci_dev);
enum sci_status status = SCI_SUCCESS;
/* Build the common part of the request */
scic_sds_general_request_construct(scic, sci_dev, io_tag, sci_req);
if (sci_dev->rnc.remote_node_index == SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX)
return SCI_FAILURE_INVALID_REMOTE_DEVICE;
if (dev->dev_type == SAS_END_DEV)
/* pass */;
else if (dev->dev_type == SATA_DEV || (dev->tproto & SAS_PROTOCOL_STP))
memset(&sci_req->stp.cmd, 0, sizeof(sci_req->stp.cmd));
else if (dev_is_expander(dev))
/* pass */;
else
return SCI_FAILURE_UNSUPPORTED_PROTOCOL;
memset(sci_req->task_context_buffer, 0,
offsetof(struct scu_task_context, sgl_pair_ab));
return status;
}
enum sci_status scic_task_request_construct(struct scic_sds_controller *scic,
struct scic_sds_remote_device *sci_dev,
u16 io_tag, struct scic_sds_request *sci_req)
{
struct domain_device *dev = sci_dev_to_domain(sci_dev);
enum sci_status status = SCI_SUCCESS;
/* Build the common part of the request */
scic_sds_general_request_construct(scic, sci_dev, io_tag, sci_req);
if (dev->dev_type == SAS_END_DEV ||
dev->dev_type == SATA_DEV || (dev->tproto & SAS_PROTOCOL_STP)) {
sci_req->is_task_management_request = true;
memset(sci_req->task_context_buffer, 0, sizeof(struct scu_task_context));
} else
status = SCI_FAILURE_UNSUPPORTED_PROTOCOL;
return status;
}
static enum sci_status isci_request_ssp_request_construct(
struct isci_request *request)
{
enum sci_status status;
dev_dbg(&request->isci_host->pdev->dev,
"%s: request = %p\n",
__func__,
request);
status = scic_io_request_construct_basic_ssp(&request->sci);
return status;
}
static enum sci_status isci_request_stp_request_construct(
struct isci_request *request)
{
struct sas_task *task = isci_request_access_task(request);
enum sci_status status;
struct host_to_dev_fis *register_fis;
dev_dbg(&request->isci_host->pdev->dev,
"%s: request = %p\n",
__func__,
request);
/* Get the host_to_dev_fis from the core and copy
* the fis from the task into it.
*/
register_fis = isci_sata_task_to_fis_copy(task);
status = scic_io_request_construct_basic_sata(&request->sci);
/* Set the ncq tag in the fis, from the queue
* command in the task.
*/
if (isci_sata_is_task_ncq(task)) {
isci_sata_set_ncq_tag(
register_fis,
task
);
}
return status;
}
static enum sci_status
scic_io_request_construct_smp(struct device *dev,
struct scic_sds_request *sci_req,
struct sas_task *task)
{
struct scatterlist *sg = &task->smp_task.smp_req;
struct scic_sds_remote_device *sci_dev;
struct scu_task_context *task_context;
struct scic_sds_port *sci_port;
struct smp_req *smp_req;
void *kaddr;
u8 req_len;
u32 cmd;
kaddr = kmap_atomic(sg_page(sg), KM_IRQ0);
smp_req = kaddr + sg->offset;
/*
* Look at the SMP requests' header fields; for certain SAS 1.x SMP
* functions under SAS 2.0, a zero request length really indicates
* a non-zero default length.
*/
if (smp_req->req_len == 0) {
switch (smp_req->func) {
case SMP_DISCOVER:
case SMP_REPORT_PHY_ERR_LOG:
case SMP_REPORT_PHY_SATA:
case SMP_REPORT_ROUTE_INFO:
smp_req->req_len = 2;
break;
case SMP_CONF_ROUTE_INFO:
case SMP_PHY_CONTROL:
case SMP_PHY_TEST_FUNCTION:
smp_req->req_len = 9;
break;
/* Default - zero is a valid default for 2.0. */
}
}
req_len = smp_req->req_len;
sci_swab32_cpy(smp_req, smp_req, sg->length / sizeof(u32));
cmd = *(u32 *) smp_req;
kunmap_atomic(kaddr, KM_IRQ0);
if (!dma_map_sg(dev, sg, 1, DMA_TO_DEVICE))
return SCI_FAILURE;
sci_req->protocol = SCIC_SMP_PROTOCOL;
/* byte swap the smp request. */
task_context = scic_sds_request_get_task_context(sci_req);
sci_dev = scic_sds_request_get_device(sci_req);
sci_port = scic_sds_request_get_port(sci_req);
/*
* Fill in the TC with the its required data
* 00h
*/
task_context->priority = 0;
task_context->initiator_request = 1;
task_context->connection_rate = sci_dev->connection_rate;
task_context->protocol_engine_index =
scic_sds_controller_get_protocol_engine_group(scic);
task_context->logical_port_index = scic_sds_port_get_index(sci_port);
task_context->protocol_type = SCU_TASK_CONTEXT_PROTOCOL_SMP;
task_context->abort = 0;
task_context->valid = SCU_TASK_CONTEXT_VALID;
task_context->context_type = SCU_TASK_CONTEXT_TYPE;
/* 04h */
task_context->remote_node_index = sci_dev->rnc.remote_node_index;
task_context->command_code = 0;
task_context->task_type = SCU_TASK_TYPE_SMP_REQUEST;
/* 08h */
task_context->link_layer_control = 0;
task_context->do_not_dma_ssp_good_response = 1;
task_context->strict_ordering = 0;
task_context->control_frame = 1;
task_context->timeout_enable = 0;
task_context->block_guard_enable = 0;
/* 0ch */
task_context->address_modifier = 0;
/* 10h */
task_context->ssp_command_iu_length = req_len;
/* 14h */
task_context->transfer_length_bytes = 0;
/*
* 18h ~ 30h, protocol specific
* since commandIU has been build by framework at this point, we just
* copy the frist DWord from command IU to this location. */
memcpy(&task_context->type.smp, &cmd, sizeof(u32));
/*
* 40h
* "For SMP you could program it to zero. We would prefer that way
* so that done code will be consistent." - Venki
*/
task_context->task_phase = 0;
if (sci_req->was_tag_assigned_by_user) {
/*
* Build the task context now since we have already read
* the data
*/
sci_req->post_context =
(SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_TC |
(scic_sds_controller_get_protocol_engine_group(scic) <<
SCU_CONTEXT_COMMAND_PROTOCOL_ENGINE_GROUP_SHIFT) |
(scic_sds_port_get_index(sci_port) <<
SCU_CONTEXT_COMMAND_LOGICAL_PORT_SHIFT) |
ISCI_TAG_TCI(sci_req->io_tag));
} else {
/*
* Build the task context now since we have already read
* the data.
* I/O tag index is not assigned because we have to wait
* until we get a TCi.
*/
sci_req->post_context =
(SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_TC |
(scic_sds_controller_get_protocol_engine_group(scic) <<
SCU_CONTEXT_COMMAND_PROTOCOL_ENGINE_GROUP_SHIFT) |
(scic_sds_port_get_index(sci_port) <<
SCU_CONTEXT_COMMAND_LOGICAL_PORT_SHIFT));
}
/*
* Copy the physical address for the command buffer to the SCU Task
* Context command buffer should not contain command header.
*/
task_context->command_iu_upper = upper_32_bits(sg_dma_address(sg));
task_context->command_iu_lower = lower_32_bits(sg_dma_address(sg) + sizeof(u32));
/* SMP response comes as UF, so no need to set response IU address. */
task_context->response_iu_upper = 0;
task_context->response_iu_lower = 0;
sci_change_state(&sci_req->sm, SCI_REQ_CONSTRUCTED);
return SCI_SUCCESS;
}
/*
* isci_smp_request_build() - This function builds the smp request.
* @ireq: This parameter points to the isci_request allocated in the
* request construct function.
*
* SCI_SUCCESS on successfull completion, or specific failure code.
*/
static enum sci_status isci_smp_request_build(struct isci_request *ireq)
{
struct sas_task *task = isci_request_access_task(ireq);
struct device *dev = &ireq->isci_host->pdev->dev;
struct scic_sds_request *sci_req = &ireq->sci;
enum sci_status status = SCI_FAILURE;
status = scic_io_request_construct_smp(dev, sci_req, task);
if (status != SCI_SUCCESS)
dev_warn(&ireq->isci_host->pdev->dev,
"%s: failed with status = %d\n",
__func__,
status);
return status;
}
/**
* isci_io_request_build() - This function builds the io request object.
* @isci_host: This parameter specifies the ISCI host object
* @request: This parameter points to the isci_request object allocated in the
* request construct function.
* @sci_device: This parameter is the handle for the sci core's remote device
* object that is the destination for this request.
*
* SCI_SUCCESS on successfull completion, or specific failure code.
*/
static enum sci_status isci_io_request_build(
struct isci_host *isci_host,
struct isci_request *request,
struct isci_remote_device *isci_device)
{
enum sci_status status = SCI_SUCCESS;
struct sas_task *task = isci_request_access_task(request);
struct scic_sds_remote_device *sci_device = &isci_device->sci;
dev_dbg(&isci_host->pdev->dev,
"%s: isci_device = 0x%p; request = %p, "
"num_scatter = %d\n",
__func__,
isci_device,
request,
task->num_scatter);
/* map the sgl addresses, if present.
* libata does the mapping for sata devices
* before we get the request.
*/
if (task->num_scatter &&
!sas_protocol_ata(task->task_proto) &&
!(SAS_PROTOCOL_SMP & task->task_proto)) {
request->num_sg_entries = dma_map_sg(
&isci_host->pdev->dev,
task->scatter,
task->num_scatter,
task->data_dir
);
if (request->num_sg_entries == 0)
return SCI_FAILURE_INSUFFICIENT_RESOURCES;
}
/* build the common request object. For now,
* we will let the core allocate the IO tag.
*/
status = scic_io_request_construct(&isci_host->sci, sci_device,
SCI_CONTROLLER_INVALID_IO_TAG,
&request->sci);
if (status != SCI_SUCCESS) {
dev_warn(&isci_host->pdev->dev,
"%s: failed request construct\n",
__func__);
return SCI_FAILURE;
}
switch (task->task_proto) {
case SAS_PROTOCOL_SMP:
status = isci_smp_request_build(request);
break;
case SAS_PROTOCOL_SSP:
status = isci_request_ssp_request_construct(request);
break;
case SAS_PROTOCOL_SATA:
case SAS_PROTOCOL_STP:
case SAS_PROTOCOL_SATA | SAS_PROTOCOL_STP:
status = isci_request_stp_request_construct(request);
break;
default:
dev_warn(&isci_host->pdev->dev,
"%s: unknown protocol\n", __func__);
return SCI_FAILURE;
}
return SCI_SUCCESS;
}
static struct isci_request *isci_request_alloc_core(struct isci_host *ihost,
gfp_t gfp_flags)
{
dma_addr_t handle;
struct isci_request *ireq;
ireq = dma_pool_alloc(ihost->dma_pool, gfp_flags, &handle);
if (!ireq) {
dev_warn(&ihost->pdev->dev,
"%s: dma_pool_alloc returned NULL\n", __func__);
return NULL;
}
/* initialize the request object. */
spin_lock_init(&ireq->state_lock);
ireq->request_daddr = handle;
ireq->isci_host = ihost;
ireq->io_request_completion = NULL;
ireq->terminated = false;
ireq->num_sg_entries = 0;
ireq->complete_in_target = false;
INIT_LIST_HEAD(&ireq->completed_node);
INIT_LIST_HEAD(&ireq->dev_node);
isci_request_change_state(ireq, allocated);
return ireq;
}
static struct isci_request *isci_request_alloc_io(struct isci_host *ihost,
struct sas_task *task,
gfp_t gfp_flags)
{
struct isci_request *ireq;
ireq = isci_request_alloc_core(ihost, gfp_flags);
if (ireq) {
ireq->ttype_ptr.io_task_ptr = task;
ireq->ttype = io_task;
task->lldd_task = ireq;
}
return ireq;
}
struct isci_request *isci_request_alloc_tmf(struct isci_host *ihost,
struct isci_tmf *isci_tmf,
gfp_t gfp_flags)
{
struct isci_request *ireq;
ireq = isci_request_alloc_core(ihost, gfp_flags);
if (ireq) {
ireq->ttype_ptr.tmf_task_ptr = isci_tmf;
ireq->ttype = tmf_task;
}
return ireq;
}
int isci_request_execute(struct isci_host *ihost, struct isci_remote_device *idev,
struct sas_task *task, gfp_t gfp_flags)
{
enum sci_status status = SCI_FAILURE_UNSUPPORTED_PROTOCOL;
struct isci_request *ireq;
unsigned long flags;
int ret = 0;
/* do common allocation and init of request object. */
ireq = isci_request_alloc_io(ihost, task, gfp_flags);
if (!ireq)
goto out;
status = isci_io_request_build(ihost, ireq, idev);
if (status != SCI_SUCCESS) {
dev_warn(&ihost->pdev->dev,
"%s: request_construct failed - status = 0x%x\n",
__func__,
status);
goto out;
}
spin_lock_irqsave(&ihost->scic_lock, flags);
/* send the request, let the core assign the IO TAG. */
status = scic_controller_start_io(&ihost->sci, &idev->sci, &ireq->sci,
SCI_CONTROLLER_INVALID_IO_TAG);
if (status != SCI_SUCCESS &&
status != SCI_FAILURE_REMOTE_DEVICE_RESET_REQUIRED) {
dev_warn(&ihost->pdev->dev,
"%s: failed request start (0x%x)\n",
__func__, status);
spin_unlock_irqrestore(&ihost->scic_lock, flags);
goto out;
}
/* Either I/O started OK, or the core has signaled that
* the device needs a target reset.
*
* In either case, hold onto the I/O for later.
*
* Update it's status and add it to the list in the
* remote device object.
*/
list_add(&ireq->dev_node, &idev->reqs_in_process);
if (status == SCI_SUCCESS) {
/* Save the tag for possible task mgmt later. */
ireq->io_tag = ireq->sci.io_tag;
isci_request_change_state(ireq, started);
} else {
/* The request did not really start in the
* hardware, so clear the request handle
* here so no terminations will be done.
*/
ireq->terminated = true;
isci_request_change_state(ireq, completed);
}
spin_unlock_irqrestore(&ihost->scic_lock, flags);
if (status ==
SCI_FAILURE_REMOTE_DEVICE_RESET_REQUIRED) {
/* Signal libsas that we need the SCSI error
* handler thread to work on this I/O and that
* we want a device reset.
*/
spin_lock_irqsave(&task->task_state_lock, flags);
task->task_state_flags |= SAS_TASK_NEED_DEV_RESET;
spin_unlock_irqrestore(&task->task_state_lock, flags);
/* Cause this task to be scheduled in the SCSI error
* handler thread.
*/
isci_execpath_callback(ihost, task,
sas_task_abort);
/* Change the status, since we are holding
* the I/O until it is managed by the SCSI
* error handler.
*/
status = SCI_SUCCESS;
}
out:
if (status != SCI_SUCCESS) {
/* release dma memory on failure. */
isci_request_free(ihost, ireq);
ireq = NULL;
ret = SCI_FAILURE;
}
return ret;
}